
1

RTL Hardware Design
by P. Chu

Chapter 13 1

HIERARCHICAL DESIGN

RTL Hardware Design
by P. Chu

Chapter 13 2

Outline
1. Introduction
2. Components
3. Generics
4. Configuration
5. Other supporting constructs

RTL Hardware Design
by P. Chu

Chapter 13 3

1. Introduction

• How to deal with 1M gates or more?
• Hierarchical design

– Divided-and-conquer strategy
– Divide a system into smaller parts

RTL Hardware Design
by P. Chu

Chapter 13 4

RTL Hardware Design
by P. Chu

Chapter 13 5

• Complexity management
– Focus on a manageable portion of the

system, and analyze, design and verify each
module in isolation.

– Construct the system in stages by a designer
or concurrently by a team of designers.

– Help synthesis process

Benefits of hierarchical design

RTL Hardware Design
by P. Chu

Chapter 13 6

• Design reuse
– Use predesigned modules or third-party cores
– Use the same module in different design
– Isolate device-dependent components (e.g.,

SRAM)

2

RTL Hardware Design
by P. Chu

Chapter 13 7

Relevant VHDL constructs

• Component
• Generic
• Configuration
• Library
• Package
• Subprogram

RTL Hardware Design
by P. Chu

Chapter 13 8

2. Components

• Hierarchical design usually shown as a
block diagram (structural description)

• VHDL component is the mechanism to
describe structural description in text

• To use a component
– Component declaration (make known)
– Component instantiation (create an instance)

RTL Hardware Design
by P. Chu

Chapter 13 9

Component declaration
• In the declaration section of entity
• Info similar to entity declaration
• Syntax:

RTL Hardware Design
by P. Chu

Chapter 13 10

• E.g., a decade (mod-10) counter

RTL Hardware Design
by P. Chu

Chapter 13 11 RTL Hardware Design
by P. Chu

Chapter 13 12

• Component declaration for dec_counter

3

RTL Hardware Design
by P. Chu

Chapter 13 13

Component instantiation
• Instantiate an instance of a component
• Provide a generic value
• Map formal signals to actual signals

RTL Hardware Design
by P. Chu

Chapter 13 14

• Syntax

• Port association (named association)

RTL Hardware Design
by P. Chu

Chapter 13 15

• E.g., 2-digit decimal counter
(00=>01=> . . . =>99 =>00 . . .)

RTL Hardware Design
by P. Chu

Chapter 13 16

RTL Hardware Design
by P. Chu

Chapter 13 17

• The VHDL code is a textual description of
a schematic

RTL Hardware Design
by P. Chu

Chapter 13 18

• Positional association
– Appeared to be less cumbersome
– E.g., order of port declaration in entity:

– Alternative component instantiation

– Trouble if the order later changes in entity
declaration

4

RTL Hardware Design
by P. Chu

Chapter 13 19

• Mapping of constant and unused port
– E.g.,

RTL Hardware Design
by P. Chu

Chapter 13 20

• Good synthesis software should
– remove the unneeded part
– perform optimization over the constant input

RTL Hardware Design
by P. Chu

Chapter 13 21

3. Generics

• Mechanism to pass info into an
entity/component

• Declared in entity declaration and then can
be used as a constant in port declaration
and architecture body

• Assigned a value when the component is
instantiated.

• Like a parameter, but has to be constant

RTL Hardware Design
by P. Chu

Chapter 13 22

• e.g., parameterized binary counter
– Note that the generic is declared before the

port and thus can be used in port declaration

RTL Hardware Design
by P. Chu

Chapter 13 23 RTL Hardware Design
by P. Chu

Chapter 13 24

• e.g., to use the parameterized counter

5

RTL Hardware Design
by P. Chu

Chapter 13 25 RTL Hardware Design
by P. Chu

Chapter 13 26

• e.g., parameterized mod-n counter
– Count from 0 to n-1 and wrap around
– Note that WIDTH depends on N

RTL Hardware Design
by P. Chu

Chapter 13 27 RTL Hardware Design
by P. Chu

Chapter 13 28

• E.g., the 2-digit decimal counter again

RTL Hardware Design
by P. Chu

Chapter 13 29 RTL Hardware Design
by P. Chu

Chapter 13 30

• Another useful application of generic:
passing delay information

6

RTL Hardware Design
by P. Chu

Chapter 13 31

4. Configuration

• Bind a component with an entity and an
architecture

• Flexible and involved.
• Only simple binding of entity and

architecture is needed in synthesis
– Entity: like a socket in a printed circuit board
– Architecture: like an IC chip with same outline

• Not supported by all synthesis software
RTL Hardware Design
by P. Chu

Chapter 13 32

• Application of binding:
– E.g., adder with different speed:

Fast but large adder or small but slow adder
– E.g., Test bench

descriptions at different stages

RTL Hardware Design
by P. Chu

Chapter 13 33 RTL Hardware Design
by P. Chu

Chapter 13 34

• Type of configuration:
– Configuration declaration (an independent

design unit)
– Configuration specification (in architecture

body)
• Default binding: (no configuration)

– Component bound to an entity with identical
name

– Component ports bound to entity ports of
same names

– Most recently analyzed architecture body
bound to the entity

RTL Hardware Design
by P. Chu

Chapter 13 35

• Configuration declaration
– An independent design unit
– Simplified syntax

RTL Hardware Design
by P. Chu

Chapter 13 36

• E.g., create two architecture bodies for the
decade counter (one up and one down)

7

RTL Hardware Design
by P. Chu

Chapter 13 37 RTL Hardware Design
by P. Chu

Chapter 13 38

RTL Hardware Design
by P. Chu

Chapter 13 39

• Configuration specification
– Included in the declaration section of

architecture body
• Syntax:

RTL Hardware Design
by P. Chu

Chapter 13 40

• E.g.,

RTL Hardware Design
by P. Chu

Chapter 13 41

• Component instantiation and configuration
in VHDL 93
– Remove component and configuration

declaration
– Usually satisfactory for RT-level synthesis
– Syntax:

RTL Hardware Design
by P. Chu

Chapter 13 42

• E.g.,

8

RTL Hardware Design
by P. Chu

Chapter 13 43

5. Other constructs for developing
large system

• Library
• Subprogram
• Package

RTL Hardware Design
by P. Chu

Chapter 13 44

Library
• A virtual repository to stored analyzed

design units
• Physical location determined by software
• Design units can be organized and stored

in different libraries

RTL Hardware Design
by P. Chu

Chapter 13 45

• Default library: work
– E.g.,

• Non-default library has to be declared:
– syntax:

– E.g., library ieee;

RTL Hardware Design
by P. Chu

Chapter 13 46

• E.g.,

RTL Hardware Design
by P. Chu

Chapter 13 47

Subprogram

• Include function and procedure
• Made of sequential statement
• Is not a design unit; must be declared
• Aimed for software hierarchy not hardware

hierarchy
• We only use function

– Shorthand for complex expression
– “House-keeping tasks; e.g., type conversion

RTL Hardware Design
by P. Chu

Chapter 13 48

• Syntax of function

9

RTL Hardware Design
by P. Chu

Chapter 13 49

• E.g.,

RTL Hardware Design
by P. Chu

Chapter 13 50

• E.g.,

RTL Hardware Design
by P. Chu

Chapter 13 51

• E.g.,

RTL Hardware Design
by P. Chu

Chapter 13 52

Package

• Organize and store declaration
information, such as data types, functions
etc.

• Divided into
– Package declaration
– Package body (implementation of

subprograms)
• Both are design units

RTL Hardware Design
by P. Chu

Chapter 13 53

• Syntax

RTL Hardware Design
by P. Chu

Chapter 13 54

• E.g.,

10

RTL Hardware Design
by P. Chu

Chapter 13 55 RTL Hardware Design
by P. Chu

Chapter 13 56

• Improved mod-n counter

RTL Hardware Design
by P. Chu

Chapter 13 57

6. Partition
• Physical partition:
• Division of the physical implementation
• Each subsystem is synthesized independently
• Partition too small: loose optimization opportunity
• Partition too large: require too much resource

– e.g., O(n3) algorithm 1000 gates for 1 sec;
– 35 hours (503 sec) for one 50,000 gate circuit
– 21 min (10*53 sec) for 10 5,000 gate circuit

• 5000 to 50,000 gates for today’s synthesizer

RTL Hardware Design
by P. Chu

Chapter 13 58

• Logical partition:
– Help development and verification process for

human designers
– Logical partitions can be merged later in synthesis

• Some circuit should be isolated as
independent modules
– Device-dependent circuit: e.g., memory modules
– “Non-Boolean” circuit: tri-state buffer, delay-

sensitive circuit, clock distribution network,
synchronization circuit.

