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Hardware Description Languages (HDL Ss)

Introduction

« Two main hardware description languages will be treated in fhis
course: Altera Hardware Description Language (AHDL), and Vgry
High Speed Integrated Circuit Hardware Description Langupge
(VHDL).

« VHDL is an IEEE Standard (IEEE Std 1076-1987 or 1076-1993).

Altera Hardware Description Language
(AHDL)

Introduction

Limitations: These notes are not attempting to describe the full details
of AHDL, but just to give the flavour of the language and point out
some of its features. In most cases further detail can be obtained from
the MAX+PLUSII on-line help system.

 Reference: “MAX+PLUS Il Text Editor and AHDL Manual”, Altera

« High level modular language that is completely integrated into Jthe
MAX+PLUS Il development system.

 Main features of AHDL:

(i) State machine, truth tables, boolean equations, and group opera-
tions are supported and implemented in a user friendly format

(i) Text, graphic and waveform files can be intermixed in a deggn
hierarchy.

(iFrequently used constants and prototypes. including prototypds of
standard TTL, bus, and EPLD optimized Macrofunctions can be
stored in Include Files.ific) and incorporated into any Te
Design File {df).
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(iv)Device resources can be user specified or assigned automati-
cally.

Text Design File Sections

(i) Title Statement (Optional) — provides comments for the Repprt
Files (rpt) generated by the system.

(i) Constant Statement (Optional) — specifies a symbolic name that
can be substituted for a constant.

(i) Function Prototype Statement — declares the ports of a madro-
function or primitive and the order in which those ports must be
declared in an in-line reference.

(iv) Include Statement (Optional) — specifies an Include Fil&)(
that replaces the Include statement in the TDF.

(v) Options Statement (Optional) — sets the Turbo and Security Bits
of Altera devices and determines how product terms are ajo-
cated.

(vi) Design Sections (Required/Optional) — specifies device, cliqje,
chip, pin, and macrocell assignments, and logic options.

(vii) Subdesign Section (Required) — declares the input, output, and
bidirectional ports of a design.

(viii) Variable Section (Optional) — declares variables that represgnt
and hold internal information.

(ix) Logic Section (Required) — defines the logical operations of the
design.

 AHDL is a concurrent language — i.e. all behaviour described in fhe
logic section is evaluated at the same time and not sequentially gs in
a conventional programming language.

» To include lower level design files in a higher level TDF a functign
prototype statement must be included.

,
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Include Files (.INC) con-
tain Constants of Func-
tion Prototypes.

Function
Prototype

TDFs must contain a
Design Section and/or a
Subdesign Section and ]
Logic Section
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TDFs contain Title, Con-
stant, Include, Options,

Function Prototype Statement

Include Statement

Subdesign Section
T

and Variable  State-
ments and  Function
Statements.

are connected to higher level
TDFs through references in
Logic Sections

~ Lower-level TDFs, GDFs,
Logic Section

WDFs, ADFs, SMFs, and EDFs

Figure 1 : Text Design File Structure
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Some tips

 TDFfile is a standard ascii file.
« Linesin a TDF may be up to 255 characters long.
« AHDL is not case sensitive.

« Comments must benclosed in percent symbols (%). Comments
cannot be nested.
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« See Table 1 for a list of reserves keywords. Keywords cannot]be
used in a design file, except if enclosed in single quotes — |.e.

‘name’, wherename is the keyword used in a name.

« The GND constant is defined as a low level input voltage and is
equivalent to a low (0) or false. VCC constant is defined as a hjgh
level input voltage and is equivalent to high (1) or true.

» The rules for the symbols that can be used in AHDL variable narpes

AND
ANY
BEG N
BI DI R
Bl TO
BI TS
BURI ES
CASE
CLI QUE

are much the same as standard programming languages.
Table 1: Reserved Keywords
Reserved Keywords
| F OQUTPUT
| NCLUDE PTERM ALLQCC
| NPUT RETURNS
| S STATES
LSB SECURI TY
MACHI NE SUBDESI GN
MACRO THEN
VEB TI TLE
NAND TABLE
NODE TURBO

CONSTANT
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Table 1: Reserved Keywords

DEFAULTS
DESI GN
DEVI CE
ELSE

ELSI F

END
FUNCTI ONS
GN\D

Reserved Keywords
NCR VARI ABLE
NOT VCC
OF VHEN
OFF W TH
ON X
OPTI ONS XNOR
OR XOR
OTHERS

~

Unquoted symbolic names: can contain up to 32 characters congist-
ing of A-Z, a-z, slash (/) and underscore (). Cannot be keywords,
and may not consist entirely of digits. e.g. legal names: a /a; illepal
names: -foo node 55.

Quoted symbolic names: enclosed in single quotes (‘). Allow the

use of dashes (-), can use keywords, can consist entirely of digitr.
n

A list of symbols used in AHDL and their meanings appear

Table 2
Table 2: AHDL Symbols
Symbol Function
. (Underscore) | Legal charters in symbolic names (i.e. use
/ (Slash) defined identifiers). See note about dash.
- (dash)
% (Percent) Enclose comments

-
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Table 2: AHDL Symbols

Symbol Function

() (Leftand right | Enclose and define group names.

parentheses) Enclose pin namesin Subdesign Sectionsand
Function Prototypes.
Enclose inputs and outputs of truth tables.
Enclose states in State Machine Declarations.
Enclose highest priority operationsin
boolean expressions.
Enclose optionsin aDesign Section (withina
Resource Assignment Statement).

[] (Left and Right | Enclose the number range of a group.
Brackets)

... (Single Enclose quoted symbolic names.
guotation
marks)

“..." (Double Enclose text string in Title Statements.
guotation Enclose pathname in Include Statements.
marks) Enclose digits in non-decimal numbers.

Enclose design name and device name in
Design Sections (optional).
(Period) Separates symbolic names of macrofunctionj
or primitive variable from stubs.
Separates extensions from filenames.
(Ellipsis) Separates most significant bit (MSB) from
least significant bit (LSB) in ranges.

; (Semicolon) Ends AHDL statements and sections.

: (Comma) Separates members of groups and lists.
(Colon) Separates symbolic names from types in deg

larations and resource assignments.
\_ J
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Table2: AHDL Symbols

Symbol Function
@ (At) Assigns symbolic nodes to device pins and
macrocells in Resource Assignment State:
ments.
= (Equals) Assigns defaults GND and VCC values ta

inputs in Subdesign Section.

Assigns settings to options.

Assigns values to state machine states.
Assigns values in boolean equations.

=>  (Arrow) Separates inputs from outputs in truth table
statements.

Separates WHEN clauses from boolean
expressions in Case statements.

Ports

» Ports are variables connected to inputs and outputs of primitiveg or
macrofunctions

e.g. if one declares a varialdap of typeLATCH you may use the
following ports in your desigrcap. d, cap. ena and cap. Q.

Table 3: Commonly used port definitions

Port Definition
. q Output of a flip-flop
.d Data input of a D-type flip-flop or latch
t Toggle input of a T-type flip-flop
] J input of a JK flip-flop
.k K input of a JK flip-flop
\_ J

Slide 7



Robert Betz: 97

Department of Electrical

and Computer Engineering N\

| @\J J
o

Table 3: Commonly used port definitions

Port Definition
.S Set input of an SR-type flip-flop
T Reset input of an SR-type flip-flop

.clk Clock input of a flip-flop
. ena Enable input of a flip-flop or latch
. prn Active low preset input of a flip-flop

.clrn | Active low clear input of a flip-flop

Groups

« Symbolic names and ports of the same type may be declaredjand
used as a group in boolean expressions and equations.

« Group may include up to 256 members and is treated as a colleqtion
of bits and acted upon as one unit.

Notation

Groups can be declared with the following two notations:

1. A symbolic name or port followed by a range of decimal numbgrs
enclosed in brackets, eg] 4. . 1] . Only one range is allowed after
a group identifier.

“”  Once the group has been defined, [ ] is a shorthand way{ of
specifying the entire range.

2. A list of symbolic names, ports or numbers separated by commasjand
enclosed in parentheses, €., b, c¢). Groups with ranges can
also be listed within the parentheses. For exampé, b,
c[5..1]) is alegal group.
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"~ This notation is useful for specifying ports. For example. the
input ports of variable cap of type DFF can be written as
cap. (d, clk, clrn.prn).

e.g. Same group specified with different notations:

b[ 5. . 0]
(b5, b4, b3, b2, bl, bO)

b[ ]

Numbers

« May use numbers in decimal, binary, octal and hexadecimal in any
combination in AHDL

e.g. valid AHDL numbers
B"0110X1X10"

Q' 4671223"
H' 123AECF"
Table 4: Radix Systems
Numbering System Syntax
Decimal <series of digit8 to 9>
Binary B" <series of O0’s, 1's, X's>
(whereX =*“don’t care”)
Octal O' <series of digit® to 7>" or
Q' <series of digit® to 7)"
Hexadecimal H' <series fronD to 9, Ato F)"

Following rules apply to AHDL numbers:

m The MAX+PLUS Il compiler always interprets numbers
groups of binary digits.

m Numbers may not be assigned to single nodes in Boolean equa-
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Boolean expressions consist of operands (symbolic names, pgrts,
groups or constants) separated by logical and arithmetic operagors

and compa

rators.

Can also be used in Case and If statements.

A boolean expression may be one of the following:

m An operand (e.ga,

b[5..1],

7, VCC)

m An in-line primitive or macrofunction reference.

m A prefix operator( or-) applied to a boolean expression (e.q.

I c)

m Two boolean expressions separated by a binary (non-prefix)
operator (e.gdl $ d3).

m A boolean expression enclosed in parentheses((efgpo &

bar)).

" The result of every boolean expression must be the sgme
width as the node or group (on the left side of an equationj
which it is eventually assigned.

Table 5: Logical Operators

Symbol Example Description
| 't ob one’s complement
NOT NOT tob (prefix inverter)
& bread & butter AND
AND bread AND butter

to
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Table 5: Logical Operators

Symbol Example Description
| & a[3..1] !'& b[5..3] AND inverter
NAND a[ 3..1] NAND b[5.. 3]

# trick # treat OR

OR trick OR treat

| # c[8..5] '# d[7..4] OR inverter
NOR c[8..5] NOR d[7..4]

$ foo $ bar exclusive OR
XOR f oo XOR bar

'$ x2 1'$ x4 exclusive NOR
XNOR x2 XNOR x4

Some Tips on Boolean Operations

m NOT of agroup carriesout aNOT on all members of the group,
eg.'a[4..1] is('a4, !'a3, a2, !al).

(a, b, c) # (d, f) isinterpretedas(a # d, b #
e, ¢c #f).

Of one operand isa single node is it is being applied to a group
then the single node is duplicated to make it the same size asthe
group and then applied, e.g.a & b[ 4. . 1] isinterpretedas( a
& b4, a & b3, a & b2, a& bl).

If both operands are numbers then the shorter number is sign
extended to match the size of the larger number an the operation

€,

~

,
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Is carried out.

Arithmetic Operators
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m If one operand is a number and the other is a group, then the
number is sign extended or truncated to match the size of the
group. If significant bits are truncated an error message is gener-

Table 6: Arithmetic operators

~

day|[ 3.

(dig,
(cat,

.1}
wig, fig) -
hat, bat)

Oper ator Example Description
+ (unary) | +1 positive (has not effect)
- (unary) -a[ 4. .1] negative - carries out th
two’s complement.
+ time[4..2] + binary addition

binary two’s comple-
ment subtraction

e

Comparators

« Two types of comparisons —

Similar rules apply to those in the previous case.

logical and arithmetic.

Table 7: Comparison operators

Comparator Type Example Description
== logical foo == bar equal
= logical bl !'= b3 not equal
< arithmetic |fane[] < less than
power [ ]
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Table 7. Comparison operators
Comparator Type Example Description
<= arithmetic |nmoney[] <= less than or equal
power [ ]
> arithmetic |l ove[] > greater than
noney| |
>= arithmetic |y[5..0] >= greater than or
z[5..0] equal
Priorities

 The operators have precedence rules, but | suggest that you] use
brackets to make the order of evaluation clear. L

* Precedence order is essentially unary operators, arithmetic (+ pand
-), comparisons, AND and NAND, XOR and XNOR, and OR ar|d

NOR.
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Basic Logic Primitives
Table 8: MAX+PLUSII Flip-flopsand Latches
Primitive AHDL Function Prototype

LATCH FUHCTI ON LATCH (d, ena)
RETURNS (q) ;

DFF FUNCTI ON DFF (d, clk, clrn, prn)
RETURNS (q);

DFFE FUNCTION dffe (d, clk, clrn, prn,
ena)
RETURNS (q);

JKFF FUNCTI ON JKFF (j, k, clk, clrn, prn)
RETURNS (q);

JKFFE FUNCTI ON JKFFE (], k,clk, clrn, prn,
ena)
RETURNS (q) ;

SRFF FUNCTI ON SRFF (s, r, clk, clrn, prn)
RETURNS (q);

SRFFE FUNCTI ON SRFFE (s, r, clk, clrn,
prn, ena)
RETURNS (q);

TFF FUNCTION TFF (t, clk, clrn, prn)
RETURNS (q) ;

TFFE FUNCTI ON TFFE (t, clk, clrn, prn,
ena)
RETURNS (q);

Notes:

cl k = Register Clock Input
\_ J
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clrn = Clear Input (active low)
d, j, k, r, s, t Input from the logic array
ena L atch enable (latch active if ena
high)
prn Preset Input (active low)
q Output
Table 9: MAX+PLUSII Logic Primitives
Sample Symbols Description
—3 %:D Name:
i - AND2, AND3, AND4, ANDG,
AND?2 BAND2 ANDS, AND12
Same for the other logic functions.
D D Description:
OR2 BORZ Output: OUT = logical <name> of
inputs
L L Input: | NI, IN2,...1N12=2,3
NAND2 BNAND?2 5 ; e
4,6, 8, 12 inputs
NOR2 BNOR2
XOR XNOR
J
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Table 9: MAX+PLUSII Logic Primitives

Sample Symbols Description
{><F Name:

NOT
NOT .

Description:

Output: OUT = inverse of input
Input: I N1 =1 input

Name:
L o

Description:
ND :
G Assigns anode to GND
VCC Name:
VCC
Description:
vee Assign anodeto VCC

Table 10: MAX+PLUSII Input and Output Primitives

Pin Port Description Pin Port Declaration
| NPUT Input pin i n: 1 NPUT
CQUTPUT Output pin out: OUTPUT
Bl DI R Bidirectional pin i nput: BIDI R
\_ J
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AHDL Design Structure

 An AHDL logic design must at a minimum contain a Subdesign
Section and a Logic Section

» All other sections and statements are optional.

Subdesign Section

» Declares the input, output, and bidirectional ports of the design: ¢.g.

SUBDESI GN t op

(
foo, bar, clkl, clk2 : | NPUT = VCC

a0, al, a2, a3, a4 : OUTPUT;
B[7..0] : BID R,

m Subdesign name must conform to the file name.
m List of ports and symbolic names are enclosed in parenthese

\> x4

m If a Design Section exists some of the ports may be assignefl to
resources.

m Input and bidirectional ports may be assigned default values.
m  Other port typesMACHI NE | NPUT, MACHI NE OUTPUT.

Logic Section

» Specifies the logical operations of the design.
* Is the body of the Subdesign Section.
» Constructs that may be used:

m Boolean equations

m Truth Table Statement

m Case Statement
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m |f Statement
m Defaults Statement
m In-line macrofunction or primitive reference.

« The BEGIN and END keywords enclose the Logic Section. A se
icolon follows the END statement to end the Logic Section.

‘e~ AHDL is aconcurrent language. The compiler evaluates all

mn-

same time rather than sequentially. Equations that assign m
tiple values to the same AHDL node or variable are logica
ORed.

Boolean Equations

* Represent the connection of wires, the flow of inputs into logig
elements, and the flow of the outputs.

e.g.
al[] = ((c[] & -B"001101") + e[6..1])
# (p,q,r,s,t,v)

Left side of equation may be symbolic name, port or group.
What happens in the above:

() Binary numbeB" 001101" is two’s complemented to become
B"110011".

(i) B"110011" is ANDed with grougc| ] .

(iResult of (ii) is added to groue[ 6. . 1] .

(iv)Result of (iii) is ORed with the groupp, g, r, s, t, v).
Final result is assigned to groap] .

‘" For the above to be legal groug]s] andc[] must each have

the behaviour specified in the Logic Section of a TDF at tr

l-
y

al

. _/
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size members.

Truth Table Statement

» Allows logical boolean statements to be specified using a trfth

table.
e.g.
TABLE
a0, f[4..1].¢ => f[4..1].d, control;
0, H' 0" => H'1", 1;
0, H' 4" => H'2", 0;
1, B" OXXX" => H' 4", 0;
X, H'F" => H'5", 1;
END TABLE;

* Input signals ara0 andf[4..1].q.
e QOutput signals are[ 4. . 1] . d andcontrol .

« Each signal has a one-to-one correspondence to the values in pach
entry.

* Nodes in heading can be either single nodes or groups.

« It is not necessary to list every possible combination of input vpl-
ues.

 The Defaults Statement assigns output values in cases when the
actual inputs do not match the input values of the table.

‘¢~ State names can be used as input and output values (see [Btate
Machines later).
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Case Statement

S
1

« Similar to the CASE statement in a conventional programming |4
guage.

e.g.
CASE f[].9 IS
VWHEN H'00" =>
addr[] = O;
S = a &b;
VWHEN H'01" =>
count[].d = count[].q + 1;
VWHEN H'CF" =>
f[3..0].d = addr[4..1];
VWHEN OTHERS =>
fl]l.d=f[].q;
END CASE;

« KeywordsCASE andl S enclose a Boolean expression.
o CASE Statement is terminated by the keywokENMD CASE and

» Keyword WHEN begins alternative. Comma separated list follow[.
W

If any expression following th€ASE keyword evaluates to any
member of the list the behavioural statements following the arr
are activated.

« If no alternative is true, then the keywoMISEN OTHER define
the default alternative.
|f Statement

e List a series of behavioural statements to be activated after the pos-
itive evaluation of one or more Boolean expressions.

e.g.
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|F (a[] == b[]) THEN
c[ 8. .

END | F;

« Expressionga[] == b[]) followingl Fand(g3 $ g4) fol-
lowing ELSI F are evaluated concurrently. If these statements eVgl-
uate to true then the expressions following THEN statement are
evaluated.

| f Statement vs Case Statement

 Can often use either statement to achieve the same results.

e.g.
Differences are;

_ Robert Betz: 97
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1] = H'77";

[3..1] = f[3..1].q;
d = addr[] + 1;
(g3 $ g4) THEN

d = addr[];

VCC,

Note that the second statemdrg3 $ g4) effectively
becomes(! (a[] == b[]) & (g3 $ g4)) to make the
ELSI F control work correctly.

 ELSI F statements may be repeated for a large number of altegna-
tives.

« ELSE is similar to theWHEN OTHERS statement in th€CASE
statement in that it provides a default alternative.

See Table 11

Statements in If Statement may be any type of boolean expjes-
sion.

Each expression following an IF or ELSIF statement may pe
unrelated to the others.

,

Slide 21



Robert Betz: 97

Department of Electrical

and Computer Engineering N\

| @\J 3
o

Table 11: Comparison of I|F and CASE Statements

If Statement Case Satement
|F (a[] == 0) THEN CASE (a[1l..3]) IS
X = ¢ & d; VWHEN o =>
ELSIF (a[] == 1) THEN X = ¢ & d;
x = foo & bar; VWHEN 1 =>
ELSIF (a[] == 2) THEN x = foo & bar;
X = cats & dogs; VWHEN 2 =>
ELSIF (a[] == 3) THEN X = cats & dogs;
X = kunguat ; VWHEN 3 =>
ELSE X = kunguat ;
X = 0; VWHEN OTHERS =>
END | F; x = 0;
END CASE;

m In a CASE statement one boolean expression is compared to a
constant only.

m Interpretation of the If Statement can generate logic that is too
complex for the compiler.
e.g.

Interpretation of an If Statement. Note that if a and b are complex
expressions then the inversion is likely to be more complex.

If Statement Case Satement
| F a THEN | F a THEN
b = c; b = c;
END | F;
ELSIF d THEN |F (!a & d) THEN
b = e; b = e;
END | F;
\_ J
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If Satement Case Satement
ELSE |F ('a & 'd) THEN
b = f; b =f;
END | F END | F;

Defaults Statement

BEG N

END;

BEG N

Robert Betz: 97
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Allows specification of default constant values for variables usedin
Truth Table, If and Case Statements.

Active-high signals automatically default @&\D, Default State-
ments are only required for active-low signals.

e.g.

DEFAULTS
= VCC,
END DEFAULTS

|F x & y THEN
= Q\D; % ais active | ow.
END | F;

If the If Statement is undefined (i.e. & Yy is not true) then the
Defaults Statement is activated.

Only one Defaults Statement is allowed in the Logic Section, angl it
must appear immediately before BE€G N keyword.

Multiple assignments to a variable are logically ORed, except wijen
the default for the variable is VCC.

e.g.
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DEFAULTS
= Q\D;
bn = VCC;
END DEFAULTS;

| F c1 THEN
a = al;
bn = bln;

END | F;

| F c2 THEN
a = az2z;
bn = b2n;

END | F;

END;

Thisexampleis equivalent to:

= (cl & al) # (c2 & a2);
= (!c # bln) & (!c2 # b2n);

» Active-low variables that are assigned more than once should
given a default value ofCC.

Variable Section

and Computer Engineering N\

| be

» Used to declare any variables used in the Logic Section. Used]for

defining buried (internal) logic.

e.g.
VARI ABLE

pen, pencil, eraser : NODE;
tenp : HALFADD,
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Register Definition

VARI ABLE
nod : TFF;

nod. t
nod. cl k
nod. cl rn
nod. prn
nod. q

_ Robert Betz: 97
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The internal variables are pen, penci |, er aser of type NODE,
andt enp, an instance of the macrofunction HALFADD.

NODE is an all purpose variable type used for holding input or OIT -
put information.NODE can be used on either the left or the right
side of an equation.

Type NCDE is similar to thd NPUT, OQUTPUT, andBI DI Rresource

and port types of the Design and Subdesign Sections and repregents
a single wire that propagates signals.

Variable section is used to define names for registers, including] D,
T, JK, and SR flip-flops.

e.g.

After making the above declaration one may use the followipg
input/output ports on the device:

"~ One can use the name of a primitive without a stub (e.g. with
.q), on the right side of an equation if one wishes to use fhe
output. Similarly primitives that have a single primary inpyt
may use the name of a primitive without a stub on the left side
of an equation.
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VARI ABLE
a, b : dff;
a = b; % equivalent to a.d = a.q; %
| nstances

» Instances of a particular primitive or macrofunction are declareq in
the Variables Section.

e.g.
VARI ABLE
star : nmoonbeam

Variable st ar is an instance of he macrofunctiomonbeam
which has the following ports:

green, yellow : | NPUT;
bl ue, red : OUTPUT;
cycle : BID R

One may therefore use the following portsofr :
start.green, start.yell ow etc, etc.
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Design Section

* Provides more global specification of the design — for example ¢ne
can specify the pin and buried macrocell assignments, as well as
where the logic should be placed.

» Can also specify specific logic to specific EPLDs

Device Subsection

« Specify the EPLDs and the pins and macrocells on the EPLD tq be
used when the design is fitted.

m EPLD Specification: can partition a project by specifying blocigs
of logic to be programmed into certain EPLDs.

m Resource Assignment Statement: requests that nodes injthe
project be assigned to particular pins or macrocells.

m Cligue Assignment Statement: allows one to keep certain lopic
together in a single EPLD by making clique assignments.

‘&~ Refer to the on-line help for more details on this topic.

Function Prototype Statement

* Provide a shorthand description of a function, listing its name gnd
its input, output, and bidirectional pins.

e.g.

FUNCTI ON noonbeam (green, vyell ow
RETURNS (bl ue, red, cycle);

‘¢~ A function prototype mist be placed outside of both tie
Design Section and the Subdesign Section and must be cdlled
before the macrofunction is called.

. _/
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Title Statement

TI TLE " COct opus Desi gn";

Constant Statement

CONSTANT UPPER LIM T = B"110";

Include Statement

| NCLUDE "const. |1 nc

Options Statement

Robert Betz: 97
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‘&~ State machines can be imported and exported through func-
tion prototypes. See later for details.

Provided only for documentation purposes.
e.g.

Allows a meaningful symbolic reference to be made to a consthant
number.

e.g.

Allows one to import text from another file into the current file.
e.g.

Searches in the following places: the project directory, any uper
libraries specified with the User Libraries command and listed]in
the USER LI B variable of the MAXPLUSZ2.INI or project
name>.INI file, or the MAX2LIB or MAX2INC directories created
during installation.

Allows the setting of the Turbo and Security bits of the Device Syb-
section that follows them.

Specify whether the lowest numbered bit of a group will be the

,
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most significant bit or least significant bit.
« Specify product terms should be allocated.

‘¢~ See the on-line help for more details on this.
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State Machines

« State machines are very elegantly and simply implemented with
AHDL.

e Language is structured so that one can assign bits or states values
oneself, or allow MAX+PLUS Il do the work.

« Compiler uses proprietary advanced heuristic algorithms to make
automatic state assignments.

« Formal state machine design normally requires the following steps:
(i) Draw a state diagram and construct a next state table.
(i) Assign bits to the machine.

(ii)Assign values to the states.

(iv)Using manual logic minimization techniques derive the flip-flo
excitation equations.

« With AHDL and MAX+PLUS Il only the first step is above
required. The compiler automatically does:

D

m assigns bits, selecting either T or D type flip-flop for each bit;
m assigns state values;

m applies sophisticated logic synthesis techniques to derive ghe
excitation equations.

State Machine Structure

e Can be imported or exported in AHDL usifgCHI NE | NPUT or
MACHI NE OUTPUT

 The specify a state machine one must have three items in |the
design:

m A State Machine Declaration in the Variable Section.
m One or more Boolean control equations in the Logic Section.

. J
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State Machine Declaration

e.g.
VARI ABLE

Control Equations

Robert Betz: 97
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m A single behavioural statement or construct in the Logic Section
that specifies state transitions.

SS : MACH NE OF BITS (g1, g2, Q3)

W TH STATES ) S1 = B"000",
S2 = B'010",
S3 = B'7"

)

Name of the state machine (the machine variable) is SS.

The bitsgl, g2 and g3 are theoutput of the registers of this
machine.

The states of this machine &&, S2 and S3, each of which is
assigned a numerical value for the statedpltsq2, andg3. Note
that only the list of states is required, the assignment of the bit$ to
the states is optional. If unassigned then the compiler makes|the
assignment.

‘¢ Each state of a state machine is represented by a unique Jpat-
tern of high and low signals inside a flip-flop. The state bifs
are the flip-flops required by the machine to store the states.
The number of states has the following relationship to the
number of bits in a state machine:

# statex 5# bits)

Boolean equations used in the Logic Section to set up the sfate
machine clock and reset signals.

,
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e.qg.
VARI

ss.clk = cl k1;
ss.reset = a & b;
ss.ena = cl klena;

State Transitions

ss : MACHINE OF BITS (g2, g2, q3)

Robert Betz: 97
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m Port ss. cl k must aways be assigned. The ss. reset is
optional unless the start state of the machine has been assigned
to a value other than zero.

To specify state transitions of a state machine, you must conditipn-
ally assign state variables within a single behavioural constryct.
Case or Truth Tables are recommended for this.

State machine transition rules:

m First state in the declaration is the power-up state. Normglly
assigned a numerical value of zero. If another value is assigphed
then one must also assign a signal torteet port that will
initialize the machine by taking on a value\C for a short
time. The default power-up state is zero.

‘" Thereset for a state machine is an active high, unlike the
DFF for which it is an active low.

m State transitions occur on the rising edge of the clock.

m If no state transition is specified at a given clock edge, the
machine will stay in the last state assigned.

ABLE

W TH STATES ( S1 = B"000",
S2 = B'010",
S3 = H'7" );
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BEG N
ss.clk = cl k1;
ss.reset = a & b;

CASE ss | S
VWHEN s1 =>
| F (addr[] > H'12") THEN
SS = Ss2;
ELSE
SS = S3;
control = VCC,
END | F;
VWHEN s2 =>
| F (addr[] > B"101") THEN
ss = sl;
ELSE
control = VCC,
END | F
VWHEN s3 =>
ss = sli;
control = VCC,
END CASE;
END;

» |If the above examplgs starts out in stat81.

« If the groupaddr [] represents a number greater thBi2", the
variable control assumes the valddD, and the machine proceeds
to S2.

« If not, control assumes the valMEC and control proceeds to statg
S3.

« If stateS2, if the groupaddr [ ] represents a number greater th
B" 101" then control assumes the val@€¥D and the machine pro-
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ceeds to S1. Otherwise control assumes the value VCC and the
machine staysin S2.

« If state S3, the machine automatically proceeds to st&iteand
control assumes the valWe€C.

Machine I nput and Machine Output

« Allows the import and export of state machines between Tegxt
Design Files, Graphic Design Files and Waveform Design Files by

specifying an input and output signal BCHI NE | NPUT or
MACHI NE OQUTPUT in the Subdesign Section.

‘¥~ When you import or export a state machine, the Function Pfo-

totype representing the file must indicate which inputs apd
outputs are state machines.

e.g.
State Machine Export

SUBDESI GN ss_def (
cl ock, reset, count : | NPUT;
ss_out : MACH NE QUTPUT; % export of the SM %

)
VARI ABLE

ss : MACHI NE W TH STATES (S1, S2, S3, $4, SbH);
BEG N

SS_out = ss; % assign state machine to the

vari able %
CASE (ss) IS
VWHEN S1 =>
| F (count) THEN
ss = 32;
\_ J
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ELSE
ss = 81,
END | F;
VWHEN S2 =>
| F (count) THEN
Ss = S3;
ELSE
ss = 82;
END | F;
VWHEN S3 =>
| F (count) THEN
Ss = $4;
ELSE
ss = S3;
END | F;
VWHEN S4 =>
| F (count) THEN
ss = S5;
ELSE
ss = 34,
END | F;
VWHEN S5 =>
| F (count) THEN
ss = Sl
ELSE
ss = Sb;
END | F;
END CASE;
ss.(clk, reset) = (clock, reset);
END;
\_ J
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State Machine Import
SUBDESI GN ss_use (

out : output;

)

BEG N
out = (ss_in ==
END;

*a
(_ L ¥ and Computer Engineering
£ '@M‘”‘/é/ﬁ”
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s2) OR (ss_in ==

ss_in : MACH NE I NPUT; % inport state machi ne %

s4);

~
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Some Design Tips

Defining Clock, Reset, or Enable for an AHDL
State Machine

<machi ne name>. cl k = <signal nane>;
<machi ne nanme>.reset = <signal nane>;
<machi ne nanme>. ena = <signal nane>;

Handling lllegal States in an AHDL State Machine

_ Robert Betz: 97
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State machine resets and enables are defined in the following wpy:

r eset signal is active high.

enabl e signal is a clock enable that is applied to all flip-flops ¢f
the state machine.

Logic in an AHDL file will never cause a state machine to enter pn
illegal state.

However to avoid illegal state transitions that are caused Jby
glitches, one can force an illegal state to a known legal state.

One must name all the illegal states and use the WHEN OTHHRS
clause in the Case Statement to force the required transitions.

“®” The WHEN OTHERS clause only applies to states that hgve
been declared but not mentioned in the WHEN clause.

“”  For an n-bit machinézn possible states exist. One should Edd

illegal state names until the number of possible states i$ a
power of two.

e.g.
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SUBDESI GN r ecover
(
cl k : | NPUT;
go : | NPUT,;
ok : QOUTPUT,;
)
VARI ABLE
sequence : MACHI NE
CF BITS (qg[2..0])
W TH STATES (
i dl e,
one,
t wo,
t hr ee,
four,
i11egall,
i 11 egal 2,
i 11 egal 3);
BEG N
sequence. cl k = cl k;
CASE sequence | S
VWHEN idl e =>
| F go THEN
sequence = one;
END | F;
VWHEN one =>
sequence
VWHEN two =>
sequence =
VWHEN t hree =>

t Wo;
t hr ee;
f our:

>
1 dl e;

sequence
VHEN OTHERS
sequence

END CASE;

Robert Betz: 97
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ok = (sequence == four);
END;

State Machines with Synchronous Outputs
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m In the above example there are 8 possible states (since there are
three bits in the state machine) and consequently three extra
states are added and named as illegal states.

‘¢~ The above method only works if all illegal states are defined
in the state machine.

Synchronous outputs occur from a state machine if the outputs gnly
depend on the machine state.

One can encode the outputs as state values in the WITH STAJES
clause of the State Machine Declaration.

e.g.

y::O

Figure 2 : State diagram of a machine with synchronous outputs.
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SUBDESI GN noor el
(
cl k - | NPUT;
reset : | NPUT;
y .| NPUT;
Z . OUTPUT;
)
VARI ABLE
% current current %
% state output %
ss: MACHINE OF BITS (2z)
W TH STATES (sO = 0,
sl = 1,
S2 = 1,
s3 = 0);
BEG N
ss.cl k = cl k;
Ss.reset = reset;
TABLE
% current current next %
% state I nput state %
SS, Yy => SS;
sO, 0 => sO;
sO, 1 => s2;
s1, 0 =>  sO0;
sl, 1 => s2;
S2, 0 => S2;
s2, 1 =>  s3;
s3, 0 => S3;
s3, 1 => sl1;
END TABLE;
END;

 When state values are used as outputs, the design may use fey'nac-
\_
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rocells, but the macrocells may require more logic to drive their
flip-flop inputs.

Department of Electrical
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(
cl k | NPUT;
reset | NPUT;
y | NPUT;
Z OUTPUT;
)
VARI ABLE
ss: MACHI NE W TH STATES (sO, sl1, s2, s3);
zd: NODE;
BEG N
ss.cl k = cl k;
Ss.reset = reset;
z = DFF(zd, clk, VCC, VCO;
TABLE
% current current next next %
% state I nput state out put %
SS, y => Ss, zd;
sO, 0 => sO, 0;
sO, 1 => s2, 1;
sl, 0 => sO, 0;
sl, 1 => s2, 1;
s2, 0 => S22, 1;
s2, 1 => s3, 0;
s3, 0 => 83, 0;
\

~

* Logic synthesizer module may not be able to fully minimise thhe
state machine in these cases.

« Alternate way to define synchronous state machines is to omit s
assignments and explicitly declare output flip-flops.

e.g.
SUBDESI GN npor e?
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END;

State Machines with Asynchronous Outputs

SUBDESI GN neal y

(

«.,;;% % and Computer Engineering )
53, 1 => Sl, 1;
END TABLE;

_ Robert Betz: 97
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‘" Don't need a function prototype in the above listing as the
DFF is an inbuilt primitive.

Instead of specifying the output with state value assignments in the
State Machine Declaration, this example includes a “next outppt”
column after the “next state” column in the Truth Table Statemgnt.
This method uses a D flip-flop (DFF)—called with an in-line refef-
ence—to synchronize the outputs with the Clock.

Can also implement state machines with asynchronous outputp in
AHDL

The output of an asynchronous state machine can change atjany
time, regardless of the clock input, as the output is a function of fhe
state flip-flops and the current input. Therefore if the current ingut
changes then the output can change.

L

¢~ Asynchronous state machines are not a good idea from a
design point of view, and should generally be avoided,

e.g.

cl k .| NPUT;
reset : | NPUT;
y . | NPUT;
Z . QUTPUT;
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Figure 3 : State diagram of a machine with asynchronous outputs
VARI ABLE
ss: MACH NE W TH STATES (s0, sl1, s2, s3);
BEG N
ss.clk = clk;
Ss.reset = reset;
TABLE
% current current current next %
% state I nput out put state %
SS, y = z, SS,;
sO, 0 => 0, sO;
sO, 1 = 1, sl1;
s, 0 = 1, s1,;
sli, 1 => 0, S2,
s2, 0 => 0, S2,
s2, 1 = 1, s3;
s3, 0 => 0, s3;
s3, 1 = 1, sO;
END TABLE;
END;
J
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VHDL

(Very High Speed Integrated Circuit Hardware
Description L anguage)

Notes based on: VHDL Primer (Revised Edition), J. Bhasker, Prentice
Hall, 1995, ISBN 0-13-181447-8.

Introduction

 VHDL is a much more complex language than AHDL.

« Designed to be an amalgamation of the following language cgn-
structs:

m sequential language

m concurrent language

m netlist language

m timing specifications

m waveform generation language

‘¢~ language has constructs that enable one to express the cofcur-

rent or sequential behaviour of a digital system with or with-
out timing.

Language not only defines syntax but also defines very clgar
simulation semantics for each language construct. Therefpre
models written in this language can be verified using a VHOL
simulator.

History

* Requirements first generated in 1981 under the VHSIC progranj (a
program under the auspices of the US DoD).

,
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 Born because of the requirement that several different compafpies
be able to interchange chip designs.
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Capabilities

« Version 7.2 of the language was developed by IBM, Texas Insfyu-
ments, and Intermetrics in 1985.

« Standardized by the IEEE in 1987 (IEEE Std 1076-1987).

* New version of the language standardized in 1993 (IEEE std 10§/ 6-
1993).

e In 1993 the logic values used were also standardized. The stan
Is a 9-logic value package called STD_LOGIC 1164, and the
standard is IEEE Std 1164-1993.

Hard

Can be used as an exchange medium between chip vendorg and

CAD tool users

Can be used as a communication medium between different
CAD and CAE tools — e.g. schematic capture may be used to
create a design and a VHDL description may be generated. This

can then be used as a input into a simulator.
Language supports hierarchy — digital system can be mode

fled

as a collection of interconnected components, and each conjpo-

nent can be modelled as interconnected subcomponents.

Supports top-down, bottom-up and mixed design philosophieg.

V)

Language is not technology specific, but can support technolqgy

specific features.
Supports synchronous and asynchronous timing models.

Various digital modelling techniques, such as finite st
machine descriptions, algorithmic descriptions, and bool
equations can be modelled using the language.

Language is publicly available, and is human and machine r
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m [tisan |EEE and ANSI standard.

m Language supports three basic different description styles: struc-
tural, dataflow and behavioural. Any combination of these may
be used in asingle design.

m Supports a wide range of abstraction levels ranging from
abstract behavioural description to very precise gate level
descriptions. Does not support modelling at or below the transis-
tor level.

m Arbitrarily large designs can be modelled.

m Language is structured so that handling large modelling jobs is
easier.

m Nominal propagation delays, min-max delays, setup and hold
times, timing constraints, and spike detection can all be
described very naturally in the language.

m Use of generics and attributes in the models facilitate back-
annotation of static information such as timing or placement
information.

m  Generics and attributes are also useful in describing parameter-
ized designs.

m A model can contain information about the design, as well as
the design itself. For example, a model can contain information
on the total area and speed.

m Models written in this language can be verified by simulation
since precise simulation semantics are defined for each language
construct.

m Behavioural models that conform to a certain synthesis descrip-
tion style are capable of being synthesized to a gate level
description.
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VHDL model of digital hardware specifies the external view arjd
one or more internal views.

The external specifies the interface to the device and the intefnal
view specifies the functionality or structure.

The device to device model mapping is one to many — there jre
many models for one particular hardware device; e.g. the data tr@ns-
fer into a device may be represented as integers instead of logicjval-
ues in a high level model See Figure 4.

Each device model is treated as a distinct representation of a unjque
device. These are called amtity (see Figure 5 below). This figure

Device Device Model

External
view

| | |

| | |

| | |

- Digital |—» | Model | |
' - A )
| |

| |

| |

| |

| system —>

Internal views

Figure 4 : Device and device model relationship

entity structure and a model representation. All the entities howejer
represent the same physical device. Each entity is described using
one model, which contains one external view and one or more infer-
nal views. The hardware device may be represented by one or pore
entities.

emphasizes that there is a one to one binding between the ViDL

,
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. |Entity 1 Device model 1
|
l ~— )
| . .
Device | Entltly 2 <—>(D6VIC€ model 2>
| I
Actual hardware - :
: Entity N <—><Dewce model @
|
| VHDL view
|
Figure 5 : The VHDL view of a device
J
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A Tutorial

Basic Terminology

Entity
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‘" This section introduces the basic features of VHDL. At the
end of this section one should be able to write simple VHDL
models.

m A VHDL abstraction of adigital systemiscalled an entity.

m When entity X is used in entity Y, then entity X is said to be a
component of entity .

m VHDL providesfive different types of primary constructs called
design units. They are:

(i) Entity declaration

(i1) Architecture body
(ili)Configuration declaration
(iv)Package declaration

(v) Package body

Modelled using an entity declaration and at least one architecture

body.

Entity declaration describes the external view of the entity; e.g.
input and output names of the entity.

he

Architecture body contains the internal description of the enti
e.g. the set of interconnected components that describe the stru

Y,
ture

of the entity, or a set of sequential statements that describe Jthe
behaviour of the entity. See Figure 6 shows the relationship

between an entity and one possible model.
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: Entity
Entity declaration

Hardware Model ’/ ¢ \

abstraction -
of a digital
system.

Architecture bodies

Figure 6 : An entity and its model

Configuration

entity.

« Specifies the binding of one architecture body from the many ar
tecture bodies that may be associated with the entity.

» Configuration declaration is used to create a configuration forJ

« May also specify the bindings of components used in a seleq
architecture to other entities.

« An entity may have a number of different configurations.

Package

an

hi-

ted

» Package declaration encapsulates a set of related declarations,

tions, which can be shared across two or more design units.

« A package body contains the definitions of the subprogra
declared in a package declaration.

* In programming terms a package is analogous to a module.

such

as type declarations, subtype declarations, and subprogram dedara-

S
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Entity E1

.
)

BX:...

CX:...

E1-A1 E1-A2 E1-A3

Example of these relationships

Bindigg

~ IM1:...|

Robert Betz: 97

~— ~ ™ Entity E2

/
s/

—

E2-Al E2-A2

~ ™( Entity E3

E3-A1 E3-A2 E3-A3

Figure 7 : A configuration for entity E1

» Figure 7 shows three entities called E1, E2 and E3.
« E1 has three architecture bodies, E1-Al, E1-A2, E1-A3.
« E1-Alis a purely a behavioural model without any hierarchy.

~

« E1-A2 uses a component called BX, while E1-A3 uses a com
nent called CX.

« Entity E2 has two architecture bodies, E2-Al, E2-A2, with E2-Al
using a component called M1.

« Entity E3 has three architecture bodies — E3-Al, E3-A2, E3-AS.

* Notice that each entity has a single entity declaration but multiple
architecture bodies.
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DO

 The dashed lines represent bindings that may be specified infjthe
configuration.

« Two types of bindings are shown: binding of an architecture bagdy
to its entity, and binding of a component used in an architectyire
body to another entity.

Design Validation

» Generate the VHDL model using an entities etc.

« The VHDL is then compiled into some intermediate format reafly
for simulation. This format is not specified by the VHDL standarfl.
This step also validates the syntax of the language and perfoyms
some semantic checks.

 The compiled VHDL is then submitted to a simulator for functiongl
testing.

A few syntax notes:
“®” VHDL is a case insensitive language.
" The language is free format much the same as Pascal and}C’.
¢~ ‘.2’ is the comment operator. It works the same as the ‘J’

comment operator in C++ in that it comments out the line trfat
it starts on. The comment only goes for one line.
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Entity Declaration

» Specifies the name of the entity being modelled and lists the seg of

interface ports.

» Ports are signals through which the entity communicates with
other models in its external environment.
e.g.
entity half_adder is
port(a, b: in bit; sum carry: out bit);
end hal f _adder;
-- this is a comment |ine
ol 1) X1) 1 Sum
b 4 o Xl\/ m Carry
Figure 8 : A half adder
« Entity half adder has two input portsandb (specified by the key-
wordi n), and two output portsumandcar ry (specified by the
keywordout ).
* bit isa predefined enumeration type containing the literals ‘0’
‘1’. In the context above it is used to indicate that the input and
put ports can take the values of ‘0’ and ‘1.
J
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e.g.

entity decoder2x4 is
port(a, b, enable: in bit;
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z: out bit_vector(0 to 3));

end decoder 2x4;

__jgiik*————————{JZ(O)

a4t ﬁ§>@ abar + -
[ TN 2()
— ‘_:EE§>3—————————D z(2)

b f—s @ bbar |
N3 2(3)
enabld]
Figure 9 : A 2-to-4 decoder circuit

» Entity calleddecoder 2x4: has three input ports and four outp
ports.

« bit _vector is a predefined unconstrained array of typ« .
Unconstrained means that the size of the array is undefined. In ghis
particular case the size of the array has been set to 4 bits, numiered
from O to 3.

* In the code examples presented so far only the interface has peen
specified, and the internals of the entities have not been defined

\_
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Architecture Body

Structural Modelling

architecture ha_structure of half_adder is

begi n

end ha_structure;
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Internal details of an entity are determined by the contents ofjan
architecture body using the following modelling styles:

(i) As a set of interconnected components (to represent structureg).

(i)As a set of concurrent assignment statements (to represent plata
flow).

(iAs a set of sequential assignment statements (to repredent
behaviour).

(iv)As any combination of the above.

In this type of modelling an entity is modelled as a set of intercqn-
nected components.

For example consider the half adder whose entity code was shpwn
earlier:

conmponent xor 2
port(x, y: bit; z: out bit);
end conponent;

conponent and2

port(l, m in bit; n: out bit);
end conponent;

x1: xor2 port map(a, b, sum;
al: and2 port map(a, b, carry);

Name of the architecture bodyha_st ruct ure.
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 The entity declaration fohal f adder specifies the interface
ports for this architecture body.

» Architecture body is composed of two parts:
(a) The declarative part (before the keywbegyi n).
(b) The statement part (after thegi n keyword).

« The declarative part two components are declaxet:2 and
and2. These components could come from a library.

 These two components are instantiated in the statement part of the
architecture body x1 andal are the labels for these instantia}
tions.

« X1 shows that the signals andb are connected to the andy
input ports of thexor 2 component, while the output is connectefl
to the output porsumof thehal f - adder entity.

* Note that the structural representation of ta¢ f _adder does
not say anything about its functionality. Separate entity models
would be needed for the componexits 2 andand2, each having
its own entity declaration and architecture body.

e.g. decoder2x4:

architecture dec_str of decoder2x4 is
conponent inv
port(pin: in bit; pout: out bit);
end conponent;

conponent nand3
port(dO, dl1, d2: in bit; dz: out bit);
end conponent;

signal abar, bbar: bit;
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begi n
vO: inv port map(a, abar);
vl: inv port map(b, bbar);
n0: nand3 port nmap(enabl e, abar, bbar, z(0));
nl: nand3 port map(abar, b, enable, z(1));
n2: nand3 port map(a, bbar, enable, z(2));
n3: nand3 port map(a, b, enable, z(3));

end dec_str;

* In this case the architecture nama#elc st r is associated with
entity decoder 2x4. It therefore inherits the list of ports in the
entity declaration.

* In addition to the two componeritsv andnand3 the architecture
body contains two signal declaratioabar andbbar of type
bit.

» The signal declarations represent wires that are used to connectjvar-
lous components together. Note that the signal declarations jare
local and cannot be seen outside the architecture body.

 The instantiation of the components is a concurrent statem¢nt,
therefore the order of these statements is not important.

 The structural style of modelling describes only the interconngc-
tions of the components, without implying any functionality for t
components. The components are treated as though they are plack
boxes.

» The behaviour of the components is not apparent, nor is the func-
tionality of the decoder as a whole.

Dataflow Modelling

 The flow of data through the entity is expressed primarily usipg
concurrent assignment statements.

. J
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» The structure of the entity is not explicitly specified in this modql-
ling style, but it can be implicitly deduced.

e.g.
architecture ha_concurrent of half _adder is
begi n

sum <= a xor b after 8 ns;

carry <= a and b after 4 ns;
end ha_concurrent;

 The listing above uses tweconcurrent signal assignment state-
ments. Ordering of the statements is unimportant.

 The “<=" implies an assignment of the value computed on the right
hand side to the target signal on the left hand side.

« The concurrent signal statements arent driven — the assignment
only occurs if there is an event on one of the signals on the right
hand side. Events are such things as a change in a signal logic Igvel.

e Delay information is included in the signal assignment statemehts
usingaf t er clauses. If in event occurs on the right hand side [of
the assignment at time T, then the right hand side is evaluated. [The
left hand side of the assignment gets the result of this evaluagion
after the delay period,;

e.g. in the above theumsignal gets the results of an event at ti
Tona or batT+8ns, andarry at T+4 ns.

* Note that the architecture body calleal concurr ent is associ-
ated with the entity calledal f _adder.
e.g.

architecture dec_datafl ow of decoder2x4 is
signal abar, bbar: bit;

begi n
z(3) <= not (a and b and enabl e); -- #1
z(0) <= not (abar and bbar and enable);-- #2
\_ J
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e.g. Use of the after clause to generate a clock signal:
clk <= not clk after 10 ns;

This generates a clock with a period of 20 ns.
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bbar <= not b; -- #3
z(2) <= not (a and bbar and enable); -- #4
abar <= not a; -- #5
z(1) <= not (abar and b and enable); -- #6
end dec_dat af | ow;

Architectural body consists of one signal declaration and six cgn-
current signal assignment statements.

Note that after the signal assignment statementsf h@r clause
has been specified, therefore no delay is explicitly specified. The
default is 0 ns (known as tluelta delay, representing an infinitesi-
mally small delay).

Let us consider the sequence of events that occur if there is an gvent
on one of the input signals — say input &t time T:

() Concurrent signal assignment statements #1, #3 and #6 are Jrig-
gered. The RHS of the expressions are evaluated, and the cgrre-
sponding values would be scheduled to be assigned to the tgrget
signals attime T+A ).

(iAt ( T+A) the new values are assigned to signa(s3),
bbar,andz(1).

(i) Since bbar changes, this will in turn trigger signal assignmgnt
statements #2 and #4. Eventually af € 2A ) sigidl9)
andz( 2) will be assigned their new values.

Slide 59



/ § and Computer Engineering N\

Behaviour Modelling

e.g. the decoder2x4:

architecture dec_sequential of decoder2x4 is
begi n

end dec_sequential,

_ Robert Betz: 97
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Models the behaviour of an entity by executing a set of statemgnts
sequentially in the specified order.

The statements do not specify the structure of the entity but mejfely
its functionality.

process (a, b, enable)
vari abl e abar, bbar: bit;

begi n
abar := not a; -- #1
bbar : = not b; -- #2
if enable = ‘1’ then - #3
z(3) <= not (a and b); - #4
z(0) <= not (abar and bbar);-- $5
z(2) <= not (a and bbar); --#6
z(1) <= not (abar and b); -- #7
else
z <="1111"; -- #8
end if;

end process;

process statement IS eoncurrent statement.

pr ocess statement has a declarative part (befordod n key-
word) and a statement part (betwésgi n andend process).

A process never terminates, it only ever becomes suspendged
waiting on an event in the sensitivity list.

Statements appearing within the statement parsegential — i.e.

,
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they are executed sequentially (and not concurrently as with the
dataflow statements).

List of signals in parentheses after the keyworadbcess consti-
tute a sensitivity list — i.e. a list of signals which are monitored f
an event. In the above example if an event occues bnorena-

DI

bl e then the content of the process statement is executed sequen-

tially.

Variable declaration — starts with the keywaerar i abl e. In the
above example two variables are declaedzhr andbbar.

DN

Variables differ from signals in that the assignment operati

always occurs instantaneously. Signals are always assigned fheir
value after a certain delay (user assigned or the default delta defay).

Uses the notation: ‘=" to differentiate the operation from signal
assignment.

Variables declared within a process have their scope limited to ghat
process. Variables declared outside of a process or a subprogram

are calledshared variables (can be shared by a number of prod
esses).

The signal assignment statements in a process are sajlesihtial

assignment statements. They are executed sequentially independe{rt

of whether any signal changes on the right side of the statemen

e.g.
If there is an event oa, b or enabl e then statements #1 and #2

are executed. knabl e = 1 then the statements #4—#7 are ex¢-

cuted regardless of whether there were changesarib. If ena-

bl e = 0 then statement #8 is executed. At the end of the proc
execution is suspended waiting for another event on the sensiti
list.

2SS
/ity

Possible to usease orl oop statements within a process. Sema

tics and structure are very similar to those in most high level I3n-

guages.
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« wait statement can also be used within a process. This causes g wait
for a user specified time or until an event occurs.

e.g.
Clock generated using a process statement and a wait.

process

begi n
clk <='0’;
wait for 20 ns;
clk <="1";
wait for 12 ns;

end;

« Above process does not have a sensitivity list because there]are
explicit wait statements inside the process.

* Note that all processes are executed at least once during the inifiali-
sation phase, and will continue until they get suspended.

e.g.
Model of a level sensitive flip-flop.

entity |s dff is
port(qg: out bit; clk: in bit);

end |s dff;
architecture Is _dff _beh of Is dff is
begi n
process(d, clKk)
begi n
if clk =1’ then
q<=d
end if;

end process;
end Is_dff beh;
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entity es dff is
port(qg: bit; d, clk: bit);
end es dff;

architecture es _dff inpl of es dff is
begi n
process (clk)
variable old_clk : bit = ‘O’

begin
if old_clk = ‘0’ then
g <=d
old_clk := clk;
end if;

end process;
end es_dff _impl;

“”  Notethat at the start of asimulation the whole processis exe-
cuted once. Thereforeol d_cl k will be assigned the value of
‘0’ initially, and then reassigned the value of k (which
would also normally be zero). Subsequent executions of jhe
process (when there is an event ondh& signal) will only
cause the statements between lbiegi n and end of the
process to be executed.

A note on the difference between dataflow and behavioural
modelling.

« Concurrent assignment statements are executed whenever thgre is
an event on a signal on the right hand side of an expression.

» Sequential statements are not event triggered, and are execjd in

U
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the sequence they are written in a process.
e.g. consider the following two architecture bodies:

architecture seq _sig assign of fragnentl is
-- a, b, and z are signals.
begi n
process (b)
begi n
-- follow ng are sequential assi gnnent
-- statenents

a <= b;
z <= a;
end process;
end;

architecture con_sig assign of fragnent2 is
begi n

-- follow ng are concurrent assi gnnent

-- statenents

a <= b;
Z <= a;
end;

 Inseq_si g_assi gn the signal assignments are sequential.

e Consider an event dmat time T — first assignment statement exg
cuted, and then the second in zero time.

 However, signaé is scheduled to get its new valueTlat A and
is scheduled to be assigned the valua @¢hot b) as the value is
stored at T and assignedTat A

. _/
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 In con_si g _assign the two statements are executed concyr-
rently.

 When an event occurs @n(at time T), signah gets the value df
after the delta delay (attim& + A ). An event then occurs on §g-
nala which then causes the new valueadb be saved and sched
uled to be assigned mand time T+ 2A . Therefore the value o
b is effectively being saved into tlzesignal in this case.

Delta delay revisited
» Delta time delay is the time assigned if no delay is specified.
» Delta time delay is infinitesimally small.

« Itis not a real time delay but an artifice to allow the correct ordér-
ing of events in a simulation.

e.g.
Consider the following example of a chain of three inverters.

LD@bD CDZ

Figure 10 : Three inverting buffers in series

entity fast _inverter is
port(aL in bit; z: out bit);
end;

architecture delta delay of fast _inverter is
signal b.c :bit;

begi n
-- the followi ng statenents are order

. _/
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-- i ndependent.

Z <= not c; -- #1
C <= not b; -- #2
b <= not a; -- #3

end;

 When an event occurs on sigaalsay at 20ns, then this causes sig
nal b to get the inverted value & at 20ns + A . When time
advances to 20ns Al , sighathanges. This in turn triggers a seg
ond signal assignment, which cause® get the inverted value of
b after another delta delay, i.e. at 20ns& 2
ment actually occurs when the time actually advances to 20n

Robert Betz: 97

2A . A similar pattern occurs for tlzesignal.

|
|
|
| |
i |
| |
| |
| |
| |
| |

20ns 20ns+A 20ns2A 20ns+8A

Figure 11 : Delta Delays in an inverter chain with concurrent

signal assignment.

. This signal assiE

~
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Mixed Mode Modelling

 Possible to mix the three modelling styles is single architectfire

body.
€.g.
Structure Dataflow
El[ ® r)jSle
O o ) > | N\
Cln[ ° 1_/____4 | /D:—Dsum
® | |
ol >7 |
| |
* | ) — m cout
s —
| |
| — |
- ) |
L—_— —_- — — —_ — —_ — — — — —"\

Behaviour

Figure 12 : A 1-bit full adder

The VHDL for Figure 12 is:

entity full _adder is
port(a,b,cin: in bit; sumcout: out bit);
end full adder;

architecture fa m xed of full _adder is
conmponent xor 2
port(pl, p2: in bit; pz: out bit);
end conponent ;
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signal sl1: bit;

begi n
x1: xor2 port map(a, b, sl); -- structure
process(a, b, cin) -- behavi our
variable t1, t2, t3: bit;
begi n
tl := a and b;
t2 := b and cin;
t3 := a and cin;

cout <=tl1 or t2 or t3;
end process;

sum <= s1 Xor cin; -- dat afl ow
end fa m xed;
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library cnos |ib, ny |ib;
configuration ha binding of half _adder is

for ha_structure

end ha_bi ndi ng;
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nfiguration Declaration
Used to select the many possible architecture bodies that an eftity
can have.

Used to bind components, used to represent structure in an arci]tec-
ture body to entities represented by an entity architecture pair of by
a configuration, which reside in a library.

e.g.

for x1. xor2
use entity cnos_|ib: xor _gate(datafl ow);

end for;

for al: and2
use configuration ny_|ib.and config;
end for;

end for;

First statement is a library clause that makes the library narpes
cnos_|i b andny | i b visible within the configuration declara-

tion.

Configuration is callecha_bi ndi ng, and specifies a configura-
tion for thehal f _adder entity.

Next statement specifies that the architecture bofly
ha_st ruct ur e (described earlier in the structural modelling Sj-
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configuration dec_config of decoder2x4 is
for dec_dat afl ow
end for;

end dec_confi g;
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tion) is selected for this configuration.

Theha_st ruct ur e architecture contains two component instary-

tiations, therefore it contains two component bindings:

m the first forx1: . . . end for, binds the component instantiatior
with labelx1 to an entity represented by the entity-architectu
pair — thexor _gat e entity declaration, and the dataflow archi
tecture body, which resides in tbeos_| i b design library.

m similarly al is bound to a configuration of an entity defined b
the configuration declaration, with namend_conf i g resid-
ing in theny | i b design library.

No behavioural or simulation semantics are associated with a

n-

figuration declaration — merely specifies a binding that is usedjto

build a configuration for an entity.

An architecture body that does not contain any component inst
ation (e.g. when dataflow style is used) can also be selected to
ate a configuration.

e.g.

The dec_dat af | ow architecture body can be selected for the

decoder 2x4 entity using the following configuration declaration

dec_config defines a configuration that selects th
dec_dat af | ow architecture body for thdecoder 2x4 entity.
This represents one possible configuration fordbeoder 2x4
entity can now be simulated.

ti-
re-
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Package Declaration

 Used to store a common set of declarations such as compongnts,
types, procedures and functions.

 Packages can be imported into other design units usingea
clause.

e.g.
package exanple pack is
type summer is (may, jun, jul, aug,sep);

conponent d flip flop
port (d, clk: bit; g, gbar: out bit);
end conponent;

constant pin2pin_delay: tine := 125ns;

function int2bit _vec (int_value: integer)
return bit_vector;

end exanpl e_pack;

» Name of the package declareegisanpl e _pack.
« It contains type, component and function declarations.

* N.B. behaviour of nt 2bit _vec does not appear in the packagg
declaration, only the function interface appears. Definition of the
function is in the package body.
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i brary design_|i b;
use design_|ib.exanpl e pack.all;
entity rx is ..... etc, etc

i brary design_|ib;

use design _|lib.exanple pack.d flip flop;

use design_|ib. exanpl e pack. pi n2pi n_del ay;
architecture rx_structure of rx is ..... etc, etc

Package Body
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e.g.
Assume that the above package is compiled into a design library
called design_lib:

| i brary clause makes the name of the design librajy
desi gn_I i b visible within this description.

use clause imports all declarations in the packade
exanpl e_pack into the entity declaration ofx.

Possible to selectively import declarations from a package declgra-
tion into other design units:

e.g.

Other techniques can also be employed to selectively chose decjara-
tions within a package.

declared in the corresponding package declaration, and the gom-
plete constant declarations for any deferred constants that appepr in
the package declaration.

Used to store the definitions of functions and procedures that V;Ere

Package body is always associated writh package declaration

e.g.
Package body for the packagpeanpl e pack:
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package body exanpl e pack is
function int2bit _vec (int_value: integer)
return bit_vector is
begi n

- - behavi our of function described here

end int2bit_vec;
end exanpl e_pack;

» Name of the package body must be the same as that of the pagkage
declaration.

‘¢~ A package body is not necessary if the corresponding packhge
declaration has no function or procedure declarations and|no
deferred constant declarations.

e.g.
Another example of a package body:
package body anot her package is

-- a conpl ete constant decl aration
constant total alu: integer := 10;

function pocket nobney
(nont h: design_Ilib.exanpl e _pack. sunmer)
return integer is
begi n
case nmonth is
when nmay => return 5;
when jul|sep => return 6;
when others => return 2;
end case;
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end anot her package;

Model Analysis using VHDL
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end pocket noney;

Once an entity is described in VHDL it can be validated using pn
analyser.

The analyser takes a file that contains one or more design unifs (a
design unit consisting of an entity declaration, an architecture bddy,
a configuration declaration, a package declaration or a packpge
body), and compiles them into an intermediate form (which is rjot
defined in the standard). During this process the syntax and static
semantics are checked. The generated file is stored in a spegific
design library that has been designated as the working library.

Design libraries have logically names. the mapping of these nafpes
to the physical location where they are stored is carried out by ghe
underlying host operating system.

An arbitrary number of design libraries may exist simultaneoudy,
one of which is designated as the working library and is given the
logical name WORK. The analyser compiles the descriptions in this
library, and this is the only library that is updated.

ltems compiled in a different design library can be imported irgo
design units of the current design library by udindr ary and
use clauses, or by accessing them with a selected name.

Design library with the logical name STD is predefined by the
VHDL language environment. Contains two packages: STAND-
ARD and TEXTIO.

The STANDARD package contains declarations for standard pye-
defined types such ds t ,ti nme, i nt eger, etc.

The TEXTIO package provides support for formatted text read gnd
write operations.

,
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Simulation
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There is also an IEEE design library with a package in it call
STD LOGIC 1164. Defines a nine value logic type call
STD_ULOGIC and associated subtypes, overloaded operator f
tions and other useful utilities.

After complication into one or more design libraries, next step
validation.

nd
d
nc-

IS

For hierachical entities to be simulated, all of its lowest componefts

must be described at the behavioural level.

Simulation can be performed on the following:

(a) An entity declaration and architecture body pair.
(b) A configuration.

There are two major steps before the actual simulation:

(i) Elaboration phase: The hierachy of an entity is expanded angd

flattened, components are bound to entities in libraries, top le
entity is built as a network of behavioural models ready to
simulated. Storage is allocated for signals, variables, and ¢
stants declared in design units.

(if) Initialization phase: Driving and effective values for all explic-

el
he
DN-

itly declared signals are computed, implicit signals (not dif-

cussed thus far) are assigned values, processes are exe
once until they suspend, and simulation time is set to Ons.

Simulation commences by advancing time to that of the next eve

Values that are scheduled to be assigned to signals at this time
assigned.

suted

nt.
are

If the value of a signal changes, and if that signal is present in ghe

sensitivity list of a process, the process is executed until it suspe

Simulation stops when an assertion violation occurs or when
maximum time as defined by the language is reached.

nads.
he

,
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Assorted Aspects of VHDL

‘" This section presents a variety of aspects of VHDL not pre-
sented so far. The list is far from complete but is intended to
give the reader afeel for the language beyond that attained in
theinitial tutorial.

Basic Language Elements

“”  As one can see from the previous tutorial many aspects of
VHDL are similar to those available in languages such as ‘[’
or Pascal. Therefore, some features will only be mentio;E/d

assuming that the reader can make these connections. It pwill
be assumed that the reader can guess that obvious featurgs are
in the language.

Port Pin Types

i n: The value of an input port can only be read with the entiy
model.

« out: The value of an output port can only be updated within the
entity model; it cannot be read.

* i nout: The value of a bidirectional port can be read and updajed
within the entity model.

 buffer: The value of the buffer port can be read and updated
within the entity model. However, it differs from the inout mode i
that it cannot have more than one source, and the only kind of §ig-
nal that can be connected to it can be another buffer port or a signal
with at most one source. i.e. a signal is driving another element is
the design as well as an output port.
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Data Objects

vari abl e count: integer;

e.g.

Constant declarations
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holds a value of a specific type, e.g.

which results in a data object of typat eger calledcount,
which is an object of thear i abl e class.

‘" There ardour classes to which data objects can belong:

() Constant. data object of this class is assigned a single valug] at
the start of a simulation and this value cannot be changed.

(i) Variable: similar to the constant except that the value of tije
object can be changed during the course of the simulation uging
a variable assignment.

(iii) Sgnal: this data object holds a list of values, which includes the
current value of the signal, and a set of possible future valgies
that are to appear on the signal. Future values are assigned tp the
object using the signal assignment statement.

(iv)File: an object that contains a sequence of values that car] be
read and written.

‘¢~ Signals can be regarded as wires in a circuit, whilst variables
and constants are the same as their analogues in conventjnal
high level programming languages. Signals typically used|]to
model wires and flip-flops and variables and constants gre
typically used to model the behaviour of a circuit.

“”  The file object is used to model files in the host environme
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constant rise tine: tine := 10ns;
constant bus width: integer := 8§;

Variable declarations

variable ctrl _status: bit_vector (10 downto 0);
variable sum integer range 0 to 100 := 10;
vari abl e found, done: bool ean;

Signals declarations

signal clock: bit;
signal data bus: bit _vector (0 to 7);
signal gate delay: tinme := 10ns;

File declarations

-- first two lines declare a file type
type std logic file is file of std | ogic _vector;
type bit fileis file of bit_vector;

-- file declarations are:
file stinulus: text open read node is
“lusr/home/reb/design.dat”;
file vectors: bit_file is
“lusr/home/reb/vecdata.dat”;
file patl, pat2: std_logic_file;

Note:
m text isapredefined file type.
m thedefault modefor anopenisr ead node.

m if nofileis specified then the file is not opened during elabora-
tion, but is opened during execution by an explicit open com-
mand.

~
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“” Not all objects are explicitly declared as shown above. Some
are implicitly declared.

¢ ports of an entity — these are all signal objects.

¢ generics of entities (not discussed thus-far) — these pre
constants.

¢ formal parameters of functions and procedures — functipn
parameters are constants or signals, procedure paramgters
can be any type.

¢ for loopincrement variables are implicitly declared corf-

stants of type nt eger that only exist whilst the loop is
being executed.

Data Types

 The set of values that a data object is allowed to have is specified
by its type declaration.

« Similarly the operations allowed on a data object are defined byits
type.
e.g.
| nt eger is a predefined type with a minimum range defined Ry

the VHDL standard of —(231—1) to(231—1) , and allowe
operations of +, -, / and *.

» Language provides the ability to define new user defined data types
(similar to ‘C’ and Pascal).

. _/
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Four major types exist in the language:

(i) Scalar types: Values belonging to these types appear in a
sequential order — e.g.nt eger, bool ean.

(i) Composite types: These are composed of elements of a sinple
type (i.e. an array type) or elements of different types (i.e] a
record type).

(iif) Access types: These provide access to objects of a given type
(via pointers).

(iv)File types: These provide access to objects that contair] a
sequence of values of a given type.
Subtypes

» A type with a range constraint.
» Subtype declarations are used to declare subtypes.

e.g.
subtype ny _integer is integer range 48 to 156;
-- digit is not a subtype - it is a user defined

-- enuneration type.
type digitis (‘0’, ‘'1’, ‘'2’, ‘3’, ‘4’, ‘'5’, ‘6",
‘7,'8,9);
-- a subtype using the base type digit is shown
-- below.
subtype middle is digit range ‘3’ to ‘7’;

Scalar Types

* Four different scalar types:
() Enumeration
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(ii) Integer

(iii)Physical

(iv)Floating point
Enumeration Types

e.g.
type mvlis (‘U’, ‘0’, ‘1, ‘Z");
type micro_op is (Load, Store, Add, Sub, Mul,

Div);

signal control_a: mvl;

-- implicit subtype declaration
signal clock: mvl range ‘0’ to ‘1’;
variable ic: micro_op := store;
variable alu: arith_op;

| nteger Types

» Defines a type whose set of values fall within a specified integer
range.

e.g.
type index is range 0 to 15;
type word I ength is range 31 downto O;

subtype data _word is word | ength range 15
downt o O;

-- declaration using these types:
constant nux_address: index := b5;
signhal data_bus: data_word;

* i nteger isthe only predefined integer type in the language.

. _/
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type ttl _voltage is range -5.5 to -1.4;
type real data is range 0.0 to 31.9;

vari able length: real data range 0.0 to 15.09;
variable 1'1,12,13: real _data range 0.0 to 15.9;

alternative
subtype rdl6 is real data range 0.0 to 15.9;

vari able |l ength: rdl6;
variable 11,12,13: rdi6;

Physical Types

type current is range O to 1e9

units
nA; -- base unit is nano-anpere
uA = 1000 nA; -- mcro-anp
M = 1000 mA;, -- milli-anpere
Anmp = 1000 mA; -- anpere
end units;

Robert Betz: 97
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Has a set of values in a given range of real numbers.

Only predefined floating point type is real — implementatign
dependent range, but at least must cover the range -1.0e3B to
+1.0e38.

e.g.

Contains values that represent measurement of some physical quan-
tity, like time, length, voltage, and current.

Values of this type are integer multiples of the base unit.
e.g.
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subtype filter _current is current range 10 uAto
S MmA;

* In the above example 2 uA occupies position 2000 while 100 pA
occupies position 100.

* Physical values can be written as integer or floating point numbdrs.

e.g.
100 ns
10V
50 sec
Kohm -- implies 1 Kohm
5.2 mA -- equivalent to 5200 uA
5.6 nA -- is 5 nA. Fractional part is truncated since n4
-- IS the base unit for type current.
5.2643 uA -- 15 5264 nA.
* Only predefined physical type is time — range 45{231—1) o
-1 .

Composite Types

* Represents a collection of values.
« Two main types of composite types:
(a) Array types — a collection of values belonging to a single type.

(b) Record types — a collection of values that may belong to differgnt
types.

Array types

e.g.
type address word is array (0 to 63) of bit;
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type data word is array (7 downto 0) of nvl;
type romis array (0 to 125) of data_ word;
type decode matrix is array (positive range
10 downto 1, natural range 3 downto 0)
of nvl;

subtype natural is integer range O to
integer’high;

subtype positive is integer range 1 to

integer’high;
-- t’high gives the highest value belonging
-- to type t.

-- object declarations using the above types
variable rom_addr: rom;
variable address bus: address word,;

variable decoder: decoder_matrix; -- deferred
-- constant.

variable decode_value: decode_matrix;

e Can have arbitrary number of dimensions for an array.

statement.

Record types

e.g.
type pin_type is range 0 to 10;
type nodule is
record
size: integer range 20 to 200;
critical _dly: tineg;
no_inputs: pin_type;
no_out puts: pin_type;
end record;

« Can assign an array of the same type to another using an assignment
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vari abl e nand_conp: nodul e;

-- nand_conp i s an object of record type nodul e
nand _conp := (50, 20 ns, 3, 2);

-- inplies 50 is assigned to size, 20 ns is

-- assigned to critical _dly, etc.

» Can assigned one record to another using a simple assignment gtate-
ment.

Access Types

 These are pointers to dynamically allocated objects of some ofher
type.
« Similar to pointers in the Pascal and ‘C’ languages.
e.g.
-- nmodule is a record type
type ptr is access nodul e;

type fifois array (0 to 63, 0 to 7) of bit;
type fifo ptr is access fifo;

« ptr is an access type whose values are addresses that poift to
objects of type module.

« Similar to high level language here iswal | pointer which does
not point to any object.

« An allocator is used to generate a pointer to an object, and to gepher-
ate the object it self.

e.g.
nodlptr : = new nodul e;

« References to access types:
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procedure deal | ocate(p: inout ptr);
procedure deal |l ocate(p: inout fifo ptr);

-- to before they are actually declared. This

-- introduces the nanes so that there will not be
-- conpilation errors.
type conp; -- record contains nane

\_ J
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(i) obj-ptr.all: Accesses the entire object pointed to by obj-ptr,
where obj-ptr is a pointer to an object of any type.

(ii) array-obj-ptr(element-index): Access the specified array ele-
ment, where array-obj-ptr is a pointer to an array object.

(iti)record-obj-ptr.element-name: Accesses the specified record ele-
ment, where record-obj-ptr is a pointer to a record object.

For every access type there is a deallocate implicitly declared wh
returns the storage occupied by the object to the host environme

e.g.

omplete Types

Possible to have an object that points to an object which has
ments that are also access types.

Allows recursive data types to be defined (similar to linked list de
structures in other high level languages).

e.g. An incomplete type declaration
e type-nane,

Once an incomplete type has been declared, the type-name ce
used in any mutually dependent or recursive access type.

A corresponding full type declaration must follow later.

e.g.
Decl are the nanmes of the objects to be pointed

ich
nt.

ble-

ta

n be
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-- and list of nets its
-- connected to.
type net; -- record contains net
-- nane and |ist of
-- conponents its
-- connected to.
type conp_ptr is access conp;
type net _ptr is access net;
constant nodmax: integer := 100;
constant netmax: integer := 2500;
type conp list is array (1 to nodnax) of
conp_ptr;
type net list is array (1 to netnmax) of net ptr;
type conp list ptr is access conp |ist;
type netlist _ptr is access net |ist;
-- Now the full declaration of conp and net
type conp is
record
conp_nane: string(1l to 10);
nets: netlist _ptr;
end record;
type net is
record
net nane: string(l to 10);
conponents: conplist _ptr;
end record;
Example of self-referential access type:
\_ J
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type dfg;
type op_type is (add, sub, mul, div, shift,
rotate);
type ptr is access dfg;
type dfg is
record
op_code: op_type;
succ: ptr; -- successor in linked |ist
pred: ptr; -- predecessor in linked Iist
end record;

File Types

* Represent files in the host environment.

* Provide mechanism by which VHDL design communicates wi
the host environment.

e.g.
type file-type-nane is file of type-nane,

-- type-nane is the type of values contained in
-- the file.

e.g.
type vectors is file of bit_vector;
type nanes is file of string;

» To access files one uses a set of access procedures:

e.g.
procedure file _open (

status: out file open_status;
file f: file-type-nang;
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external _nanme: in string;
open_kind: in file_ open_kind
. = read_node
)
procedure file close (file f: file-type-nane);
procedure read (file f: file-type-nane,
val ue: out type-nane),;
procedure wite (file f: file-type-nane;
val ue: in type-nane
)
\_ J
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Complete example using file types
entity fa test is end;
architecture io_exanple of fa test is
conponent full add
port(cin, a, b: in bit; cout, sm out bit);
end conponent;
subtype string3 is bit_vector(0 to 2);
subtype string2 is bit _vector(0 to 1);
type in type is file of string3;
type out type is file of string2;
file vec file: in_type
open read node is
“lusr/home/reb/vhdl/fadd.vec”;
file result_file: out_type
open write_mode is
“lusr/home/reb/vhdl/fadd.out”;
signal s: string3;
signal g: string2;
begin
fa: full_add port map(s(0), s(1), s(2), q(0),
a(1));
process
constant propagation_delay: time := 25ns;
variable in_str: string3;
variable out_str: string2;
begin
J
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whil e not endfile(vec file) |oop

read(vec file, in_str);

S <= in_str;

wait for propagation_del ay;

out _str := q;

wite(result file, out_str);
end | oop;
report “Completed processing of all

vectors”;
walit; -- stop the simulation
end process;
end io_example;
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Operators

» The operators in the language fall into the following categories:
(a) Logical operators

(b) Relational operators

(c) Shift operators

(d) Adding operators

(e) Multiplying operators

(f) Miscellaneous operators

Logical Operators

 Operate on bit and boolean types and one dimensional array
these.

* Operatorsand, or,nand, nor, Xxor, xnor, not.

Relational Operators
e These ares,/ =, <,<=,>,>=
* Result of the application of all relational operators is a boolean.
 When applied to array types the comparison is carried out from
left to the right.

Shift Operators

e sll,srl,sla,sra,rol,ror
» Work much the same as shift operators in assembly language.
» QOperator on arrays @&fi t orbool ean.

e.g.

-- Filled with bit’left, which is zero
“1001010” sll 2 is “0101000”
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Adding Operators

« These are:+, -, &(the &is a concatenation operator).
Multiplying Operators
e Theseare*,/,nod,rem

Miscellaneous Operators

 These are: abs, ** (exponentiation).
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Some Behavioural Modelling Constructs

Wait Statement

Processes may be suspended by a sensitivity list. They may algp be
suspended bywai t statement.

Three forms of the wait statement:

(a)wait on sensitivity list

(b)wait until bool ean-expressi on

(c)wait until t/ne-expression

These three forms may also be combined:

wait on sensitivity list until bool ean-expression
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for tinme-expression

e.g.
wait on a, b, c; -- statenent 1
wait until a = b; -- statenent 2
wait for 10 ns; -- statenent 3
wait on clock for 20 ns -- statenent 4
wait until sum > 100 for 50 ns; -- statenent 5
Statement 1 causes the process to suspend until an event ogcurs
ona orb orc.
Statement 2 causes the process to suspend until the condjtion
a = b is true. When an event occurs @mr b then the condi-
tion is evaluated.
Statement 3 causes the process to suspend for 10 ns whep the
wai t statement is executed.
Statement 4 causes the enclosing process to suspend and]then
wait for an event to occur. If no event occurs within 20 ns the
\_
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process resumes execution with the statement after thewai t .

m Statement 5issimilar to statement 4 except that the logic condi-
tion is tested if there is an event on sum If it does not become
true within 50 ms of the wai t being executed then the process
isresumed, else it is resumed when the condition becomes true.

If Statement

» Selects a sequence of statements based on the value of a conglition
that evaluates to a boolean value.

» Works virtually identically to the f statements in common high
level languages.

General structure:

| f bool ean- expressi on then
sequenti al - st at enent s

{el sif bool ean- expression then -- can have zero
sequenti al - st at enent s} -- or nore elsif
-- cl auses
[ el se -- optional else
sequenti al - st at enent s] -- cl ause
end if;

 The conditions statements in the aboYestatement are executed
sequentially.
Case Statement

« Much the same as the case or switch statements in Pascal or ‘C].
» General form of thease statement:
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case expression is
when choi ces => sequenti al - st atenents
when choi ces => sequenti al - st atenent s
-- can have any nunber of cases here

-- optional default statenent
[ when ot hers => sequenti al - st at enent s]
end case;

« Theexpressi on must be a discrete type or a one dimensiorgl
array.

» The choices may be expressed as single values or a range of values
by using the o word (for a consecutive range) or th@epresent-
ing the ‘or’).

Loop Statement

» Used to iterate through a set of sequential statements.
» Three types of iteration schemes:

() for identifier in range

(ilwhi | e bool ean- expressi on

(i)l abel : | oop

e.g.

factorial := 1;

for nunber in 2 to n |oop
factorial := factorial + nunber:

end | oop;

j:=0; sum:= 10;
wh | oop: while j < 20 I oop

. J
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sum: = sum?* 2;
j =] + 3
end | oop;

sum := sum?* 10
exit when sum >
end | oop | 2;

e Can also use theext statement in a loop. This statement results |n

and Computer Engineering N\
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the skipping of the remainder of the statements in the loop, and

resuming with the next iteration at the top of the loop.

Syntax:

next [l oop-label] [when condition];

More on Signal Assignments

Inertial Delay Model

« Used for modelling delays in digital switching circuits.
* Means that an input value must be stable for a specified pulse r

ec-
tion time before the value is allowed to propagate to the outpuqln

addition the value
delay.

e.g.

signal -obj ect <= [reject pulse-rejection-|limt]

appears at the output after the specified ineftial

expression after
i nertial -del ay-tine;
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If no pulse rejection limit is specified, the default rejection limit i
the inertial delay itself.

e.g.
a D Z
delay = 10 ns
rejectlim =4 ns
Time
|
5 810 25 28 30 45 48

20 40

Figure 13 : Inertial/reject signal example

* In the example of Figure 13 the pulses at 5 and 8 ns are not stpble
long enough to exceed the pulse reject limit, and therefore do ot
appear at the output of the inverter.

« The edge at 10 ns stays stable for a time exceeding the pulse rgject
limit and therefore is propagated to the output after the iner§al
delay time.

» Inertial delay model is the default delay model (see next for another
delay model), and therefore does not normally need to be specified
with the keyword nerti al .

\_ J
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Transport Delay Model

* Models pure propagation delay — that is any change on the inpyt is
propagated to the output after the delay. 1

« Usually used to model routing delays, as these don’'t have a pgise

rejection concept as does logic.

e.g.
z <= transport a after 10 ns;

Creating Waveforms

» Possible to generate arbitrary waveforms with multiple assignmgnt
statements.

e.g.
phasel <=0, ‘1’ after 8 ns, ‘0’ after 13 ns,
‘1’ after 50 ns;

General syntax:

si gnal - obj ect <= [transport |
[reject pul se-rejection-Iint]inertial]

expr essi on [after ti me-expressi on,
expr essi on [after ti me-expression,
expr essi on [after ti me-expressionj;

Signal Drivers

» Every signal that is assigned a value in a process has assocjated
with it a driver. In fact thedriver gives a signal (as opposed to &
variable) its properties. There is only one driver for a signal il a
process.

. J
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» A driver holds the current value of a signal as well as all its futdre
values as a sequence.

e.g.

process
begi n

reset <= 3 after 5 ns, 21 after 10 ns,

14 after 17ns;
end process;

resct «— curr@now| 3@T+5ns | 21@T+10ns| 14@T+17ns

Figure 14 : Signal driver for the signal called reset

« All transactions are order in increasing order of time in the sigpal
driver.

 When time advances to T+5ns then the first entry in the driveq is
deleted from the list and reset goes to the value of 3.

e At time 10ns then the entry 3@T+5ns is deleted from the list gnd
reset goes to 21, etc.

‘¥~ What happens if there are multiple assignments to a sighal
within a process? Depends on the delay model used.

Effect of transport delay on signal drivers

« Example of a process with three signal assignments to the samesig-
nal.

_ ,
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e.g.
signal rx_data: natural;

process
begi n

rx _data <= transport 11 after 10 ns;

rx _data <= transport 20 after 22 ns;

rx _data <= transport 35 after 18 ns;
end process;

« When first assignment is executed then 11@T+10ns is added tqthe
driver.

o After second assignment then 20@T+22ns is appended to |the
driver.

« Third assignment causes 20@T+22ns to be deleted, fnd
35@T+10ns to be appended.

‘&~ With transport delay a new signal assignment causes all Jal-
ues in the driver whose delay is the same or longer than that
being assigned to be deleted.

Effect of inertial delay on signal drivers

« Situation a little more complex with inertial delays — both the sigrjal
value being assigned and the delay value affect the deletion pnd
addition of transactions to the driver.

e.g.
process
begi n
-- pulse rejection limt is 10 ns
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tx dataj<= 11 after 10 ns;
tx-data <= reject 15ns 22 after 20 ns;

-- pulse reject limt is 15 ns
tx _data <= 33 after 15 ns;

-- wait indefinitely
cess;

regarded as a glitch and is rejected.

~

e Transaction 11@10ns first gets added to the driver.

» Second transaction, 22@20ns causes 11@10ns transaction t
deleted. This is because the 11@10ns transaction falls in the pulse
rejection period of 20ns back to 5ns (i.e. itis at 10ns), and itis a
ferent value than that at 20ns. In other words the 10ns transactic

D be

lif-
nis

 The third statement causes the 22@20ns transaction to be dejeted
from the driver, since the delay of the new transaction (15ns) is Ikss
than the delay of the transaction of the 20ns transaction already in
the driver.
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Other Aspects of Dataflow Modelling

Multiple Drivers

« Eachconcurrent signal assignment has its own driver.

« Question: What happens if there is more than oomcurrent
assignment to the same signal?

“”  This situation has to be resolved using a resolution functior].

e.g.
architecture no_enity of dummy is
begi n
z <='1" after 2 ns, ‘0O’ after 5 ns,
‘1’ after 10 ns;
z <='0" after 4 ns, ‘1’ after 5 ns,
‘0’ after 20 ns;
z <='1" after 10 ns, ‘0O’ after 20 ns;
end no-entity;

Driver 1
‘1’@10ns ‘0@5ns ‘1’@2ns
Driver 2 \
‘0'@20ns ‘1’@5ns ‘0'@4ns
Driver 3 signal
‘0@20ns | ‘I'@10ns value

Figure 15 : Resolving signal drivers for dataflow
descriptions

» The three drivers in the above example are put into a user wriften
resolution function. The value returned by this function becomges
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the resolved value of z.
« Have to associate a resolution function with a particular signal.

e.g.
signal z: wred or bit;

‘" this associates the resolution functiehr ed_or with the
signalz. The inputs to the function are implicitly the currerg
values of all the drivers for that signal.

e.g. A signal resolution function for the r ed_or :

function wired or (inputs: bit vector)
return bit is
begi n
for j in inputs’range loop
if inputs(j) = ‘1’ then
return ‘1’;
end if;
end loop;
return ‘0’;
end wired_or;
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Aspects of Structural Programming

* As mentioned in the tutorial the entity is modelled as a set of cgm-
ponents connected by signals.

« Behaviour of the entity is not explicitly apparent from its model.
e.g.

mr

q_gT_£4>~————mdy

gbal
clk s2
ck |

din f ctrla

Figure 16 : A circuit generating control signals

VHDL model for the circuit of Figure 16 is:

entity gating is
port (a, ck, nr, din: in bit; ctrla: out bit);
end gati ng;

architecture structure_view of gating is
conponent and2
port(x, y: in bit; z: out bit);
end conponent;

conponent dff
port(d, clock: in bit; q, gbar: out bit);
end conponent;
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conponent nor 2
port(da, db: in bit; dz: out bit);
end conponent;

signal sl1, s2: bit;

begi n
dl: dff port map(a, ck, sl, s2);
al: and2 port map(s2, din, ctrla);
nl: nor2 port map(sl, nr, rdy);
end structure_view,

* Instead of declaring the components in the architecture body, pne
can also use a package:

package conp list is
conponent and2
port(x, y: in bit; z: out bit);
end conponent;

conponent dff
port(d, clock: in bit; q, gbar: out bit);
end conponent;

conponent nor?2
port(da, db: in bit; dz: out bit);
end conponent;
end conp_|ist;

e The previous structural description now becomes:

library des_Iib;

use des |lib.conp list.all;

architecture structure_view of gating is
signal sl1, s2: bit;
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begi n
-- conponent instantiations here
end structure_view,
e.g. Another example
do e0
dl
o o—= 0
i ST o
d4
ds | e f1
7 - o
SIS
d7
ds
Figure 17 : A 9 bit parity generator circuit
entity parity 9 bit is
port(d: in bit _vector(8 downto 0);
even: out bit;
odd: buffer bit);
end parity 9 bit;
architecture parity str of parity 9 bit is
conmponent Xxor 2
port(a, b: in bit; z: out bit);
end conponent;
J
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xeven:
end parity str;

i nv2 port map(odd,

conponent inv2

port(a: in bit; z: out bit);
end conponent;
signal e0, el, e2, e3, 0, f1, hO: bit;

begi n

xe0: xor2 port map(d(0), d(1l), e0);
xel: xor2 port map(d(2), d(3), el);
xe2: xor2 port map(d(4), d(5), e2);
xe3: xor2 port map(d(6), d(7), e3);
xf0: xor2 port map(eO, el, fO0);
xfl: xor2 port map(e2, e3, fl);
xh0: xor2 port map(f0, f1, hO);
xodd: xor2 port map(hO, d(8), odd);

even) ;

‘¢~ Port odd is of mode buf f er since the value of this port is
being read as well as written to inside the architecture.

~
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Generics and Configurations

Generics

ment.
e.g. rise and fall times, size of interface ports.
 The use of generics allows general purpose user configurable ¢

library.
e.g. and n input generic and gate.

entity and gate is

generic (n: natural);

port(a: in bit _vector(1l to n); z: out bit);
end and_gat e;

architecture generic_ex of and gate is
begi n
process(a)
vari able and out: bit;
begi n
and_out :=‘1’;
for kin 1 to nloop
and_out := and_out and a(k);
exit when and_out = ‘0’;
end loop;

z <= and_out;
end process;
end generic_ex,;

* Rules of generics:

« Often useful to pass information into an entity from its envirof-

DM-

ponents to be easily constructed. These parts can then be put ifito a
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m Declaresaconstant object of modein (that isit can only be read)
and can only be used in the entity declaration and the corre-
sponding architecture bodies.

m The value of the constant can be specified as a globally static
expression in one of the following:

() Entity declaration
(b) Component declaration
(c) Component instantiation
(d) Configuration specification
(e) Configuration declaration
m Vaue of generic must be determinable at elaboration time.
* One can also specify a default value for a generic:

e.g.
entity nand gate is
generic(m integer := 2);
port(a: in bit_vector(mdownto 1);

z: out bit);
end nand_gat e;

‘" There are many other ways of constructing generics. For
sake of brevity these will not be presented here. However
material presented above gives one some idea of the flexi
ity that they give.

" One can surmise that VHDL generics can be used to by

repetitive structures from some fundamental building blockg.

he

DIl-

ild
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Configurations

« Why have configurations? Two main reasons:

(i) Sometimes convenient to specify multiple views for a singjle
entity and use any one of these for simulation. Achieved py
using one architecture body for each view and then using a gon-
figuration to bind the entity to the desired architecture body.

(i) Sometimes desirable to associate a component with any one pf a
set of entities. The component may have its name and ghe

names, types and number of ports and generics different frpm
those of its entities.

e.g.
conponent or2

port(a, b: in bit; z: out bit);
end conponent;

and the entities that the above component may possibly be bound to fpre:

entity or _generic is
port(n: out bit; I, m in bit);
end or_generic;

entity or _hs is
port(x, y: in bit; z: out bit);
end or _hs;

The component names and the entity names, as well as the Jport
names, and their are different. We may be interested in using|the
or _hs entity for theor 2 component, and in another case, t

or _generi c entity. This can be achieved by appropriately spegi-
fying a configuration for the component. The advantage is that
when components are used in a design, arbitrary names for compo-
nents and their interface ports can be used, and these can latg¢r be
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bound to specific entities prior to simulation.

‘¥~ We are not going to present any more on this issue. Clearly
there is considerably more involved.

Wrap-up

« These notes have attempted to provide an introduction to bpth
AHDL and VHDL.

» Because of the nature of the languages the introduction is incpm-
plete — this is especially true for VHDL, which is a very large lag-
guage.

» The introductory material gives the student some feel for the Iqn-
guages and allows simple programs to be written.
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