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Abstract—In MOS integrated circuits, signals may propagate between
stages with fanout. The exact calculation of signal delay through such
networks is difficult. However, upper and lower bounds for delay that
are computationally simple are presented in this paper. The results can
be used 1) to bound the delay, given the signal threshold, or 2) to
bound the signal voltage, given a delay time, or 3) certify that a circuit
is “fast enough,” given both the maximum delay and the voltage
threshold.

I. INTRODUCTION

N MOS INTEGRATED CIRCUITS, a given inverter or logic
node may drive several gates, some of them through long
wires whose distributed resistance and capacitance may not be
negligible. There does not seem to be reported in the litera-
ture any simple method for estimating signal propagation de-
lay in such circuits, nor is there any general theory of the
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properties of RC trees, as distinct from RC lines. This paper
presents a computationally simple technique for finding upper
and lower bounds for the delay. The technique is of impor-
tance for VLSI designs in which the delay introduced by the
interconnections may be comparable to or longer than active-
device delay. This can be the case for wiring lengths as short
as 1 mm, with 4-um minimum feature size. The importance
of this technique grows as the wiring lengths increase or the
feature size decreases.

Consider the circuit of Fig. 1. The slowest transition (and
therefore presumably the one of most interest) occurs when
the driving inverter shuts off and its output voltage rises from
a small value to Vpp. During this process, the various parasitic
capacitances on the output are charged through the pullup
transistor. Fig. 2 shows a simple model of this circuit for tim-
ing analysis. The pullup, which is nonlinear, is approximated
by a linear resistor, and the transition is represented by a volt-
age source going from O (or a low value) to Vpp at time £ =0.
(Later, for simplicity, a unit step will be considered instead.)
The polysilicon lines are represented by uniform RC lines.
The resistance of the metal line is neglected, but its parasitic
capacitance remains. Capacitances associated with the pullup
source diffusion, contact cuts, and the gates being driven are
included. Any nonlinear capacitances are approximated by
linear ones.

If all the resistances except the pullup can be neglected, then
all the capacitors can be lumped together, and the circuit re-
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Fig. 1. Typical MOS signal-distribution network. The inverter is shown
driving three gates, through a fanout network implemented in poly-
silicon and metal.
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Fig. 2. Linear-circuit model for the network of Fig. 1.
source is a step at time r = 0.

The voltage

sponse may be found in closed form. The voltages at all the
outputs are the same:

-t/[RC
vout(t) = Vpp(1 - e T)

69)

where R is the pullup resistance and Cyp the total capacitance.
Thus at a given time T, the output voltage vy, (7) is given by
(1), and the time at which vy, (¢) reaches some specified criti-
cal voltage Vg is given by

Voo
Vop =~ Ver

T=RCrIn 2)

However, if the resistances of the lines are comparable to
that of the pullup, this solution is not correct. The circuit re-
sponse cannot generally be calculated in closed form. The re-
sults below can be used to calculate upper and lower bounds
to the delay that are very tight in the case where most of the
resistance is in the pullup. The theory as presented here does
not explicitly deal with nonlinearities and therefore does not
apply to signal propagation through pass transistors.

Previous work on distributed RC circuits is summarized in
the extensive bibliographies of Ghausi and Kelly [1] and
Kumar [2]. There does not appear to be any treatment of
RC trees, as distinct from RC lines, in these bibliographies.
Perhaps the most complete treatment of the properties of RC
lines is that of Protonotarios and Wing [3], [4]; some (but
not all) of the theorems proved there also apply to RC trees.
Most of the work cited deals with techniques to approximate
the response of such networks, rather than to find bounds;
an exception is that of Singhal and Vlach [5], [6]. An im-
portant early analytical approximation to delay is that by
Elmore [7], who called the first moment of the impulse re-
sponse the delay. This definition is inadequate because it
does not define delay in terms of signal threshold.

Preliminary, restricted versions of some of the results given
below have been presented before by the two senior authors
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[81, [9], and utilized in at least two working timing analyzers
[10]-]12]. The junior author simplified the derivation and
tightened some of the bounds.

II. STATEMENT OF THE PROBLEM

An RC tree, as considered in this paper, is a generalization
of the well-’known RC lines [3], [4]. It may be defined re-
cursively as follows. There are three primitive elements. First,
a lumped capacitor between ground and another node is an RC
tree. Second, a lumped resistor between two nonground nodes
is an RC tree. Third, a (distributed) RC line, uniform or non-
uniform, in the configuration with no dc¢ path to ground, is
an RC tree. Finally, any two RC trees with common ground,
and one nonground node from each connected together, form
a new RC tree. This definition does not permit resistor loops,
so that the resistors (including those in the distributed RC
lines) form a topological tree that does not include the ground
node. All of the capacitors (including the distributed capaci-
tances in the RC lines) are connected to ground. One of the
nonground nodes of the final tree is assumed to be the input,
and one or more nodes the outputs.

In many cases, each branch of the tree except the input ter-
minates in an output; however, this is not required, and in this
paper the outputs may be defined at any of the nonground
nodes.

As a consequence of this definition, there is a unique path
through the resistive part of the network from any nonground
node to the input.

For simplicity, most of the theory below will be presented
for the special case with only lumped resistors and capacitors.
However, the generalization to include distributed RC lines
(uniform or nonuniform) is straightforward. All the results
apply in the form given, except that the summations in the
formulas for Tp, Tp;, and Tg; are replaced by a combination
of summations and integrals. The easiest way to picture the
result is to think of each RC line as represented by a finite
number of lumped RC sections, so that the derivations apply,
and then consider the limit as the number of sections used
to represent each line goes to infinity. All the summations
are well behaved in the limit. The required integrals are given
explicitly in Appendix A for both uniform and nonuniform
distributed lines.

The RC tree representing the signal path is, without loss of
generality, assumed to be driven at the input with a unit step
voltage (henceforth all voltages may be thought of as nor-
malized to the magnitude of the step excitation). Gradually
the voltages at all other nodes, and in particular at all the
outputs, rise from 0 to 1 V. It is assumed that the output
voltages cannot be calculated easily. The problem is to find
simple upper and lower bounds for the output voltages, or,
equivalently, to find upper and lower bounds for the delay
associated with each output.

III. ANALYTICAL THEORY

Consider any output node i (in this paper, i will be used as
an index selecting an output node) and any lumped capacitor
at node k with capacitance Cy. The resistance Ry; is defined
as the resistance of the portion of the (unique) path between
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Fig. 3. Illustration of resistance terms. For this network, Ry;=R; +
Rz,Rkk =R1 +R2 +R3, andR,-,-=R1 +R2 +R5.

the input and 7, that is common with the (unique) path be-
tween the input and node k. In particular, R;; is the resistance
between input and output 7, and R, is the resistance between
the input and node k. Thus Ryg; <Ry and Ry; < R;;. Foran
example, see Fig. 3.

The sum (over all the capacitors in the network)

Tp=3) RyxCx 3)
k

has the dimensions of time. Next, define for each output i

two quantities that also have the dimensions of time

Tpi= 2 RuCx
’

Tri= (Z Rlzcick)/Rii-
%

These quantities play a role in the final delay formulas but
none of them is equal to the delay, although Tp; is equal to
the first-order moment of the impulse response (see Appendix
B), which has been called “delay” by Elmore [7]. Note that
the network has one value of Tp, but each output of the net-
work has a separate Tp; and Tg;. It is easily shown from the
definitions that

TRigTDi<TP-

4)

)

(6)

For RC trees without side branches, Tp; = Tp. An interpreta-
tion of Tp and T'p; in terms of the system function of the net-
work appears in Appendix B.

The voltage at each output { (and in fact at each node) is a
monotonic function of time during the transient, as proved
in Appendix C. Also, the analog of the well-known fact that
voltage along an RC line is a concave function of distance
(suitably defined) is the following general result (proved in
Appendix D):

Rii[1 - vp(®)] 2 Ry [1 - vi(2)]. 7)

A similar result is found by interchanging / and k subscripts
Rl - v (0] <Ryx[1- v; ()] (3)

These results apply to any output i and any node k, whether
the output is “upstream” or “downstream” from the node k.
At any instant of time, the voltage difference between the
input and any output / may be calculated by summing the
voltage drops along the (unique) path between input and out-
put. Each such drop may be expressed as the resistance times
the current feeding all “downstream’™ capacitors. Alterna-
tively, this double sum may be expressed as a sum over all ca-
pacitors in the network, of the current through each capacitor
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Fig. 4. Interpretation of f;(¢) as the integral above the response v;(z).
Note that f;() = Tp;.

times that portion of the “upstream” resistance that also hap-
pens to lie along the path to the output i, This resistance is
what has been defined as Ry;, so

dv
1- Ui(t)= ZRkiCk 7d7k‘
k

©)
Equation (9) is integrated between O and ¢, and the result
denoted f; (¢):

fz'(t)=f [1-0;(t")] at’
0
= > R Crui(t)
K

=Tpi - 2 RuiCi [l - v (0)]. (10)
x

This integral plays a central role in the derivation of the
bounds. A graphical interpretation appears in Fig. 4, which
shows a typical step response. The area above the response
but below the unit input is f;(¢). As t approaches infinity,

this approaches Tp;.
If (7) and (8) are used in (10), the result is

Trill - v; ()] <Tp; - fi() <Tp[1 - v; ()] (11
which is equivalent to
TDi"ﬁ'(f)<dﬁ'(l‘)<TDi‘ﬁ'(f) (12)
Tp dr Tgi

which, when integrated between times ¢, and 7, > ¢, yields

[T - fi(t)] € 2R [T, - £i(2,)]

< [Tpi- filep)] 7P, (13)
Since v;(¢) is monotonic nondecreasing
(24 - £3) [1 - v;(23)] <fi(ta)- fi(t3) (14)
for any nonnegative ¢4 and z4.
The voltage bounds are now easily derived. Of course
vi(t)=0 (15)

but, in addition, from (11) and (14) with 3 =0and ¢4 =¢

T'p;
(Hy=1- ———
v (1) T Ta

(16)
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Fig. 5. Form of the bounds, with the distances from the exact solution
exaggerated for clarity.

and, from the first inequality in (11), (14) with t3 =¢-Tp +
Tg; and t4 =t, and the second inequality in (13) with #; =0
and £, =t;

Tp; T -
() >1 - Di e(TP TRz)/TPe t/Tp

T (17)

which holds only for t 2 Tp - Tr;. The best lower bound is
(] 5) forr < Tpi— Tri, (1 6) for Tpi- TRi <t < Tp - TRi’ and
(17) for Tp - Tg; <t. The upper bounds on voltage are, from
(11)and (14) witht3 =rand 2, =0
vty <1-12i7t
Tp

(18)

and, from the second inequality in (11), the first inequality in
(13) with tl = TDi - TRi and t2 =t, and (14) and t3 = TDi_
TRi and tqa = 0

Ty (19)

which holds only for ¢ 2 Tp; - Tg;. The best upper bound for
voltage is (18) for ¢t < Tp; - Tr; and (19) for T'p; - Tri <1t

Bounds for the time, given the voltage, are possible because
the voltage is a monotonic function of time. Of course

t=0 (20)
and in addition, (18) and (19) can be inverted to yield

t>TD,'_ Tp[l_ U,'([)] (21)

t=2Tp; - Tpi+ Tril — 22
pi~ Tri* Tri nTp[l (O] (22)
and (16) and (17) yield
Tpi
< L Ty,
) TR (23)
t<Tp- Tgi+Tpln Toi (24)
Tpll - vi(0)]

where (22) applies only if v;(t)= 1 - Tg;/Tp, and (24) only
if v;(¢)= 1~ Tp;/Tp. The general form of all these bounds is
illustrated in Fig. 5.

These bounds, (15)-(19) for voltage, and (20)-(24) for
time, constitute the major result of this paper.
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Fig. 6. Elements sufficient for describing RC trees. For simplicity,
only uniform distributed RC lines are included. The parameters are
CAP, RES, and N, and the functions which return networks are C,
OUTPUT, R, and URC. The capacitor and output designation are
one-port elements, and the resistor and uniform line are two-port
elements.

IV. PrAacTiCcAL HIERARCHICAL ALGORITHMS

Use of hierarchy is a powerful way to deal with complexity
in design of large systems. Computation cost is usually less
with hierarchical algorithms, and analysis of part of a design
can be done before the rest is known. In this section, pro-
grams are given for calculating the voltage and time bounds
of this paper hierarchically. Although intended for exposition,
these programs are complete and do work. They may be used
interactively, without any changes whatever, for small or mod-
erate size networks, or, for large networks, they may be in-
corporated into systems that deal with machine-readable net-
work descriptions.

One way to use the inequalities of this paper is to consider
the overall RC tree, and compute for each capacitor the ap-
propriate R;; and Ry so that Tp, Tp;, and T;R,- for each out-
put can be found. Of course, for networks with distributed
lines, the sums are augmented with integrals as discussed in
Appendix A. In this approach, the calculations for each out-
put require time proportional to the square of the number of
elements.

An alternate scheme is to build up the network by con-
struction, and calculate independently for each of the partially
constructed networks enough information to permit the final
calculation of Tp, Tp;, and Tg;. A recursive definition of RC
trees is given below, and if the network is expressed in these
terms rather than in the form of a schematic diagram, the re-
sulting expression can be used as a guide for the calculations.
The computation time for each output is proportional to the
number of elements, rather than the square of the number.
Programs that implement this approach appear below.

Fig. 6 shows the four building blocks: lumped capacitor,
lumped resistor, uniform RC line, and declaration of output.
The capacitor and the output label are considered as two-
terminal, or one-port networks. The RC line and the resistor
are considered as two-port networks. If desired, particular
nonuniform RC lines, such as exponentially or linearly tapered
lines, can be included also. Fig. 7 shows the five permissible
ways of wiring these building blocks, or previously wired sub-
networks, together. Any RC tree can be denoted by an ex-
pression using only these wiring functions. The syntax shown
is identical to APL syntax, and the programs below are written
in APL. Note that Figs. 6 and 7 do not give a minimal set of
elements or wiring functions, since some can be expressed in
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Fig. 7. Wiring functions for interconnecting elements or subtrees. The
functions which return one-port networks are £, W7, and W70, and
those that return two-port networks are WP and WC. Here 4 and B
are previously defined RC trees.
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Fig. 8, Example network. Parameter values are in ohms and farads.
The characteristic times (in sec.) are Tp =419, Tps =386, Trs =
307.7, Tpir = 363, and Triz = 33s5.2.

terms of others. The names for the wiring functions are taken
from the notation of the program MARTHA [13]-[16].
Example: The network shown in Fig. 8 may be denoted

(R 15) WT(C2) P((R 8) WT'(C 7) P OUTPUT 5)
P((URC 3 4) WC WP C 9) WT OUTPUT 12

and is a one-port network, with two declared outputs.
For convenience, this notation allows a network with only
one output to be expressed as a two-port with the second port
an implicit output, without any explicit output declaration.
The explicit declaration of outputs is handy because often
side branches do not represent outputs of interest.
If an expression such as (25) is to be used as a guide for
the calculations, then each function shown must correspond
to the calculation of partial results which are sufficient to
allow further calculations. The following information is ade-
quate at each stage in the construction of the network:
(1) Total capacitance Cy.
(2) Tp of the network as constructed so far.
(3) For a two-port, considering port 2 as an implicit output,
Ry3, Tpy, and Tg,. (For convenience, the product
R 43Tk, is used in the programs below instead of Tg,.)

(4) For each declared output in a one-port or two-port net-
work, Ry, Tp;, and Ty, (For convenience, R;Tp; is
used rather than Tg;.)

(5) For each declared output in a two-port network, Ry;.
Each of the quantities identified above pertains to the particu-
lar subnetwork and can be calculated from a knowledge of
that subnetwork alone, independent of how the subnetwork
may later be wired together with other subnetworks. As an
example of the use of these quantities during construction of
the network, consider the cascade operation WC. The objec-
tive is to find CT, Tp, Rzz, TD27 TR29 and all Rii’ TDiv TRi,
and R,; of the cascade 4 WC B from the corresponding quanti-
ties for its two arguments 4 and B. The formulas for calcu-
lating these are

(25)
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¥ ZeC CAP
[1] +"CAPACITANCE® ERRORIF 1=pCAP+,CAP
[23 Z«1,CAP,0

v Z+OUTPUT ¥
[1] +'OUTPUT LABEL' ERRORIF 1=pN«,N
[2] Z«#100 ,§, 000

V Z+R RES
[1] +'RESISTANCE® ERRORIF 1¥pRES«,RES
{21 I« 2 00 ,RES, 0O

V  Z+URC RCiRES;CAP

[1] +'ZES, CAP' ERRORIF 2®pRC« . RC

[23} RES«1tRC

{33 CAP+1+RC

4] 242, ,CAP,(CAPxRES2) ,RES, (CAPXRES%2 ) ,CAPx RES= RES+3

Fig. 9. APL functions for the elements.

Cr=Crqa +Crp (26)
Tp=Tpg +Tpp +R224Crp 27
Ry; =Rj4 YRy (28)
Tpy =Tpaa +Tpap *R224Crm (29)

TraR32 =Tr24R224 * Tr2R228
+2R324Tp2s *R324Crs (30)
Rii=Riig, Riip t Rp24 D

Tpi = (Tpia *R24CrB), Tpin
+R224Crp + Tp24 (32)

TgiRi; = (TriaRiia * R314Cr8), TriRiin

+TroaRoza + 2R224Tpis + R324Crs (33)
R3i=Rjia,Ryip tRppy. (34)

The corresponding formulas for the other wiring functions are
similar, but not as complicated.

A set of APL functions which implement this scheme appear
in Figs. 9-12. The necessary data is passed around in the form
of vectors. A one-port network is represented by the vector 1,
Cr, Tp, followed by zero or more sets of four numbers, N;,
Rii, Tpi, TriR;;. The number 1 starting off the vector is the
number of ports, and N; is the (numerical) label for each out-
put. It is not necessary to pass along the number of declared
outputs since that can be calculated from the length of the
vector. In a similar way, a two-port network is represented by
the vector 2, Cr, Tp, Raa, Tpa, TraR3,, followed by zero
or more sets of five numbers, N;, R;;, Tp;, TriR;i, and Ry,
one set for each declared output.

The background functions in Fig. 12 provide 1) some error
control (with automatic abort in case of error), 2) calculation
of the number of ports of a network, 0 being returned for ill-
formed arguments, 3) a matrix with the data for the declared
outputs, and 4) extraction of Tp, Tp;, and Tg;. The four ele-
ments appear in Fig. 9, and the wiring functions in Fig. 10.
The listing of WC, for example, shows after error checking, the
calculation of the required output, term by term, from the
arguments. This function can be compared with (26)-(34).

Fig. 11 shows five functions intended to calculate the bounds
for any network. The convention followed is that if the argu-
ment for any of these is a two-port network, the second port
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[1] +'1-PORT' ERRORIF(1=NPORTS A)v1=NPORTS B

[2] Z+1,(4[2 33+B[2 3}),(3+4),3+B

V Z«A NT B}E
1] +'2-PORT' ERRORIF 2=NPORTS A
[2] +'1-PORT' ERRORIF 1=NPORTS B

[3] Z+1,(A02]+802]),A03)+8(3]+B[2]xA[4]

Lu] E«QUTPUTS A

[5] E[331«E[;3)+B[2]xE(;5]
[6] EL;4JE[ ;41+B[21xE[ ;5)%2
[71 2¢Z,, 0 71 +E

(8] E«QUTPUTS B

(93 E(;2)+E[;21+404]

[10]
111]
[12]

E[:3]«E(;31+4A05]+B[2]xA[4]
Z+Z,,F

¥ ZeNTO A
[1] +'2-PORT' ERRORIF 2*NPORTS A
{21 Z«1,A[2 3),, 0 "1 VOUTPUTS A

V Z«A WC B3E

ECs4]«ELs4)+A06 1+ (2x404 IxE[ 53])+B{2]*A[41+2

(1)  +'2-PORT' ERRORIF(2=NPORTS A)v2=NPORTS B
[2) 2+2,(A02]+B(2]),(AL3]1+B(3]+B(2]xA[4]),(A[4]+B(4]1),A[51+B[ 5])+B[2]xA[ 4]
[3)  2+Z,A061+B[6]+(2xB[S1xA[4])+Bl21xAl4]+2

[4]  E«OUTPUTS A

(53  E(;3)«E(;33+B[2]xE[;5]

(6]  EC;4)«E[;4]1+B[2]=E[;5]%2
{71} 2z+z,.E

(8]  BE~OUTPUTS B

(9]  E[; 2 5)«E(; 2 5)+Al4]
Ew% E(;3]«E[;3)+A05)+B[2]xA[4]
11

[12) 2+2,,E

V Z«WP A
[1] +'1-PORT' ERRORIF 1=NPORTS A

E(;43«E0;4]+A06)+(2xB5)xA[14])+B[2]xA(4]*2

[2] z+2,4A[2 3], 0 0 0 ,,(OUTPUTS A),0

Fig. 10. APL functions for the wiring functions.

V Z+VMIN A;II;TD;TP;TR

[11 +7 SETUP A

(2] Z+(ITzTP-TR)*x1-(TD+TP)x*1-(II+TR)+1E 30[ TP
{3] Z+Z[1-TD¥1E"30[ IT+TR

YV Z¢VMAX A;II;TD;TP;TR
[1] +T SETUP A
[2] Z+TR»*0L "1+(TD-II)+1E 30[ TR
[3] Z+1-(2I TD-II)+1E" 301 TP

V  Z+TMIN A:II;TD;TP;TR

(1] +V SETUP 4

[2) Z«TD-TPx1-IT

(33 Z+Z[ (TR2TPx1-II)xTD-TRx1 -eTR#1E 20 TPx1-II

V  Z€TMAX A;II;TD;TP;TR
[1] +V SETUP A
(2] Z+(TD+1E7201-II)-TR
£3] Z«Z\ (TP-TR)+0[ TPx@TD+1E 20[ TPx1-II

V Z«0K A
(1] +'CIRCUIT' ERRORIF~(NPORTS A)e 1 2
[2] Z+(To.2TMAX A)-Te.<TMIN A

v

Fig. 11. Response functions. The very small numbers in the functions
guard against errors for pathological networks and certain limiting
values for voltage and time.

is taken as the desired output, and the declared outputs are
ignored. If the argument is a one-port network, then the de-
clared outputs are used. The two functions TM/N and TMAX
calculate the lower and upper bounds for delay, and refer to a
global variable named V which contains the threshold, a num-
ber (or array of numbers) between 0 and 1. The functions
VMIN and VMAX calculate the lower and upper bounds for
signal voltage and refer to a global variable T containing an ar-

V Z«M ERRORIF B
(1] Z+10
[2]) +(~1e¢8)/0
[3] M,' ERROR.'
(4] Z+0

V Z+NPORTS A

[1] Z+0
[2] +{1=ppA)/0
(3] Z+1
[4] +{((1=144)A3=4|pA}/0
[51] Z+2
(6] +((2=1t4)A(6=pA)A1=5}pA)/0
[7] Z+0
v

vV E+OUTPUTS A
[1] E< 0 0 o0
[21 +(1 2 =NPORTS A)/L1,L2

3] +0

[4] L1:E+((({pA)-3)1t4),4)p3+4

5] +0

[6] L2:E«{{{(pA)-6)¢5),5)pb%A
v

Vv Z«I SETUP AE;N;S
[1] NeNPORTS A
£2] +2+'CIRCUIT' ERRORIF~Ne 1 2
(3] +(N=2)/L2
[4] E«OUTPUTS A
(3] S+(pI),14pE
(6] TP+A(3]
(7] TD+SpE{ ;3]
(8] TR+Sp(E[;21=0)xE( ;41¢E( ;2]
[sl ITa{$S)pdI

+0

[10]
[11) L2:TP«Al3]
[12])  TDeALS]
[13] TRe(A[41=0)xA[6]+Alu]
[18]  II<I
v
Fig. 12. APL background functions to support the functions in Figs. 9,
10, and 11.
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A EXAMPLE OF THE USE OF RC-TREE DELAY CALCULATIONS:
BRANCHY « (R B) WT (C 7) P OUTPUT 5
BRANCH2 « (URC 3 M%) WT (C 9) P OUTPUT 12
NET « (R 15) WT (C 2) P BRANCH1 P BRANCH2
A NOW THE NETWORK IS DEFINED.
V+<00.10.20.30.%0.50.60.70.80.9
A NOW THE VECTOR OF THRESHOLD VOLTAGES IS DEFINED.
A NEXT TO FIND THE MINIMUM AND MAXIMUM BOUNDS FOR DELAY:
V. (TMIN NET), TMAX NET
0 0 0 78.261 27.833
0.1 8.9 1] 121.03 68.167
0.2 50.8 27.8 170.39 117.22
0.3 93.05 72.555 226.34 173.17
0.4 140.49 124,22 280.92 237.76
0.5 196.56 185.33 367.32 314,15
0.6 265.27 260.12 460.81 407.65
0.7 353.8 366.54 581.35 528.18
0.8 478.87 492.44 751.24% 698.07
0.9 691.88 724.76 1041.7 988.5
AV TMIN TMIN TMAX TMAX
n OUTPUT 5 OUTPUT 12 OQUTPUT 5 OUTPUT 12
a NOW TO DEFINE A DELAY VECTOR AND GET THE BOUNDS ON VOLTAGE:
T« 0 20 40 60 80 100 200 300 400 SO0 1000 2000
T, (VMIN NET), VMAX NET
4] 0 0 0.078759 0.13365
20 0 0 0.12649 0.18138
%0 0 0.03243 0.17422 0.2286
60 0 0.0814 0.22196 0.27328
80 0.0044853 0.12565 0.26968 0.31538
100 0.053316 0.16644 0.31563 0.35503
200 0.25459 0.3u342 0.5055 0.52141
300 0.41286 0.48283 0.64269 0.64487
%00 0.53752 0.59263 0.74182 0.73648
500 0.63571 0.67913 0.81345 0.80446
1000 0.88954 0.90271 0.96326 0.95601
2000 0.98984 0.99105 0.99857 0.99777
aT VMIN VMIN VMAX VMAX
A QUTPUT 5 OUTPUT 12 OUTPUT 5 oUTPUT 12

Fig. 13. Example of the use of the fast calculation scheme to find up-
per and lower bounds on delay and response voltage.

| | 1
400 500 600

t—»

- | | |
o] 100 200 300

Fig. 14. Upper and lower bounds for output 5, as calculated in Fig. 13.
The exact solution, found from circuit simulation, is shown aiso.

ray of (positive) delay times. The final function, OK, refers to
both V and T and returns 1 if all is well, that is, if TMAX < T,
or -1 if the network definitely will fail, that is if T < TMIN,
or 0 if the bounds are not tight enough to tell for sure, that is
if TMIN <T<TMAX. An example of the use of these func-
tions to test the network in Fig. 8 is shown in Figs. 13 and 14.

V. ApPPLICATION TO PLA SPEED ESTIMATES

These bounds are applied, as an example, to polysilicon lines
driving the AND plane of a PLA, to determine whether or not
the dominant delay occurs here. It is assumed that a strong
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V Z+PLALINE N;A
[1] A«(URC 180 0.01)WC URC 30 0.013
{2 n A IS A SINGLE SECTION ACCOUNTING FOR TWO MINTERMS
£3] Z+(R 380)WC WP C 0.0%
{4) A Z IS THE PULLUP R AND C FOR SUPERBUFFER DRIVER
[5] LooP:+(N<0)/0
K3 2«Z WC A
[7] NeN-2
£8] +LOoOP
v

Fig. 15. APL function which returns a model of a PLA line with N
minterms.

DELAY TIME, ns.

o
f

0.0l | [ i

! I
2 4 10 20 40 100
NUMBER OF MINTERMS

Fig. 16. Upper and lower bounds on response time of the network of
Fig. 15, shown as a function of the number of minterms in the PLA.

superbuffer driver drives the line, and that every other min-
term has a transistor present. The gates are assumed to be 4-
microns square, separated by 24 um of RC line. The poly
resistance is assumed to be 30-Q per square, the gate oxide
thickness 400 A, and the field-oxide thickness 3000 A.

These numbers lead to a capacitance of 0.01 pF and resis-
tance 180  between gates, and a resistance of 30 & and ca-
pacitance of 0.013 pF for each gate. The network is driven
by a source resistance of 380  and the effective capacitance
of the output of the driver is estimated as 0.04 pF.

A function which returns a network with & minterms is
shown in Fig. 15. The results of calculating the delay as a
function of the number of minterms are shown in Fig. 16. The
voltage threshold was taken to be 0.7 times Vpp. On this log-
log plot the quadratic dependence of delay on number of min-
terms (as a measure of the length of the line) is evident. Also
evident is the fact that even with as many as a hundred min-
terms, the delay is guaranteed to be no worse than 10 ns. This
suggests that the dominant delay in a PLA occurs elsewhere.

VI. CONCLUSIONS

A computationally efficient method for calculating the sig-
nal delay through MOS interconnect lines with fanout has
been described. Tight upper and lower bounds for the step
response of RC trees have been presented, together with linear-
time algorithms for these bounds from an algebraic description
of the tree. Substantial computational simplicity is achieved
even in the presence of RC distributed lines by representing
the RC tree by a small set of suitably defined characteristic
times, which can be calculated easily and used to generate
the bounds.

Although only the step response is considered here, the re-
sults can be extended to upper and lower bounds for arbitrary
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excitation by use of the superposition integral. This extension
is discussed in Appendix E. An example of this calculation ap-
pears in [9].

Extensions of the theory to RC trees with nonlinear ele-
ments (similar to the work of Glasser [17] for nonlinear MOS
inverters) would be desirable for better modeling of MOS cir-
cuits. Investigations of RC trees with nonlinear capacitors and
resistors are now under way, along with attempts to unify the
modeling of gates and interconnects, and in particular to in-
clude pass transistors in the interconnects. Tighter bounds are
also being looked for.

APPENDIX A

The results of this paper are valid for RC trees that contain
distributed RC lines. All results apply without change, except
that the definitions of Tp, Tpy;, and Tg; in (3)-(5) are replaced
by (36)-(38) below.

The summations in (3)-(5) are for the case of lumped ca-
pacitors only, and the index k& runs over all lumpedvcapacitors
in the network. The form for networks with distributed RC

lines is similar; the index & runs over both lumped capacitors

and RC lines. The terms for lumped capacitors are unchanged
from (3)-(5), but for distributed lines additional terms appear
in (36)-(38).

Each line & has a total capacitance Cy and appears in the net-
work with one end (say the left-hand end) nearer the input of
the network. Along the line, the capacitance is distributed,
but the cumulative capacitance ¢ is a function of position,
and has a value between 0 (at the left end) and Cy, (at the right
end). For each value of ¢, there is a value of cumulative resis-
tance r(¢) monotonically increasing with ¢;r(0) =0 and r(Cy)
is the total resistance of the line. For uniform lines, r(c) is a
linear function, and for nonuniform lines 7(c) has other shapes.
Define the series of integrals

C
i =f * [r(c)]” dc.
0

Note that if the line & is interpreted as a simple RC tree with-
out any additional elements, then its Tp and Tp are 1,5‘) and
its T is Iéz)/r(Ck). For a uniform line,I,El) = r(Cy) Ci/2 and
I = [rCO1* /3.

For each distributed line k let Ry be the resistance between
the left-hand end of the line and the input of the network, and
R;; be the portion of that resistance that also lies on the
(unique) path between the input and any output i. Then the
expressions for Tp, Tp;, and Tg; are

(35)

Tp=2 RuCr +2 ¥y (36)
x 3
Tpi=2 RuCr 2 i (37)
3 x
Tgi= (Z RpCy +23 Ril{V + Z]£2)>/Rii (38)
3 x K

where the first sum in all three expressions is over both lumped
capacitors and distributed lines; the second sum in (36) is
over all distributed lines; and the second sum in (37) and the
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second and third sums in (38) are over only those distributed
lines which lie along the (unique) path between the input and
output i.

APPENDIX B

From (3) it is evident that Tp is equal to the sum of all the
open-circuit time constants of the network, a quantity that is
well known in the analysis of multistage amplifiers, and that
has been shown to be equal to the negative of the sum of the
inverse of all the transmission poles [18]. That is, if the nor-
malized system function H;(s) for the output i is

1+b1s+b2S2+"‘

H(s) =
) l+ags+a,s®+- -

39)
then Tp =a,. Also, it can be shown that Tp;=a, - b;. To
prove this, one starts from the equality [19] betweena, - b,
and the first-order time moment [, h;(t) t dt of the impulse
response #;(t). Integrating by parts, one can show that

fm h,-(r)tdr=f [1-v;(8)] dt,
0 0

and therefore is equal to f;(e°) = Tp;, as given by (10). This
completes the proof, and shows that Tp, is equal to the first-
order time-moment of the impulse response.

AprPENDIX C

It is proved here that when a linear RC tree is excited with a
step input from an initial rest condition, the voltage at each
node is a monotonic function of time. This condition is iden-
tical to the condition that the impulse response of the same
network is nonnegative. The proof is to assume that, with an
impulse applied at the input, the voltage on one or more nodes
is, at some instant of time, negative, and then show that this
assumption leads to a contradiction. :

It is assumed that distributed RC lines in the tree can be re-
placed by finite lumped ladder approximations with arbitrarily
close impulse responses, so that if one or more nodes of the
original network has a negative voltage, then so does one or
more nodes of an approximate lumped network. For the re-
mainder of this appendix, this lumped network is dealt with.

At time ¢ =0+, the voltages on all nodes are nonnegative.
Let vpin(¢) denote the lowest voltage of any node in the net-
work at time ¢. Assume that at some time 5 > 0, vypin(to) <
0. Then there must be some prior time ¢; when vy, and its
derivative with respect to time are both negative.

At time £, vmin(2,) is achieved by at least one node. If it
is achieved by more than one, at least one must have a negative
derivative. This node is characterized by having the lowest
voltage in the network, and also a negative derivative. The net
current flowing into this node from other nodes in the RC tree
is nonnegative, because the adjacent nodes, to which this node
is directly connected through resistors, are not at a lower po-
tential. This net current must flow into the capacitor at that
node, and therefore the rate of change of the node voltages is
nonnegative. This contradiction proves the impossibility of
the assumption above that a node voltage is negative.
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APPENDIX D

Equation (7) is to be proved. Note first, for any three nodes
i, j, and k in the network, that R is at least as large as both
Ry; and Rj;. Also, Rjy is at least as large as the lesser of Ry;
and Ry;. Thus

R;iRjx = RyiRj;. (40)
Now note that, similar to (9)
1~ Uk(t)= Z R]'kC] (4])
J
1-vi(t)= Z R]l (42)

d

so that, because of (40) and the fact that v; (¢) is monotonic

Rii[1 - v (0)] - Ryi[1 - v;(2)]
dv]
= Z (RiiRjk - RiiR;) de—‘
i

>0 (43)

which immediately implies (7).

APPENDIX E

Bounds for the response y;(¢) of an RC tree to an arbitrary
excitation x(f) can be obtained from the upper and lower
bounds v,;(¢) and v;(z) derived for the unit step response
U,'([).

First,
as

the superposition integral can be used to obtain y;(z)

t
fvl(t_t) X(t)
0

y:i(®)

=v;(t) * dx/dt (44)
where * denotes time convolution. From
v (1) < vi(t) <oy (2) (45)
one obtains
v () * dxfdt <y;(t) <vy(f) *dx/dt, dx/dt=0 (46)
v (1) ®dxfdt <y;(t) <vu(t) =dx/dt, dx/dt<0 (47)

where v,,;(¢f) and v;;(t) are known analytically. From (46) it
can be seen that bounds for the ramp response can be obtained
simply by integrating the unit step bounds. Equations(46)and
(47) apply for monotonic inputs.

For the general case where the excitation x(¢) has both posi-
tive and negative slopes, one can define the following functions:

vE-1t"), dxjdt'>0
vmaxi(t.t')=<vu(t-t"), dx/dt' <0
0, dxjdt' =0 (48)
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vli(t - f'), dx/dt' >0
ommni(t, ) = ot -t'),  dx/dt' <0
0, dx/dt' = 0. (49)
The response y;(¢) is then bounded by
t '
nax)
f vmini(t, t) ar’ dr <y;(t)
(
! dx(t")
<| omaxiCt,t) dr’. (50)
0 dt'
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