An Efficient Heuristic Procedure for Partitioning Graphs

By B. W. KERNIGHAN and S. LIN

We consider the problem of partilioning the nodes of a graph with costs
on 1ls edges 1nio subsels of given sizes 2o as lo minimize the sum of the costs
on all edges cul. This problem arises in several physical situations—for

example, in asmgning the components of electronic circuils o circuil

boards lo minimize the number of conneclions between boards.

This paper presents o heuristic method for partitioning arbitrary graphs
which 12 both effective 1n finding optimal partitions, and fast enough to be
proctical in solving large problems.

1. INTRODUCTION

1.1 Definition of the Problem

This paper deals with the following combinatorial problem: given a
graph G with costs on its edges, partition the nodes of G into gubsets no
larger than & gwen maztmum 21ze, 50 &8 L0 minimize the total cost of
the edges cut.

One important practical example of this problem is placing the com-
ponents of an electronic circuit onto printed circuit cards or substrates,
80 a3 to minimize the number of connections between cards. The com-
ponents are the nodes of the graph, and the circuit connections are the
edges. There is some maximum number of components which mey be
placed on any card. Since connections between cards have high cost
compared to connections within & board, the object is to minimize the
number of interconnections between cards.

This partitioning problem also arises naturally in an sttempt to
improve the paging properties of programs for use in computers with
paged memory organization. A program (at least statically) can be
thought of as a set of connected entities. The entities might be sub-
routines, or procedure blocks, or single instruction and data items,
depending on viewpoint and the level of detail required. The connections
between the entities might represent possible flow or transfler of control,
or references from one entity Lo another. The problem is to assign the
objects to “pages” of u given size 50 a8 Lo minimize the number of
references between objects which lie on different pages.

To pose the partitioning problem mathematically, we shall need the
following definitions. Let G be & graph of n nodes, of sizes (weights)
w, > 0,1 =1, -+, n Let p be a positive number, such that 0 < w, 5 »
foralli. Let C = (c,,),1,7 = 1, --- , n be a weighted connectivity matrix
describing the edges of G.

Let k be » positive integer. A k-way partition of G is o set of nonempty,
pairwise disjoint subsets of G, v, , --- , v, such that \Ji_ v, = G. A
partition is admrasible il

|e,| & p forall 1,

where thic symbol | z | stands for the size of a set z, and equals the sum
of the sizes of all the elements of z. The cos! of & partition is the summu-
tion of ¢,; over all 7 and j such that 1 and j are in different subsets. The
cost is thus the sum of all external costs in the partition.

The partitioning problem we consider here i to find 8 minimal-cost
admissible partition of G.

There are three other problems which are equivalent to this one.
First, minimizing external cost is equivalent to maximizing internal
cost because the total cost of all edges is constant. Further, by changing
the signs of all c,,'s, we can maximize external cost, or minimize internal
cost.

1.2 Ezact Solutions

A strictly exhaustive procedure for finding the minimal cost partition
is often out of the question. To see this suppose that G has n nodes of
size 1 Lo be partitioned into k subsets of size p, where kp = n. Then there
are (}) ways of choosing the first subset, (*3") ways for the second,
and so on. Since the ordering of the subsets ie immnterigl, the number
of cases is

560357 - (3)6):

kI P p/\p
For most values of n, k, and p, this expression yields & very large num-
ber; for example, forn = 40 and p = 10 (k = 4), it is greater than 10,

Formally the problem could also be solved as an integer linear pro-
gramming problem, with a large number of constraint equations neces-
sary 1o express the uniformity of the partition.

Because it seems likely that any direct approach to finding an optimal
solution will require an inordinate amount of computation, we turn Lo
un examination of heuristics. Heuristic methods can produce good
solutions (possibly even an optimal solution) quickly. Often in practical
applications, several good solutions are of more value than one optimal
one.

The first and foremost consideration in developing heuristics for
combinatorial problems of this type is finding & procedure that is power-
ful and yet sufficiently fast to be practical. A process whose running
time grows exponentially or factorially with the number of vertices of
the graph is not likely to be practical. In most cases, & growth rate of
more than the square of the number of vertices is still not too practical.
(If the running time of & procedure grows as f(n), where n is the number
of vertices involved, we shall refer to it as an f(n)-procedure.)

1.3 False Slarls

To point out a few pitfalls, we mention some unsuccessful attempts at
heuristic solutions to the partitioning problem.

1.3.1 Random Solutions

One tactic is simply to generate random solutions, keeping the best
seen to date, and terminating after some predetermined time or value
is reached. This is quite fast, although actually an n’-procedure. Un-
fortunately, this approach is unsatisfactory for problems of even
moderate size, since there are generally few optimal or near-optimal
solutions, which thus appear randomly with very low probabilities.

+Experience with 2-way partitions for s class of 0-1 matrices of size

32 X 32, for example, has indicated that there are typically 3 to 5
optimal partitions, out of & total of § (}}) partitions, giving & probability
of success on any trial of less than 107",

1.3.2 Max Flow-Min Cut

Another partitioning method is the Ford and Fulkerson max flow-min
cut algorithm'. The graph is treated as & network in which edge costs
correspond to maximum flow capacities between pairs of nodes. A cut
is a separation of the nodes into two disjoint subsets. The max flow-min
cut theorem states that the maximal flow values between any pair of
nodes is equal to the minimsal cut eapacity of all cuts which separute
the two nodes. In our terminology, & cut is & 2-way partition, and the
cut capacity is the cost of the partition. The Ford and Fulkerson slgo-
rithm finds & cut with maximal fiow, which is thus 8 minimal cost cut;
this represents & minimum cost partition of the graph into two subsets
of unspecified sizes.

There are several difficulties involved in using the Ford and Fulkerson
algorithm for our partitioning problem. The most severe of these is the
fact that the algorithm has no provision for constraining the sizes of the
resultant subsets, and there seems to be no obvious way to extend it
to include this. Thus if low methods are used to perform & split, then
further processing is necessary to make the resulting subsets the correct
size. I the subsets are greatly different in size, then use of this algorithm
will huve produced essentially no benefit. Hence in spite of its theoretical
elegance, the Ford and Fulkerson algorithm is not suitable for this
application. (Note however, that since it does find the minimal cost
unconstrained 2-way partition, the value it produces is a lower bound
for solutions produced by any method.)

Reprinted with permission from Bell Syst. Tech. J., vol. 49, no. 2, pp. 291-307, Feb. 1970.
Copyright € 1970, AT&T.

76

PARTITIONING GRAPHS

1.3.3 Cluastering

A class of much more intuitive methods is based on identifying ‘“nat-
ural clusters” in the given cost matrix—that is, groupe of nodes which
are strongly connected in some sense. For example, one can use very
simple heuristics for building up clusters, bnsed on collecting together
elements corresponding to Inrge vilues in the cost matrix. But again
these methods do not in general include much provision for satisfying
constraints on the sizes of the subsets, nor do they provide for syste-
matic assignment of “stragglers’ (nodes which do not obviously belong
to any particular subset).

1.3.4 MOpting

Lin, working on the Traveling Salesman Problem, [See Ref. 2] cate-
gorized a set of methods of improving given solutions by rearranging
single links, double links, triplets, und in general, A links. He referred
to a change involving the movement of A links as a A-change. If a con-
figuration of the system is reached in which no A-change can be made
which results in a decrease in cost, the configuration is said to be ‘“x-opt.”

For the partitioning problem, an analogous operation is the inter-
change of groups of A points between a pair of sets. Thus a I-change is
the exchange of a single point in one set with a single point in another
set. A configuration is then said to be ""1-opt” if there exists no inter-
change of two poiots which decreases the cost of the partition. Experi-
wments to evaluate l-opting for 2-way partitions of 0-1 matrices (32 X 32)
within which about one-hall of the elements were nonzero, show that
apparently optimal values can be achieved in about 10 percent of the
trials; values within 1 or 2 of the optimal ean be achieved in about 75
percent of cases,

It appears fruitiess to extend A beyond 1 (l-opting is already an
n'-procedure), or to extend l-opting experiments to partitions into
more than two subsets, since more powerful methods have been devel-
oped. These methods are the topic of the next sections.

1. TWO-WAY UNIFORM PARTITIONS

2.1 [Iniroduction

The simplest partitioning problem which still contains all the sig-
nificant features of larger problems is that of finding a minimal-cost
partition of & given graph of 2n vertices (of equal size) into two subsets
of n vertices each, The solution of the 2-way partitioniog problem is the
subject of this section. The solution provides the basis for solving more
general partitioning problems. In Section 2.6, we discuss 2-way partitions
into sets of unequal size.

Let S be a set of 2n points, with an associated cost matrix C = (e,,),
i, j =1, -+, 2n. We assume without loss of generality that C is &
symmetric matrix, and that ¢,; = 0 for all 4. There is no assumption
about nonnegativity of the ¢,;’'s. We wish to partition S into two sets
A and B, each with n points, such that the ‘‘external cost” T' = z“. Cas
is minimized.

In essence, the method is this: starting with any arbitrary partition
A, B ol 8, try to decrease the initial external cost T by a series of inter-
chunges of subsets of A and B; the subsets are chosen by an algorithm
to be described. When no further improvement is possible, the resulting
partition A’, B’ is locally minimum with respect to the algorithm. We
shall indicate that the resulting partition has a fairly high probability
of being a globally minimum partition.

This process can then be repeated with the generation of another
arbitrary starting partition 4, B, and so on, Lo obtain as many locally
minimum partitions as we desire.

Given S and (c,,), suppose A*, B* is a minimum cost 2-way partition.
Let 4, B be any arbitrary 2-way partition. Then clearly there are subsets
XCA,YCBwith|X | =|Y| S n/2such that interchanging X and
Y produces A* and B* as shown below.

CREICIC
A 8 a* g*

Aza-x4y
g% 8-y +Xx

The problem is to identily X and ¥ from A and B, without considering
all possible choices. The process we describe finds X and Y approxi-
mately, by sequentially identilying their elements.

Let us define for each a e A, an external cost E, by

E, = Yec.,
we

77

and an inlernal cost I, by

I, = Zc_.

wed

Similarly, define E, , I, foreach be B. Let D, = E, — [, forallz¢ S; D,
is the difference between external and internal costa.

Lemma I: Consider any ae A, b e B. If a and b are interchanged, the
gain (that is, the reduclion in cost) iz precisely D, + Dy — 2c,, .

Proof: Let z be the total cost due to all connections between A and
B that do not involve a or b. Then

T=z+E +E, —cu.
Exchange ¢ and b; let ' be the new cost. We obtain
Tazt+ L+ 1 +ca
and so
gain = old cost — new cost = T — T"
=D, 4+ D — 2, .
2.2 Phase I Optimization Algorithm

In this subsection we present the algorithm for 2-way partitioning.
First, compute the D values for all elements of S. Second, choose
a, e A, b, ¢ B such that

¢ =D, + D, = 2.,

is maximum; a, and b, correspond to the largest possible gain from a
single interchange. (We will return shortly to a discussion of how to
select a, and b, quickly.) Set a, and b, aside temporarily, and call them
a! and b{ , respectively.

Third, recalculate the D values for the elements of A — [a,] and
for B — b}, by

D: it D. + 2‘-.. —'26,,,
D: - D. + 26,.‘ - 2cua

ze d — |a],
yeB — |b].

The correctneas of these expressions is easily verified: the edge (z, a,)
is counted as internal in D, , and it is to be external in D!, so ¢c,,, must
be added twice to make this correct. Similarly, ¢,,, must be subtracted
twice to convert (z, b,) from external to internal.

Now repeat the second step, choosing a pair aj, bj from A — !ajl
and B — [bj| such that g, = D,,. + Di,. — 2¢,,.,- i8 maximum (a;
and b{ are not considered in this choice). Thus g, is the additional guin
when the points aj and bj are exchanged ns well as a} and b] ; this ad-
ditional gain is maximum, given the previous choices. Set a} and b]
aside also.

Continue until all nodes have been exhausted, identilying (aj , b;)," - -,
(as, &), and the corresponding maximum gains g,, -+ , g.. As each
(a’, b’) pair is identified, it is removed [rom contention for further choices
so the size of the sets being considered decreases by 1 each time an
(a’, b’) is selected.

IfX =a,a},--+-,a,, Y =by,bj, -, b, then the decrease in
cost when the sets X and Y are interchanged is precisely g, 4+ ¢, + -~
+ gs. Of course 3.7 g. = 0. Note that some of the g.'s are negative,
unless all are zero.

Choose k to maximize the partial sum 2 4., g. = G. Now if G > 0,
a reduction in cost of value G can be made by interchanging X and V.
After this is done, the resulting partition is treated as the initial partition,
and the procedure is repeated from the first step.

If @ = 0, we have arrived at a locally optimum partition, which we
shall call a phase I optimal pariition. We now have the choice of re-
peating with another starting partition, or of trying to improve the phase
1 optimal partition. We shall discuss the latter option shortly. Figure 1
is a flowchart for the phase 1 optimization procedure.

2.3 Effectiveneas of the Procedure

One general approach to solving problems such as this one is to find
the best exchange involving say A pairs of points, for some A specified
in advance’. The difficulty encountered is that use of a small value of
A is not sufficient to identifly good exchanges, but the computational
effort required grows rapidly as A increnses.

The procedure we have described sequentially finds an approximation
to the best exchange of A pairs. A is not specified in advance, but rather
is chosen to make the improvement as large as possible. This technique
sacrifices a certain amount of power for a considerable gain in speed.

Since we construct a sequence of gnins g, , ¥ = 1, -+ , n, and find the

THE BELL SYSTEM TECHNICAL JOURNAL, FEBRUARY 1870

TART

1
comrutt D wvaLUES FOR A AND POR B
Pl
Ap—A, B —B
1

i
SELECT &« ‘“P' I:tJ v ﬁp AUCH THAT
9p = Dll“ob,' —2:.“,3 13 MARIMUM
[‘_’F"' 8,
bp=1bj
Apy=Agmag
l Bpyy=—Bp-p;
p=—p+!
s UPDATE D vALUES —
For Ap Bp
¥ES
CHOOSE K TO MAXIMIZE
b
6= 9
i=1
YES MOVE a;--34T0 B
AND B o+ b TO A
NO
ExiT

Fig. 1 — Flowchart of phase 1 optimizalion procedure.

mazimum partial sum, the process does not terminale immedialely when
some g, 1s negative. This means that the process can sequentially identify
sets for which the exchange of only & few elements would actually in-
crease the cost, while the interchange of the entire sets produces a net
gain.

Numerous experiments have been performed to evaluate the pro-
cedure on different types of cost matrices. The matrices used have in-
cluded (1) 0-1 matrices, with density of nonzero clements ranging from
5 percent to 50 percent, (i7) integer matrices with elements uniformly
distributed on [0, k), k = 2, --- , 10, (iif) matrices with clusters of
known sizes and binding strength. Results on all of these matrices have
been similar, so we shall only summarize them here. A more extended
discussion may be found in Rel. 3.

A useful measure of the power of a heuristic procedure is the proba-
bility that it finds an optimal solution in & single trial. Suppose that p
is the probability that & phase 1 optimal solution found using & random
starting partition is globally optimal. We have examined the behavior
of this probability as the size of the matrices involved is varied. Experi-
ments show p is around 0.5 for matrices of size 30 X 30, 0.2 to 0.3 for
60 X 60, and 0.05 to 0.] for 120 X 120. The functional behavior of p
is approximately p(n) = 27

These velues are derived primarily from 0-1 matrices having sbout
50 percent 1's (randomly placed). Experiments on matrices with lower
densities of 1's yield larger variances, but substantially identical mean
values for p.

2.4 Running Time of the Procedure

Let us define a pass to be the operations involved in making one cycle
of identification of (a], &), +++ , (a., bl), and selection of sets X and
Y to be exchanged. The total time for a pass can be estimated this way.
First, the computation of the D values initially is an n’-procedure, since
for each element of S, all the other elements of S must be considered.
The time required for updating the D values is proportional to the
number of values to be updated, so the total updating time in one pass
grows as

(=4 =4 241

which is proportional to n’.

The dominant time factor i the selection of the next pair aj, b to
be exchanged. The method we have used to perform this searching is te
sort the D values so that

D,z D, 2 -2 D..

and

D,2 D,z - -2 D..

When sorting is used, only & few likely contenders for 8 maximum gain

78

need be considered. This is because when scanning down the set of D.'s
and D,'s, il o pair D, D,, is found whose sum does not exceed the
maximum improvement seen so far in this pass, then there cannot be
another pair a,, b, with k 2 1, I & j, with & greater gain, (assuming
¢; 2 0) and so the scanning can be terminated. Thus the next pair
for interchange is found rapidly. Sorting is an n log n operation, so in
this method, the total time required to sort D values in a pass will e
approximately
nlogn4(n—1log(n—1)+ - 4+ 2log 2

which grows as n’ log n.

To reduce the time for selection of an (a, b) pair, it is possible to use
techniques which are faster than sorting, but which do not necessarily
always give the maximum gain at each stage. For example, one method
is Lo scan for the largest D, and the largest D, , and use the correspond-
ing a and b as the next interchange. This method is essentially linear-
time and would probably be implemented as part of the recomputation
of the D values. It is best suited for sparse matrices, where the prob-
ability that ¢,, > 0 is emall. A slight extension, involving negligible
extra cost, is to save the largest two or three D,’s and D,'s, so that if
the largest pair does not give the maximum gain (because c,, is too
large), then another can be tried. Experience indicates that three values
arc sufficient in virtually all cases, cven for matrices with a relatively
high percentage of nonzero entries. Use of this method reduces running
time by about 30 percent in the present implementation, with very
small degradation of power.

The number of passes required before a phase 1 optimal partition is
achieved is small. On ell matrix sizes tested st the time of writing (up
to 360 points), it has been almost always from 2 to 4 passes. On the basis
of this experimental evidence, the number of passes is not strongly
dependent on the value of n.

From the foregoing observations, it is possible to estimate the total
running time of the procedure. If we use & method which sorts the D
values st each stage (time proportional to n* log n), then the running
time should grow as n® log n. If & fast-scan method is used, and the
oumber of passes is constant, the running time should have an n’
growth rate; this is a lower bound.

For comparison, examination of all pairs of sets X and Y, and evalua-
tion of the costs would require time proportional to

i /3 (ﬂ), N!l" - (,;)l
P A e P
15
T2 \n
P e A
~5(2)
for large n. This function grows as n'/4".

Running times have been plotted in Fig. 2. The observed times have
an apparent growth rate of about n’*, which is reasonably close to
n’. Although on the logarithmic plot this curve is close to linear over
the range n = 20 to n = 130, it may actually be n’ log n; insufficient

data is available to check this. All times are based on an implementation
in FORTRAN G on an IBM System 360 Model 65.

2.5 Improving the Phase | Oplimal Parlition

In this section, we discuss s method which might be used to improve
the partition produced by the phase 1 procedure, which may not be
globally optimum. The method suggested in this section is based heavily
on experimental evidence, although there are quite plausible reasons
for performing the particular set of operations. The basic idea is to
perturb the locally optimal solution in what we hope is an enlightened
manner, so that an iteration of the process on the perturbed solution
will yield & further reduction in the total cost. If this tactic fails, nothing
has been lost except some computation time, since the best solution
seen 80 far is always saved.

Computer results for problems with up to 64 points suggest that
whenever a phase 1 optimal solution is not globally optimal, | X | =
| ¥ | = n/2. Roughly, this implies that if | X | and | ¥ | had been small
compared to n/2, they would have been found by the process; it is only
larger sets which are not identified all the time.

A successful heuristic to find the correct X and Y in this case is to
find a phase 1 optimal partition for each of the sets A and B, say A —
|Ai, A,) and B — |B,, B,]. (That is, find near-optimal partitions of A4
and of B separately.) Recombine the 4 sets into 2, say A, = A, \J B,
and B, = A, \J B,, and continue with phase 1 optimization. If our
expectation is correet, the new X and Y will be small, and thus readily
identified by the phase 1 process.

PARTITIONING GRAPHS

T

:] /j'

N
Y

oo
- o =
T
B

| 7
/
V

2 20 40 L.1e] 80 w00 200
MATRIX SIZE

o
-

HUNMING TME ™ SECONDS

Fig. 2 — Running time.

When A is split into 4, , 4, and B into B, , B, there are two ways in
which the smaller sets can be recombined. A series of tests was made on
matrices of moderate size (up to 64 X 64), in which both possible recom-
binations were done, generating three phase 1 optimal values for each
starting partition. For matrices of size 32 X 32, the apparent optimal
value was observed at least once in each triple of values, for a large
oumber of cases. With matrices of size 64 X 64, there were occasional
failures.

It might be noted that the extra time involved for the recombination
approach is three times that required to do a completely new partition
from a random start, assuming an n’-procedure.

It is possible to estimate whether a particular improvement tactic
is profitable or not in the following way. Suppose that some method
increases the probability of finding an optimal partition from p to p’,
while it increases the running time from ¢ to ¢'. Then in a fixed amount
of time, it is possible to do k trials of the basic procedure, and kt/l
trials of the improved method. The corresponding probabilities of
achieving an optimal solution are 1 — (1 — p)*and 1 — (1 — p")***"
respectively. The improved method is then desirable if the second ex-
pression is greater than the first; by simple manipulation, this condition
becomes

| pr < (1 = p)i'lll

On the basis of the numerical values in this section, it may be useful to
try the recombination method.

2.6 Parlitioning inlo Unequal-Sized Sels

It is simple to modify the procedure to partition a set S with n ele-
ments into two sets of specified sizes n, and n,{n, + n, = n). Assume
n, < n,. Then restrict the maximum number of pairs that can be ex-
changed in one pass of the procedure to nr,. All other operations are
performed oo all elements of each set. (The starting partition is into
two sets, of n, and n, elements respectively.)

Suppose we wish to partition S into two sets, such that there are at
least n, elements and at most n, elements in each subset; n, 4+ n, = n,
but they are not specified further.

The procedure is easily modified to handle this sort of constraint
by the addition of “dummy” elements. These are elements which have
no connections whatsoever; that is, they have zero entries in the cost
matrix wherever they appear. Add 2n, — n dummies so S has 2n,
elements, and perform the procedure on it. The resulting partition will
assign the dummy elements to the two subsets so as to minimize the
external cost; at this point the dummies are discarded, leaving a parti-
tion into two subsets that satis{y the size constraints given.

2.7 Elements of Unequal Sizes

We have made the assumption so far that the elements (vertices) of
the graph are all of the sume size. This requirement may be relaxed to
a large extent by converting any node of size k > 1 to a cluster of k nodes
of size 1, bound together by edges of appropriately high cost. The size
of the problem will obviously increase proportionally to the value of k,
50 it may be necessary to sacrifice some accuracy to keep the number of
generated nodes within reasonable bounda,

79

I, MULTIPLE-WAY PARTITIONS

3.1 Reduction lo 2-Way Partitioning Problem

So far, the discussion has been concerned exclusively with the basic
problem of performing a 2-way partition on a set of 2n objecta. In this
section we extend the technique to perform k-way partitions on a set of
kn objecta, using the 2-way procedurs as a tool.

The essential idea is to start with some partition into k sets of size
n and by repeated application of the 2-way partitioning procedure to
pairs of subsets, make the partition as close as possible to being pairwise
optimal. (Section 3.2 treats the question of what starting sets to use.)
Of course pairwise optimality is only a necessary condition for global
optimality, There may be situations where some complex interchange
of three or more items from three or more subsets is required to reduce
a pairwise optimal solution to globally optimum; at the moment, no
reasonable method for identifying such sets is known.

There are (3) pairs of subsets ta consider, so the time for one pass
through all pairs is (assuming an n-procedure) (3)n' == (kn)'/2 =
(oumber of points)’/2. In gencral, more passes than this will actually
be required, since when two sets are made optimal, this may change their
optimality with respect to other seta.

Experience indicites that the number of passes is small and the process
converges quickly. For example, our algorithm sclects (7, j) ws the next
pair of sets to be optimized, where either i or j has been changed since
the last time the pair (i, j) was selected. Using this selection proceas,
the average number of passes through each pair of sets ia a slowly grow-
ing function of both k and n. For matrices of size 100 or less and k¥ < 6,
the number of passes has been less than 5. [The average number of
passes i3 computed as the average number of pairs considered to reach
pairwise optimality, normalized by (3).]

In any particular trial, there is a correlation between the number of
pairs selected and the quality of the final partition. To get a better
solution requires more work.

Convergence is rapid: two passes account for more than 95 percent
of the improvement in most cases; the remaining passes contribute only
small further reductions. Let p{n, k) be the proportion of minimum cost
solutions found for a particular n and k. For k fixed and small compared
to n, the functional behavior of p(n, k) is similar to the case k = 2, but
the actual values are lower. Roughly, we observe p(n, k + 1) = ip(n, k)
for k in the range 2—4, and n up to 100, with considerable variation
depending on the matrix being tested. For instance, for matrices of
size about 40, p(40, 2) =~ 0.4, p(42, 3) =~ 0.2, and p(40, 4) =~ 0.1.

Another interesting question is measurement of how close to optimum
the partitions found are. The solutions obtained by pairwise optimiza-
tion have values concentrated in a narrow range. In almost all cases, the
largest value found by the procedure is within 4-5 percent of the smallest.
As another measure, if ¢ is the mean cost of random partitions and b is
the cost of the best partition observed, then virtually all partitions
found have values v such that

v — b 5 0.1{c — b).

For instance, one test case was a series of 4-way partitions of a 0-1
matrix of size 80. This matrix had 1278 nonzero entries (a density of
0.2), corresponding to 639 edges in the graph. The mean value of
randomly chosen partitions was 480.6. Twenty-four partitions of this
matrix were found using the method described above. The lowest
value encountered was 352 (1 time), the highesat 365 (1 time); the mean
value was 359.5, the median 360.

3.2 Starling Parlition

In this subsection we discuss various methods of generating good
starting partitions, based on modifications of the basic procedure.

The primary reason for choosing good starting partitions is that this
particular form of preprocessing reduces the amount of work required
to make the system pairwise optimal. It may also make the probability
of an optimal solution higher, although this tendency is very difficult to
evaluate.

Several methads for finding good multi-way starting partitions which
are based on repeated application of the procedure itself have been
investigated. The essential idea is to generate a k-way starting partition
by first forming an r-way partition, then an s-way partition on each of
the resulting subsets, and so on, up to (-way. (Here k = rs --- .} The
partitions found this way will in general be better than those which are
completely arbitrary. A pairwise optimization stage is applied to the
final set of subsets.

For example, if k is a power of 2, then perform a 2-way split, then a

THE BELL SYSTEM TECIHINICAL JOURNAL, FEBRUARY 1970

2-way split on each of these subsets, and so on until the desired size of
subsets is found.

This general approach is prone to the following difficulty: the first
split divides the original set into r subsets by trying to make the internal
connections in each subset as large as possible. Obviously this may con-
fliet directly with the next stage, which is to try to divide each subset
further. Carried to several levels, it can lead to a relatively poor overall
solution. In experiments with 4-way partitions of matrices of sizes up to
64 X 64, this method yields optimal solutions approximately as often
as does starting with a 4-way partition in the first place. In addition,
this method will be effective if the matrix happens to have natural
clusters of approximately the correct size (that is, equal to the final
subset size).

A second method which can be used is to partition the set of kn ele-
ments into a set of n and & set of (k — 1)n, using the slightly modified
version of the basic procedure discussed in the first part of Section 2.6.
The set of n elements is set aside, and the next n elements from the
remaining (k — 1)n are identified. This continues until k subsets have
been formed; again the pairwise optimization technique is used to
improve on this partition.

This method can make an error in the identification of the first set
which will bins the choice of the second, and so on; the effect is most
severe for the case where k i3 large, so each set is small.

The method of bresking off subsets sequentially has another potential
flaw: regardless of the starting configuration, it will identify approxi-
mately the same set each time it is used on a particular problem, and
hence little is gained by using it twice on one cost matrix. However
varistions in the order of performing pairwise optimizations can still
produce different final partitions in general.

Limited computational experience with sequential break-off followed
by pairwise optimization suggests that it yields solutions which are on
the average at least as good as (and sometimes slightly better than)
those provided by pairwise optimization applied to an arbitrary k-way
starting partition. Pairwise optimization yields the optimum with a
higher probability, however, because it is less susceptible to error caused
by & bad choice made early. For instance, in tests on the 80 point matrix
mentioned previously, sequential break off yielded 4-way solutions with
a mean value of 358.6, but the lowest value found was 355. (The highest
was 363.) These may be compared to 359.5, 352 and 365 for the standard
partitioning method.

Running time for the sequential break-off method is lower than for
straight pairwise optimization.

Insufficient data is avsilable for a direct comparison between se-
quential break off and the method of repeated subdivision.

In all cases, the original process, be it 8 completely random generation
of some initial configuration, or the production of & good starting parti-
tion, is followed by a pairwise optimizing phase. It is unlikely that using
better starting partitions will lead to worse results than random starts,
on the average. Whether the possible improvement in results and running
times will justify the extra computational effort required to generate the
starting partition depends on the characteristics of the particular clnss
of matrices being studied.

80

a3

Fig. 3 — Coal reduction by expaosion.

Some limited experiments were performed to compare the present
procedure with a multi-dimensional scaling technique®, on s Boolean
matrix of 316 points, with about 1400 nonzero entries. The results in-
dicated that the procedure iGentifies clusters well, even when no attempt
is made to provide a good starling partition.

3.3 Ezpansion Faclor

The introduction of dummy elements was mentioned in Section 2.6
as s method of handling partitioning into subsets of unequal sizes. This
can be viewed equally well as a means of introducing “sluck” into a
solution, in on attempt to get a lower overall cost by allowing “ex-
pansion.” That is, so far we have treated the problem of finding a parti-
tion with a constraint on the sizes of Lhe subsets, and on the number of
subsets, since given kn points, we have tried to find the best purtitions
into exactly k subsets of n points cach. Suppose we now relax this
sccond constraint by permitting the eddition of dummy elements to in-
crease the size of the problem, and attempt to find the best solution in-
volving any number (greater than or equal to k) of subsets, with a! most
n points in each. This solution with k or greater subsets will in general
have a lower cost than the constrained solution.

Figure 3 shows an example in which introducing slack permits a
lower overall cost. Assume n is 3 and all nodes are size 1. The vertical
edges have cost 1 and the horizontal ones cost 2. Any partition into 2
equal subsefs has a cost of at least 3, but Lhere is an obvious partition
into 3 subsets with cost 2. Any nontrivial partition into 4 or more sub-
sets has & cost greater than 2, so 3 subsets represents the optimal ex-
pansion. It is possible to find the minimal cost solution and the cor-
responding optimal amount of expansion as follows. Suppose the problem
has kn points to be partitioned into k sets of n points each. Starting with
no slack (kn points), the optimal assignment is found. Then n dummies,
enough to create one extra subset, are added, making a (k + 1)n prob-
lem, and so on. Eventually, one subset is produced which consists
entirely of dummies. When this oceurs, we take the partition with this
set of dummies removed as our optimum solution.

REFERENCES

1. Forl, 1. R., and Fulkerson, D. R., Flows in Nelworks, Prioceton, New Jorsey :
. Princelon University Press, 1062, p. 11.
2. Lin, 8, “Computer Solutions of Lge Travehog Salesman Problem,” BSTJ,
, 44, No. 10 (December 1965), pp. 2245-2269.
3. Kernighan, B. W, “Some Grapl Partitioniog Problems Related to Program
mentation," Ph.D. Thesis, Princelon University, January 1969, pp. 74-126.
4. Kruskal, J. B,, Multi-Dimensiona! Sealing by Optimizing Goodness of Fit to
& Non-Metric Hypothesis," Psychometrika, 29, No, | (March 1964), pp. 1-27,
and Neo. 2 (Jupe 1964}, pp. 115-129,

