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Abstract—This paper studies buffer block planning (BBP) for
interconnect planning and prediction in deep submicron designs.
We first introduce the concept of feasible region for buffer inser-
tion, and derive its closed-form formula. We observe that the fea-
sible region for a buffer is quite large in general even under fairly
tight delay constraint. Therefore, it gives us a lot of flexibility to
plan for buffer locations. We then develop an effective BBP algo-
rithm to perform buffer clustering such that design objectives such
as overall chip area and the number of buffer blocks can be min-
imized. Effective BBP can plan and predict system-level intercon-
nect by construction, so that accurate interconnect information can
be used in early design stages to ensure design closure.

Index Terms—Buffer insertion and planning, feasible region,
floorplanning, interconnect planning and prediction.

I. INTRODUCTION

FOR deep submicron (DSM) very large scale integrated
(VLSI) designs, it is well known that interconnect has

become the dominant factor in determining the overall circuit
performance and complexity. To improve the interconnect
performance, many interconnect optimization techniques have
been proposed recently such as topology construction, driver
sizing, buffer insertion, wire sizing, and spacing (see [1] and [2]
for a tutorial). Among them, buffer insertion, in particular, is a
very effective and useful technique by inserting active devices
(buffers) to break original long interconnects into shorter ones
so that the overall delay can be reduced. It has been shown
that without buffer insertion, the interconnect delay for a wire
increases about quadratically as wire length increases, but it
only increases linearly under proper buffer insertion [3]–[6]. As
an example, it was shown in [2] that the delay of a 2-cm global
interconnect can be reduced in a factor of 7by the optimal
buffer insertion. As the intrinsic delay of a buffer becomes
smaller and the chip dimension gets larger, it is expected that
more and more buffers shall be inserted for high-performance
integrated circuit (IC) designs (e.g., close to 800 000 for the
50-nm technology as estimated in [7] and [8]). The introduction
of so many buffers will significantly change a floorplan and
wire length distribution. Thus they shall be planned as early
as possible. By embedding such a buffer planning process
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into physical design flow (e.g., during floorplanning), one can
estimate the interconnect parameters (length, timing, and so
on) accurately for each individual net so that timing closure
and design convergence may be better achieved.

However, most existing buffer insertion algorithms (e.g.,
[9]–[12]) were designed for post-layout interconnect optimiza-
tion and for a single net only. There was no global planning for
tens of thousands of nets that may need buffer insertion to meet
their performance requirement as in DSM designs. Meanwhile,
most existing floorplanning algorithms (e.g., [13]–[15]) only
focused on wirelength/area minimization and did not consider
buffer insertion for performance optimization. In [16], buffer
insertion was considered during floorplanning, but it simply
assumed that buffers can be inserted anywhere in an existing
floorplan, which is not a realistic assumption since buffers
must consume silicon resources and require connections to the
power/ground networks [e.g., they cannot be inserted inside
some hard intellectual property (IP) blocks]. Otherwise, it
will seriously affect the hierarchical design style and make it
difficult to use/reuse IP blocks. As a result, the designers often
prefer to form buffer blocks between existing circuit blocks of
the current floorplan. If there is no careful planning of these
large amount of buffers, one may get excessive area increase.
Moreover, without careful planning, it is most likely that these
buffers will be distributed rather randomly over the entire chip,
which will definitely complicate global/detailed routing and
power/ground distribution.

To effectively address the above issues, as part of our general
effort of developing an interconnect-centric design flow [17],
[8], we study in this paper the buffer block planning (BBP)
problem, which automatically generates buffer blocks for in-
terconnect optimization during physical-level floorplanning. It
considers buffer location constraints (e.g., hard IP blocks and
predesign layout), and provides more regular buffering structure
for layout and power/ground networks. Since the BBP roughly
determines every buffer location for each net, we can then ob-
tain more accurate wire length and congestion estimation and
prediction during physical design.

Our major contributions of this paper includes the following.

• We first introduce the concept of feasible region (FR) for
buffer insertion under certain delay constraint and derive
an analytical formula for it.

• We find that the FR for a buffer can be surprisingly large,
even under tight delay constraints. This crucial observa-
tion provides us a lot of flexibility to plan a buffer’s loca-
tion.

• We propose to use FRs to cluster individual buffers to-
gether to form buffer blocks so that the total chip area due
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TABLE I
KEY PARAMETERS

to buffer insertion, as well as the number of buffer blocks,
can be minimized.

• We develop an effective algorithm for BBP. It can be used
as a key element for interconnect-driven floorplanning,
interconnect planning, and interconnect estimation.

To the best of our knowledge, this is the first in-depth study
of BBP. The rest of the paper is organized as follows. Section II
formulates the problem. Section III derives the feasible region
for buffer insertion. Section IV studies BBP and proposes an ef-
fective algorithm for it. Experimental results are shown in Sec-
tion V, followed by the conclusion in Section VI. Part of the
preliminary results of this work were presented in [18].

II. PROBLEM FORMULATION

The problem of BBP is formulated as follows. Given an initial
floorplan and the performance constraints for each net, we want
to determine the optimal locations and dimensions of buffer
blocks (i.e., the extra blocks between existing circuit blocks of
the current floorplan) such that the overall chip area and the
number of buffer blocks after buffer insertion are minimized
while the performance constraint for each net is satisfied (if it is
a valid timing constraint that can be met by optimal buffer inser-
tion under the given floorplan). The output from our BBP con-
sists of the following information: the number of buffer blocks,
each buffer block’s area, location, and corresponding nets that
use some buffer in this buffer block to meet the delay con-
straints. In this study, we focus on two-pin nets and derive the
closed-form formula of feasible region for buffer insertion. The
concepts of feasible region and BBP can be extended to mul-
tiple-pin nets as well.

The key parameters for interconnect and buffer in our study
are listed in Table I. The values are based on a 0.18m tech-
nology in NTRS’97 [19]. In the table, the unit interconnect re-
sistance and capacitance values are obtained based on a wire
width of 0.9 m and a wire spacing of 1.2m. The capacitance
value is extracted using the three-dimensional (3-D) field-solver
Fastcap [20]. We model a driver/buffer as a switch-level RC cir-
cuit [2], and use the well-known Elmore delay model for delay
computation. The buffer consists of two inverters. They are 20
and 100 the minimum transistor size, respectively, so that they
can drive a fairly long interconnect. The buffer parameters are
obtained using HSPICE simulations.

III. REASIBLE REGION FORBUFFERINSERTION

The FR for a buffer is defined to be the maximum region
where the buffer may be located such that by inserting the buffer
into any location in that region, the delay constraint can be sat-
isfied. Fig. 1 illustrates the concept of FR for inserting 1 or

Fig. 1. Feasible regions for inserting (a) one buffer and (b)k buffers.

buffers into a net where the source and sink of the net are con-
nected by a given route. In the figure, the FRs are the shaded
line segments.

A. Feasible Region for Single-Buffer Insertion

For single-buffer insertion in Fig. 1(a), let us denoteto be
the length from driver to buffer. We have the following theorem
for its feasible region.

Theorem 1: For a given delay constraint , the feasible
region for inserting one buffer is

where
;

;
.

Proof: For a single buffer insertion at lengthfrom the
driver, the Elmore delay from the driver to the sink is

Solving the above quadratic inequality with the boundary condi-
tion that the buffer has to be placed between driver and receiver,
we get and as stated in the theorem.

Note that for Theorem 1 to be valid,
shall hold. Otherwise, no feasible region exists and the initial
floorplanning/timing budget has to be modified. Fig. 2 shows
the feasible region for inserting one buffer to an interconnect of
length from 6 to 9 mm. We first compute the best delay
by inserting one buffer, then assign the delay constraint to be

, with to be from 0 to 50%. The axis shows
the and the axis shows the FR length, i.e., .
It is interesting to see that even with a fairly small amount of
slack, say 10% more delay from , the FR can be as much
as 50% of the wire length. This important observation leads to
great flexibility for buffer planning, to be discussed later on in
this paper.
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Fig. 2. The feasible region length for inserting one buffer under different delay
constraints of�.

B. Feasible Regions for Multiple-Buffer Insertion

For a long interconnect, more than one buffer may be needed
to meet a given delay budget. Forbuffers inserted, we have
the following theorem to compute the feasible region for each
buffer.

Theorem 2: For a long interconnect with buffers in-
serted, the feasible region for theth buffer ( ) is

with

where , , and are

Proof: The proof is similar to that of Theorem 1. The main
difference is that with total number of buffers, for the th
buffer, there are buffers before it and buffers after
it. Since we want to compute the maximum region that theth
buffer can be placed, all other buffers are assumed to be opti-
mally placed to minimize the delay during the computation of
the feasible region of theth buffer.

From [21, eq. (6)]1 we can obtain the optimal delay for in-
serting buffers into a wire of length with driver resistance

and loading capacitance

1There is a typo in [21, eq. (6)], which we have corrected.

Then, for the th buffer at from the driver, we have the
delay

Solving the above inequality, we get and
as stated in the theorem.

It can be verified that Theorem 1 is a special case of Theorem
2 with . The following theorem determines the min-
imum number of buffers that are required to meet a given delay
budget.

Theorem 3: The minimum number of buffers to meet the
delay constraint for an interconnect of lengthis

(1)

where

(2)

(3)

(4)

Proof: From [21, eq. (6)], we know that the optimal delay
for inserting buffers into a wire of length is
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Let , and we can obtain the quadratic inequality of
in the form of . Solving the inequality,
we prove Theorem 3.

Based on these results, given a two-pin net with a delay con-
straint , the required buffer number and the feasible
region for each buffer can be computed in constant time. As a
example, for a 1-cm net with , and the delay
constraint ( is the best delay by optimal
buffer insertion, which is 464 ps), we can calculate that the min-
imum number of buffers needed is , and the feasible
regions for the first and second buffers are [1.47 mm 5.20 mm]
and [4.80 mm 8.53 mm], respectively. Note that the FRs of adja-
cent buffers may overlap, as in this example. This is because FR
for each buffer is computed independently, assuming all other
buffers can be optimally placed to satisfy the delay constraint,
i.e., our FR provides maximum freedom for each buffer. It shall
be noticed that during the buffer planning phase (in Section IV),
when a buffer is placed (i.e., “committed”) to a position within
its feasible region, we will need to update the FRs of all other
unplaced buffers of the same net to safely meet its delay con-
straint. But since we have the analytical formula, this update
can be computed in constant time.

C. Two-Dimensional (2-D) Feasible Region

So far, our discussion of FR is restricted to a one-dimensional
(1-D) line, i.e., we assume the route from source to sink is al-
ready specified by some global router. Thus the feasible region
is also 1-D. In practice, however, global routing usually has not
been performed prior to or during floorplanning. In this case,
we can compute a much larger two-dimensional (2-D) FR for
each buffer. This 2-D feasible region is essentially the union
of the 1-D feasible regions of all possible routes from source
to sink. Therefore, we can have much more freedom for buffer
planning. Since for each net, its buffer location will then deter-
mine roughly its routing, our BBP indeed determines the overall
global routing structure for each net.

For a 2-D net, let the source location be and the
sink location be . We only need to consider non-
degenerate 2-D cases here, i.e., and .
Also, we consider only the monotone (i.e., nondetour) routes
from source to sink. We prove that with Manhattan monotone
routing, the 2-D FR can be obtained by the following theorem.

Theorem 4: For a net with buffers, the 2-D feasible re-
gion for the th buffer is the region bounded by the rectan-
gular bounding box between the source and the sink and by
two parallel lines with Manhattan distances from the source to
be and , respectively (the same as The-
orem 2). The slope of the two parallel lines is either1 or

1, depending on the sign of :
if , the slope is 1; if

, the slope is 1.
Proof: It can be easily verified from the definition of Man-

hattan distance and monotone routing.
Note that in previous works of buffer insertion, buffers are

mostly inserted in their delay-minimal positions, which we call
restricted positions because they are only a small subset within
our FR. The restricted positions for a 2-D net can be obtained
by the following corollary.

Fig. 3. The 2-D feasible region and a restricted line. The existing circuit blocks
act as obstacles for buffer insertion.

Corollary 1: For a 2-D net with buffers, the restricted po-
sitions of the th buffer for all monotone routes from the source
to the sink form a restricted line within the feasible region of the
th buffer. The line slope is again either1 or 1, the same as

that in Theorem 4.
Also, if there are obstacles (such as hard IP blocks), we just

need to deduct them from the feasible region. An example of a
2-D feasible region with a restricted line and some obstacles is
illustrated in Fig. 3.

IV. BUFFERBLOCK PLANNING

In the previous section, we show that for a given delay con-
straint, a buffer may be inserted in a fairly wide feasible region.
Therefore, it gives us a lot of flexibility to plan for every buffer’s
insertion position (within its FR) such that the overall chip area
due to buffer insertion, as well as the total number of buffer
blocks can be minimized. It shall be noted that such a BBP also
determines the overall global routing structures for long inter-
connects by determining their internal buffer locations.

The BBP problem is very difficult in the following senses:
1) many buffer blocks might need to be optimally shaped for
overall chip area minimization and 2) to make the situation even
more complicated, different buffers of the same net will not be
independent of each other. For a long interconnect with more
than one buffer inserted, Theorem 2 gives the maximum FR for
each buffer. However, when a buffer is committed to a certain
location within its FR, the FRs for other buffers in the same net
will have to be updated so that the delay constraint can be safely
met.2

In the rest of this section, we will present an effective algo-
rithm to solve the BBP problem. There are several important
features in our BBP algorithm: 1) it takes advantage of both the
flexibility of FR and the simplicity of its analytical formulas so
that one may handle large circuits with tens of thousands long
interconnects easily; 2) since in most floorplans there are some
dead areas that cannot be taken by any circuit module, our al-
gorithm will use these dead areas as much as possible to save
the overall chip area; and 3) different from the previous buffer
insertion algorithm that only inserts one buffer for a single net,
our BBP algorithm always maintains global buffer insertion in-
formation for all nets, thus, it can effectively cluster individual
buffers that belong to different nets into buffer blocks.

2Fortunately, we have the analytical formula to compute FR. Thus, the update
can be done extremely fast.
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Fig. 4. Overall flow of the BBP algorithm.

Fig. 4 gives the overall flow of the BBP algorithm. Lines
1–3 are the data preparation stages. First, we will build the hor-
izontal and vertical polar graphs [22], for the given floorplan
denoted as and , respectively. Let us take to illus-
trate how to build the horizontal polar graph. is a directed
graph, each vertex in it corresponds to a vertical channel, and
an edge corresponds to a circuit module whose left
and right boundaries are adjacent to channelsand , respec-
tively. For each vertex, we assign its weight to be its cor-
responding channel width. Similarly, for each edge, we assign
its weight to be its corresponding module width. Graph

can be built similarly. By running the longest path algorithm
on , we can obtain the width/height of the chip (de-
noted by ). For those channels not on the critical paths
in , we will have some positive slacks in width/height,
which lead to dead areas. It shall be noted that during buffer in-
sertion, some circuit modules may have to shift to make room
for buffer blocks (e.g., if no dead area exists). Therefore, the
height of a horizontal channel or the width of a vertical channel
may increase during BBP.

To better represent buffer block and facilitate data manipula-
tion such as feasible region intersection, we divide each channel
into a set of rectangular tiles. Then we compute for each tile,
its slack with respect to the longest path in the polar graph
or .

Thewhile loop from lines 4 to 8 is the main part of our BBP
algorithm. The iterative buffer insertion process will continue
as long as there is still some net that needs buffer(s) to meet
its performance constraint. Each iteration of thewhile loop has
two major steps: first, we will pick a best tile for buffer insertion
(Pick_A_Tile); then, we will insert proper buffers into this tile
(Insert_Buffers).

To pick the best tile in each iteration, thePick_A_Tile routine
works in the following two modes, depending on whether there
exists some useful dead area for buffer insertion or not.

1) There exists some tile whose area slack is positive (due
to dead area). In this case, buffers inserted into this tile
will not increase the overall chip area as long as the total
area of buffers inserted in the tile is smaller than the area
slack of this tile. For example of a tile in a vertical
channel, suppose its width slack is , and its height is

. Then we can insert as many as buffers
into tile without increasing the overall chip area, where

is the area of a buffer. The actual number of buffers
that can be inserted into may be smaller, since only

those buffers whose FR intersects with tilecan be can-
didates to be inserted into. Therefore, the number of
buffers that can be inserted into, without chip area in-
crease is , where is the
number of buffers whose FRs intersect with tile. Since
we may have multiple tiles with positive slack (especially
at the beginning of BBP), we will pick the one with largest

because this strategy shall reduce the total number of
buffer blocks, which is also our BBP objective.

2) There is no tile with positive area slack. Then, any buffer
insertion will increase the overall chip area. When some
buffer is inserted into a tile, we have to shift some cir-
cuit modules. This shifting will make room for other tiles,
so we will have some new positive-slack tiles. Our tile
selection process will try to maximize such opportunity.
Notice that after a buffer is inserted in, other tiles in
the same channel withwill have positive area and tend
to have buffers inserted in the future, thus the chance of
buffers clustering increases. To maximize such effect, we
will pick the channel that has the maximum buffer inser-
tion demand and choose one tile in it. Note that in this
scenario, since we need to expand the channel, we only
insert one buffer into it to minimize the area increase.

Our strategy forInsert_Buffers into the tile that has just
been picked byPick_A_Tile also works in two modes, corre-
sponding to those two inPick_A_Tile:

1) The tile has dead area. From case 1 inPick_A_Tile, we
know that buffers can be inserted into the tile. Mean-
while, there are buffer candidates whose FRs intersect
with tile , with . Then if , we will in-
sert all these buffers; if , we will only insert
first buffers out of these buffers, sorted according
to the increasing size of their FRs. Different from previous
approaches that just inserts one buffer for one net, our ap-
proach inserts as many as buffers for different nets
simultaneously. Since all of them are clustered into tile,
they form a natural buffer block.

2) The tile does not have dead area, but needs expansion to
make room for any buffer insertion. In this case, we only
insert one buffer, i.e., . Again, if there are multiple
buffers that can be inserted in this tile, we insert the one
with the tightest FR constraint.

After deciding how many and which buffers are inserted
(“committed”) into tile , we will update the following infor-
mation: 1) the feasible regions of “uncommitted” buffers in the
same net for which we just inserted a buffer into; 2) the cor-
responding vertex (i.e., channel) weights in and/or that
are affected by the insertion of the buffer block; and 3) the new
chip dimension , and slacks for each channel and tile.
Then we repeat the buffer insertion/clustering process until all
buffers are placed. It shall be pointed that our BBP algorithm
can handle both slicing and nonslicing floorplanning structures.

Note that during the above discussion, it is assumed that no
area is pre-allocated for buffers, and we can adjust block lo-
cations (by expanding channels) as we insert buffers. However
changing a floorplan may not always be feasible or desirable.
For example, the change of floorplan may change datapaths, de-
signer requirements, and so on. To address this issue, one would
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TABLE II
TEST CIRCUIT STATISTICS

use the following flow: assume the input floorplan has enough
room reserved for buffer blocks, run our BBP algorithm to find
out: 1) whether more spreading should be done; 2) if so, by how
much; and 3) how, otherwise, what the buffer planning solution
is. To fit into such applications, our algorithm needs some mod-
ification: at each iteration after we insert buffers, do not update
the corresponding vertex weights in and/or or the new
chip dimension as they are prefixed. Instead, we only need to up-
date feasible regions of affected buffers, and for each tile how
much room is used. In this case, our algorithm is slightly sim-
pler. However, the floorplanner has to be able to consider buffer
insertion and, thus, reserve room for buffer blocks. After BBP,
a 2-D compaction may be applied to remove the excessive area
reserved for buffer blocks.3

V. EXPERIMENTAL RESULTS

We have implemented our BBP algorithms using C++ on
a 500-MHz Intel Pentium-III machine with 128 M-byte main
memory. This section presents the experimental results. The pa-
rameters (refer to Table I) used in our experiments are based on
a 0.18- m technology in the NTRS’97 roadmap [19].

We have tested our algorithms on 11 circuits, as summarized
in Table II. The first six circuits are from MCNC benchmark
[23], and the other five are randomly generated. In this paper,
we focus on 2-pin nets, so we decompose each multipin net into
a set of source-to-sink 2-pin nets.4 We then compute the critical
length for buffer insertion (defined to be the minimal intercon-
nect length that buffer insertion is needed for delay reduction)
using the analytical formula in [21]. We then use it to filter out
short interconnects, i.e., if a net is shorter than the critical length,
we will ignore it during BBP since buffer insertion will not help
reduce its delay. The initial floorplan for each circuit is gener-
ated by running the simulated tempering (an improved Monte
Carlo technique of simulated annealing) algorithm as in [24].
For each net, we first compute its best delay by optimal buffer
insertion [21], and then randomly assign its delay budget
to be .

3We would like to thank the anonymous reviewers for pointing out this flow
to us.

4Note that the number of 2-pin nets is possibly smaller than that of original
nets (playout) because the power/ground and single-pin nets are excluded.

We compare our BBP algorithm with a conventional buffer
insertion algorithm without trying to plan buffer positions, i.e.,
at each iteration, a buffer is randomly picked and assigned to
a feasible location, denoted as an random (RDM) algorithm.
We run BBP and RDM under two different scenarios: one is la-
beled restricted (RES), where a buffer can only be located in its
delay-minimal restricted position(s) (see Fig. 3) and the other
is labeled FR where a buffer may be inserted anywhere in its
feasible region. The results for four different algorithmic com-
binations are summarized in Table III, where BBP/RES means
BBP algorithm applied to scenario RES, RDM/FR means RDM
applied to scenario FR, and so on. The results are summarized
in Table III.

It is interesting to observe from the table the following.

• Under the same algorithm, e.g., BBP, the usage of FR sig-
nificantly increases the number of nets that can meet their
delay constraints (for example ofac3, from 300 to 366, a
22% increase). This is because our feasible region is usu-
ally much larger than the delay-minimal RES locations, so
that one can avoid existing circuit/buffer blockages during
buffer insertion. Note that as#meetincreases, the number
of buffers inserted to meet performance constraints also in-
creases accordingly from RES to FR. However, since the
FR provides much more freedom during buffer clustering,
the number of buffer blocks (#BB) in fact reduces (for ex-
ample of ofa9c3, from 542 to 365, a 33% reduction); and
the area expansion due to buffer insertion is also less by
using FR with better buffer clustering.

• Under the same FR or RES scenario, BBP algorithm can
achieve much better area utilization than RDM. For ex-
ample ofa9c3 and pc2, BBP/FR can achieve area ratio
23.90% and 26.49%, while RDM/FR can only achieve
5.60% and 5.89%, respectively. This is because BBP tries
to cluster buffers for the overall area minimization.

Note that for some circuit, even BBP/FR may not be
able to achieve a very high area ratio. For example of
xerox, BBP/FR only achieves a ratio of 4.32%. The reason
is that the buffers of many nets cannot be inserted into tiles
with positive area slack, thus their insertion will lead to
overall area expansion. As an example, Fig. 5 shows the
circuit buffer block layouts from RDM/RES and BBP/FR
on circuitxerox. From the figure, we can see that BBP/FR
indeed inserts many buffers into tiles which lie on the crit-
ical path of the horizontal polar graph. Such a problem
is caused by the input floorplan which does not consider
buffer planning. Using our BBP, however, can help to get
a better interconnect-centric floorplanning.

• Under the same RES scenario (i.e., only the restricted
positions are allowed for buffer insertion), the RDM and
BBP algorithms will have about the same number of
buffers inserted and the same number of nets meeting
their delay constraints.5 However, our BBP algorithm
is able to explicitly cluster appropriate buffers together,
so that it leads to significant area saving and much
fewer number of buffer blocks than RDM algorithm. For

5A net fails to meet its delay constraint if the given delay constraint is too
tight, or its buffer’s feasible region is fully occupied by existing circuit blocks.
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TABLE III
COMPARISON OFFOUR DIFFERENTBUFFERINSERTION/PLANNING ALGORITHMS. WE COMPARE THETOTAL NUMBER OF BUFFERSINSERTED TOMEET

PERFORMANCECONSTRAINTS(#buff), THE NUMBER OF BUFFERBLOCKS (#BB), THE NUMBER OF 2-PIN NETS THAT CAN MEET THEIR DELAY CONSTRAINTS

(#meet), THE CHIP AREA INCREASE DUE TOBUFFERINSERTION INPERCENTAGE(area), AREA RATIO, I.E., THE RATIO OF TOTAL AREA OF ALL BUFFERSINSERTED

AND TOTAL CHIP AREA INCREASE(aratio), AND THE TOTAL CPU TIME IN SECONDS(cpu)

example of circuitpc2, the area increase of BBP/RES
is 2.89%, whereas that of RDM/RES is about 8.52%
(2.9 larger); the#BBof BBP/RES is 528, whereas that
of RDM/RES is about 1243 (2.35 larger). The same
conclusion about the comparison of BBP versus RDM
holds for the FR scenario. It is also interesting to observe
that BBP algorithm does not indeed increase CPU time
from RDM. Actually, it may use slightly less run time.
This is because during BBP, one buffer block (not just
one buffer) can be determined at a time.

• Since the FR computation/update can be computed in con-
stant time, the run times under FR scenario only increase
slightly compared to those under RES. As a result, our
largest example ( with more than 13 000 buffers) only
takes about 12.7 s.

To summarize, it is obvious that the BBP/FR is the best
combination among these four to meet delay targets, with very
marginal area increase (less than 2% for most test cases), least
number of buffer blocks and comparable CPU times. It shall
be noticed, however, that even under this best algorithm, there
may still exist quite some nets that cannot meet their delay
constraints under some given floorplan and timing budget. For
this reason, and also to achieve better area ratio, it is important
to have an interconnect-driven floorplanning engine to work
closely with our BBP/FR algorithm. We are currently working
on it.

VI. CONCLUSION AND DISCUSSIONS

In this paper, we introduced the concept of feasible region for
buffer insertion and derive the analytical formula to compute FR
under any given delay constraint. We then proposed an effective
BBP algorithm to automatically generate buffer blocks for in-
terconnect optimization with chip area and buffer block number
minimization. Experimental results showed that our BBP/FR al-
gorithm leads to significant improvement over previous buffer
insertion/planning algorithms.

The BBP bridges the gap between interconnect layout
optimization and physical design. By constructing appropriate
buffer blocks and determining the rough location of each buffer
for every net, we can obtain more accurate on-line interconnect
estimation/prediction for wire length, congestion as well as
delay with appropriate buffer insertion considered.

After our work on this topic was published in [18], there have
been several followup studies. The work by [25] used a network
flow formulation to compute the maximum number of buffers
that can be inserted into the free space intersected with feasible
regions, assuming at most one buffer for each net. The work
by [26] generalized our concept of feasible region to obtain a
set of independent feasible regions (IFRs), and considered both
delay and congestion. But it should be mentioned that for 2-D
nets, IFRs are not completely independent because of the as-
signments of buffers to locations within their respective 2-D
IFRs must ensure a monotonic path from source to sink [27].
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Fig. 5. Floorplan and buffer block layouts of the MCNC circuitxeroxby (a)
RDM/RES and (b) BBP/FR. The ten big blocks are circuit functional modules
and the rest are buffer blocks.

The recent work by [28] studied the BBP under simultaneous
delay and transition time constraints. Given an existing buffer
block plan, [29] and [30] addressed the problem of how to al-
locate buffers to pre-existing buffer blocks. Most recently, [31]
proposed to distribute buffer sites throughout the layout. Since
buffer insertion is a key technique to reduce interconnect delay
and noise and buffers are used extensively in high-performance
designs, we expect to see more studies on efficient and effective
buffer planning in the future.
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