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Abstract—1In this paper, we study the area and depth trade-
off in lookup-table (LUT) based FPGA technology mapping.
Starting from a depth-optimal mapping solution, we perform
a sequence of depth relaxation operations and area-minimizing
mapping procedures to produce a set of mapping solutions for a
given design with smooth area and depth trade-off. As the core
of the area minimization step, we have developed a polynomial
time optimal algorithmm for computing an area-minimum map-
ping solution without node duplication for a A'-bounded general
Boolean network, which makes a significant step towards com-
plete understanding of the general area minimization problem in
FPGA technology mapping. The experimental results on MCNC
benchmark circuits show that our solution sets outperform the
solutions produced by most existing mapping algorithms in terms
of both area and depth minimization.

I. INTRODUCTION

HE FIELD programmable gate array (FPGA) has become
Ta very popular technology in VLSI ASIC design and
system prototyping due to its short implementation cycle
and low manufacturing cost. An FPGA chip consists of
programmable logic blocks, programmable interconnections,
and programmable 1/O pads. The lookup table (LUT) based
FPGA architecture is produced by several FPGA manufactur-
ers [11], [19], in which the basic programmable logic block
is a K-input lookup-table. A K-input LUT (K-LUT) can
implement any Boolean function of up to K variables. The
technology mapping problem for LUT-based FPGA designs
is to transform a general Boolean network into a functionally
equivalent K-LUT network.

Previous technology mapping algorithms for LUT-based
FPGA designs can be roughly divided into three categories
according to their optimization objectives. The algorithms in
the first category emphasize on minimizing the number of
LUT’s in the mapping solution. These algorithms include
Chortle-crf [9], MIS-pga [13], [15], XMap [12], VisMap [18],
and TechMap [16]. The algorithms in the second category
emphasize on minimizing the delay of the mapping solu-
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Fig. 1. Mapping solutions of various algorithms for rof( K = 5).

tion. These algorithms include Chortle-d [10], MIS-pga(delay)
[14], TechMap-L [16], DAG-Map [3], and FlowMap [4]. The
algorithms in the third category, including RMap [17] and
the algorithm reported in [1], emphasize on maximizing the
routability of the mapping result. Most of these algorithms
are based on heuristic techniques, except FlowMap which
guarantees to produce depth-optimal mapping solutions in
polynomial time.

Although many of the existing algorithms showed encour-
aging results, they have a common limitation that for a
given design, each algorithm produces only a single mapping
solution optimized under a fixed objective, while other good
mapping solutions under different optimization objectives are
ignored. As an example, Fig. 1 compares the 5-LUT mapping
results by several existing algorithms on one of the MCNC
benchmark circuits named rot. The depth and the number
of LUT’s of these solutions vary significantly. In general,
the area-minimized solutions have much larger depth, while
delay-minimized solutions use much more LUT’s. In fact, we
can construct an example circuit on which the depth-optimal
solution has much larger area than the area-optimal solution,
while the area-optimal solution has much larger depth than
the depth-optimal solution (see Fig. 2). However, it is very
likely that in practice the best design does not come from
either of these two extremal solutions. It is important to let
the system designer have the flexibility to choose from a set
of mapping solutions with smooth trade-off between area and
depth.
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Fig.2. Depth-optimal versus area-optimal mapping. (a) Part of a circuit consisting of 4n-+1 identical 4-gate segments. The depth of the circuit is 4n+-3. (b) The
depth-optimal 5-LUT mapping soluton of depth n+1, using 57+1 LUT’s. (c) The area-optimal 5-LUT mapping solution of depth 4n+1, using 4n+1 LUT’s.

In this paper we study the trade-off between area and depth
in LUT-based FPGA technology mapping. Specifically, we are
interested in obtaining a set of mapping solutions for a given
design, which can meet various area and depth requirements.
In practice, the designer usually has to produce the most
compact design satisfying certain depth bound determined
by the system performance specification. To satisfy such a
need, our algorithm produces a set of area-minimized mapping
solutions under various depth bounds.

The basic approach of our algorithm is as follows. Starting
from a depth-optimal mapping solution (computed by the
FlowMap algorithm [4]), we perform a sequence of depth
relaxation operations to obtain a new network with bounded
increase in depth so that it is advantageous to subsequent re-
mapping for area minimization. We then re-map the resulting
network to obtain an area-minimized mapping solution with
bounded depth. By gradually increasing the depth bounds, we
are able to produce a set of mapping solutions with smooth
area and depth trade-off for a given design. As the core of the
area minimization step, we have developed a polynomial-time
algorithm for computing an area-optimal mapping solution
without node duplication for a general Boolean network, which
makes a significant step towards complete understanding of
the general area optimization problem in FPGA technology
mapping. In fact, it was shown very recently that area-optimal
mapping with node duplication for K-bounded network is
NP-Hard [8].

We have tested our algorithm on the MCNC benchmark
circuits and obtained very encouraging results. For most
circuits we are able to produce a set of mapping solutions
with smooth area and depth trade-off. At one end, we are able
to produce depth-optimal solutions that use smaller area than
the existing depth minimization mapping algorithms, including
Chortle-d, MIS-pga(delay), and FlowMap. At another end,
we are able to produce solutions with both smaller area and
smaller depth compared to the existing area minimization
mapping algorithms, including Chortle-crf and MIS-pga.

The remainder of this paper is organized as follows. Section
11 formulates the problem and introduces several concepts and
definitions. Section III presents an overview of our algorithm.
In Sections IV and V, the details of the two phases of
our algorithm, i.e., depth relaxation and area minimization,

are discussed. Section VI presents the experimental results.
Conclusions and future extensions are presented in Section
VIL

II. PROBLEM FORMULATION

A general Boolean network can be represented as a directed
acyclic graph where each node represents a logic gate and a
directed ‘edge (7,7) exists if the output of gate ¢ is an input
of gate j. A primary input (PI) node has no incoming edge
and a primary output (PO) node has no outgoing edge. We
use input(v) to denote the set of nodes which are the fanins
of node v, and output(v) to denote the set of nodes which are
the fanouts of node v. Given a subgraph H of the Boolean
network, input(H) denotes the set of distinct nodes outside H
which supply inputs to the gates in H. The level (or depth) of
a node v is the length of the longest path from any PI node to
v. The level of a PI node is zero. The depth of a network is
the largest node level in the network. A Boolean network is
K-bounded if |input(v)| < K for each node v. In the rest of
this paper, we consider only K-bounded networks.!

For a node v in the network, a cone of v, denoted C,, is a
subgraph of logic gates (excluding PI's) consisting of v and its
predecessors? such that any path connecting a node in C,, and
v lies entirely in C,. We call v the root of C,,. A fanout-free
cone (FFC) of v, denoted FFC,, is a cone of v such that for
any node u # v in FFC,, output(u) C FFC,. A K-feasible
cone of v is a cone C, such that |input(C,)| < K.

We assume that each programmable logic block in an
FPGA is a K-input 1-output lookup-table (K-LUT) that can
implement any Boolean function of up to K variables. Thus,
each K-LUT can implement (or cover) any K-feasible FFC
in a Boolean network. If a K-LUT LUT, implements a K-
feasible FFC of v, we say that LUT, implements node v and
that v is the root of LUT,,. If the K-feasible cone C, is not
fanout free, we have to duplicate the nonroot nodes in C, that
have fanouts outside of C,, in order to cover C, by a K-LUT.
Given a K -bounded network, the technology mapping problem
for K-LUT based FPGA designs is to cover the network

LIf a network is not K -bounded, there are a few algorithms to transform
it into a K -bounded network. For example, the DMIG algorithm in [3]
transforms a general network of simple gates into a K -bounded network with

minimum depth.
2Node wu is a predecessor of node v if there is a directed path from u to v.
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Technology mapping for LUT-base FPGA (K = 3). (a) Original network; (b) mapping with node duplication; (c) mapping without node duplication.
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Fig. 4. Depth relaxation for area reduction (K = 3). The numbers indicate node levels. (a) Original network; (b) solution of FlowMap; (c) after depth

relaxation; (d) after re-mapping for area minimization.

with K-feasible FFC’s (possibly with node duplications). A
technology mapping solution S is a directed acyclic graph
where each node is a K -feasible FFC (equivalently, a K-LUT)
and the edge (C, C,) exists if  is in input(C,). Fig. 3 shows
a Boolean network and two mapping solutions, one with node
duplication and the other without node duplication.

We say an LUT mapping solution satisfies the depth bound
D if the depth of the LUT network is no more than D. Given
a depth bound D, the slack on node v is defined as follows:
If v is not a PI or PO, the slack of v is D — (L, + P,), where
L, is the level of v in the network, and P, is the length of
the longest path from v to any PO node. If v is a PI or PO,
the slack of v is zero. A node is critical if it has zero slack.
A path from a PI to a PO consisting of only critical nodes is
a critical path.

III. BASIC OPERATIONS AND QUTLINE OF THE ALGORITHM

In this section, we first discuss the effect of depth relaxation
and node duplication, which are two important factors in
determining the area and depth trade-off. Then, we shall give
an overview of our algorithm. We start with a brief description
of the FlowMap algorithm, which will be used to compute a
depth-optimal mapping solution as our starting point.

A. The FlowMap Algorithm

FlowMap [4] is an LUT-based FPGA technology mapper
that produces depth-optimal mapping solutions for general
Boolean networks in polynomial time. The basic idea of the
FlowMap algorithm is to find a depth-optimal mapping for

each node in the network, according to the topological order
starting from the PI nodes. The depth-optimal mapping of a
node v is achieved by computing a minimum height K-feasible
cut in the subnetwork consisting of all the transitive fanins of
v. It was shown that such a cut can be computed in polynomial
time. It worths noticing that in a FlowMap mapping solution,
every node (LUT) has the minimum possible depth.

B. Effect of Depth Relaxation

Insisting minimum depth for every node, including the
noncritical ones, may lead to inefficient use of LUT’s. Fig. 4(a)
shows a Boolean network. The mapping solution by FlowMap
is shown in Fig. 4(b). Another solution is shown in Fig. 4(d),
which has the same depth as the one in (b) but uses one fewer
LUT. Note that LUT,, in (b) has the minimum depth. However,
since it is not critical, LUT, does not have the minimum
depth in (d). In fact, solution (d) can be obtained from (b)
by decomposing LUT, to exclude gate w, as shown in (c),
and then repack LUT, into LUT,. Since the decomposition
increases the depth of LUT,, we call it a depth relaxation
operation. When LUT, is not critical, this operation does
not increase the depth of the network. Depth relaxation is
discussed in detail in Section IV.

C. Effect of Node Duplication

Node duplication is performed when we use an LUT to
cover a K-feasible cone C which has a nonroot node with
a fanout node outside of C [see Fig. 3(b)]. In general,
node duplication is very important to depth optimization, as
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duplication usually increases the parallelism in the circuit.
Without node duplication, we may have to implement many
multifanout nodes explicitly with LUT’s, which may lead to
large depth in the mapping solution. In the FlowMap mapping
solutions, node duplication is heavily used to guarantee the
optimal depth. For example, in the mapping solution of the
MCNC benchmark circuit rot, 90% of the multifanout nodes
are duplicated. However, node duplication may not be very
beneficial to area minimization. If we make m duplications of
a node, we need to cover this node by m LUT’s, and it may use
certain input capacity of each LUT. Therefore, excessive node
duplication will very likely result in large number of LUT’s.
Fig. 3 shows a typical example where node duplication reduces
the depth but increases the area of the mapping solution.

In our algorithm, node duplication is automatically carried
out by FlowMap for depth minimization. In each of the subse-
quent depth relaxation steps, we try to eliminate unnecessary
node duplications for noncritical nodes, until all the remaining
duplications are necessary to guarantee the depth bound.
Then, we carry out re-mapping for area minimization without
introducing new node duplications. Finally, we apply two post-
processing operations that allow necessary node duplications
for further area reduction.

D. Overview of the Algorithm

Our algorithm starts with the depth-optimal mapping so-
lution produced by FlowMap. For each given depth bound
of the mapping solution, our algorithm consists of two phases.
During the first phase, we apply a sequence of depth relaxation
operations to produce an intermediate network suitable for
subsequent area minimization. In this phase, the depth of
certain noncritical nodes will be increased, but the depth bound
on the intermediate network is maintained. In the second
phase, we carry out re-mapping for area minimization on the
intermediate network. First, we use the DF-Map procedure to
compute an area-optimal duplication-free mapping solution,
i.e., a mapping solution without node duplication. The details
of DF-Map will be presented in Section V. Then, we carry out
two post-processing procedures which allow necessary node
duplications for further area minimization. The two procedures
are MP-Pack, a multifanout predecessor packing procedure
from the DAG-Map package [3], and Flow-Pack, a flow-based
area minimization procedure from the FlowMap package [4].

To generate a set of mapping solutions, we gradually
increase the depth bound for the mapping solution and repeat
the two-phase process for each depth bound. The algorithm
stops when no improvement on area is available by further
increase of the depth bound. Clearly, the number of iterations
is bounded by the depth of the original network. Our algorithm,
named FlowMap-r, is outlined as follows.
algorithm FlowMap-r

call FlowMap to produce a depth-optimal

mapping solution;
repeat
/* phase 1: depth relaxation */
compute slacks;
while there are nodes with nonzero slacks do

select a node with nonzero slack;
apply a depth relaxation operation
to decompose the node;
recompute slacks;
end-while;
/* phase 2: area minimization * /
call DF-Map to perform area-optimal
duplication-free mapping;
call MP-Pack to perform matching based
predecessor packing with node duplication;
call Flow-Pack to perform maximum volume
packing with node duplication;
output mapping solution;
increase the depth bound by 1;
until no improvement in area reduction;
end-algorithm.

IV. DEPTH RELAXATION

Given a noncritical LUT LUT,, rooted at a node v and some
node w € LUT,, the depth relaxation operation applied on
LUT, and node w decomposes LUT,, into LUT ' and LUT,,
so that LUT,, becomes a fanin of LUT,,. Node w is called the
breaking node. 1f LUT,, already exists in the mapping solution
(i.e., w is a duplicated node in LUT,), the depth relaxation
simply replaces LUT, with LUT/ and let LUT,, be a fanin
of LUT,, as in Fig. 4(c). Otherwise, LUT,, will be created
explicitly.

Due to the depth bound, not all the LUT’s can be decom-
posed, and the depth relaxation operation may lead to different
results when applied on different LUT’s, or in different ways
on the same LUT. The problem of finding an optimal decom-
position is difficult due to the prohibitively large number of
possible configurations. We use a greedy heuristic approach
that always applies the “most promising” depth relaxation
operations first. For every LUT LUT,, with nonzero slack and
every possible breaking node w € LUT,, we estimate the
potential area reduction by decomposing LUT, into LUT,
and LUT,,, and choose the best one for decomposition. The
estimation may be based on the reduction of input sizes of the
decomposed and adjacent LUT’s, the elimination or potential
elimination of LUT’s due to merging duplications and eligible
repacking of adjacent LUT’s, and the effect on the slack
consumption of the other LUT’s. In particular, the heuristic
evaluation function we used is of the form

p(LUTva 'H)) = (aRex + IBRim + ’7)/(Rslk + 1)1

where R, is the explicit reduction in the number of LUT’s due
to the elimination of LUT’s whose output signal are no longer
needed; Rin is the implicit reduction in the number of LUT’s,
estimated by local repacking and by considering further de-
composition of adjacent LUT’s; and Rg is the number of
PO’s whose slacks are decreased by the decomposition. Note
that in the worst case Rex is —1 since the decomposition first
creates a new LUT,,. However, if LUT,, already exists in the
current mapping solution, we always have Reyx > 0. In general,
we choose o > 3 > 0. In our experiments, we set o = 4.




CONG AND DING: FPGA TECHNOLOGY MAPPING

(@)

Three types of depth relaxation operations (assume K = 5 and LUT, has nonzero slack).

Fig. 5.

The impact of input size reduction is implicitly considered in
R, but can also be explicitly included in the function.

Fig. 5 illustrates three types of depth relaxation, which are
considered in our algorithm.

In Fig. 5(a), LUT, contains a duplication of node w, and
LUT,, is already in the network. If we apply depth relaxation
operation on LUT,, using w as the breaking node, no new LUT
needs to be created. Moreover, the input size of LUT, will
be reduced in most cases, so that it may be packed with other
LUT’s. In this example, LUT,, can be packed either with LUT,,
or with LUT,. Furthermore, elimination of the duplication w
also reduces the fanout size of the fanin LUT’s of w, which
may either enable further packing of LUT,, with such a fanin
LUT (in this example, LUT,), or elimination of a redundant
duplication of the fanin node (in this example, node z).

In Fig. 5(b), the two duplications of node w are in LUT,, and
LUT,. Since LUT,, needs to be explicitly created when we
choose w as the breaking node, this case is not as favorable as
case (a). However, By applying depth relaxation on LUT,,, the
input size of LUT, is reduced, therefore further packing may
be possible. In this example, LUT,, can be packed with LUT;,,
or with LUT, and LUT.. Moreover, if we can later apply
depth relaxation on LUT,, no new LUT will be generated for
node w.

In Fig. 5(c), LUT, contains a node w which has single
fanout. However, using w as the breaking node to decompose
LUT, may lead to further packing to merge LUT, with
LUT,, and to merge LUT,,, with LUT,. In this case the depth
relaxation is also beneficial.
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Note that for a given LUT,, the choice of the breaking
node is greedy. That is, we always choose w € LUT, for
decomposition of LUT, such that p(LUT,, w) is maximum.
For example, in Fig. 5(c), since choosing w as the breaking
node leads to maximum area reduction, the depicted depth
relaxation is applied.

After a depth relaxation operation, the slacks and the
potentials of the affected nodes are recomputed, and the depth
relaxation is performed again on the next node with nonzero
slack and maximum potential. This process is repeated until no
slack is available. Note that the re-mapping is not performed
immediately after a single depth relaxation operation. It is
invoked after all slacks are exhausted under the current depth
bound so that it can perform global optimization for area
minimization.

We now briefly analyze the complexity of depth relaxation.
Assuming that the number of nodes in the original network
N is n. Then, we can apply depth relaxation at most n times.
After each depth relaxation operation, we update the slacks
of some or all of the nodes in the LUT network and some
or all of the p(LUT,,w) values for w € N which is a
possible breaking node of LUT,. Slack computation for the
entire network takes O(Kn) time. For each node w € N,
there are at most |ousput(w) | LUT’s that may contain w as a
breaking node, where output(w) is the set of fanout nodes of w
in N. Since N is K -bounded, the total number of p(LUT,, w)
values that we need to evaluate is bounded by

Z loutput(w)| = Z linput(w)| < Kn.

weEN weN
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Fig. 6. Duplication-free mapping versus tree-based mapping (K = 3). (a) Orginal network; (b) duplication-free mapping; (c) tree-based mapping.

Recall that p(LUT,,, w) contains three components Rey, Rim,
and Rg. Each R.x and R;, can be computed in constant
time since they depend on only local information. Let RPO,
denote the set of PO’s whose slacks will decrease if the depth
of LUT, increases by one. Let F,, denote the set of fanouts
of LUT, such that the depth of each node in F,, is the depth
of LUT, plus one. Define

RPO, — {{v}

if v is a PO

Uwer,RPO,, otherwise

It is not difficult to show that when computing p(LUT,, w),
either Ry = O (if the decomposition does not increase the
depth of LUT,), or Rqx = |RPO,|. Since the total number
of fanouts is bounded by Kn, the computation of RPO, for
all LUT,, takes no more than O(Knr) time, where r is the
number of PO’s. Therefore, all of the p(LUT,, w) values in
the network can be computed in O(Xnr) time. In summary,
updating the slacks and p(LUT,,, w) after each depth relaxation
takes no more than O(Knr) time, Therefore, the complexity
of the depth relaxation is bounded by O(Kn?r). In practice,
the computational complexity is much lower since we update
only the slacks and potential function values of the affected
nodes.

V. AREA OPTIMAL DUPLICATION-FREE MAPPING

In this section we present a polynomial time algorithm
for area-optimal duplication-free mapping (DF-mapping) for
general K-bounded Boolean networks, which is the core of
the re-mapping phase for area minimization. Note that DF-
mapping is not equivalent to tree-based mapping. Fig. 6 shows
a simple example where the optimal DF-mapping uses 2
LUT’s, while the optimal tree-based mapping uses 6 LUT’s.
Our algorithm is based on an important concept called the
maximum fanout free cone.

A. Maximum Fanout Free Cone

The maximum fanout free cone (MFFC) of v, denoted
MFFC,, is an FFC of v such that for any non-PI node w,

Fig. 7. Maximum fanout free cones.

if output(w) C MFFC,, then w € MFFC,. Fig. 7 shows
the MFFC of each node (the smallest shadowed area) in a
network. Clearly, the MFFC of each node is unique, and any
FFC of v is contained in MFFC,. Moreover, MFFC has the
following important properties.

Lemma 1: Y w € MFFC,, then MFFC,, C MFFC,,.

Proof: For any node v € MFFC,,, if there is a path from
u to a PO node that does not pass w, let w’ be the last node in
MFFC,, along the path, then output(w’) ¢ MFFC,,, which
contradicts the assumption that w’ € MFFC,,. Therefore,
every path from u to a PO node must pass w. Similarly, since
w € MFFC,, every path from w to a PO node must pass
v. This implies that every path from u to a PO node must
pass v, so output(u) C MFFC,, i.e. © € MFFC,. Therefore,
MFFC,, C MFFC,,. O

Lemma 2: Two MFFC’s are either disjoint or one must
contain another.

Proof: 1f MFFC,, and MFFC,, are not disjoint, let v €
MFFC, N MFFC,,. Then, every path from « to a PO node must
pass both v and w. Assume that a path from u first passes w
then passes v. Then, every path from w to a PO node must also
pass v. This implies w € MFFC,, and according to Lemma 1,
MFFC,, C MFFC,. (W
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Lemma 3: 1If LUT,, is in a DF-mapping solution S, then
w € MFFC, implies LUT,, C MFFC, for any nodes v and w.
Proof: Since there is no node duplication, it is clear that
LUT,, implements an FFC rooted at w. Therefore, LUT,, C
MFFC,,. Since w € MFFC,,, according to Lemma 1 we know
MFFC,, € MFFC,,. Thus, LUT,, C MFFC,,. |
These properties of MFFC allow us to carry out optimal
DF-mapping efficiently.

B. MFFC Partitioning of General Network

First, we show that a general Boolean network can be
decomposed into a set of disjoint MFFC’s such that the optimal
DF-mapping for the entire network can be carried out in each
MFFC independently.

Theorem 1: Let v be a PO node of a general Boolean
network N. Then, any optimal DF-mapping solution S of N
also induces an optimal DF-mapping solution S, of MFFC,,.

Proof: For any LUT,, in S, since v is a PO, v € MFFC,,.
If v € MFFC,, according to Lemma 3, LUT, C MFFC,. If
u & MFFC,, according to Lemma 2, MFFC,, N MFFC,, = {),
which implies LUT,, "MFFC,, = . Therefore, any LUT in S
is either contained in MFFC, or disjoint with MFFC,. As a
result, S induces a mapping solution S,, in MFFC,,. Moreover,
S, must be optimal, for otherwise, by improving S,, S can
be further improved. |

According to Theorem 1, we can partition the network N
into MFFC,, and N-MFFC,, for any PO node v. An optimal
DF-mapping solution consists of an optimal DF-mapping
solution of MFFC,, and an optimal DF-mapping solution of N-
MFFC,. By applying this theorem recursively on N-MFFC,,
we can partition the entire network N into a set of disjoint
MFFC’s so that we can compute the optimal DF-mapping for
each MFFC independently to obtain an optimal DF-mapping
solution of N. In Fig. 7, the MFFC’s of nodes p, q,r, s, and ¢
form a disjoint partition of the network. In the next subsection
we shall discuss how to compute an optimal DF-mapping for
an MFFC.

C. Optimal DF-Mapping for MFFC’s

Assume that we want to compute an area-optimal DF-
mapping solution of MFFC,, (it will be clear from the follow-
ing discussion that depth-optimal DF-mapping solution can be
computed in a similar way). First, we introduce some basic
concepts about cuts in MFFC,,.

A cut of MFFC, is a partition (X, X) of MFFC, such that
X is an FFC of v. The size of a cut (X, X) is defined to be
|input(X)|. A K-cut is a cut of size exactly K, and a K-feasible
cut is one of size no more than K. Clearly, a cut (X, X) of
MFFC, is K -feasible if and only if X can be covered by a
K-LUT rooted at v.

For each K-feasible cut P = (X,X) of MFEC,,
we can cover X with a K-LUT LUTY, and partition
X = MFFC, — X into a set of disjoint MFFC’s
MFFCvf,MFFCvg, -+-,MFFC,». Then, we recursively
compute the area-optimal DF-mapping of each MFFC,»
(1 € i < m). The cost of the cut P is defined to be
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cost(P) = 1+ Y7 | area(MFFC,» ), where area(MFFC,») is
the area of the area-optimal DF—mépping of MFFC,». Clezarly,
cost(P) gives the area of the best DF-mapping solution of
MFFC, if X is covered by LUTY. Therefore, We generate
each K -feasible cut of MFFC, and choose the cut with least
cost. Each cut cost computation involves recursively solving
a set of DF-mappings for MFFC’s of smaller sizes.

The same method can be applied to other optimization ob-
jectives. For example, if we want to compute a depth-optimal
DF-mapping, we simply change the cost function to cost(P) =
1 + max,depth(MFFC,r), where depth(MFFC,) is the
depth of the depth-optimal bF—mapping of MFFCUP.Z (In fact,
depth-optimal DF-mapping can be computed more E:fﬁciently.
Using the FlowMap [4] approach, it will only take O(Kmn)
time to map a network of n nodes and m edges.)

It is not difficult to see that there are only polynomial
number of K -feasible cuts, since the total number of possible
combinations of K or fewer nodes is O(nX), where n is
the number of nodes in the MFFC. In practice, however,
examining all these combinations to compute the K-feasible
cut with least cost is too expensive, since most of them do not
form a K-feasible cut. In the following two subsections we
present a more efficient algorithm to generate the K -feasible
cuts in MFFC,,.

For simplicity of the discussion, in the remainder of this
section, we represent a cut (X ,7) by a string vive - Um,
where input(X) = {v1,ve,---,v,}. For our purpose, the
order of the nodes in the string is irrelevant, e.g. vqvg - - - Uy =
Va1 - - - V. Moreover, we define the operator * on two cuts
to be the concatenation of the two corresponding strings,
1Le., V1V Uy % ULUD ** * Uy, = VU ** * Upp U1 U9 * * * Up. FOr
convenience, we use ¢ to denote the empty string, i.e., v ¢ =
¢ * v = v. Finally, for two sets of cuts A and B, A« B is
defined to be {c; *ca | ¢1 € A,co € B} if A# 0 and B # 0,
and @ otherwise.

Cut Generation for Trees Assume that MFFC,, is a tree T,
v has f fanin nodes vy, vg,---,vs(f < K). Let T; denote the
subtree in T rooted at v; (1 < i < f). Clearly, any cut of
size K in T induces a K;-cut of T, with 3, K; = K, and
vice versa. Let Cr(K) denote the set of cuts of size K in T,
and define Cr(1) = {v}, where v is the root of 7. Then, we
have (for K > 1)

Cr(K) = U

Zf:l K;=K.K;>1

(CTI(I\'1)*CT2(IX'2)*--~*C'[f(1'ff)).

Based on the recursive equation (1), we can generate all
K-cuts of a tree. Note that in this case, the number of cuts
generated according to this equation is bounded by a constant
depending only on K. In fact, it can be shown that this constant
is bounded by the (K — 1)th Catalan number [7], denoted
ck—1, where ¢ = ﬁ(i’“) For K = 5, cx_, = 14.
Therefore, when MFFC,, is a tree, the total number of K-
feasible cuts that we need to generate is bounded by ZLK:_Ol Ci,
which is 23 for K = 5.

Cut Generation for Non-Trees 1If MFFC, is not a tree, We
first construct a spanning tree 7" rooted at v, and then carry out
the recursion on the spanning tree. Again, we assume that node

v has f fanin nodes vy, v, -, vs(f < K), and let 7; denote
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(a) (b)

Fig. 8. Complication in cut generation.

the subtree in 7T rooted at v; (1 < ¢ < f). However, a simple
combination of the cuts in 77, T3, - - -, T¢ does not always give
a cut of MFFC,,. In Fig. 8, The MFFC in (a) has a spanning
tree shown in (b) where the dashed edge is not in the spanning
tree. A combination of a cut su in the left subtree with a cut
zy in the right subtree does not form a cut in the MFFC, since
the edge (v, w) provides a path connecting the root p to nodes
outside of the MFFC. On the other hand, the cut suvzy of the
MFEFC cannot be generated from the combinations of the cuts
in the two subtrees, since suw is not a cut of the left subtree.

The problem occurs because of the existence of the edges
not in the spanning tree (called non-tree edges). If a non-tree
edge (u;,u;) crosses two subtrees T; and T of the spanning
tree T, we call u; an escape node of T; in T and u; an
entrance node of T} in T'. False cuts can be easily eliminated
by examining the entrance nodes. In order to generate the
cuts that are not combinations of the cuts of the subtrees, we
generalize the concept of a cut. A generalized cut in a subtree
of the spanning tree of an MFFC is a combination of a cut
with some escape nodes. In Fig. 8, suv is a generalized cut of
the left subtree by including the escape node v.

It is not difficult to show that the generalized cuts of
tree T can be generated from the generalized cuts of its
subtrees Ty, T3, - - -, Ty. Specifically, let Cr(K') denote the set
of generalized cuts of size K in tree 7', and Ex(K') denote the
set of all the combinations of K escape nodes in 7. Clearly,
any generalized cut of size K that contains the root v of T is
in the set {v} * Ep(K — 1), since v itself forms a cut in T.
On the other hand, any generalized cut that does not contain v
can be formed by combinations of the generalized cuts of the
subtrees of 7', since the nodes that form a (normal) cut will
form a cut in each of the subtrees. Therefore, we have

awe| U

! K=K,K:;>0

=1

‘ ch(Kf))] U l{o} * Er(K - 1), ®

(Cr, (K1) * Cp, (K3) * -+ - %

Note that in this recursion, a subtree 7; may have a “cut” of
size 0, if during the construction of the spanning tree, all the
paths from the leaves of the spanning tree to the root of T;
have been cut off. In this case, Cr,(0) = {¢}.

Based on (2), Cr(K) can be recursively computed if
Er(K — 1) is known. In general, the recursion stops when

the subtree 7; is a single node, where we have

Cr.(0) = {é;ﬁ} if T; is not a leaf of T’

otherwise
Cr,(1) = {vi}
CTL (K) = @

2
for K > 1.

In fact, when we reach a subtree 7; that does not contain any
escape or entrance nodes, the recursion (1) for tree can be
used to simplify computation.

We shall now discuss the computation of E7(K). Note that
Er(0) = {¢} is always true. For convenience, we define
Er(K) =0 for K < 0.For K > 0, Ep(K) can be recursively
computed as well, according to the following relation:

Er(K)C U

S Ki=K,Rk>0

(B2, (K)  BE, (K2) -+ (BF, (K7).

3
where
Er,(K;),
if v; is not an escape node in T'
Er,(Ki) U [{vi} * Er,(Ki = 1)],
if v; is an escape node in T

for K; > 0, and EF (0) = {¢}.

In (3) and (4), E1,(K;) gives the set of the combinations of
K escape nodes without considering the root v; of T;. Ef; (K3)
gives the set of the combinations of K escape nodes with
possible inclusion of v; when it is an escape node in T'. The
use of Ei (K;) simplifies the recursive relation in (3). The
recursions in (3) and (4) stop when the subtree T; does not
contain any escape node other than its root v;. In this case
we have

Ef (K;) = C))

Er,(0) = {¢}
Er(K)=0 for K >0, 3H
and
EZ(0) = {¢}
EE(1) = {évi} iofﬂ:)éri;izg escape node of T @)
Ef(K)=0 forK>1.

Based on (2), (3), and (4), Cr(K;) and Er(K;) (1 < K; £
K) can be computed simultaneously for each subtree, in the
topological order starting from the leaves in 7. This yields an
efficient way of generating all the generalized cuts of size no
more than K in the spanning tree T of MFFC,, which include
all the K-feasible cuts in MFFC,,.

Cut generation for general networks is more costly than
for trees due to the existence of the escape nodes. However,
our experimental results showed that in practice, the above
recursion (2) often quickly reaches the point where the subtree
does not contain any escape node. In this case, the normal
tree cuts gemeration algorithm is applied, which generates
only a small constant number of cuts. Our cut generation
algorithm is much more efficient than the straight forward
enumeration of all K-node combinations. For K = 5, the
number of all possible K-node combinations is ©(r®), while
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Fig. 9. Transformation of DF-mapping solutions. (a) In the original solution,
MFFC,, is not contained in any LUT. (b) In the transformed solution, MFFC..
is contained in an LUT.

our experimental results showed that on average, the total
number of cuts generated by our algorithms is much smaller
than n?, where n is the number of nodes in an MFFC.

D. The Optimal DF-Mapping Algorithm

First, we show that we can collapse every K-feasible
MFFC into its root prior to the mapping, without affecting
the optimality of the subsequent DF-mapping.

Theorem 2: There exists an optimal DF-mapping solution
in which every K-feasible MFFC is contained in a K-LUT.

Proof: Let MFFC, be a K-feasible MFFC that is not
contained in any K-LUT in a DF-mapping solution S. We will
show that we can transform S into another solution S’ that is at
least as good as S, such that a K-LUT in S’ contains MFFC,,.

Let LUT,, be the K-LUT in S that covers v. We consider
two cases. i) If u = v, we construct S’ by replacing LUT,, with
LUT!, = MFFC, and eliminating all the LUT’s implementing
nodes in MFFC,,. ii) If u # v, let W = {w|w € MFFC,, w ¢
LUT,, outputr(w) C LUT,}. Clearly, |W| > 1. Let V =
MFFC, N LUT, and U = LUT, — V. See Fig. 9(a) for
illustration. Since v is the only node in MFFC, that may
have fanout to U, |input(U)| = |input(LUT, )| — |[W| + 1 <
linput(LUT,,)|. Therefore, U is also K -feasible. Since any K-
LUT in S that implements a node in MFFC,, must be contained
by MFFC, (Lemma 3), we can transform S into S’ by
replacing LUT,, with LUT), = U, creating LUT, = MFFC,,
and eliminating all the LUT’s implementing the nodes in
MFFC, (since |W| > 1, there exists at least one such LUT).
This is shown in Fig. 9(b).

In both cases, the transformation does not increase the
number of K-LUT’s, and MFFC,, is contained in an LUT.
Moreover, for any other K-feasible MFFC, if it is contained
in a K-LUT in S, it remains contained in the corresponding
K-LUT in S’. O

According to this theorem, we first collapse each K -feasible
MFFC, into node v before the DF-mapping. Our experimental
results showed that this usually reduces the network size by
25% to 50% (when K = 5). Then, we use the dynamic
programming approach to compute an optimal DF-mapping
solution of MFFC,, for each node v according to the topo-
logical order starting from the PI nodes. This order guarantees
that when we compute the DF-mapping of MFFC,, the optimal
DF-mapping solutions of all the MFFC’s inside MFFC,, have
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been computed, so that we can evaluate the cost of each
cut in MFFC,, very easily. Finally, according to Theorem 1,
we generate the optimal DF-mapping solution for the entire
network starting from the PO nodes. Our area-optimal DF-
mapping algorithm, called DF-Map, is summarized as follows.
algorithm DF-Map
/* phase O: collapse K-feasible MFFC’s */
for each node v do
if MFFC , is K-feasible then
collapse MFFC ,, into v;
end-for;
/* phase 1: compute optimal mapping for MFFC’s */
for each node v, in topological order starting from PI nodes, do
compute MFFC ,;
/* compute optimal DF-mapping for MFFC , */
mincost := 00;
for each K-feasible cut P = (X, X) of MFFC , do
decompose X into disjoint MFFC’s MFFC WP 1<i<m;
cost(P) := 1+ Y1~ area ( MFFC ,»);
if mincost > cost(P) then '
LUT, := X; mincost :=cost(P);
end-for;
area( MFFC ,) := min cost;
end-for;
/* phase 2: generate optimal mapping solution */
L := list of PO nodes; S := 0;
while L # ) do
remove a node v from L;
S := S U { optimal DF-mapping of MFFC, };
L := L Uinput(MFFC,);
end-while;
output S;
end-algorithm.
Based on the discussion in Sections V-B and -C, we have
Theorem 3: The DF-mapping problem for general K-
bounded Boolean networks in LUT-based FPGA designs can
be solved optimally in polynomial time when K is a constant.
a

E. Integration of Depth Relaxation and DF-Mapping

As described in Section II-D, the DF-Map algorithm is
used in the second phase of FlowMap-r to perform area
minimization. The initial network of DF-Map is generated
using the FlowMap algorithm followed by depth relaxation.

Since every new LUT generated by DF-Map covers at least
one node of the initial network, the depth of the DF-Map
solution is no larger than the initial network to DF-Map. Since
the depth bound is maintained during the depth relaxation,
it is still maintained after DF-Map. Moreover, according to
the results in [3], [4], the two post-processing procedures
MP-Pack and Flow-Pack that are used in FlowMap-r for
area minimization with node duplication, will not increase
network depth either. Therefore, after the depth relaxation
phase in FlowMap-r, the depth of the network will not in-
crease during the area minimization. This guarantees that
FlowMap-r can control the depth of the final solution suc-
cessfully.
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Fig. 10. Area/depth trade-off in FlowMap-r (K = 5).

The objective of the depth relaxation phase is to prepare
an advantageous initial network for DF-Map. In Section IV,
it can be seen that certain depth relaxation operations will
alter the MFFC structure, as in the case of Fig. 5(a), while

others will not, as in the case of Fig. 5(c). In general, the

MFFC structure may be affected only when a duplication of a
multiple fanout node is eliminated by the operation. Clearly,
operations of the former type will have impact on the DF-Map
solution since unnecessary duplications are removed. On the
other hand, the operations of the latter type are also necessary,
since further decomposition of a larger MFFC is an important
part of DF-Map. As an example, Fig. 5(c) consists of a
single MFFC which is not S-feasible. Without depth relaxation,
MFFC, consists of 3 nodes, and the optimal mapping is
the existing mapping using 3 LUT’s. After depth relaxation,
MFFC, consists of 4 nodes, and the optimal mapping yields
a solution of 2 LUT’s.

VI. EXPERIMENTAL RESULTS

We have implemented the FlowMap-r algorithm on SUN
SPARC workstations and tested it on a set of MCNC bench-
mark circuits. In order to make fair comparison with previous
algorithms, we used the same initial networks as used by
Chortle-crf/Chortle-d [10], DAG-Map [3], and FlowMap [4].
These initial networks are synthesized using a MIS script [2]
which performs technology independent optimization.

Table I shows the mapping solution sets computed by
FlowMap-r. The time in this table is the CPU time used for the
solution of the maximum depth relaxation shown in the table,
recorded on a SUN SPARC IPC (14.8MIPS). In general, larger
networks have more room for area and depth trade-off. The
area/depth trade-off curves for alu2, rot and des are shown in
Fig. 10. For most circuits, as we increase the depth bound, the
number of LUT’s decreases considerably.!

We also compared the area-minimum and depth-minimum
solutions generated by FlowMap-r with those generated by

!There are a few benchmark circuits for which FlowMap-r cannot improve
the starting solution of FlowMap by increasing the depth bounds, since for
these circuits the solutions generated by FlowMap have optimal depth and

near-optimal area. These circuits either are very small, or have tree-like
structures.

several existing mapping algorithms. The data for these algo-
rithms are quoted from [4], [10], [14]%. Table II compares the
area-minimum solutions generated by FlowMap-r with those
generated by other mapping algorithms for area minimization,
including Chortle-crf and MIS-pga. Overall, the area-minimum
solutions of FlowMap-r use 5% fewer LUT’s and 18% fewer
levels than Chortle-crf, and 2% fewer LUT’s and 14% fewer
levels than MIS-pga (on available data). Table III compares
the depth-minimum solutions generated by FlowMap-r with
those generated by other mapping algorithms for depth mini-
mization, including FlowMap, MIS-pga(delay), and Chortle-d.
Overall, the depth-optimal solutions of FlowMap-r use the
same number of levels and 10% fewer LUT’s than FlowMap,
8% fewer levels and 9% fewer LUT’s than MIS-pga(delay),
and 5% fewer levels and 40% fewer LUT’s than Chortle-d.
The improved version of MIS-pga program, MIS-pga(new)
[15], outperforms FlowMap-r in terms of area, but the depths
of their solutions were not reported. It is important to point out
that FlowMap-r is solely based on combinatorial optimization
techniques, therefore runs faster than Boolean optimization
based algorithms for large circuits. In our experiments, the
largest circuit des, which contains 3263 two-input gates, is
mapped by FlowMap-r in about 7 minutes of CPU time on
a SUN SPARC IPC. Moreover, FlowMap-r produces a set of
mapping solutions, each of them satisfies an explicitly assigned
depth bound, while other mapping methods produce only a
single solution. Therefore, FlowMap-r gives designer more
choices.

The result of the depth relaxation operations has significant
impact on the effectiveness of the area minimization. We have
used a greedy heuristic algorithm to perform depth relaxation.
To test the effectiveness of the heuristic, we also implemented
a depth relaxation algorithm that picks up noncritical nodes
for decomposition in the topological order starting from the
nodes adjacent to PI’s. Compared with this method, for the
same level of depth relaxation our heuristic always resulted in
fewer LUT’s in the final solution. For example, our heuristic

2 All the algorithms in the comparison, except MIS-pga(delay), are started
with the same set of initial circuits that are initially used by Chortle-d. The
data for MIS-pga on des is not available.
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TABLE 1
MAPPING SOLUTIONS OF FLOWMAP-r
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TABLE Il
COMPARISON WITH FLOWMAP, MIS-pga (delay), AND CHORTLE-d

FlowMap-r Mapping Results for 5-LUT FPGAs
No.of Nodes | Optimal No. of 5-LUTs For Different Depths CPU
Circuit before Depth Time
Mapping dopt ope+0 | dopt1 | dopg+2 | dopet3 | dopitd | (sec)
rds4 141 4 a7 39 37 - - 11.8
count 216 3 76 58 - - - 10.1
apex7 247 4 83 78 - - - 12.9
duke2 392 4 188 167 148 - - 422
ah2 393 8 149 140 134 129 125 51.6
€880 548 8 206 195 | 177 170 - 73.0
rot 647 6 246 225 222 212 209 80.7
499 658 5 134 129 - B . 87.9
alud 726 10 253 243 237 223 - 106.4
apex6 779 4 232 222 220 218 123.7
des 3263 5 1109 1013 983 944 930 429.2
TABLE I
COMPARISON WITH CHORTLE-crf AND MIS-pga
5.-LUT Mapping Result Comparison:
FlowMap-r vs. Other Algorithms for Area Minimization
FlowMap-r Chortle-crf Mis-pga
Circuit
LUTs | Depth | LUTs | Depth | LUTs | Depth
Sxpl 23 3 27 4 26 4
9sym 61 5 65 8 65 8
9symml 58 5 62 7 65 7
C499 129 6 141 8 123 7
C880 170 11 172 13 172 11
alw 125 12 128 i3 127 15
alud 223 13 231 17 234 16
apex6 218 7| 235 6| 221 6
apex7 78 5 78 6 72 5
count 58 4 58 5 59 5
des 930 9 981 10 - -
duke2 148 6 152 7 161 7
misexl! 15 2 18 4 16 3
rd84 37 6 41 7 40 6
rot 209 10 214 11 203 11
vg2 38 4 39 5 37 5
z4ml 13 3 13 4 10 3
total 2533 111 2655 135 - -

on average resulted in 6% fewer LUT’s in the final mapping
solution for one-level depth relaxation showed in Table 1.
Finally, we have tested the effectiveness of the two post-
processing steps, namely MP-Pack and Flow-Pack, that are
performed after DF-Map to further minimize the area of the
mapping solution by necessary node duplications. Without
such post-processing steps, the total number of LUT’s used for
the designs in Table LI is 3087. It is reduced to 2931 after the
post-processing. This yields an overall area reduction of 5%.
Considering the fact that the percentage of multifanout nodes

5-LUT Mapping Result Comparison:
FlowMap-r vs. Other Algorithms for Depth Minimization

FlowMap-r FlowMap Mis-pga(delay) Chortle-d
Circuit

LUTs | Dpt | LUTs | Dpt | LUTs | Dpt | LUTs | Dpt
Sxpl 23 3 25 3 21 2 26 3
9sym 61 5 61 5 7 3 63 5
9symmi 58 5 58 5 7 3 59 5
C499 134 5 154 5 199 8 382 6
C880 206 8 232 8 259 9 329 8
alu2 149 8 162 8 122 6 227 9
alud 253 10 268 10 155 11 500 10
apext 232 4 257 4 274 5 308 4
apex7 83 4 89 4 95 4 108 4
count 76 3 76 3 81 4 91 4
des 1109 5 1308 5 1397 11 2086 6
duke2 188 4 187 4 164 6 241 4
misex] 15 2 15 2 17 2 19 2
rd84 47 4 43 4 13 3 61 4
rot 246 6 268 6 322 7 326 6
vg2 38 4 45 4 39 4 55 4
z4ml 13 3 13 3 10 2 25 3
total 2931 83 3261 83 3182 90 4906 87

is much larger than this, it further justified the assumption that
an area-optimal mapping solution should not have excessive
number of node duplications.

VII. CONCLUSION AND EXTENSION

In this paper we have presented a technology mapping
algorithm for LUT-based FPGA designs that is able to generate
a set of mapping solutions with smooth area and depth trade-
off. As part of the algorithm, we have developed an efficient
method to compute an optimal mapping solution without node
duplication for a K -bounded general Boolean network, which
is used for area minimization in our algorithm. The concept
of a maximum fanout free cone plays an important role in
our optimal duplication-free mapping algorithm, and it may
finds applications to other logic synthesis problems as well.
The solution set generated by our algorithm outperforms the
solutions by many existing algorithms in terms of both area
and depth.

Although the unit delay model is used when describing the
algorithm, we can generalize the algorithm to the case where
an arbitrary delay is assigned to a net. Such a generalization
was shown in [6].

During depth relaxation, we use only structural information
to decompose the LUT’s. It is also possible to use Boolean
optimization techniques to re-synthesize the LUT network
locally to explore more possibilities, at the expense of longer
computation time. Such a mapping-directed resynthesis tech-
nique was used in [5] for further depth optimization, and
achieved very promising results.
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