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When the transient response of a linear network to an applicd unit step function consists of a
moactonic rise 10 2 finzl constant value, it is lound posable to define delay fime and rie lime in
sucha way that these quantities can be compured very simply (rom the Laplace svsiem function
of the nerwork. The usefulness of the new denhnitions is illustrated by applications to low pass, )
multi-siage wideband amplifiers for which & number of general theorems are proved. In addi- "y g
tion, an investigation of a cermin class of two-terminal interstage networks s mude in an
endeavor 10 find the network giving the highest possible gain—rise time quotient consistent
with a monotonic lransient response to a step function. !
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5 1. INTRODUCTION
: HE transient behavior of any linear system
& T (or network) is contained implicitly in the
 system funciion F{s}_whi(’h expresses directly the
steady-state (sinusoidal) response of the system.
The variable in the system function, s=v¢+4 jw, is
© “the complex angular frequency ; » is the ordinary
3 (real) angular frequency, and ¢ is 2 real variable
introduced for the purpese of facilitating the
transient analysis of the system.! In the present
paper we shall be concerned primarily with the
class of linear systems in which the transient re-
to a unit step function (the so-called
Bt (ndicial admittance) consists of a monolonic rize to
:_;- a final constant value. For simplicity in presenta-
E  tion only the transient response of a low pass,
wideband amplifier will be considered. Many of
the results obtained, however, apply equally well
to other electrical systems, as well as to me-
chanical, acoustical, thermal, and to mixed sys-
tems, provided only that they are linear and have
2 monotonic transient response o a umit step
lunction,
The most important system function of an
- ..ll'l'tpiiﬁu‘ is the complex gain, G(s), connecting
- input and output voltages of the form Ee. In the
@se of a low pass amplifier, G(s) can always be
- wepanated into two factors, Gy(s), which governs
the response at low frequencies, and Gi(s), which
govems the response at high frequencies. In an

.:‘;"'ts'“ﬂm‘:dhge,&anhjnul:,?wl-

' The noation and termi adopted here is tha
fond s M. F. Gurdair and 1. L. Bacacs, Transints bs

m,&f‘i‘_“' Uohn Wiley and Sons, Inc,. New York,
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unfedback amplifier, Gi(s) owes its origin te
various RC networks which couple the plate of
one tube to the grid of the next, and which
furnish bias voltages to wvarious points in the
ampiifier. The system function Gs(s) owes its
origin primarily fo parasitic interstage capaci-
tances which the signal<carrving leads.
Since we shall be interested in the problem of
obtaining the greatest possible posn—rise isme
quotient for an amplifier,® Gi(s) may reflect the
presence of compensating inductances, of feed-
back, or of any other circuit arrangements used
to shorten the rise time or to improve the
transient properties of the amplifier. The portion
G2l s) of the system [unction may be considered as
that of an equivalent amplifier idealized to have
perfect low [requency response.

For convenience in analysis, we shall use the
normalized system function gi(s) =G:(s)/G:(0),
where 731(0) is the gain of the idealized amplifier
at zero frequency. Normalization evidently makes
the final value of the response to a unit step
function (given by the final-value theorem of the
Laplace transformation) also unity.

It is not difficult to show that the normalized
system function g:(s) of a stable amplifier con-
taining a finite number of lumped circuit elements
takes the form

l1+aw+as®+ o« dause
1+bis+bast+ - - Fbus™

2 The in—-riseﬁ.mg . analogous to the more
fa.m.iliarpin-hnd width—product, but appears to be a

more uselul measure of amplifier in the case
of amplibers designed to amplily fast transients. The
definiton of rise time is i in Section 2.
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: pensating elements, the amplifier will be ref
T— = to as under-compensated. Finally, if the trans
response is not monotonic, usually as the resylt
- e

: ! increasing the compensating elements beyond t
L2 point giving critical compensation, the ampl

]
will be referred to as over-compensated ? !
=T L Itis evident that the various types of transien
E / curves illustrated in Fig. 1 possess certain com
. | mon features, in particular, a delay which ocoun

'oa e before the response is well under way, and a finit

Fic. 1. Some rypical transient response curves. time of rise. For many purpaoses each curve can b

_ sufficiently well characterized by its delay timg
where the coefficients g, and b, arereal, m>#n and  and rise time, which can be defined in saevedt
the poles of gi(s) all lie in the left half of the different, but approximately equivalent waysj
complex s-plane. The normali transient One of the purposes of the present paper is &
sponse of the mpliEﬂM propose useful definitions for these quantitis

u(f) can be computed by means of the inverse with a view to facilitating their computa
Laplace transformation from the system function g.(s). The new defin
tions, unfortunately, are of such a pature thal
they apply only to systems which are not over]
compensated. Their utility for all systems hav'm{
a monotonic transient response, however, appean
Transient response curves computed from Eq. to be great enough to outweigh this defect. It
(2) for various amplifiers have a variety of shapes, possible that an equally useful method for treatin 4
some common forms of which are illustrated in the over-compensated case can be discovered.
Fig. 1. The input signal, »(t), is shown in (a). The
sransient response shown in (b) consists of a 2. THE DEFINITION OF DELAY TIME AND OF §
delayed rise, followed by a train of damped IS Thax .
oscillations. The response shown in (c) is similar A number of definitions of delay time and ¢
to that in (b) except that only a finite number of rise time appear to be in practical use, Two d
oscillations occur, preceding a gradual approach  these will be illustrated by reference to Fig. &
of the curve to the final value unity. In (d) and which shows the transient response e(!) to
(e) are illustrated monotonic transient response  unit step function, and its derivative, ¢'(f), of a8
curves having different amounts of damping. The g nder-compensated amplifier.!
response in (e) is supposed to be that of an The delay time, Tp, is usually defined as tht
amplifier having certain adjustable circuit para- time required for the response to reach half it
meters which have been chosen to achieve the final value, as illustrated in Fig. 2a. The ni
shortest possible monotonic rise for a given time, T, &, is sometimes defined as the reciprocal
amplifier gain. the slope of the tangent drawn to the respon®
[ Any circuit elements introduced in an amplifier  cyrve at ts half-value point, again as illustrated
for the purpose of conurolling the shape of the g Fig. 2a. A somewhat more practical definitio®
transient response curve may be termed com-
pensaling elements. In the present instance they m:ﬂi;:au:{: Sppatiou W mfﬁﬁﬂaﬁ“ﬁ
afford high frgqumw compensation to the re- 5;1,5 ﬂpfﬂiﬂsm in _nth!:i;-r pimig (:Z _an_lplijlf; p-:ﬁ
sponse of the amplifier. When the fastest possible obtined from an electrical detector of radiation) and
monotonic rise has been obtained with the par- ?ﬁ?%viﬂ ﬁ::la:nﬁ;:?:i: ?ﬂc’d%:iwm . ;E"j
ticular type of compensation used, the amplifieris 87pbs). Video amplifers 0 feleviace Appucas
said to be criticaily compensated. If the transient  resuiting {rom over-copses i oo sy Ao

response is monotonic but the rise is slower than pe o =
can be obtained by suitably adjusting the com- [ of the mnplf*.ﬁr tT:::i 1'»:?-?:: :.pplie:fa: time §m=0.

1 petie,
-‘-(I)-z——_ -g{)eds, ¢>0.  (2)

T] Ve 5
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ults if Te is taken to be the time required for
s esponse to increase from 10 to 90 percent of
‘th‘:; al value.® Although these defnitions are
i the laboratory, they are extremely
; or making computations, or for enter-
——pon 3 theoretical investigation of the
:fative merits of various methods of compen-
cing a0 amplifier to reduce its rise tim_e. The
,auﬁcﬂ-li ¢y, of course, lies in the necessity for
d ting the transient response curve for each
mmP:"m der consideration, a formidable
CFT;L"_E‘/” is practically impossible to obtain
ilu — of Tpand T, as defined, by any simple
method of aﬂal‘.'fﬂs . o

Let us NOW consider_aiaemagve definitions for
delay time and rise time. Ewvidently the de:!ay
e, should be measured from ¢ =0 to some time
at which the transient rise is about one-half over.
¢ is reasonable, therefore, to measure Tp to the
centroid of area of the curve £'(), that is,

rp=f ' (§)ds. (3)

The formula for the centroid takes this simple
form since

Il e'()de=1.
[ ]

This definition of delay time is illustrat
Fig. 2b, and it is seen to give a result which'differs
war little iromythat obtained from the customary
tefimition. The two values of delay time depart
most markedly in the case of a very asymmetrical
response curve. It is easy to convince oneself that
the new definition becomes meaningless if the
curve ¢ (£) possesses a negative portion, i.e., &{f) is
not monotonic. It will be shown presently that it
it a simple matter to obtain a value of the integral
in Eq. (3) directly from the system function g:(s).

The rise time Tg should express in a prescribed
manner the time required for the transient rise to
occur. Now.the-shorter the rise time, the narrower
(and-higher) the curve of ¢(£). It is reasonable,
'-hﬂ_'lfom. o define Tg as proportional to the
radius of gyration)of the area under the curve,

T

and R, .E. Spencer, Proc. L.R.E. 33,

E. Kallman
165-195 (1945).
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that is,

-

Ta*=Const. f (-To)ed. (&) -
. ‘

In other words, the rise time i rtional to

the nise ume s propo,

the standard deyiation ]oLt_l&zm%s_éul;The
constant of proportionality is chosen to be 2x for
the following reason: it is possible to show that
the curve ¢'(¢) for any n-stage amplifier* ap-
proaches more and more closely the form of a

uss error curve with increasing »#.” To make
the new definition of rise time agree with the
definition based on the slope of the transient re-
sponse curve (Fig. 2a), the value of Tx should
therefore be

Te= =(2x)* [radius of gyration of £'(t)],
(1) | max

which expresses the relation between the height
and the radius of gyration of a Gauss error curve
of unit area, here denoted temporarily by ¢'(2).
Equation (4) can npw be written

Te= [zr[ ) ! :*e'u:cﬂ—n']r. (s)

where the integral has been expressed in terms of
moments about the time origin. It is found in
most instances that rise times computed from
Eq. (5) differ by less than ten percent from the

et
I
(a}
0.5
et T |tewdt
(®) -a;gt.-m'ef(t} at

Fic. 2. Curves illustrating the definitions of delay
tme and ol rise time.

® The individual stages in the amplifier must each have
2 monotonic transieat response to the unit step functon.

7 This result appeirs to have been frst nodced by
Henry Wallman, and will be discussed in Chap. 7, Vol. 18
of the Radiatiom Laboratery Serier (McGraw-Hill Book
Company, Inc., New York, in press).
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rise times defined earlier, which ~an continue to
be used for most laboratory work.

The great usefulness of the new definitions of
delay time and rise time will now be demon-
strated. The system function g,(s) and the
transient response ¢'(¢) are related by the direct
Laplace transformation

where g, the real part of 5, must be greater than
o1, the real part of the pole 5; of £:(s) lying
farthest to the right in the s-plane. In the case of
a stable amplifier, ¢, is negative, in fact, for a
monotonic transient response, the poles of £1(s)
all lie on the negative real axis of the s-plane,
Let us now expand the Laplace integral (6) in a
power series in s, which will be a valid expansion
of g:(s) for values of s lying within the circle of
convergence |s| =|s5:|. We do this by first ex-
panding ¢*' in a power series in st and then
integrating term by term, - obtain ing the de-
velopment

- :! -
g,(s)=1—;f !c'r[!'}rﬂ+;f Pe'(t)di— - (7)
= ] H .

It follows that if a given system function is
expanded in ascending powers of s, it is 2 simple
matter to obtain by inspection the first and
second moments of ¢'(t) about the time origin,*

| [

_J R=| B=1
—

’__(_'lrl —‘|_E-[

L

[ 1

i (a) (]
Fic. 3. Shunt-compensated interstage networks.

'Ithsbeudnuadmthcaﬂmthuoeflthmthz
this method of computing moments is osely to
methods used in mathematical statistics, the method of
lhmﬂmm:;mmgfunedon.udthcmﬁhndddle
1St ﬁucﬁon.See,lwinsm,S.S.“ﬁJh,
Mathematical Staléstics (Princeton University Press, Prince-
ton, New Jersey, 1943). .
The mathematical steps leading to Eq. (7) can be made
maore rigorous by noticing that the series [or the integrand

-

4

m (6)
; ;

[ —

s/ .\ 14Ls
4= rlq}'t'q __L'Tg:{:.i).:'——-—. l’mj
R ST e gl TS o

and therefore to obtain values of T, and
defined by Egs. (3) and (5), respectively. Part of
the virtue of the proposed definitions lies in the
ready way in which delay times and rise timq[
can be computed. Other advantages of the deﬁ.lf

nitions will be made use of in Section 3. !
It is useful to obtain expressions for T, and T

for a system function of the form given 1),
By expanding Eq. (1) in ascendint;ﬁ_éx\'crs of s]i:
is f[ound that i

z“[;l‘ﬂb|_ﬂ]1I (s}
and that '
Tll 1
—=bi*—as*+2(a;—b,). (9)4
2x :

Before considering other matters, let us com- |
pute values of Tp and Ty for a single-stage ]
amplifier having a two-terminal plate load im-
pedance of the type shown in Fig. 3a.* Such an]
amplifier stage is said to be shunt compensaled. |
The system function of the single stage B
identical to the driving point impedance of the i
plate load, since it can be assumed that
amplifying tube is equivalent to a constant cur §
rent generator. Hence we have that :

S 1 T Stk )t £ TaaX troustoely
In order that no transient oscillation of the typ¢ B
shown in Fig. 1 shall exist, the poles of g1
mﬁ lie on the ﬂEga_ﬁVE rt:_al_ xis of the s-plas 3
This requires that in Eq. (10) L <1/4. The value

of Tp and Tk (computed using Egs. (8) and (9)) §

m i
Tp=1-1L,
Tr=(22(1 —zL_.L:JJ._} (11)

When L=0, corresponding to a simple re
sistance-coupled amplifier stage, Tp=1, and |
Te=(2r)'=2.51. When L=1/4, corresponding |
to critical shunt compensation, Tp=3/4, and |
Te=(2x)7/16)1=1.66. To express the improve |

coaverges uniformly, thus permitting term-wise integratiof
betvmzu:!nda n.im.-up;?arlirn:‘ntg::".E‘acinncnzLllnvsi.ntegrilﬂl=d
series, considered as a function of T, is also uniformly con* |
vergent when 5 is restricted o the region near the origit
thguiumunmwgc.urappmach_ea infinity, to th¢
Laplace integral (6) from which it is derived. ] =

* By serring C=1, R—l.mdn'pr:ssingf.m units @ E
RAC, values of T and Tx are obtained in units of RC
This device enables the system funetion to be writted
immediately in a simple, normalized form.




ment realized by compensating the stage it is
venient to define the risg-ty re-uj-merit
csﬂnwhich is the ratio of rise time of an R-
d;uplfd stage to the rise time of the same stage
(i.c. @ St28e with the same value of R and C)
c&n ted to reduce its rise time. Evidently
sﬂuﬁ‘{?]isl.st for a critically shunt-compen-
cated stage: In Section 4 an attempt will be made
discover an interstage network which gives the
t;aﬂgst value of Tz with a given interstage
para-ﬂﬁc capacitance and load resistance, that is,
the largest value of S. The problem is somewhat
ous to that of discovering the network
which leads to the maximum band width (with-
out regard to good transient response).’®

3. SOME THEOREMS REGARDING MULTI-STAGE
AMPLIFIERS

We have just seen how the delay time and rise
ime of a single amplifier stage can be computed.
Let us now consider how the delay time and rise
ime of an unfedback multi-stage amplifier de-

on the properties of individual stages in it.

If the amplifier contains » stages in tandem,
the system function of the entire ampliher is the
product of the system functions of the individual
stages." Let the system function of the ith stage
be gi{s). and let the corresponding values of
delay time and rise time be Tp; and Tk, re-
spectively. The function gs(s) can be expanded
in the series

52 T‘I_E
guds)=1 —5Tm'+;

+Tm")*— seey, (12)

g

which is obtained directly from Egs. (3), (5) and
(7). The system function of the entire amplifier
therefore becomes

£sls) ==f|1 £2ds)

5 Ta-.:
'l—:zrﬂi'i'z Zz—
T

+3 Tot+2L Tn.?hpi]— S
iy

** See, for instance, H. W, Bode, Network Analysis and
Design, (D. Van Nestrand Company,
945), pp. 408, o reg.
statement is true ided that no coupling be-
the mmmpt h the electron stream in
s Em“" Otueat l%mhu. This situation can be
mi“‘lﬂﬂm tubes in the amplifier are
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By again using Eqs. (3), (5) and (7), the delay
time and the rise time of the entire amplifier are
found to be

Tn=}?,rm, (13)
and
n=($ Tad)h. (14)

The result expressed by Eq. (13) is intuitively
obvious, since it is to be expected that the total
delay is the sum of the delays of the individual
stages. The manner of combining rise times indi-
cated by Eq. (14) is not as evident, although the
fact that this simple mode of combination is the
correct one has been proposed by several of the
author’s colleagues prior to the present proof of
the theorem.

Another theorem of practical importance con-
cerns the manner in which the gain of an n-stage
amplifier should be distributed among the indi-
vidual stages in order to achieve the shortest
possible over-all rise time for a given over-all
gain. Now the rise time of any stage in the
amplifier varies directly with the gain of the
stage, since both quantities are proportional to
the value of the plate load resistor, [t is desired,
therefore, to minimize the expression (14) subject
to the condition that

II Tz:=Constant. (15)
1

It is easy to prove from Egs. (14) and (15) that
the over-all rise time is 2 minimum when the rise
times of all stages are made the same.* [f T, is
the nise time of each stage, the rise time of an
n-stage amplifier becomes

Ta=Tgmt (16)

Let us now consider certain matters regarding
the design of an amplifier consisting of » identical
stages. We shall treat the simple case where the
interstage couplings are of the general tyvpe

2 For mstance, by usin Lﬂ{ﬁll‘l *s method of undeter-
mined multipliers, the di ual of Eq. (14) must be zero,
= TgdTei=0, subject to the condition (II Tee) T dTxd/
Tgi=0 which is the differental of Eq. (15). After muls-
plyin, th:httn'ﬂ:ﬁmbytheunde ined multipli

adding it to former, each coefficient of dTg; muse
be idem:ic:ﬁy zero, giving TEi=TRy=---. A proof that
this tcaﬂdl‘ﬁm leads to 2 minsmum rise time 12 scarcely
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illustrated in Fig. 3, i.e., a parasitic capacitance
€, and a resistance K in series with some sort of
compensating reactance whose impedance be-
comes zero at zero frequency. At frequencies
where 1/wC<&R, the gain of each stage is

Gi=g.R, {17
where g. is the transconductance of the ampli-
fying tube.!® The rise time of each stage can be
written in the form

1
Ty=—(2r)iRC, 18
5( ) (18)

where S is the rise-time figure-of-merit of the
stage. By definition S=1 for a simple R-coupled
stage and we have already shown, for example,
that S=(16/7) for a critically shunt-compen-
sated stage. Eliminating the resistance R between
Egs. (17) and (18), we have that

G1 - S( I- ) Tj.
(2r)iC

The quantity ga/(2r)iC expresses the figure-of-
merit of the amplifier tubes, and may be con-
veniently stated as so much gain per microsscond
rse time.

If T is the rise time of the r-stage amplifier,
then according to Eq. (16) the rise time of each
stage must be Ty = T'/nd, requiring a gain for each
stage

(19)

G1=S

En T
(Ir:li(:);-‘ (20)

Equation (20) can be written as a pair of
equations,

5
Gl=“-_G'1
ni
where r (20a)
Gn=( i )T.
@eic/

The quantity Gy is the gain of a single R-coupled
stage of rise time 7', whereas G, is the gain that
each stage of the n-stage amplifier must have in

B It is assumed that R<&r,, the plate resistance of the
tu

o

B

order that the entire amplifier shall have the rise
time T.1
The total gain of the amplifier is

Gi=Gr™. (21)

Let us now investigate what gain per stage will :
result in the shortest rise time for a given tota.
amplifier gain. From Egs. (20) and (21), we haw
that i

1((27}*6

E=

)"iGt"“- (22).

5

On minimizing T with respect to #n whil
keeping G, constant, it is found that n=2 InG,, o
that 1

Gi=el=(2.72-+-)=1.65---. (23)

Y

This result is independent of the degree of
compensation used, provided, of course, that
critical compensation is not exceeded. The min-
mum rise time which can be obtained for a total |
gain G, is found from Egs. (20), (21), and (23) to

= p
1 r(2o)iC

Tmm;’_( (2{ IHG.-}i. {2"] ]

S Em 3

requiring a total of # =2 InG, stages. F

4. SOME CRITICALLY COMPENSATED
INTERSTAGE NETWORES

There are two matters of considerable interest
concerning interstage networks of a critically
compensated wideband amplifier. The first is
primarily of theoretical importance and concerns
the maximum value that can be obtained for the
quantity S (the ratio of the rise time obtained
with a simple RC network to that obtained with
a compensated network). The second matter is of

practical importance and concerns the design of {

1 L 9

g

" The pair of equations (20a) can be made the basis of 2
convenient nomograph to aid in the design of an amplifier
of assigned rise tme and tota! gain.

inductance Iy will vanish |

7

Sy
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«works whose performance approaches as
n:_‘r[}- as possibls the theoretical limit.
n [nterstage coupling nt:twor.ks of two tvpes
yst be distinguished, two-terminal and four-
minal."® This distinction is necessary since it
. ible to separate the parasitic interstage

citance into two portions, the output capaci-
"ﬂp:g of one stage, and the input capacitance of
ofs following stage. If a critically -::ompensa.te:d
i our-tﬂ'mi“a] network is based on the two capaci-
rances, as separate entities, it would seem likely
that a shorter rise time can be achieved than for
the pwo-terminal case. Only two-terminal net-
wocks of a simple type will be discussed in the
nt paper, mainly because a treatment of

other Cases is beset with algebraic difficulties.

Let us then consider the generalized, shunt-
mpcﬂﬁﬂtﬂd interstage network illustrated in
Fig. 3b, where the pure reactance X has a value
zex0 at zero frequency, but is otherwise unre-
gricted in form. According to Foster's reactance
theorem,'® a possible formula for any reactance of
this type can be written

s(st =51 (s?—5¢) - - (2 —saY)

(=55 =530 (= 5ari?)

m
e

where the 2 (§=1---m) ar= negative real num-
bers, k is @ positive constant, and m is an even
integer. The general reactance can be realized
physically by a variety of equivalent networks

Tasee |. Some critically compensated networks,

Response ¢/ 10 unit impalse

# Clrcuit constants 5
1 X=0 1.000 ]
T lemife “Lsiz e E]
3 Li=827; cam1k 1.76% {142 6m)
4 la=1y4;
L= 1/16; crm1 189 a4 1 44 (643N

5 L=(4/12Z5)5 44511 1.970 ¢ (1 +4: 4200 — (100308 4-{250 /3 )8}
er={1/18)(3 +{5}})
la={4/125HS = (ST
cr={1/16}3 —(51%)

- o et FR L1 L=, 052
cu=1/2 {. U] 15
k=123, -~}

made up of inductances and capacitances.® [t is
convenient here to adopt the form of network
shown in Fig. 4 to represent the general reactance
X(s). If theinductancely vanishes, i.e., the general
reactance becomes zero at infinite frequency, it is
necessary to omit the factor (s*—s.? from the
right-hand member of Eq. (25).
By writing Eq. (25) in the form

dis+dys?+ - - - F Ayt
X(s)= )
Itces™ e+ - - +oms™

where the new, real, positive constants, ¢; and 4,
are uniquely related to the constants appearing in
Eq. (25), and to the circuit constants defined in
Fig. 4, we find that the driving point impedance
becomes

14+distesttdeytt- - - a5 tpd,_ 5t

Z(s)

where n=m+ 2. [t should be noticed that when
ly=0, the coefficient d.;1=4d._1 vanishes. Equa-
tion (26), of course, has the form of Eq. (1).

To realize a monotonic transient response to
the unit step function, it appears necessary to re-
quire that the poles of Z(s) all lie on the negative
real axis of the s-plane. (Otherwise the transient
response will contain oscillatory terms.) We shall
assume that the most desirable arrangement of
poles is to have but one multiple pole, and then
show that this assumption leads to useful results.

*Strictly speaking, two-terminal and three-terminal

F‘See reference 10, pp. 177-181 for a discussion of
G8tler’s reactance theorem and of the various networks
which can be used to realize an arbitrary reactance.
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1454 (ditea)s?+eas®+ - - - en a1t dpis®

(26)

Indeed it can be proved at once for the network
under consideration that a single multiple pole
must lead to the shortest rise time. Thus, the rise
time

Te=[2x(2—2d,—d:*) ]},
computed from Eq. (26) using Eq. (9), is a mini-
mum when the real, positive coefficient 4 is
maximum. The negative real roots of the de-
nominator of Z(s), —s5i,, —5s -+, —Sa. MuSt
satisfy the relations — L »

S (e
E(I._{-Ti)'—fl-/ 8

and =
di= L (1/ses)= L (/s

found by multiplying together the = factors

Gl

=




(1+s5/s,) of the denominator and comparing the 17 percent is obtained. Adding a second i
resulting expression with the denominator in ductance (p=4) results in a further decrease iy
Eq. (26). Using Lagrange's method of unde- rise time of about 7 percent. By adding more ang
_ L‘;‘ termined multipliers it is found that d, is more components, the limiting value for the rise.
| a maximum, ie, Tz i5 a minimum when time figure-of-merit, Sux=3/vI=2.12 is ap-
| SpmSamsag=ce-. proached. The remaining improvement possible
" The denominator of Eq. (26) can be an even in the transient behavior after a few inductance?
or an odd degree polynomial of degree m, or n—1, and capacitances are incorporated in the network
respectively, depending on whether or not l; is not very marked. These cases, therefore, are
occurs in the network of Fig. 4. The treatment not of great practical importance. The limiting
for both cases follows similar lines, and will be case (p— =) is of interest primarily because j
illustrated for the case where lo#0. In this case possesses the greatest figure-of-merit possible
we require that Z(s) have cne multiple pole of with a network of the type under consideration, .
order n (n is always even), and the denominator It is conjectured that this network has the
of Eq. (26), accordingly, must be the binomial greatest figure-of-merit possible for a low pas '
expansion of [1-+(s/se)]" giving a set of » two-terminal interstage network. No completely
equations from which the # quantities 5o, dy, 3, ds, adequate proof, however, has been found for this
Cyy =+, da_y can be determined. The values of the theorem.
components in the network of Fig. 4 can then be The transient response to a unit step function
computed, as well as a value for the rise-time for all the cases listed in Table I has a monotoai
figure-of-merit S, and an expression for the form, which, of course, is necessary in order that
transient response to a unit impulse applied at the method used for computing delay time and

t=0. rise time be applicable. The general proof that the
The computation suggested has been carried transient response is monotonic for arbitrary
out for cases where Z(s) has poles of order values of » appears to present considerablk
#=1,2,3,4, and 5, as well as for the limiting case  algebraic dificulties.
where p—r. The following general expressions
are found from Egs. (8) and (9) for the delay ATr AR >
time and for the rise-time figure-of-merit Case Where p— =
2 1 ) The analysis for the case where the reactance X(s) in .
g i i Fig. 3b has an infinite number of poles can be made by Fsrxasoe
3 3t serting the denominator in Eq. (26) equal to [1+4(s/2)7
and then writing the resulting expression in the algt
and . (27) braially equivalent form
¥ I\
5 3 * 2ey=1/-17221-( _F/H'F) ]
(248/p*—1/p9 | In the limit where p— 1w, this expression becomes
where p is the order of the multiple pole of Z(s). Z(s) = 1/5=1/25%(1 =) (28)
A summary of the results derived from the which has the inverse Laplace transform given in Table L* §
From Eq. (28) and the network of Fig. 3b, the reactanct _

computations is presented in Table I. The analy-
sis emploved for the limiting case is given in

Appendix 1. e e .
. The RC network (p=1) has been included in 21t it of ioterest 10 note B ey il §
Fable 1 to serve as a basis for comparing the i im‘dauygivmaunirchug; then Eq. (28) is the Laplact
other critically compensated networks. The net- ;’_“""’LE:‘ ﬁﬁ,ma.i’iﬂ”ﬂ;ﬂﬁé& "';x i
work for p=2 is the well-known, shunt-compen- the capacitor decreases linearly while it is beingghamﬂ] '
sated network, used as an illustration in Section 2. H’ﬁht mﬂ'“ b""m:'i‘jnr"fmﬁl::t “h"a‘:t“‘i“heufm‘;"';“:
By increasing the value of the inductance from rectangular pulse (of amplitude {). The network cat
0.25 t0 0.296, and shunting it with a capacitance  S¥idently be used &ﬂ’hﬁﬁﬁii’m b plpbl el
of 0.125 (p=3), a decrease in rise time of about  inio 2 rectaniubos valtare el e scharge of 2 capac

X (5) is found to have the form i
X(5) =coths—1/5. (2 4

——lAnEE T
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‘I'he zeros and poles ul X'(3) are located, of course, on the
ceal frequency axis, and are given by the roots of tanw=w,
and sine/w= 0, respectively.

To determine values of Iy and ¢, the expression for the
reaCERCE, Eq. (29}, can be expanded in the infinite series'®

s

Xis) -m:lu—lfs—- poprayos

{30)
Each term in the innnite series can be interpreted as the

cance of a parallel combination of inductance and
~1 Gee, for instance, E. T. Whittaker and G. N. Watson,

Awalysis, (Cambridge University Press, Tedding-
ﬂmhnd 1927), fourth edition, p. 136, eample 7.

capacitance, where

L=2/aR01 e
ol }zi L.2,3, ). (31)

It is evident from the nature of the terms occurring in
the infinite series that the inductance ly must vanish,
The formulas for delav time and rise-time figure-of-

I'nerit. F..-QE. [27}. hﬂ]d il:l th'e Emllt when P—I-M s no -

separate computation need be made for these quantities.

This paper is based on work performed under Contract
No. W-7405-Fng-36 with the Manhattan Project at the
Los Alamos Scientific Laboratory of the University of
California.

A General Divergence Formula*

H. J. RmBLET** axp C. B. BARKER*™*
Radialion Laboralory, Massackusetls [msiitute of Technology, Cambridge, Mossachuseils
(Received April 28, 1947)

A divergence expression for the ratio of energy per steradian reflected from a smooth curved
surface to that incident on ihe surface is derved. [t generalizes previous results in that the
source and point of observativa may both be at finite distances from the reflecting surface. No
restrictions are placed on the angles of incidence and reflection except that they be equal. The
oaly limitation placed on the analytical accuracy of the geometrical result s that the surface be
sufficiently smooth so that the principal radii of curvature are defined at the point of reflection.
It is required, of course, that the wave-length of the energy shall be small compared to the
principal radii of curvarure of the surface, in order that the geomelirical result may be inzer
preted as 2 divergence formula. All of the previous results on this problem known to che
authors are denived as special cases. Application of the result in connection with rhe spreading
of radio rays by the curvature of the carth leads to somewhat simpler formulas than now

available

INTRODUCTION

A PROBLEM of basic importance in the
radio and radar art is that of determining
the amount of energy reflected in any direction
from a given object placed in a plane or spherical
clectromagnetic wave. The exact solution of this
tvpe of reflection problem is known for only a
few special cases. However, if the wave-length is
small compared to the radii of curvature of the
surface of the reflecting object, it is possible to
handle this question by means of geometrical

This paper is based in part on work done for the Office

uei?“% a.anDevdnpment under Contract
it lt mmmr submitted under the title

oeincipal " having Eq. 18 as it

m‘;ﬂl question of accuracy ramod by the
- o :" to 'hc general result ot Eq. 1

“llnch 2t the Submarine Signal Cmnpn.ny Boston,
\l

0\'
D - é;l u?'linabv: Research Laboratory, Washington,

VoLouz 5, JANUARY. 1042 9

optics. The cases of normal incidence on a
general curved surface for a plane and spherical
wave have been discussed, respectively, by
Goudsmit and Carlson' and Silver.? Spencer®
has extended the analysis to arbitrary angles of
incidence with the restriction that the wave be
plane, while Barker and Riblet* have discussed
the general case of a spherical wave under the
assumption that the point of observation is
infinitely far from the reflecting object. This

i5. Al Gﬂudsmnt. ard J. F. Carlson, “Microwave radar
Radiation Laboratory Report, 43-13, Feb-

1S, Silver, “Contribution of the dish to the impedance
of an antenna,'" Radiation Laboratory Report, 442, Sep-

l:mbc:r 17, 1943,
i R. C. Spencer, “Reflections from smooth curved sur
;g‘;r; " Radiation Laboratwocy Report, 661, fanuary 26.
* C. B. Barker and H. . Riblet, " Reflections [rom curved
surfaces,” Radiation Laborztary Report, 976, February 1.
1946,
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