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Outline
1. Introduction 
2. Components
3. Generics
4. Configuration
5. Other supporting constructs
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1. Introduction

• How to deal with 1M gates or more? 
• Hierarchical design

– Divided-and-conquer strategy
– Divide a system into smaller parts
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• Complexity management
– Focus on a manageable portion of the 

system, and analyze, design and verify each 
module in isolation.

– Construct the system in stages by a designer 
or concurrently by a team of designers.

– Help synthesis process

Benefits of hierarchical design
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• Design reuse 
– Use predesigned modules or third-party cores
– Use the same module in different design
– Isolate device-dependent components (e.g., 

SRAM)



2

RTL Hardware Design 
by P. Chu 

Chapter 13 7

Relevant VHDL constructs 

• Component
• Generic
• Configuration
• Library
• Package
• Subprogram
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2. Components

• Hierarchical design usually shown as a 
block diagram (structural description)

• VHDL component is the mechanism to 
describe structural description in text

• To use a component
– Component declaration (make known)
– Component instantiation (create an instance)
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Component declaration 
• In the declaration section of entity
• Info similar to entity declaration
• Syntax:
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• E.g., a decade (mod-10) counter 

RTL Hardware Design 
by P. Chu 

Chapter 13 11 RTL Hardware Design 
by P. Chu 

Chapter 13 12

• Component declaration for dec_counter
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Component instantiation 
• Instantiate an instance of a component
• Provide a generic value 
• Map formal signals to actual signals
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• Syntax

• Port association (named association)
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• E.g., 2-digit decimal counter 
(00=>01=> . . . =>99 =>00 . . .)
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• The VHDL code is a textual description of 
a schematic 

RTL Hardware Design 
by P. Chu 

Chapter 13 18

• Positional association
– Appeared to be less cumbersome
– E.g., order of port declaration in entity:

– Alternative component instantiation

– Trouble if the order later changes in entity 
declaration
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• Mapping of constant and unused port
– E.g.,
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• Good synthesis software should 
– remove the unneeded part 
– perform optimization over the constant input 
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3. Generics

• Mechanism to pass info into an 
entity/component 

• Declared in entity declaration and then can 
be used as a constant in port declaration 
and architecture body

• Assigned a value when the component is 
instantiated.

• Like a parameter, but  has to be constant
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• e.g., parameterized binary counter
– Note that the generic is declared before the 

port and thus can be used in port declaration
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• e.g., to use the parameterized counter
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• e.g., parameterized mod-n counter
– Count from 0 to n-1 and wrap around
– Note that WIDTH depends on N
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• E.g., the 2-digit decimal counter again 
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• Another useful application of generic: 
passing delay information
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4. Configuration

• Bind a component with an entity and an 
architecture

• Flexible and involved.
• Only simple binding of entity and 

architecture is needed in synthesis
– Entity: like a socket in a printed circuit board
– Architecture: like an IC chip with same outline

• Not supported by all synthesis software 
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• Application of binding:
– E.g., adder with different speed:

Fast but large adder or small but slow adder
– E.g., Test bench

descriptions at different stages 
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• Type of configuration:
– Configuration declaration (an independent 

design unit)
– Configuration specification (in architecture 

body) 
• Default binding: (no configuration)

– Component bound to an entity with identical 
name

– Component ports bound to entity ports of 
same names

– Most recently analyzed architecture body 
bound to the entity
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• Configuration declaration
– An independent design unit
– Simplified syntax
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• E.g., create two architecture bodies for the 
decade counter (one up and one down)
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• Configuration specification
– Included in the declaration section of 

architecture body
• Syntax:
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• E.g.,
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• Component instantiation and configuration 
in VHDL 93
– Remove component and configuration 

declaration 
– Usually satisfactory for RT-level synthesis 
– Syntax:
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• E.g., 



8

RTL Hardware Design 
by P. Chu 

Chapter 13 43

5. Other constructs for developing 
large system

• Library
• Subprogram
• Package
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Library
• A virtual repository to stored analyzed 

design units
• Physical location determined by software
• Design units can be organized and stored 

in different libraries
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• Default library: work 
– E.g., 

• Non-default library has to be declared:
– syntax:

– E.g., library ieee;
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• E.g., 
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Subprogram

• Include function and procedure
• Made of sequential statement 
• Is not a design unit; must be declared
• Aimed for software hierarchy not hardware 

hierarchy
• We only use function 

– Shorthand for complex expression
– “House-keeping tasks; e.g., type conversion 
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• Syntax of function
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• E.g.,
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• E.g.,
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• E.g.,
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Package

• Organize and store declaration 
information, such as data types, functions 
etc. 

• Divided into
– Package declaration 
– Package body (implementation of 

subprograms)
• Both are design units
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• Syntax
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• E.g.,
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• Improved mod-n counter
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6. Partition
• Physical partition:
• Division of the physical implementation
• Each subsystem is synthesized independently
• Partition too small: loose optimization opportunity
• Partition too large: require too much resource

– e.g., O(n3) algorithm 1000 gates for 1 sec;
– 35 hours (503 sec) for one 50,000 gate circuit
– 21 min (10*53 sec) for 10 5,000 gate circuit

• 5000 to 50,000 gates for today’s synthesizer
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• Logical partition:
– Help development and verification process for  

human designers
– Logical partitions can be merged later in synthesis

• Some circuit should be isolated as 
independent modules
– Device-dependent circuit: e.g., memory modules
– “Non-Boolean” circuit: tri-state buffer, delay-

sensitive circuit, clock distribution network, 
synchronization circuit.  


