

www.RetroMicro.com

Created by: Douglas Hodson
If you find this project useful, please email me at

doug@RetroMicro.com

Project Name: xsocXR16

Creation Date: June 2003
Development Board: XESS XSA-100 Plus XStend Version 2
Development Software: Xilinx ISE Version 5.1.03i

Description

The project uses the xr16 cpu Jan Gray designed in the popular XSOC project (see
references). In the original project, the XSOC was targeted for the XESS XS40-005XL
fpga board that includes SRAM. This project extracts the cpu fully intact and interfaces it
to the SDRAM contained on the XSA-100 board.

The XStend board is not required in this project.

The XSA-100 board frequency must be set to 25 MHz!

“C” Compiler and Assembler

The custom xr16 assembler was written by Jan Gray. The “C” compiler was created by
modifying lcc (A Retargetable Compiler for ANSI C).

I had problems compiling the original sources as provided in the XSOC project. Quite
honestly I don’t remember what I had to do to fix the problem, other than I remember that
only a few modification had to be made and maybe a few syntax errors had to be fixed.
(If I remember correctly, one problem related to compiling for a MS-DOS command
prompt verses the newer Windows Command Prompt.)

Nevertheless, executables that do work are located in the lcc directory. To use them
effectively, create the following directory tree and copy them there:

C:\Program Files\lcc\4.1\bin

Then add that path to your system PATH environment variable (Right click on “My
Computer”, click “Properties”, and finally click the “Advanced” tab.)

http://www.retromicro.com/
mailto:doug@RetroMicro.com

Using the compiler and assembler is straightforward from this point on. For example to
compile the fibonacci example, take the following steps.

1. Open a Command Prompt

2. Change to the ……\xsocXR16\progs\fibonacci\xr16 directory

3. Issue the command: “lcc-xr16 –S fib.c” – this will compile the “C” code into
assembler.

4. Issue the command: “xr16 –hex=fib.hex –lst=fib.lst reset.s fib.s” – this will

assemble first the reset.s code then assemble and concatenate the fib.s code. Two
files will be generated. The first is a hex formatted file that can be downloaded to
SDRAM using the XESS tools, and secondly a listing file for all the code.

A Little Bit About Clocks and the SDRAM Controller

When interfacing to SDRAM, you drive the controller with a clock signal wired to the
clkin port. After that the controller provides three clock signals back for the design to use;
bufclk, clk0 and clk2x. They are defined something like this:

• bufclk : simply a buffered version of the "clkin" signal you are feeding to
controller. In other words, the clock signal direct from a pin on the fpga chip with
a buffer in the stream.

• clk0 : a clock signal generated within the sdram controller itself to account for the

printed circuit board (PCB) delays in interfacing to the externally driven sdram
memory.

• clk2x : a doubled version of clk0

When using the SDRAM controller, you supply clkin direct from fpga clock pin, then
you should use the clk0 signal as the master clock for your design. You should also use
bufclk in conjunction with another sdram provided signal, "lock" to determine when clk0
has "locked" on to the master clock you have provided. This is accomplished with a
clkdll primitive.

This project uses the latest version of the SDRAM controller provided by XESS. It
should be noted that I have found this version substantially better and more reliable than
an earlier version.

Project Directory Structure

This project is organized into the following directories:

./ - contains all the files need to synthesize the design.

./config – effectively a backup of all main files in the root directory

./docs – this PDF file. Source files used to build this PDF are located in ./docs/src.

./lcc – Retargetable “C” compiler and assembler for xr16 cpu.

./progs – example programs that can be downloaded and executed by the xr16. If the
example is sufficiently complex you might find a “windows” version of the code used to
test and determine what the outputs should be. Check out the Fibonacci example.
Windows programs are compiled with the excellent free Dev-C++ compiler.

./src – source directory for all HDL files

./temp – temporary directory used during the build process.

Synthesis

The project is built and maintained using two windows based batch files. The first is
“make.bat”. It simply issues are the commands required to “compile” all the source files
in the ./src directory and eventually generate the chipIO.bit file to downloaded to the
fpga.

The second batch file is called “clean.bat”. Its sole purpose is to delete most of the
unwanted files generated during the build process.

References

The primary reference for building this project is Jan Gray’s XSOC project. This project
is an excellent place to start on how to build a fully pipelined risc based cpu interfaced
with a video display and other devices. See the www.fpgacpu.org website for the
complete XSOC project and information.

http://www.fpgacpu.org/

	www.RetroMicro.com
	Created by: Douglas Hodson
	If you find this project useful, please email me at
	doug@RetroMicro.com

	Project Name: xsocXR16

