A [ESS

Corporation

Introduction to WebPACK 4.1 for
CPLDs

Using Xilinx \WebPACK Software to Create
CPLD Designs for the XS95 Board

All XS-prefix product designations are trademarks of XESS Corp.

All XC-prefix product designations are trademarks of Xilinx.

Table of Contents

What This IS and 1S NOE oo 1]
[CPLD Programmingocoioiieeeeoeseiieseesesiteseesesesieseeseeresessesreseseees 3|
INStalliNg WEDPACKcoeieieieeeiieteiseseseseseseseseraesesesesessossssssesesesesssas 5|
Getting WEBPACKvvieeeeeeeeeeeeeeeeeeeeine: 5|
Installing WebPACK ..o 8|
Getting XSTOOLS vovooeoeoeeeeeeeeeeeeeeeeeeeeeeeereeeeeeerereeeeras 8|
InStaling XSTOOLS evveveieioieiiieiiieiiieiiieieieeeeieieieieiie, 9|
OUr First DeSION ..o s 10]
AN LED DECOTEN ..viieiiiiiieseiieeiieeieiesieeeseseseeeseseseseseseeeans 10]

Describing Your Design With VHDL ... 18]
Checking the VHDL SyntaX.........ccoovievieeiiiiiiieneiesisinananss 25|
Fixing VHDL EFrOFS ..coceiereieieiniininisiiiniincneen, 26
Bynthesizing the Logic circuitry for Your Design.................... 29
Fitting the Logic Circuitry Into the CPLDovovovevieieieenene 30|
Checking the Fitoccvcnreceniniiiiiiniiiincncee, 32|
Constraining the Fitcocoooooeeeeeeieieiiieieiiieeeeeeieiien 34|
Viewing the ChiD wocvveieieiiiiiiiiiiiiiii 39|
Generating the Bitstreamcocoovoviieieioiiiieiiieieiei, 45|
Downloading the BitStream...............cooveeeveiveriieriirien. 52|
[Testing the CirCUit «.....ocoovoviieiiviiieiiiieieiiieiiei . 55|
Hierarchical DesigN..........cooocoviieisissi 56
(A Displayable COUNer...........coeveeevieieiieieeieieeie 56|
Starting @ NeW DeSigN.........oeverereeeeiieieeiieieereeeceiieeens 57

Adding the LED DeCOder oot 58|

IADdING 8 COUNEET 1ooviit ittt 61]

[Tying Them Together.........oovvveeeeeeeeeeeieeeeeeeeeeeee 66|
Checking the VHDL Syntax.........cc.cccevevieieiieniiinininicenne, 97|
Constraining the DeSigNocoveveveieieiiiiiieeeeeeeieiseeens o8]
Bynthesizing the Logic Circuitry for the Design...................... 99|
Fitting the Logic Circuitry Into the CPLD.....ccovvvvecveniennne.., 100]
Checking the Fitcococeeieeiiiesiecesiesiiscsecics s 102
[Checking the Timing........cooveeeeveeeriieeiieeiieeieeieiie, 104/
Generating the Bitstreamcococooieiiieiiiiiiiiiiinn, 106]
Downloading the Bitstream.............c.cocooooviiieieiiiiiiee 112
[Cesting the Circuit 113

GOING FUMNET .+« oo 114]

What This Is
and Is Not

There are numerous requests on newgroups that go something like this:

"T am new to using programmable logic like FPGAs and CPLDs. How
do I start? 1Is there a tutorial and some free tools I can use to
learn more?"

Xilinx has released their WebPACK on the web so that anyone can download a free set of tools
for CPLD and FPGA-based logic designs. And XESS Corp. has written this tutorial that
attempts to give you a gentle introduction to using the WebPACK tools. (Other programmable
logic manufacturers have also released free toolsets. Someone else will have to write a tutorial
for them.)

This tutorial shows the use of the WebPACK tools on two simple design examples: 1) an LED
decoder and 2) a counter which displays its current value on a seven-segment LED. Along the
way, you will see:

= How to start a CPLD project.

*» How to target a design to a particular type of CPLD.

= How to describe a logic circuit using VHDL and/or schematics.

= How to detect and fix VHDL syntactical errors.

* How to synthesize a netlist from a circuit description.

= How to fit the netlist into a CPLD.

» How to check device utilization and timing for a CPLD.

*» How to generate a bitstream for a CPLD.

= How to download a bitstream to program a CPLD.

* How to test the programmed CPLD.

That said, it is important to say what this tutorial will not teach you:

= |t will not teach you how to design logic with VHDL.
= |t will not teach you how to choose the best type of FPGA or CPLD for your design.

= |t will not teach you how to arrange your logic for the most efficient use of the resources in a
CPLD.

= |t will not teach you what to do if your design doesn't fit in a particular CPLD.

= |t will not show you every feature of the WebPACK software and discuss how to set every
option and property.

In short, this is just a tutorial to get you started using the Xilinx WebPACK CPLD tools. After
you go through this tutorial you should be able to move on to more advanced topics.

CPLD Programming

Implementing a logic design with a CPLD usually consists of the following steps (depicted in the
figure which follows):

1. You enter a description of your logic circuit using a hardware description language (HDL)
such as VHDL or Verilog. You can also draw your design using a schematic editor.

2. You use a logic synthesizer program to transform the HDL or schematic into a netlist. The
netlist is just a description of the various logic gates in your design and how they are
interconnected.

3. You use a fitter program to map the logic gates and interconnections into the CPLD. The
CPLD consists of several function blocks which can be further decomposed into macrocells
that can perform logic operations. The function blocks and macrocells are interwoven with
various routing matrices. The fitter assigns gates from your netlist to various macrocells in
the function blocks and opens or closes switches in the routing matrices to connect the
gates together.

4. Once the fitting is complete, a program extracts the state of the switches in the routing
matrices and generates a bitstream where the ones and zeroes correspond to open or
closed switches. (This is a bit of a simplification, but it will serve for the purposes of this
tutorial.)

5. The bitstream is downloaded into a physical CPLD chip (usually embedded in some larger
system). The electronic switches in the CPLD open or close in response to the binary bits
in the bitstream. Upon completion of the downloading, the CPLD will perform the
operations specified by your HDL code or schematic.

That's really all there is to it. Xilinx WebPACK provides the HDL and schematic editors, logic
synthesizer, fitter, and bitstream generator software. The XSTOOLs from XESS provide
utilities for downloading the bitstream into ancontalnlng a Xilinx XC95108 CPLD.

http://www.xess.com/prod002.php3

VHDL Source Code

entity leddcd is
port(
d: in std_logic_vector(3 downto 0);
s: out std_logic_vector(6 downto 0);
)

end;

architecture leddcd_arch of leddcd is
begin
s <="1110111" when d="0000" else
"0010010" when d="0001" else
"1101101";
end leddcd_arch;

00 00 00
00 00 00

function block macrocell

XS95 Board

Generate Bitstream

Synthesize

Download and Test

Netlist

Bitstream

101010010101100101
010110101010110101
010110100101101011
01010100101010101
010101010100110101
011011011010100101
011010010101100101
100101100101010100
101010110100110100
101100110001010101

Installing WebPACK

Getting WebPACK

Before downloading the WebPACK software you will have to register at
http://www.Xilinx.com/xInx/xil_entry2 jsp?sMode=login&aroup=webpack| You will choose a
user ID and password and then you will be allowed to enter the site. Then you can go to
http://www.Xilinx.com/webpack/index.html to begin downloading the WebPACK software. After
entering the WebPACK homepage, click on the Design Configurations button as shown on the next
page.

/] Xilink WebPACK, - Microsoft Internet Explorer

J File Edit ¥“iew Favortes Toolz Help |

|&-= @A DI E-SB=HA-HD

J Address I@ hitkp: 4w, ilire. comAwebpack Aindes. hitrl j & Go |J Links #3 Quick Search.exs 2

- XILINX

Products

FRODUCTS | SUPPORT | EDUCATION | PURCHASE | CONTACT | SEARCH

| Davices | Design Teols | Intellectual Property | System Solutions | Literature |

WabPACK [5E is & collection of free downloadable software
modules that when properly assembled provides averything
you naead to complete aithar & Xiling CPLD or FPGA

todule configurations pre-
zelected bazed on common

design types. Design Configurations Getting Started

Individual Modules o Latest Updates

FPlease selact 5 category sbowve to learn more
or download the desired soffware modules .

Revision History

Buy Samples Last Updated on October 15, 2001
your download | module
G0 d | details overview
Legal Information |Home | Products | Support | Education | Purchagze | Contact | Search |
Privvacy Palicy | Devices | Design Tools | Intellectual Property | System Solutions | Literature |

|@ javascript: actionState[1] I_I_|Q Internet 4

http://www.xilinx.com/xlnx/xil_entry2.jsp?sMode=login&group=webpack
http://www.xilinx.com/webpack/index.html

Next, click on the Select All button. This will select all the WebPACK software modules that
cover both FPGA and CPLD designs.

/] Xilink WebPACK, - Microsoft Internet Explorer

J File Edit ¥“iew Favortes Toolz Help |

|&-= @A DI E-SB=HA-HD

J Address I@ hitkp: 4w, ilire. comAwebpack Aindes. hitrl j & Go |J Links #3 Quick Search.exs 2

- XILINX

Products

FRODUCTS | SUPPORT | EDUCATION | PURCHASE | CONTACT | SEARCH

| Davices | Design Teols | Intellectual Property | System Solutions | Literature |

Getting Started

¥ CPLD Design

Individual Modules FPGA Design

~ your download | module
download | details overview

VYersion 1.1WFLO

Install Type [Typical]

Latest Updates

Legend:

¥ FPrimary Choice
¥ Included Modules
Design Type:

Revision History

Buy Samples
e O CPLD Design:

m] FRGADezign
Select All

Legal Information |Home | Products | Support | Education | Purchagze | Contact | Search |
Privvacy Palicy | Devices | Design Tools | Intellectual Property | System Solutions | Literature |

|@ javascript:doSelect]] l_’_|ﬁ Internet 4

Then click on the Download button to begin downloading the WebPACK software.

/] Xilink WebPACK, - Microsoft Internet Explorer

J File Edit ¥“iew Favortes Toolz Help

|&-= @A DI E-SB=HA-HD

J Address I@ hitkp: 4w, ilire. comAwebpack Aindes. hitrl j & Go |J Links #3 Quick Search.exs 2

- XILINX

Products

FRODUCTS | SUPPORT | EDUCATION | PURCHASE | CONTACT | SEARCH

| Davices | Design Teols | Intellectual Property | System Solutions | Literature |

Getting Started
Configurations » (BRIl

Individual Modules FPGA Design

~ your download | module
download | details overview

Yersion 4
Install Type
Legend:
¥ FPrimary Choice
¥ Included Modules
Design Type:

Latest Updates

Revision History

Buy Samples
e # CPLD Design:

¥ FPGADesign

Legal Information |Home | Products | Support | Education | Purchagze | Contact | Search |
Privvacy Palicy | Devices | Design Tools | Intellectual Property | System Solutions | Literature |

|@ javascript:doDownload(] l_’_|ﬁ Internet 4

Click on the link to download the WebPACK software in the Download WebPACK window. You
can use either the FTP or the HTTP link. (You can also download the demo version of the
ModelSim HDL simulator but we will not discuss the operation of that software in this tutorial.)

4} Download WebPACK - Microsoft Internet Explorer

Eoun

Based on your module selections, you will need to download the following
WebPACK installation files. Please select either the FTP or HTTP link and
save each file to your hard disk Then run each installer executable.

L i P Speedbit's Download A ceelerator if wou want to optitdze your
download and be able to resume internipted downloads.

WebhPACK 4.1WPL.0 - Qciober 15, 2001

WebPACK 4lwpll full installer exe 110.25M FTE HTTE
LXE Alwpll full installer exe 38 38M FTE HTTE
Total download size: 148 230

) . Til: 14 Mlin
Estitnated T otal Download Time: P 354 Min
Dizk Space Fequired: 430 270

Dzt Disk Space Reguired During Installation: 866 1001

Installing WebPACK

After the WebPACK software download completes, double-click the .EXE file. The installation
script will run and install the software. Accept the default settings for everything and you
shouldn’t have any problems.

Getting XSTOOLs

If you are going to download your CPLD bitstreams into an XS95 Board, then you will need to

get the XSTOOLS software from |htt9://www.xess.Com/h007000.htmI|. Just download the

tools4.exeffile.

http://www.xess.com/ho07000.html
http://www.xess.com/xstooset.exe

Installing XSTOOLSs

Double-click the xstools4.exe file. The installation script will run and install the software. Accept
the default settings for everything.

Our First Design

An LED Decoder

The first CPLD design we will try is an LED decoder. An LED decoder takes a four-bit input
and outputs seven signals which drive the segments of an LED digit. The LED segments will
be driven to display the digit corresponding to the hexadecimal value of the four input bits as

follows:

Four-bit Input

0000

Hex Digit

0

LED Display

(=]

0001

0010

0011

| | e

0100

0101

0110

0111

ad (O D

1000

1001

D | O

1010

1011

1100

1101

Looge I T) e

1110

1111

MMOO|W|>|lo|o|Noja|hjlw|N|—

OO

A high-level diagram of the LED decoder looks like this:

LED 7-Segment
Decoder LED
[sO .

o I P
S [— 3 s4
@ - o
@3- sS4 o 1

s .

s6 S

Starting WebPACK Project Navigator

ACK,
We start WebPACK by double-clicking the Iass icon, ,on the desktop. This will bring up
an empty project window as shown below. The window has four panes:

1. A source pane that shows the organization of the source files that make up our design.
There are four tabs so we can view the source files, functional modules, or HDL libraries for
our project or look at various snapshots of the project.

2. A process pane that lists the various operations we can perform on a given object in the
source pane.

3. Alog pane that displays the various messages from the currently running process.

4. An editor pane where we can enter HDL code. Schematics are entered in a separate
window.

Xilim: - Project Havigator

File Edit “iew Project Source Process Macro Window Help
e HFEEERFEamk|ew || =e o = || E
=z

Sources in Project: |

[Ma Project Open)
4 source
pane
= B todlule . l 0N Shapshot... J |E Library .. I
pane
2=

Frocesses for Current Source: I
[Mo Proceszes Available]

process
pane

o

B Process Vien

n - |

For Help, press F1 H i

To start our design, we must create a new project by selecting the File=»New Project item from
the menu bar.

Xilim: - Project Havigator

File Edit “iew Project Sowrce Process Macro Window Help

L eeraee s SNBSS R A AR B

pen Project...
Open Example... =

Ielese Erafect I

Save Erafectits.

Hew Chrl+M
Open... Ctrl+0
Elaze

e [EtrliEs
Save fEn

Eritat... [t |E Library ... |

Siane Gl

==

Recent Projectz 4
Recent Files 4

I

E =it

B Process Vien I

il -

B =l
; _'l_I
AT Conzoled FrinFes

Create a new project | | H A

This brings up the New Project window where we can enter the location of our project files,
project name, the target device for this design, and the tools used to synthesize logic from our
source files.

Mew Project |

Project Hame: Froject Location:
|| IE:WiIinH_WEI:F'.ﬁ.EK'\bin'\ . |

Froject Device Options:

Property Hame Value
Device Family ¥Ca500 CPLDs
Device ¥CR5108 PCEd
De=ign Flow EDIF

] Cancel

Click on the ... button next to the Project Location field and use the Browse for Folder window to

select a folder where our project files will be stored. For our design examples, we will store
everything in the C:\tmp\cpld_designs folder.

Browse for Folder E |

Select Directaom

#-_1 Projects -l
& RECYCLED

=] sdram

-] SMAPSHOT

l:l temp

EII:I tmp . J

{:l fpga_designz
- UBWIN
-] UTILS
] WIADMATOOL

Next we will give our LED decoder design the descriptive title of designi by typing it into the
Project name field.

Mew Project |
Project Hame: Froject Location:
Idesigm IE:'\tmp'\cpld_designs'\desigm |
Froject Device Options:
Property Hame Value
Device Family ¥Ca500 CPLDs
Device XCA5108 PCE4
De=ign Flow EDIF

k. I Cancel

To set the family of CPLD devices we will target with this design, click in the Value field of the
Device Family property. Select the XC9500 CPLDs entry in the pop-up menu that appears.

Mew Project |
Project Hame: Project Location;
Idesigrﬂ Il::"utmpHcpld_designs\design'l |
Project Device Options:

Property Hame Value

Device Family IC9500 CPLDS [
Device Yirtex2 1=
Design Flose WirtexE

] | Cancel

HCOs00HN CPLDs |
| CooRunner XPLA3 CPLO TN

Then click in the Value field of the Device property to select a particular device within the device
family. For our designs, we will select the XC95108 PC84 since this is the device used in the
XS95 Board where we will test our design.

Mew Project |

Project Hame: Project Location;

Idesigrﬂ Il::"utmpHcpld_designs\design'l s |

Project Device Options:

Property Hame Value

Device Family HCA500 CPLDs
Device A0S 08 PCEd
Design Flose

>|4

¥C95144 PQ1ED
¥C95144 PQ100
Ok | Lancel | as144 Tatoo

KCB3216 H2203
®CA52M6 P60
KCA5216 BE352 -

XESS Corporation - www.xess.com ©2001 by XESS Corp.

Finally, our design will be done using VHDL so click in the Value field of the Design Flow property
and select XST VHDL from the pop-up menu. This enables the Xilinx VHDL synthesizer.

Mew Project

C:Ntmphepld_designsdesigni |

HCA300 CPLDs
KCA3103 PCE4

#=T Yerilog
ABEL X=T Verilog
ABEL XET WHOL

Introduction to WebPACK 4.1 for CPLDs 16

XESS Corporation - www.xess.com ©2001 by XESS Corp.

Once all the fields are set, click on OK in the New Project window. Now the Sources pane in the
Project Navigator window contains two items:

1. A project object called design1.

2. A chip object called XC95108 PC84 - XST VHDL.

:J Xilink - Project Navigator - C:-\tmpicpld_dezigns\dezignlideszignl_npl

Introduction to WebPACK 4.1 for CPLDs 17

Describing Your Design With VHDL

Once all the project set-up is complete, we can begin to actually design our LED decoder
circuit. We start by adding a VHDL file to the design1 project. Right-click on the XC95108 PC84
object in the Sources pane and select New Source ... from the pop-up menu as shown below.

Xilim: - Project Havigator - C:Atmpi.cpld_deszignzideszignlidezignl npl

File Edit “iew Project Source Process Macro Window Help
s 2= e e Al EREdE Sl EEl Al e = E
==l

Sources in Project: I

Add Source. ! Iknzert

Add Copy of Source... Shift+lnzert

HEemavEe [Efete
i B ol Ec il ez ey e

Oper

[Elose

Frocesszes for Cure Toggle Paths
""" W @ Properties. ..

B Process Vien I

jl [Ermpty Log) ;|

e o]
A [F[FIfsConsoles FunFes

Add a new source to the project ﬂ o

XESS Corporation - www.xess.com ©2001 by XESS Corp.

This causes a window to appear where we must select the type of source file we want to add.
Since we are describing the LED decoder with VHDL, just highlight the VHDL Module item. Then
we type the name of the module, 1eddcd, into the File Name field and click on Next.

Hew

WHDL Module
Schematic

ledded |
Test Bench "W aveform

State Diagram

c:hbmphepld_designzstdesignl |

Introduction to WebPACK 4.1 for CPLDs 19

Then the Define VHDL Source window appears where we declare the inputs and outputs to
the LED decoder circuit. In the first row, click in the Port Name field and type in d (the name of
the inputs to the LED decoder). The d input bus has a width of four, so click in the MSB field
and increment the upper range of the input field to 3 while leaving 0 in the LSB field.

Define YHDL Source |
Entity Mame Iledd-:d
Architecture Mame IEehaviDraI
Port Hame Direction MSB s |4
d in q ™o
in ™
in
in
in
in
in
in
in
in
in
in ;I
< Back I Ment » I Cancel | Help |

XESS Corporation - www.xess.com ©2001 by XESS Corp.

Perform the same operations to create the seven-bit wide s bus that drives the LEDs.

Define YHDL Source

leddizd

——— C—

We must also click in the Direction field for the s bus and select out from the pop-up menu in
order to make the s bus signals into outputs.

leddecd
Behavioral
d in 3 0
B 0
in
inout

Introduction to WebPACK 4.1 for CPLDs 21

XESS Corporation - www.xess.com ©2001 by XESS Corp.

Click on Next in the Define VHDL Source window and we will get a summary of the information
we just typed in:

Mew Source Information

T

Introduction to WebPACK 4.1 for CPLDs 22

After clicking on Finish, the editor pane of the Project Navigator window displays a VHDL
skeleton for our LED decoder. (We also see the leddcd.vhd file has been added to the Sources
pane.) Lines 1-4 create links to the IEEE library and packages that contain various useful
definitions for describing a design. The LED decoder inputs and outputs are declared in the
VHDL entity on lines 6-9. We will describe the logic operations of the decoder in the
architecture section between lines 13 and 16.

Xilim: - Project Havigator - C:Atmpi.cpld_deszignzideszignl‘dezignl npl - [leddcd_vhd]

|4% File Edit Wiew Project Source Process Macro Window Help o =
NSHd FFEEERFE [Em& (2R |[f e (s e mfs r
==l

Sources in Project: | Illhrary IEEE; =
e E designi use IEEE.STD_LOGIC_llE‘i.ALL;

Eﬁ 095108 PCE4-%ST YHDL use IEEE.3TD LosIC ARITH. ALL;

B ddcd (ledded, vhd) use IEEE.STD LOGIC UNSIGHED.ALL;
entity ledded is
Port { d : in std logic wector (3 downto 0);

|= s : out std logic wvector(é downto 0));
B2 hodule .. l A Snapshat... J |E Library ... I end ledded;

==l architecture Behavioral of leddeod is

Frocesszes for Curent Source;

- Drezign Entry Utilities hegin

Synthesize
Implement D ezign
laenerate Pragraniming File end Behawvioral;

E3l _>l—I
B Process Vien I) ledded.vhd I

x| Done: cowmpleted successfully.

i

r

For Help, press F1 |Ln1, Cold B

The completed VHDL file for the LED decoder is shown below. The architecture section
contains a single statement which assigns a particular seven-bit pattern to the s output bus for
any given four-bit input on the d bus (lines 15-30).

library IEEE; =
use IEEE.3TD LOGIC 1164.ALL:
use IEEE.3TD LOGIC ARTTH.ALL:
use IEEE.3TD LOGIC UNIIGHED.ALLL:
entity ledded is
Fort { d : in =std logic wvector (3 downto O0);
g : out std logic wvector (6 downto O0));
end ledded;
architecture Behawvioral of ledded is
begin
= <= "1110111" when d="0000" =lse
0010010 when d="0001" =lse
"1011101" when d="0010" =lse
"1011011" when d="0011" =lse
"0111010" when d="0100" =lse
"1101011" when d="0101" =l=se
"1101111" when d="0110" =ls=
"1010010" when d="0111" =lse
"113131111" when d="1000" =lse
"113131011" when d="1001" =lse
"113131110" when d="1010" =lse
"0101111" when d="1011" =l=se
"O0001101" when d="1100" =lse
0011111 when d="1101" =l=se
"1101101" when d="1110" =lse
"iigii1o00"
end Behavioral; -
i o

Once the VHDL source is entered, we click on the [E button to save it in the leddcd.vhd file.

Checking the VHDL Syntax

We can check for errors in our VHDL by highlighting the leddcd object in the Sources pane and
then double-clicking on Check Syntax in the Process pane as shown below.

Xilim: - Project Havigator - C:Atmphepld_designshdesignl \designl.npl - [leddcd_vhd]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help _|5’|i|
D@ HFELEFE [eEe|2w |2 2e 2 e |G B
2=l

I libhrary IEEE: =
use IEEE.3TD LOGIC 1164.ALL;

use IEEE.3TD_LOGIC ARITH.ALL:

use IEEE.STD LOGIC UNSIGHED.ALL:

Sources in Project:

entity leddecd is
Port { d : in std logic wector (3 downto O0):
3 @ out std logic wvector (6 downto 0)):
end leddeod;

N B podle . l nSnapshut...J @Library I architecture Behavioral of ledded is
| x| hegin
Frocesses for I:un.entSDurce:m I g <= "1110111" when 4="0000" &lse |
DBSIgnEnU}'UtIhtIES rO010010" when J4d="00017" =l=e

ynthesize "1011101" when d="0010" else

ViEWS_‘,‘nthESiSHBDDIt 1011011 when A="0011" else
Analyze Hierarchy "0111010" when d="0100" else
? "1101011" when d="0101" =lse
|ITI|:I|EI'ﬂEI"IlDBSIgn k "1101111" when d="0110" els=s
Generate Programming File "1010010" when d="0111" =lse =
kil _'I_I
B Process Vien I [ledded.vhd I
ﬂ Done: completed successfully. ;l
¥
: .
AT Conzoled FrinFes
Higrarchy iz up ta date. |Ln 1. Cal1 | H A

The syntax checking tool grinds away and then displays the result in the process window. In
our case, an error was found as indicated by the 3 next to the Check Syntax process. But what is
the error and where is it?

Fixing VHDL Errors

We can find the location of the error by scrolling the log pane at the bottom of the Project
Navigator window until we find an error message. In this case, the error is located on line 20.
You can manually scroll to line 20 in the editor pane, or you can double-click on the error
message in the log pane to go directly to the erroroneous line.

Xilim: - Project Havigator - C:Atmpi.cpld_deszignzideszignl‘dezignl npl - [leddcd_vhd]

|a® File Edit “iew Project Source Process Macro Window Help =] x|
NSHG PFELEFE [EE&(2R [R5 e Efan r
x|
| =

Sources in Project:

entity leddcd is
Part ([d : in =td logic wvector (3 downto 0);
g : out std logic wvector (6 downto 0O));:

end ledded;

architecture Behavioral of ledded i=s

N B hodule .. l A Snapshat... J TE Library ... I

hegin
2l
Frocesszes for Curent Source: I 5 <= "1110111" when d="0000" else
..... W Diesign Entry Utiliies "DEIlElDlEIf" when d="0001" =l=se
2-&3 Synthesize "1011101" when d="0010" else -
View Spnthesis Report "1011011" when d="0011" else

0111010 when d="0100" else
"1101011" when d="0101" else
"1101111" when d="0110" els
m1010010" when d="0111" else

H4444111F mhan A=FAOO0O0 S1=s _I—'I
‘II +

B Process Vien I [ledded.vhd I

ﬂiERROR:HDLParSErS:lEZ - C:/tupfopld designs/designl/ ledded.vhd Line 21. Read symbol els, 2|
= |

Analyze Hierarchy

CFU : 0.33 f 1.32 = | Elapsed : 1.00 F 1.00 = 1

: _'l_I
AT Conzoled FrinFes

Process 'sxewrap -mode pipe -tapkesp -command C: Aing_\webPACK Abinfrtdast xe -ifn ledded st -ofn led: [Ln 16, Col 21 [n i

On line 20, we see that we have left the ‘e’ off the end of the el1se keyword. After correcting
this error, we can double-click the on Check Syntax in the Process pane to re-check the VHDL
code. We will be asked to save the file before the syntax check proceeds. Click on Yes.

Zilinx Project Havigator |

The following Project files have been edited but not gaved:
c:hmphopld_designzhdesignl Yedded. vhd

Do you want to zave these files before continuing?

Mo Cancel

The syntax checker now finds another error on line 31 of the VHDL code.

Xilim: - Project Havigator - C:Atmphepld_designshdesignl \designl.npl - [leddcd_vhd]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help ;lilil
D@ HFELEFE [eEe|2w |2 2e 2 e |G B
=z

I 3 <= 1110111 when d="0000" else 1=
"O0010010" when d="0001" else
1011101 when d="0010" else
"1011011" when d="0011" else
"0111010" when d="0100" else
71101011 when d="0101" else

Sources in Project:

= 1101111 when d="0110" el=se
BT hoduls .. l DSnapshtd...J [Ty Library I "1010010" when d="01117" ele
71111111 when d="1000" =lse

== 71111011 when d4d="1001" else

Processes for Current Source: I "1111110" when d="1010" else
Dresign Entry Utilities 0101111 when d="1011" else

Synthesize FOO001101" when d="1100" =l=se

Wi Spnthesiz Repart 0011111 when d4d=7"1101" else

B
- Analyze Hierarchy 1101101 when d4d="1110" =l=se
4] miioli1o0r

Implement D ezign
Generate Programming File .hnd Eehavioral:

<1 o0
B Process Vien I) ledded.vhd I

ﬂiERROR:HDLParsers:lEZ - C:/twp/opld designs/designl/ledded.vhd Line 32. Read sywbol END, =
I CPT : 0.11 / 0.22 =5 | Elapsed : 0.00 / 0.00 = 1

o o
A [F[FIfsConsoles FunFes

Process 'exewrap -mode pipe -tapkeep -command C:Ailine_ W ebPACK /bindnt/xst exe -ifn ledded.xst -ofn led |Ln 32, Cold [ﬂ i

When we look at line 31 we see it is just the end statement for the architecture section. The
VHDL syntax checker was expecting to find a ;' and we can see it is missing from the end of
line 29. Adding the semicolon to the end of line 29 and save the file. Now when we double-

click the Check Syntax process, it runs and then displays a @ to indicate there are no more
errors.

Xilim: - Project Havigator - C:Atmpi.cpld_deszignzideszignl‘dezignl npl - [leddcd_vhd]

|_.®, File Edit “iew Project Source Process Macro Window Help =] x|
NSHG PFELEFE [EE&(2R [R5 e Efan r
2=l
Sources in Project: I begin B
B designl
H s <= 1110111 when d="0000" =l=se
B €3 RCI5108 PLad<3TvHDL "0010010" when d="0001" else
1011101 when d="0010" =l=se
M1011011" when d="0011" else

01110107 when d="0100" else

W ol .. | 108 Sapsht...| [0 Lierary .. | M1101011" when d="0101" else
71101111 when d="0110" else
2=l mi010010" when d="0111" e=l=se
Proceszes for Current Source: I "1111111" when d="1000" else
..... W Diesign Entry Utiliies "1111011" when d="1001" else
2-&3 Synthesize "1111110" when d="1010" else
Wiew Sunthesis Repart "0101111" when d="1011" e=lse
Analyze Hisrarchy 0001101 when d="1100" else
an "0011111" when d="1101" else

"1101101" when d="1110" else -

miio1100r;

KXl _'I_I
B Process Vien I [ledded.vhd I

x| Done: completed successfully. ;l

i

‘ —"j

Process "Check Syntax' is up to date. |Ln 30, Cal 23 [H i

Synthesizing the Logic circuitry for Your Design

Now that we have valid VHDL for our design, we need to convert it into a logic circuit. This is
done by highlighting the leddcd object in the Sources pane and then double-clicking on the
Synthesize process as shown below.

Xilim: - Project Havigator - C:Atmpi.cpld_deszignzideszignl‘dezignl npl - [leddcd_vhd]

|_.®, File Edit “iew Project Source Process Macro Window Help =] x|
DEHG PP ELEFE [EE&(2R [R5 e Efan r
2=l
I hegin ;I

Sources in Project:

5 <= 1110111 when d="0000" else
0010010 when d="0001" else
1011101 when d="0010" else
"1011011" when d="0011" else
01110107 when d="0100" else

W ol .. | 108 Sapsht...| [0 Lierary .. | M1101011" when d="0101" else
71101111 when d="0110" else
2=l 1010010 when d="0111" else
Proceszes for Current Source: I "1111111" when d="1000" else
..... W Diesign Entry Utiliies "1111011" when d="1001" else
E| G 71111110 when d="1010" else
H Wiew Sunthesis Repart "0101111" when d="1011" e=lse
G Analyze Hisrarchy 0001101 when d="1100" else
Y3 Check Sprtax 0011111 when d="1101" else
Implement D esign "1101101" when d="1110" else -
Generate Programming File 11011007

KXl _'I_I
B Process Vien I [ledded.vhd I

f'l Done: completed successfully. ;l
L
' of
AT Conzoled FrinFes
Process "Check Syntax' is up to date. |Ln 30, Cal 23 [H i

The synthesizer will read the VHDL code and transform it into a netlist of gates. This will take

only a minute. If no problems are detected, a & will appear next to the Synthesize process.
You can double-click on the View Synthesis Report to see the various synthesizer options that were
enabled and some simple statistics for the synthesized design.

Fitting the Logic Circuitry Into the CPLD

We now have a synthesized logic circuit for the LED decoder, but we need to fit it into the logic
resources of the CPLD in order to actually use it. We start this process by highlighting the
XC95108 PC84 object in the Sources pane and then double-clicking on the Implement Design process.

Xilim: - Project Havigator - C:Atmpi.cpld_deszignzideszignl‘dezignl npl - [leddcd_vhd]

|_.®, File Edit “iew Project Source Process Macro Window Help =] x|
DEHG PP ELEFE [EE&(2R [R5 e Efan r
2=l
Sources in Project: I begin B
B designl
H s <= 1110111 when d="0000" =l=se
B €3 RCI5108 PLad<3TvHDL "0010010" when d="0001" else
1011101 when d="0010" =l=se
M1011011" when d="0011" else

= = 01110107 when d="0100" else
B Mol ---IUS"EF’S"“---J IE'-"”E‘”‘---I "1101011" when d="0101" else
71101111 when d="0110" else

2=l 1010010 when d="0111" else

Proceszes for Current Source: |l 1111111" when d="1000" else
: . th Check Syntax "1111011" when d="1001" else

Implement O esign "1111110" when d="1010" =lse

G \ Translate 0101111 when d="1011" e=l=se
G Fit O001101" when d=7"1100" else
G Generate Timing "O0011111" when d="1101" e=l=se
Y3 Generate PostFit Simulal "1101101" when d="1110" else -
'3 Generate IBIS Model "1101100";

-
. . =
] Henarata prnnr.amnnnim Fil= LlJ 4 I I _’I_I

B Process Vien I [ledded.vhd I

x| Done: completed successfully. ;l

i

‘ —"j

Process "Synthesize'" is up to date. |Ln 30, Cal 23 [H i

You can watch the progress of the implementation process in the status bar at the bottom of
the Project Navigator window. For a simple design like the LED decoder, the fitting is
completed in seconds (on a 850 MHz Athlon PC with 768 MBytes). A successful

implementation is indicated by the & next to the Implement Design process. You can expand the
Implement Design process to see the subprocesses within it. The Translate process converts the
netlist output by the synthesizer into a Xilinx-specific format and annotates it with any design
constraints we may specify (more on that later). The Fit process maps the netlist into the
circuitry elements and routing matrices contained in the device we selected. If the Implement
Design provcess had failed, a & would appear next to the subprocess where the error occured.

You may also see a ¥ to indicate a successful completion but some warnings were issued or
not all the subprocesses were enabled.

Xilim: - Project Havigator - C:Atmphepld_designshdesignl \designl.npl - [leddcd_vhd]

|)@ File Edit “iew Project Source Process Macro Window Help 181
DERE HFELEF D[eEe|2w |[» 28 2 e | r
2=
Sources in Project: | begin =
= E designi 3 <= 1110111 when d="0000" else

"O0010010" when d="0001" else
"1011101" when d="0010" else
"1011011" when d="0011" else
"0111010" when d4="0100" elze

= o .| i Srapshot.| Iy Librry | "1101011" when d="0101" else
"1101111" when d="0110" else

2=l mi010010" when d4="0111" else

Processes far Current Source: |= 1111111" when d="1000" else

71111011 when d="1001" else
11111107 when d="1010" else
"0101111" when d="1011" else
0001101 when d="1100" else
Generate Timing "0011111" when d="1101" else
Generate Post-Fit Simulal "1101101" when d="1110" else -

i3 Generate IB15 Model "lio11oots

Lﬁ‘ <11 _>l—I
B Process Vien I) ledded.vhd I

x| Done: cowpleted successfully. ;|

i

‘ Ilh‘d:onsoly(FranFs J ;Ij

Process "Implement Design' iz up to date. |Ln 30, Col 23 [=

Generate Prooramminn File

Checking the Fit

We have our design fitted into the XC95108 CPLD, but how much of the chip does it use?
Which pins are the inputs and outputs assigned to? We can find answers to these questions by
double-clicking on the Fitter Report in the Process pane.

Xilim: - Project Havigator - C:Atmpi.cpld_deszignzideszignl‘dezignl npl - [leddcd_vhd]

|_.®, File Edit “iew Project Source Process Macro Window Help =] x|
NSHG PFELEFE [EE&(2R [R5 e Efan r
2=l
hegin ;I

Sources in Project: I

5 <= 1110111 when d="0000" else
0010010 when d="0001" else
1011101 when d="0010" else
"1011011" when d="0011" else
01110107 when d="0100" else

B ol . | 100 Snapshot..| [0 Lirary .. | "1101011" when d="D101" else

1101111 when d4d="0110" else

== 1010010 when d="0111" =l1=se

Proceszes for Current Source: |;| "1111111" when d="1000" else

: . th Check Syntax "1111011" when d="1001" else

El G@? Implement D esigh 71111110 when d="1010" else

e Transae "0101111" when d="1011" else

E‘G&, Fit FOO01101" when d=7"1100" else

: y% 0011111 when d="1101" =1=se
B Wiew Fitted Jesiar "1101101" when d="1110" else -

<|:

3 Lock Pins "1101100%;
Genarata Tiininn LlJ LLI _’I_I

B Process Vien I [ledded.vhd I

f'l Done: completed successfully. ;l
L
; o
AT Conzoled FrinFes
Process “Implement Design' is up ta date. |Ln 30, Cal 23 [n i

This brings up a window containing the fitting statistics for the LED decoder. The top few lines
of the file show the LED decoder only uses 7 of the 108 available macrocells in the XC95108
CPLD. And it only uses 11 I/O pins (4 for input, 7 for output).

cpldfit: version E.30 Xilinx Inc.
Fitter Report
Design Name: leddcd Date: 10-20-2001, 2:03PM
Device Used: XC95108-7-PC84
Fitting Status: Successful

kkkkkkkkkkkkkkkkkkkkkkkkkk*k* RegoUrce SUMMATY Frrkkkkkkkkhkkkkkhhhkkkkkkxx

Macrocells Product Terms Registers Pins Function Block
Used Used Used Used Inputs Used
7 /108 (6%) 24 /540 (4%) 0 /108 (0%) 11 /69 (15%) 24 /216 (11%)

Further down in the fitting report we can see what pins the inputs and outputs use. The d
inputs have been assigned to pins 72, 17, 83, and 44. The s outputs which drive the LED
segments have been routed through pins 32, 45, 1, 6, 71, 14, and 57.

*kkkkxkkkkk*k*x***Reagources Used by SuCCeSSfully Mapped Logic******************

** LOGIC **

Signal Total Signals Loc Pwr Slew Pin Pin Pin
Name Pt Used Mode Rate # Type Use
s<0> 4 4 FB5 2 STD FAST 32 I/0 O
s<1> 3 4 FB6_ 2 STD FAST 45 I/0 6}
s<2> 3 4 FB1 2 STD FAST 1 I/0 O
S5<3> 2 4 FB1 9 STD FAST 6 I/0 6}
s<4> 4 4 FB2 2 STD FAST 71 I/0 O
s<5> 4 4 FB3 2 STD FAST 14 I/0 6}
sS<6> 4 4 FB4 2 STD FAST 57 I/0 O
** INPUTS **

Signal Loc Pin Pin Pin
Name # Type Use
d<0> FB2 3 72 I/0 I
d<1l> FB3 5 17 I/0 I
d<2> FB2 16 83 I/0 I
d<3> FB5 17 44 I/0 I

End of Resources Used by Successfully Mapped Logic

The fitting report even lists the logic equations for each output:
; Implemented Equations.

/HS<1>H - /ud<0>n * Nd<2s" * g3
ar "d<l>" * "d<2>" * "d<3>"
+ /ud<0>n * Nd<ls" * /nd<2>u * /nd<3>u

/"s<2>" = "d<O0>" * /"d<3>"
+ "d<O>" * /"d<l>" * /nd<2>u
ar /"d<1>" * "d<2>" * /"d<3>"

/"s<3>" = /"d<l>" * /"d<2>" * /"d<3>"
+ lld<0>ll * Ild<1>ll * lld<2>ll * /lld<3>ll

/"s<dsn = "d<0>" * "dels" * ndgc3sn
ar /"d<0>" * "d<l>" * "d<2>"
+ /"d<0>" * "d<2>" * "d<3s"
ar "d<0>" * /"d<l>" * "d<2>" * /"d<3>"

/"s<5>" = "d<O0>" * "d<l>" * /"d<3>"
+ "d<O>" * /nd<2>u * /nd<3>u
ar "d<l>" * /"d<2>" * /"d<3>"
+ /ud<1>n * Nd<2s" * 1Jc3sN

/HS<6>H - /ud<0>n * /ud<1>n * Nd<2s"
ar /"d<1>" * "d<2>" * "d<3>"
+ "d<O>" * "dels>" * /ud<2>n * Nd<3sn
ar "d<0>" * /"d<l>" * /"d<2>" * /"d<3>"

/"s<0>" = "d<0>" * "d<l>" * "d<2>"
+ "d<O>" * /"d<l>" * /nd<2>u * /nd<3>u
ar /"d<0>" * "d<l>" * /"d<2>" * "d<3>"
+ /"d<0>" * /"d<l>" * "d<2>" * /"d<3>"

Constraining the Fit

The problem we have now is that the inputs and outputs for the LED decoder were assigned to
pins picked by the fitting process, but these are not the pins we actually want to use on the
XS95 Board. The CPLD on the XS95 Board has eight inputs which are driven by the PC
parallel port and we would like to assign the LED decoder inputs to four of these as follows:

LED Decoder Input XS95 XC95108 CPLD

Pin
do P46
d1 P47
d2 P48
d3 P50

Likewise, the XS95 Board has a seven-segment LED attached to the following pins of the
CPLD:

LED Decoder Output XS95 XC95108 CPLD

Pin
sO P21
s1 P23
s2 P19
s3 P17
s4 P18
s5 P14
s6 P15

How do we constrain the fitting process so it assigns the inputs and outputs to the pins we want
to use? We start by highlighting the leddcd object in the Sources pane and then double-clicking
the Edit Implementation Constraints (Constraints Editor) process.

Xilim: - Project Havigator - C:Atmpi.cpld_deszignzideszignl‘dezignl npl - [leddcd_vhd]
|a® File Edit “iew Project Source Process Macro Window Help

PEHG PFELEFE EE&(2R [=@ |G 7]
x] .
Sources in Project: | library IEEE; —
______ B desiont use IEEE.STD LOGIC 1164.ALL;:
use IEEE.STD LOGIC ARTITH. ALL:
F- €3 #CIT06 PLOsHS T vHOL use IEEE.STD LOGIC UNSIGNED.ALL:
e IE ledded [leddod. whd) - —
entity ledded is
— X - = - Port (d : in =td logic vector |
B2 hodule View l X Snhapzhot View I |E Library Wiew I s : out std logic vectar
end leddcd:
=l=
Processes for Current Source; I;| architecture Behavioral of ledded i
= W Drezign Entry Ltilities
- & User Constraints begin
- Edit Implementation Constraints File
: Assign Ping [Chipviswer) 5 <= "1110111" when d="0000"
E dit Implernentation C tz Editar] "O0010010" when d="0001"
Create Schematic Syrmbal k "1011101" when d="0010"™
Launch ModelSim Simulator "1011011" when d="0011"™ _
Wiew WHOL Instantistion Template r 41 S A b A ML
—_— [W WY " - -
B Process Vien I [ledded.vhd I
f'l Done: completed successfully. ;l
¥
u _'l:I
AT Conzoled FrinFes
|Ln 15, Col 41 [=

Faor Help, press F1

XESS Corporation - www.xess.com ©2001 by XESS Corp.

The Constraints Editor window appears. Click on the Ports tab in the upper pane. A list of the
inputs and outputs for the LED decoder will appear. We can enter our pin assigments here.

47 Xilinx Constraints Editor - [Ports - ledded.ngd / ledded.uck]

Dl=@| x| ===l 2]

A Template UCF file created by the Project Nawigatar

[7

Introduction to WebPACK 4.1 for CPLDs 36

We start by clicking in the Location field for the d<0> input. Then just type in the pin assignment
for this input: P46. Do this for each of the inputs and outputs using the pin assignments from
the tables shown above. After doing this, the Constraints Editor window appears as follows.

.;;y]XiIinx Constraints Editor - [Ports - leddcd.ngd / leddcd. ucf=]
File Edt Wiew Window Help

D|@(E] x| =[=|0]x| 2%

Port Hame Port Direction Location Pad to Setup Clock to Pad
d=0= IMPLIT P4& A,
d=1= IMPLIT P47 MIA,
d=2> IMPLIT P45 RN
d=3= IMPLIT P30 IR,
s<0= QUTPUT P21 MR,
s<l= QUTPUT P23 A,
g=2= QUTPUT] U
3= QUTPUT P17 MR,
z=d= OUTPUT P15 M2,
5252 aUTPUT P14 B
s=f>= QUTPUT P15 F, RN
Pad Groups %ﬂ
[~ 1/0 Configuration Options Giroup Name: I l_IEreate Giroup
Brohibit 1/0 Locations.. | | Gelsct Group: | r _Pedioseun. |
Clock to Pad... |

Global Parts I Advanced | Mizc I
MET "s<B:" LOC = "P14"; =]
MET "s" LOC = "F15"; j
UGF Gonziraintz [read-write] |UCF Constraints [read-anky] Source Congtraints [read-only) I
For Help, press F1 i

After the pin assignments are entered, click on the El button to save the pin assignment
constraints. Then select File=>»Exit in the Constraints Editor window.

Since we are changing the constraints on our design, we are asked to reset the implementation
process so it will be re-run with our new constraints. This just means we have to re-run the
fitting process again if we want the design to use the pin assignments we just made. Click on
Reset and then double-click the Implement Design process to re-fit the design with the new pin
assignments.

Fiezet the Implement Dezign process so that vour UCF changes wil
be read?

The User Conzstraint File [UCF] has changed. Az a rezult, it may not
be pozzible to reproduce the zame implementation resulks uzing the
new LICF.

To incorparate the new LICF at this time, choose RESET
to mark the Implement Dezsign process: out of date. Then re-run the
Implement Design proceszs. Othemwize, choose RETAIN to keep the
current implementation rezults intact and not incorporate the new
LICF at thig tirne.

Retain |

Next double-click on the Fitter Report process to view the pin assignments made by the fitter
process. Looking through the fitter report, we see the following:

kkkk kxR dxk Lk k *Regources Used by Successfully Mapped Lok *x*kkkk &k kik ko k& +

** LOGIC **

Signal Total Signals Loc Pwr Slew Pin Pin Pin
Name Pt Used Mode Rate # Type Use
s<0> 4 4 FB3 11 STD FAST 21 I/0 O
s<1> 3 4 FB3 12 STD FAST 23 I/0 6}
s5<2> 3 4 FB3 8 STD FAST 19 I/0 O
S<3> 2 4 FB3 5 STD FAST 17 I/0 O
s<4> 4 4 FB3 6 STD FAST 18 I/0 6}
s<5> 4 4 FB3 2 STD FAST 14 I/0 O
S5<6> 4 4 FB3 3 STD FAST 15 I/0 6}
AN PRSIk

Signal Loc Pin Pin Pin
Name # Type Use
d<0> FB6_3 46 I/0 I
d<1s> FB6_5 47 I/0 I
d<2> FB6_6 48 I/0 I
d<3> FB6_8 50 I/0 I

End of Resources Used by Successfully Mapped Logic

The reported pin assignments match the assignments we made in the Constraints Editor
window so it appears we accomplished what we wanted.

Viewing the Chip

After the implementation process completes, you can get a graphical depiction of how the logic
circuitry and I/O are assigned to the CPLD macrocells and pins. Just highlight the leddcd object
in the Sources pane and then double-click the View Fitted Design (ChipViewer) process.

Xilim: - Project Havigator - C:Atmph.cpld_deszignzideszignl‘dezignl npl - [leddcd_rpt [READ ONLY]]

|_.®, File Edit “iew Project Source Process Macro Window Help =] x|
NS g FFEDEFE B (2R |[f s e [mfs 7]
==

There are 7 macrocells in high performance m;l
There are 0 mwacrocells in low power mode (MC
There are & total of 7 macrocells used [(MC) -

Sources in Project: I

End of Resource Sunmary
O##*xxreetrrrartsDezsources Used by Successful

*F LOGIC *%

Signal Total 3ignals Loc
2=l Narme Pt Used
Proceszes for Current Source: |;| 50> 4 4 FBE3 11
& L3P Tianslate s<1x 3 4 FB3 12
2 e Fi S<2> 3 4 FB3 &
P o Fit s<3> 2 4 FB3 5
B e ods 4 4 FB3 &
Lock Fins Z<5 4 4 FB3 2
Generate Timing S<E> 4 4 FB3_3
Generate Post-Fit Simulation Model -
Generate [BIS Model & Ll.r* TMBIELS o8 _’l_l

.'I:Pmcessll'iewl [/] leddzcdvhd [2) ledded.ipt

x| Done: completed successfully. ;l

For Help. press F1 |Ln 57, Cal 16 [=

The ChipViewer window will appear containing two panes:

1. The left-hand pane lists the LED decoder inputs and outputs assigned to the various
function blocks in the XC95108 PC84 CPLD.

2. The right-hand pane shows the 108 macrocells of the CPLD arranged into six groups of 18
cells each. The 69 I/O pins are also shown. (The 15 pins used for Vcc, GND, and
programming are not shown.)

g})ﬁlinx Chip¥iewer - leddcd. ymb

File Edit Wiew Help

Ei"-|ﬂ| §| ‘?|N”| &ll Gll @Ll @ll Ctl{:}l @l

Ieddcd.mnﬁ Post/®™ E[| ‘m_ileddcdymG Placement for ¥C95108-7-PC84

_4 ledded

B-(2) FBE

AOonno 00 00 0o[a o o[n

[y ST T e T S G,

I3

Ly

= =Z* E£EI 331K m=zZ ==&
n_nono nno oo nno oo

(COZEOROPCROROOCDDDE | RPREIPRPEROPORCI00E | (PEERPIPENPRM:

Done

The function blocks with & icons next to them contain macrocells that are used in our design.
(The remaining function blocks are not used by our design.) Clicking on the ® next to FB6, we
can see that the inputs enter through pins attached to function block 6. Meanwhile, all the
outputs are generated by macrocells in function block 3.

g})ﬁlinx Chip¥iewer - leddcd. ymb

File Edit Yiew Help

=u] 82 @laln|al glo] @
% leddcdmo post] |

4 leddcd

=23 FB3

124 INPUTS
------ ® N215
------ ® N23
------ ® N178
------ & N200
------ ® N1ED
...... ,., Ngg
------ & N14D
-4 OUTPUTS
...... .’ Sqﬁ;
...... .’ SqE}
...... .’ ng}
...... ..Sq4} -
...... .‘S{E} -
...... # s=(= "
...... .’ Sq1} :E

annon nn nn oo oo

.
-
m
=
HOOf LD EE
nhdh am he s ea
ErnErannnnns M o, i on ;ML L LT,

=4 FBG -

L e e e e = e
J EE SF REE RE £4

Done

We can see which inputs affect each output by right-clicking in the right-hand pane and
selecting the Inputs Connection item from the pop-up menu.

g})ﬁlinx Chip¥iewer - leddcd. ymb

File Edit Wiew Help

Ei’.‘-|E| %| ‘?|N”| E"ll Ell @ll @ll f:}l{:}l @l

Ieddcd.wnﬁ Post /™ E[| - Eleddcd.\nnﬁ Placement for XC95108-7-PC84

=4 FBB =

4 leddcd
...... ... FE1
...... ... FEE
- _4FB3
=4 INPUTS Zoom Full Wiew
""" * NS Zoom In
B :
...... & 200 Zoom To Box -
""" * 16D Inputs Connection :
______ : E?iﬂ Cutputs Connection E:
=4 QUTPUTS v Macrocell Detail = ™
...... # S=5=
------ # s=F= - Bz
------ # 523: et o
...... & 4= o e
...... # g=3= R he
------ ® s<0- o "
...... # s<1= -_':E ::
...... ... FE4 =

8
[AR ITTT | AR A AR

Done

This causes red connecting lines to be drawn from each green-colored input to the blue-colored
outputs it affects as shown below. For the LED decoder, every input affects every output so
there are seven lines connecting each input to every output.

g})ﬁlinx Chip¥iewer - leddcd. ymb

File Edit Wiew Help

Eﬁ‘-lﬂl %l ‘?lh”l E"ll Gll @ll @ll Ctl{:?l @l
2 leddcdvmé post M |
_i leddcd
...... ... FE-1
...... ... FEE
=24 FB3
=4 INPUTS
------ * N215
------ * N2 .5 -
------ ® N178 b -
------ # NZ200 § i
------ # MN1G0 5 -
...... # G99 g B
------ ® 1140
=4 OUTPLUTS i
...... # g=5=
...... # S<=f= et o
""" * 53 - B
...... # s=d= - -
...... # g=3= o] i
...... # s=l= . -
...... # s=1:= '.':E ;:
...... ... FE4 a
...... ... FES N |
=4 FBB 4 -
= A INPUTS 14 v
@ d=0> o o
* d=1= W b
....... ® g=7= - -
....... # d=3= . [

Done

We can see more detail by clicking on the @ button several times to expand the right-hand
pane. We can see the name of each output and the pin it is assigned to. By placing the mouse
pointer over a particular pin, we get some information on the settings for the configuration
options for the pin and the attached macrocell. For example, macrocell 12 of function block 3 is
configured in the standard power consumption mode, and pin 23 is set for the maximum slew
rate. We can also double-click on a macrocell to expand it into a separate window where we
can see a list of its inputs, the Boolean equation for its output, and a rather uninteresting block-
level schematic.

g})ﬁlinx Chip¥iewer - leddcd. ymb

File Edit Wiew Help

Eﬁ‘-lﬂl %l ‘?lh”l E"ll Gll @ll @ll Ctl{:}l @l
2 leddcdvmé post M |
‘{"lidchElljr] [5=5=] 14# El
...... & FB? [z=Bx]) 15 E
=4 FB3 -
= _j IMPLUTS [s=3=] 1'?: E Ms1
------ # M21A (sedx) 16 EI Mez
...... ... N231 EI
""" * N178 iz=2:1 1o [l EI sz
e e = = P
...... ... Ngg
...... & M140 (5203 21: : BN e
=k _j QUTPUTS [5=1=] 23 -'.Hh- E &7
...... # 5=5= [i® E
...... & s=fx | o
...... ... S.:;E} 25[E E]EQ
...... # s=4= 251 E '-
:: g:g: af | B B Ow
...... # == ﬁ
...... # FB4
...... .’. FES RS
E-_4 FBA
= 4 INPUTS -
bl d=0r 52 EI
el =1 33 =3 46 [de0x) =
...... ® g=7= El
et =3 54 [E| 47 [d21=]
=[] EI 45 [da2=]
L]
=[] EI S0 [d23=]
20 | £ ~

Done |

Generating the Bitstream

Now that we have synthesized our design and fitted it to the CPLD with the correct pin
assignments, we are ready to generate the bitstream that is used to program the actual chip.
To initiate the programmer, we highlight the leddcd object in the Sources pane and double-click
on the Configure Device (iMPACT) process.

Xilim: - Project Havigator - C:Atmpi.cpld_deszignzideszignl‘dezignl npl - [leddcd_vhd]

|a® Fil= Edit “iew Project Sowce Process Macro Window Help =121 x|
DEHG PP ELEFE [EE&(2R [R5 e Efan r
=]

I librarvy IEEE; =
use IEEE.STD_LOGIC_ 1164.ALL;

use IEEE.STD LOGIC ARITH.ALL:

use IEEE.STD_LOGIC UNSIGWED.ALL:

Sources in Project:

entity ledded is
Port (d : in =td logic wvector (3 downto 0);
3 ¢ out std logic wvector(6 downto 0));

N B2 hodule View l X Snhapzhot View I TD Library Wiew I

end leddcd:

==
Processes for Curent Source: I architecture Behavioral of leddecd is b
----- W Drezign Entry Ltilities
£ Synthesize begin
z A Implement Design
(= G Generate Programming File 3 €= "1110111" when d="0000" else
b | Configure Device [iMPACT) "o010010" when d="0001" eslse
R "1011101" when d="0010" else
"1011011" when d="0011" else
LLI FOAAA0A0F wmlvss A=F0O1000F =12 _)I_I

B Process Vien I [/ ledded.vhd I

=l

Far Help, press F1 ||—h 15, Col 41 | H A

The iIMPACT window will appear and it will try and fail to establish a connection with the CPLD
through the various ports of the PC. This is normal since the XS95 Board is not made to
interface directly with the IMPACT software. Just click on the OK button and proceed.

" Untitled - iMPACT = 3] =]

ile Edit Operationz: Output Yiew Help
IR D T AEE
Boundary Scan |5Iave Seriall Select Mapl

ilinx iIMPACT =]

Communications with the cable could not be establizhed.
Please check the cable connections and cable power source.

0K |

Cable cormectinn failsd. =l
Connecting to cable (COTd4 Port).

Cable connection failed.

Elapsed tirne = 24 sec.

Cable autodetection faled.

==

] ;Ij
Connecting to the selected cable... |Wo Connection | | i

Since iIMPACT cannot determine how the CPLD is connected to the PC, it will ask you what
type of communication link the connection uses. Since there is no appropriate link for the XS95
Board, click the Cancel button.

Cable Communication Setup E |

Communication Maode

% Parallel M ultilifneS enial
= pultilireAUSE
Baud Fate: Port:

57500 H {Ipt1 -]

The iMPACT window now shows the JTAG chain of chips that are to be programmed. We only
have one chip in our LED decoder design, so only one XC95108 CPLD is shown.

D Untitled - iMPACT _ 3] x]
Eile Edit Operations Output “iew Help

PR
Boundary Scan |5Iave St:riall Select Mapl

Right click dewice to zelect operations

TDI g EILINY
®ZcA5103
ledded. jed
TDO

Diewrice #1 selected
Diewrice #1 selected
Diesrize #1 selected

==

]

Far Help, press F1 |Ma Connection |

\ss

We proceed by selecting the destination for the bitstream. The XS95 Board has a separate
utility called gxsload for programming the CPLD, so we need to store the bitstream into a file that
gxsload can read. To do this, select Output=»Use File=» SVF File=>»Create SVF File... as follows.

2 Untitled - iMPACT _ O] x|
File Edit Operations | Output Miew Help

J 0= n | clu% Epl Cable Auto Connect . | @ | *?
Cable Setup...
Cable Bezet ap |

[Eafle Eenmnest

Boundary Scan | :

ze Cable...

Use File Create S%F File...
STAPL File » Append ta SYWF File...

] [Hmse SHEFile

TDI

25108
leddod jed

TDO

Dievice #1 selected
Dewvice #1 selected
Device #1 selected

Dessice #1 selected
== -
L] 3

Create an SWF file and direct subsequent operations to it |No Connection | | o

Now a window appears where we can enter the name for the file that will hold the bitstream.
We can click on the Save button to accept the default name of leddcd.svf.

Save i |@ design] j ﬁl

1 _ngo

P

File narne: IIeu:Iu:Iu:cl Save

Save as type: | 5VF Files(* 3w =] Cancel |
5

At this point we can generate the bitstream that will be stored in the leddcd.svf file. Click on the
Operations=>»Program... menu item to initiate the actual bitstream generation process.

D Untitled - iIMPACT =] E3
File Edit | Operations Output Wiew Help

(DS |£F B | =p | W2

Wit
Bounda =i dap |

Eraze...

Funchional Test
Blamk Eheck
Eeadmact:,.
Eragran SRS HEE
TDI— Get Device |0
[et [Nevice Eheckaumm
et Device Signatureszercode
et =R device [HES

TDio— IDCODE Looping...

Devvice #1 selected
Dewvice #1 selected
Dewvice #1 selected
Dievice #1 selected

]

Frograms the selected devices |File: | 5%F |

N

A Program Options window appears where we can set some options for the generated
bitstream. We usually check the Erase Before Programming box so that the Flash storage in the
CPLD will be erased before we start loading a new design. (The only time we can leave this
box unchecked is when we are programming a CPLD which we know is already erased.)

The other two options whch are of interest are Write Protect and Read Protect. Checking the Write
Protect box generates a bitstream which programs the CPLD so that it cannot be reprogrammed.
(Don't worry, the device can still be erased if you want to re-use it.) The Read Protect option
prevents anyone from getting the bitstream out of the CPLD so they can't steal the design. We
won’t enable either of these options.

Program Options E |

¥ Erase Before Programming [T Functional Test
[Werily
[Eead Frotect ~ PROM

i
[wiite Protect IS Sk userars)

—irtan? T Load Fpoa

™| Secure Mode 2| Earallelfiade
B hiear ey I (5o 04 for G
I BRGH Usercade (6 Her Chars) | FFFFRFFE

™| Bl ES: Brterupta. 0 characters

Cancel Help

After we click OK in the Program Options window, the bitstream generation process begins.
The progress is reported in the lower pane of the iMPACT window:

D Untitled - iMPACT _ 3] x]
File Edit Operations Output “iew Help

[DSH| % e = 0 5w
Boundary Scan |5Iaw: St:riall Select Mapl

TDI
®cB5108
ledded jed
TDO
'1": Prograroaning desdce... -
dome.

'1": Prograraning corapleted successfilly.
PROGRESS EMD - End Cperation.
Elapsed titne = 2 gec.

] ;IEI

For Help, press F1 File | S%F | | A

Once the bitstream file is generated, click on File=»OK to close the window. (You will be asked
if you want to save the configuration. Don't bother.)

Downloading the Bitstream

Now we have to get the bitstream file programmed into the CPLD of the XS95 Board. The

XS95 Board is powered with a 9 VDC power supply and is attached to the PC parallel port with
a standard 25-wire cable as shown below.

The XS95 Board is programmed using the gxsload utility. We double click the &

bring up the following window:

X

GxSLOAD

X gxsload [_|=] |

Board Type [<595-108 = [l |
Fart Im]
FPGA/CPLD Fisbd Flazh/EEPR O
High Address | |
Loww &ddress I I
Ipload Faormat IHE}:: j] IHE>< j]

Then we open a window that shows the contents of the folder where we have stored our LED

decoder design (C:\tmp\cpld_designs in this case). We just drag the leddcd.svf file from the design1

window into the gxsload window.

J *v@%l@l
|

Address | C:\tmphopld_designsidesigni j

__projnay.log
_impact.log

designl.jid
_chipwview.pl
ledded. st
ledded jed

ledded. mid
__Impact.rzp

. leddzd. prx
F&] automake.log a _cpldflt.rsp
5
tmperr.err

_cpldfittel

X gxsload

Board Type |><595-1n=3
ILF'T2 -I

FPGA/CFLD

ml

High Addresz | |

Puart

Flazh/EEFROM

Lo Address | |

icon to

KN I— 0
|1 object(z] selected | b

pload Forrmat IHE}{

| s

Then we click on the Load button to initiate the programming of the XS95 Board. Downloading
the leddcd.svf file will take under a minute.

X gxsload [_|=] |

Board Type [595-108 =
Part Im

FPGA/CPLD Rk Flazh/EEPROM

|

High Address | |

Laow Address I I
Ipload Faormat IHE}:: j] IHE>< j]

X gxsload =]

Board Type [595-108 =
Port ILPTE "I E st |

FPGA/CPLD Rk Flazh/EEPROM

High Addresz | |

Low Address I I
IUpload Format IHE}{ j] IHE}{ j e

Configure CPLD

Dawrloading ledded. svf

Testing the Circuit

Once the CPLD on the XS95 Board is programmed, we can begin testing the LED decoder.
The eight data pins of the PC parallel port connect to the CPLD through the downloading cable.
We have assigned the inputs of the LED decoder to pins which are connected to the parallel
port data pins. The gxsport utility lets us control the logic values on these pins. By placing
different bit patterns on the pins, we can observe the outputs of the LED decoder through the
seven-segment LED on the XS95 Board.

Double-clicking the k& icon initiates the gxsport utility. The d0, d1, d2, and d3 inputs of
the LED decoder are assigned to the pins controlled by the D0, D1, D2, and D3 buttons of the
gxsport window. To apply a given input bit pattern to the LED decoder, click on the D buttons
to toggle their values. Then click on the Strobe button to send the new bit pattern to the pins of
the parallel port and on to the CPLD. For example, setting (D3,D2,D1,D0) = (1,1,1,0) will cause
E to appear on the seven-segment LED of the XS95 Board.

X gxsport M=
of of of of o of o|[E _ea |
oY DE D& D4 D3 D2 D1 LD
Stiobe | W Count Fort Im

If you check the Count box in the gxsport window, then each click on the Strobe button
increments the eight-bit value represented by D7-D0. This makes it easy to check all sixteen
input combinations.

Hierarchical Design

A Displayable Counter

We went through a lot of work for our first CPLD design, so we will reuse it in this design: a
four-bit counter whose value is displayed on a seven-segment display. The counter will
increment on a rising edge of the clock. The four-bit output from the counter enters the LED
decoder whereupon the counter value is displayed on the seven-segment LED. A high-level
diagram of the displayable counter looks like this:

4-Bit LED 7-Segment
Counter Decoder LED
s - s6
countO do
coﬂnﬂ d1 E | 82 s4
clk count2 d2 J*Z—D
count3 d3._ J’—DE » s1

This design is hierarchical in nature. The LED decoder and counter are modules which are
interconnected within a top-level module.

Starting a New Design

We can start a new project using the File=»New Project... menu item. We name the project
design2 and store it in the same folder as the previous design: C:\tmp\cpld_designs. The other
properties in the New Project window retain the same values we set in the previous project.

Mew Project |
Project Hame: Froject Location:
IdesignZ'I I|::'\.tmp"u:plu:l_u:lesigns'\designE |
Froject Device Options:
Property Hame Value
Device Family ¥Ca500 CPLDs
Device XCA5108 PCE4
De=ign Flow #=T WHDL

k. & I Cancel

Once we click on OK in the New Project window, the Project Navigator window appears as
shown below.

Xilim: - Project Havigator - c-Atmphcpld_deszignsidezign2ideszign?_npl

File Edit “iew Project Source Process Macro Window Help

NSHd FFEEERE Em&(2 R ||[fea s e (mED C
x|
Sources in Project: I
o B EEEE

i] WE9E108 PCB4:<ST WHOL

N B2 hodule View l X Snhapzhot View I TD Library Wiew I

2=
Processes for Current Source: I
[Mo Proceszses Available)

B Process Vien I

2l (Empty Log)

= - |

‘ —"_I

Hierarchy is up to date.

Adding the LED Decoder

The first thing we do after getting the design2 project started is to add the LED decoder
module. We do this by right-clicking on the XC95108 PC84 object in the Sources pane and
selecting Add Source ... from the pop-up menu.

Xilim: - Project Havigator - c-Atmphcpld_deszignsidezign2ideszign?_npl

File Edit “iew Project Source Process Macro Window Help
NSHd FFEEERE Em&(2 R ||[fea s e (mED C
=]

Sources in Project: I

%] <C5108 PC

MNew Source...
Agdd Source... Ingert

Add Copy of Source,.. Shift+nzert
= Eemawe Welete
B2 hodule View | R Shapsl —

| a7 i) W =
[0pery
Frocesses for Current Source Tl

..... W
Toggle Paths
Froperties...

B Process Vien I

2l (Empty Log) =

i

‘ —"_I

Add a file fram anather project H A

The Add Existing Sources window appears and we move to the C:\tmp\cpld_designs\design1
folder. Then we highlight the leddcd.vhd file that contains the VHDL source code for the LED
decoder.

Add Existing Sources K

Look in: | 23l design1 E ﬁl

I:I _hgo
|:I wat

File name: [leddcd.vhd Open

Filzz of tupe: ISu:uurn:es [bt vhd; sohe e dia;) j Cancel |
i

After clicking on Open, a window appears that asks us the type of file we are adding to the
project.

Choose Source Type |

leddzd. vhd iz which zource tppe?
The zuffix iz ambiguous as to type.

YWHOL Package
WHOL Test Bench

Cancel |

We select VHDL Module since the leddcd.vhd file contains a standard VHDL description of a circuit.
(Packages contain extra syntactical elements for modules meant to be used as a library. Test
benches contain VHDL code that exercises other VHDL modules through a sequence of tests.)
After clicking OK, we see that the LED decoder module has been added to the Source pane of
the Project Navigator window on the next page.

Xilim: - Project Havigator - c-Atmphcpld_deszignsidezign2ideszign?_npl

File Edit “iew Project Source Process Macro Window Help

DEdd #FEIEEE oER X

JJc'ﬁ‘: E‘E—" L |%|cs_n

B

Sources in Project: I

N B2 hodule View l X Snhapzhot View I TD Library Wiew I

==

Frocesszes for Curent Source:
----- W Drezign Entry Ltilities
Synthezize
Implement D ezign
Generate Prograniming File

B Process Vien I

x| Done: completed successfully.

i

‘ I‘dh\tonsolyﬂ FrdnFim

Hierarchy is up to date.

Adding a Counter

Now we have to add the counter to our design. We don't have a counter module yet, so we

have to build one with VHDL. Right-click on the XC95108 PC84 object and select New Source...
from the pop-up menu.

Xilim: - Project Havigator - c-Atmphcpld_deszignsidezign2ideszign?_npl

File Edit “iew Project Source Process Macro Window Help

NSHd FFEEERE Em&(2 R ||[fea s e (mED C
B
|

=da [evSouce L,]
Add Source. Inzert

Sources in Project:

& Add Copy af Saurce.. Shift+ nsert
— E et
B2 hodule View I C S o
e ove b iraran..
— gpen
Frocesses for Cument Close
..... W
Toaggle Paths
Properties. ..

B Process Vien I

x| Done: completed successfully.

i

|
‘ —"j

Add a new zource to the project H A

XESS Corporation - www.xess.com ©2001 by XESS Corp.

As in the previous example, we are prompted for the type of file we want to add to the project.
Once again, we select the VHDL Module menu item. Then we type counter into the File Name
field and click on the Next button.

Hew

WHDL Module
Schematic

E
Test Bench "W aveform

State Diagram

c:htmphepld_designztdesign2 |

Introduction to WebPACK 4.1 for CPLDs 62

XESS Corporation - www.xess.com ©2001 by XESS Corp.

Then we declare the inputs and outputs for the counter in the Define VHDL Source window as
shown below. The counter module receives a single input, clk, and has a four-bit output bus,
count, which outputs the current counter value.

Define YHDL Source

Click on Next and check the information about the module.

Mew Source Information

T

Introduction to WebPACK 4.1 for CPLDs 63

After clicking Finish in the New Source Information window, we are presented with a VHDL
skeleton for the counter. We flesh-out the skeleton as follows:

librarvy IEEE: ;l
uze IEEE.3TD LOGIC 1164.ALL:

use IEEE.3TD LOGIC ARITH.ALL:

uze IEEE.3TD LOGIC UNSIGHED.ALLL:

entity counter i=
Port [elk @ in std logic:
count @ out std logic wector (3 downto O] ;7
end counter:

architecture Behawvioral of counter is
signal cnt: std logic wvector (27 downto 0 ;
hegin
process(clk)
begin
if elk'event and clk='1l' then
cnt <= cnt + 1;
end if:
end process:
count (3 downto 0) <= cnt (27 downto 24);

end EBehavioral: =
41 _rl_I

Eﬂ counter. vhd
[

Line 12 declares a 28-bit signal, cnt, that is the current value of the counter. The process on
lines 15-20 controls when counter increments. The condition clause of line 16 is only true when
the value on the clk input goes from 0 to 1. Then the statement on line 17 replaces the value in
cnt with its incremented value. (We can use the high-level addition operator instead of having
to describe a 28-bit adder because on line 4 we have linked into the ieee.std_logic_unsigned.all
package that supports unsigned arithmetic.) Finally, line 22 places the upper four bits of the
current counter value onto the outputs of the module.

Why are we building a 28-bit counter and using only the upper four bits? The counter will be
driven by the oscillator on the XS95 Board which has a default frequency of 50 MHz. The LED
display would be changing much too quickly at this frequency. By connecting the LED decoder
to the upper four bits of the 28-bit counter, the display will only change once in every 2% clock
cycles. So the LED display will change every 2%* / (50 x 10°) = 0.336 seconds which is slow
enough to be seen.

After entering the VHDL shown above and saving it, we see that the counter module has been
added to the Sources pane of the Project Navigator window.

Xilim: - Project Havigator - c:Atmphcpld_designs\dezsign2idesign2_npl - [counter.vhd]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help _|5’|i|
D@ HFELEFE [eEe|2w |2 2e 2 e |G r
2=
I library IEEE; =]

Sources in Project:

use IEEE.STD _LOGIC 1164.ALL:
use IEEE.3TD_LOGIC ARITH.ALL:

F-Ed HLSIDE PLasAST VDL use IEEE.STD LOGIC UNSIGHED.ALL:

counter [counter.whd)

[leddcd [C:\tmphepld_designsdesig

entity counter 1i=s
Port { clk : in std logic:

1] [3
— 2 count @ out std logic vector (3 downto 0));
BT hodule ... l I0m Shzpsho.. J E Libtary... I end counter:
~l=l architecture Behavwioral of counter is
Proceszes for Curment Source: | gignal ecnt: std logic vector (27 downto 0);

hegin
processiclk)

Dezign Entry Utilities
Sunthesize

Yiew Spnthesis Beport begin
Analyze Hierarchy if clk'event and clk='1' then

.’ C ta cnt €= cnt + 1;
end if;
end process;
count (3 downto 0O) <= cnti(27 downto 24);

Implement D ezign
enerate Programming File

end Behawvioral: -
[«1 _'I_I
B Process Vien I [counter.vhd I [,\\s
x| Done: completed successfully. ;l

i

‘ —"j

Process "Check Syntax' is up to date. |Ln 21, Cal 16 [H i

Tying Them Together

We have the LED decoder and the counter, but now we need to tie them together to build the
displayable counter. We will do this by connecting the counter to the LED decoder in a top-
level schematic. Before we can do this, we have to create schematic symbols for both the
counter and LED decoder modules. To create the counter schematic symbol, highlight the
counter object in the Sources pane and then double-click the Create Schematic Symbol process.

Xilim: - Project Havigator - c:Atmphcpld_designs\dezsign2idesign2_npl - [counter.vhd]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help _|5’|i|
FHE HFE(MEFE BEE (2R (L 28 o |Gl B
=l _ -
Sources in Project: | library IEEE;
______ E design? use IEEE.STD _LOGIC 1164.ALL:
use IEEE.ZTD LOGIC ARITH.ALL;
& EE ALISIE PLEERoT VHDL use IEEE.STD LOGIC UNSIGNED.ALL:
------ coLnker || =aLnker. y hl:|| — -
------ @ ledded [C:Mmphopld_designzhdesig entity counter is
. I & Port { clk : in std logic:
count @ out std logic vector (3 downto 0));

N BT hodule ... l I0m Shzpsho.. J E Libtary... I

==

Frocesses for Current Source: |
Dezign Entry Utilities
UserEnnshanﬂs

Wiew WHDL Inslanhahon Te
Sunthesize

Implement Dezign

Generate Progranmming File

| |

-ﬁPmcwsthl

=

[counter.vhd I

end counter;

architecture Behavwioral of counter is
gignal ecnt: std logic vector (27 downto 0);
hegin
processiclk)
begin
if elk'event and
cnt. <£= cnt +
end if;
end process;
count (3 downto 0)
end EBehawvioral:

L1

clk='1"
1;

then

<= cnt (27 downto 24);

S|
I

Done:

completed successfully.

‘ I‘dh\tonsolyﬂ FrdnFim

Hierarchy is up to date.

|Ln 21, Cal 16 [

A ¢ will appear next to the Create Schematic Symbol process after the symbol is created. Repeat
this procedure to create the schematic symbol for the LED decoder.

Xilim: - Project Havigator - c:Atmphcpld_designs\dezsign2idesign2_npl - [counter.vhd]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help

DEEG BFE LR E BER 2R

JJ‘;"I‘: E‘E’ - |%|cs_n

2=

Sources in Project: |

BT hodule ... l I0m Shzpsho.. J E Libtary... I

==

Frocesses for Current Source: |
Dezign Entry Utilities
Uzer Constraints

:“mﬁ?

Yiew WYHOL Instantiation Te
Sunthesize

Implement Dezign

Generate Progranmming File

=

| |

-ﬁPmcwsthl

library IEEE:

use IEEE.STD LOGIC 1164.LLL;

use IEEE.STD_LOGIC ARITH.LLL:
use IEEE.STD LOGIC UNSIGNED.ALL:

entity counter 1i=s
Port | clk :
count
end counter;

in std_logic;
out std logic wvector (3 downto 0)):

architecture Behavwioral of counter is
gignal ecnt: std logic vector (27 downto 0);

hegin
processiclk)
begin
if elk'ewvent and clk='1l' then
cnt <= cnt + 1;

end if;
end process;
count (3 downto 0)
end EBehawvioral:

L1

<= cnt (27 downto 24);

[counter.vhd I

S|
I

Done:

completed successfully.

‘ I‘dh\tonsolyﬂ FrdnFim

Process "'Create Schematic Symbal” iz up to date.

|Ln 21, Cal 16 [

XESS Corporation - www.xess.com ©2001 by XESS Corp.

Once the schematic symbols for the lower-level modules are built, we can add the top-level
schematic to the project. Right-click on the XC95108 PC84 object and select New Source... from
the pop-up menu. Then highlight the Schematic entry in the New window and name the
schematic disp_cnt. Then click on Next.

Hew

IJzer Document
WHDOL Module

Schematic

X
Test Bench "W aveform

State Diagram

c:htmphepld_designztdesign2 |

Introduction to WebPACK 4.1 for CPLDs 68

XESS Corporation - www.xess.com ©2001 by XESS Corp.

There is very little to do when setting-up a schematic, so just click on the Finish button in the
New Source Information window that appears.

Mew Source Information

T

Introduction to WebPACK 4.1 for CPLDs 69

Now the disp_cnt schematic object has been added to the Sources pane. Double-click it to open a

schematic window.

Xilim: - Project Havigator - c:Atmphcpld_designs\dezsign2idesign2_npl - [counter.vhd]
|)@ Fil= Edit “iew Project Souce Process Macio Window Help

DEEG BFE D E BER 2R

JJ‘;"I‘: E‘E’ - |%|cs_n

2=

Sources in Project:

|

N BT hodule ... l I0m Shzpsho.. J

|
[Ty Library...

L3

==

Froceszes for Curent Source:
ezign Entry Ultilities
Sunthesize
Imnplerent D esign
Generate Programming File

B Process Vien I

library IEEE:

use IEEE.STD LOGIC 1164.LLL;

use IEEE.STD_LOGIC ARITH.LLL:
use IEEE.STD LOGIC UNSIGNED.ALL:

entity counter 1i=s
Port | clk :
count
end counter;

in std_logic;
out std logic wvector (3 downto 0)):

architecture Behavwioral of counter is

gignal ecnt: std logic vector (27 downto 0);

hegin
processiclk)
begin
if elk'ewvent and clk='1l' then
cnt <= cnt + 1;

end if;
end process;
count (3 downto 0)
end EBehawvioral:

<= cnt (27 downto 24);

L1

[counter.vhd I

f'l Done: completed successfully. ;l
L
_'l:I

‘ I‘dh\tonsolyﬂ FrdnFim

Hierarchy is up to date.

|Ln 21, Cal 16 [

The schematic editor window has a drawing area and a list of categories for various logic circuit
elements that can be used in a schematic. Below that is the list of symbols for circuit elements

in a highlighted category.

FE= Kiling ECS - [disp_cnt.sch]
=1 File Edit Wiew Add Toolz Window Help _|ﬁ’|ﬂ

—

[oseeaze|[fmescH||[aaxEar =g =22em)
JR‘ﬂ#@V%|R%|@|WO\DA|Q Ak ‘N.|~/ J_ISeIectEranches j

| LCateqories
| E

<8l Syrnbalss

; <cuftmpdopld_designs/desi
category list Arithmetic

N Buffer
S | Comparator

o Counter

- Decoder

Flip_Flop

General -
4 I I [

Symbaolz

cclb g

drawingarea | - - - | symbol list a

accd

T TN accdxz

L acch

N\ accisd

add1

- add1E

add1Ex1

add1Bx2 |

/.

Symbol Mame Filter

Qrientatiorn

disp_crt.sch I IHDtatE 0 j

Feady [204E,2938]

To start creating the top-level schematic, highlight the second entry in the category list. The
c:/tmp/cpld_designs/design2 category contains the schematic symbols for the design2 project’s
counter and LED decoder modules. We can see the names of these modules in the symbol

list.

FE= Kiling ECS - [disp_cnt.sch]
=1 File Edit Wiew Add Toolz Window Help _|ﬁ’|ﬂ

[oseeaze|[fmescH||[aaxEar =g =22em)
JI?‘"IJ#@P—%|R:E> @|“\.O\DA|Q Ak ‘N.|~/ J_ISeIectEranches j

LCateqories

o Buffer
Comparator
Counter

- Decoder
Flip_Flop

General -
4 I I [

Symbaolz

.....................|e.;|.;|.;.j§

5 : ’ : o S_Irlmhl:ll HEIITIE Filter

Qrientatiorn

I Fatate O j
[3544.482] =

dizp_cnt.sch I

Click on the counter entry in the Symbols list. Then move the mouse cursor into the drawing area
and left-click to place an instance of the counter into the schematic. Repeat this process with

the leddcd module to arrive at the result shown below.

FE= Kiling ECS - [disp_cnt.sch]
=1 File Edit Wiew Add Toolz Window Help

=18 x|

[oem@a?w|| cee - | ||& Q=L

B =Bm

—

B e

A NOoNDOA @0 48| v

J ISeIect Branches j

o
cocounter o ledded
e G = e s =
;I .. _’Ij

LCateqories

<Al Symbols: -

dezigns/desi
Arithrnetic
Buffer
Comparator
Counter
Decoder
Flip_Flop

dizp_cnt.sch I

General -
4 I I [

Symbaolz

counter

leddcd

Symbol Mame Filter

Qrientatiorn

I Fatate O j

Ready

[1986.1727] =

Next, click on the u

FE= Kiling ECS - [disp_cnt.sch]

button to begin adding wires to the schematic.

=1 File Edit Wiew Add Toolz Window Help

=18 x|

DeE@S 7N

[[& B o o @

|| & e = A R

|2gs&am

x| =z2 | B[NoNOA DG 41|y

-

J ISeIect Branches

LCateqories

<c:tmpdepld
Arithrnetic
Buffer
Comparator
Counter
Decoder
Flip_Flop
General

dezigns/desi

Symbaolz

K I

counter

leddcd

Symbol Mame Filter

dizp_cnt.sch I

Qrientatiorn

I Fatate O

-

Change the editor to add wire mode

[1331.831] =

Left-click the mouse on the count(3:0) bus on the right-hand edge of the counter module.
Then left-click on the d(3:0) bus on the left-hand edge of the leddecd module. As a result of this
procedure, a four-bit bus is created between the output of the counter module and the input of
the LED decoder module. Either click in the same endpoint or hit the ESC key to stop adding

segments to the bus.

FT= Xilinx ECS - [disp_cnt_sch]
= Eile Edit “Wiew Add Tools Window Help

=& %]

NEEH@S 7R e o @ ||aax:=aE

—

===

LR == e

A ~NoNDOA B0 48|«

—

Jr' b arwal

% Aytomatic

dizp_cht.sch I

LCateqoriez

<Al Symbols:

Arithretic
Buffer
Comparator
Counter
Decoder
Flip_Flop
General

1]

dezignz./desi

Symbaols

counter

leddcd

Symbol Mame Filter

Orientation

I Rotate O

r

FReady

(17741280] =

Now highlight the |0 category and select a byte-wide output buffer (OBUF8) from the list of

symbols. Attach the output buffer to the output of the LED decoder as shown below.

FT= Xilinx ECS - [disp_cnt_sch]
= Eile Edit “Wiew Add Tools Window Help

=& %]

losma@s 7w

[N R

|| & & = A E

[E=N== N =Ny

—

Jr' Manual ¢ Automatic

(U= (22 A NONDOA |G 48|«
it A
cnledded i OBURS
= [I === —— P
SRR IR I IR EE S EREE S e D ARRERRERIRIEERERES

J ... _,Ij

LCateqoriez

Comparator
Counter
Decoder
Flip_Flop
General

Latch

Logic
fef a2

Symbaols

K I

ibaf
ibuf1E
ibafd
ibufg
obuf
obuflB
u:ul:uuf4

nbufe

dizp_cht.sch I

obufelE

Symbol Mame Filter

—
|

=

Orientation

I Rotate O

r

FReady

[(2241.1340] =

Next attach a short bus segment to the output of the byte-wide buffer.

FT= Xilinx ECS - [disp_cnt_sch]
= Eile Edit “Wiew Add Tools Window Help

=& %]

[oema@s 7w 8o | ||&ax=s

[E=N== N =Ny

LR == e

A ~NoNDOA B0 48|«

“iﬁ Manual ¢ Automatic

edded i OBUER
R e B o SHEE IR

LCateqoriez

Comparator
Counter
Decoder
Flip_Flop
General

Latch
Logic

=l
e
HE R

Symbaols

ibaf

ibuf1E

ibafd

ibufg

obuf

obuflB

obuf4

nbufe

obufelE =l

dizp_cht.sch I

Symbol Mame Filter

Orientation

I Rotate O j

FReady

[2434132] .~

Now click on the = button for adding 1/0 markers.

FE= Kiling ECS - [disp_cnt.sch]
=1 File Edit Wiew Add Toolz Window Help

=18 x|

EHFS?W |[1ERe - |H |QQXHEE

|Bg = &em

:Mﬂ#ﬂ%EP%MHﬁQ\DAQOnM/

i

Jﬁ' lrput € Output © Bi

LCateqories

Comparator
Counter
Decoder
Flip_Flop
General

Latch
Logic
P

K I

Symbaolz

bt
Euf1E
ibufd
ibufa
bt
obuf16
obufd

[n] |:|I_JfEl
obufe

==
T e
edded - QBUFS
R == ——— L HEPHIETT P
L.I ... _’Ij

dizp_cnt.sch I

obufel1f

Symbol Mame Filter

|
o
|

Qrientatiorn

I Fatate O

-

Change the editor to add 140 marker mode

[2131.871] =

Then click on the other end of the newly-added bus segment to create a byte-wide set of output

pins.

FT= Xilinx ECS - [disp_cnt_sch]
= Eile Edit “Wiew Add Tools Window Help

=& %]

Dzmaszr||i=eo @

|| & & = A E

|2g=&am)

J ISelect Branches j

[xvew=(22 (@ NONDA D 48|
oo
edded ~ OBUF8:
B === == e CEURTANI (S
L EEE R TS TS FEEES FEEIEFEFIEFEFIE R FEETIEEETE
J ... _,lj

LCateqoriez

Comparator
Counter
Decoder
Flip_Flop
General

Latch
Logic
b L

N
Symbaols

ibaf
ibuf1E
ibafd
ibufg
obuf
obuflB
obuf4

nbufe

—
|

dizp_cht.sch I

obufel16 =l
Symbol Mame Filter

Orientation

I Rotate O j

FReady

[(25301310] .«

The output pins automatically assume the same name as the bus to which they are attached
but this name was automatically generated and doesn’t carry a lot of meaning. To change the
name of the outputs (and the associated bus), right-click on the 1/0 marker and select Object
Properties... from the pop-up menu.

FE= Kiling ECS - [disp_cnt.sch]

=1 File Edit Wiew Add Toolz Window Help _|ﬁ’|_|

jozm@eze ||[iievc | |aaxxnE [Eg2aem)

JI?‘"IJ#@P—%|R:E>|@|E\O\DA|lehﬂ.|(“5&lect8ranches j
T T A | categoies
Comparator =]
Counter
Decoder
Flip_Flop
General
Latch
o - Logic:
&N P _|_|
0. e e e — CECRETERY SEREREN |) | KV —
i T Symbols
....................................... C
S I L EDW ibuf
....................................... _EIS'CE buflE
S A S A DA 1= 2 1= ibukd
R ibufg
....................................... &dd 4 abuf
i Il {oburte
N obufd
O PR D M L7 122l sl
....................................... . abure
SRR RN RS R R TRR R W obufe16 =
S e S| syrieltame i
DIUIIIIIIIIIIIIIIIIIIIIIIIIIIIIII Il Select Objech(s) |
S Select Al o
o Wseleeb a0 Qrientation
] dizp_cnt.sch I Object Properties... IHDtatED j

YWiew and edit properties of the objects in the zelection [251612594]

The Object Properties window allows us to set the name and direction of the pins.

: Object Properties Ed
LCateqgory
=4 Met Atiributes
FR. xLxN_q_[?I:I]
Hame Value Hew |
Marme: HLMM_ 40700

Edit Traitz

PortPolarity | Input

[elete

i

()% I Cancel Apply Help

Replace the existing bus name with a seven-bit bus for driving the LED segments: $(6:0).
Then set the direction of the bus pins to Output.

: Object Properties Ed

LCateqgorny
= HEtS Net Attributes
ERR. S[EI:I]
Name Value Mew |
Matmne SE:0) - -
PortPolarity | Output - Edit Traits |
IneLt MEelete |
Bidirectional

()% I Cancel Apply Help

XESS Corporation - www.xess.com ©2001 by XESS Corp.

Next click on the OK button to close the Object Properties window.

+ Object Properties

MNet Attributes

——

Marme: S(6:0)
PortPolarity | Output

Introduction to WebPACK 4.1 for CPLDs 82

The output pins now appear with their new name, width, and direction.

FT= Xilinx ECS - [disp_cnt_sch]

= Eile Edit “Wiew Add Tools Window Help

=& %]

Dzmaszr||i=eo @

|| & & = A E

|2g=&am)

NEEETS

= (22 B NONDOA @G 41|«

J ISelect Branches j

dizp_cht.sch I

LCateqoriez

Comparator
Counter
Decoder
Flip_Flop
General

Latch
Logic

=l
e
HE R

Symbaols

ibaf

ibuf1E

ibafd

ibufg

obuf

obuflB

obuf4

nbufe

obufelE =l

Symbol Mame Filter

Orientation

I Rotate O j

FReady

[2654.1737] .~

At this point it makes sense to check the schematic to see if there are any errors such as

unterminated wire stubs or mismatched bus widths. Click on the - button to perform a

schematic check.

FE= Kiling ECS - [disp_cnt.sch]
=1 File Edit Wiew Add Toolz Window Help

=18 x|

[oesEdarre||snee - @ ||&axH*ar

|2gs&am

x| v =22 @ N0oNOA @S 4 1|y

ISeIect Branches j

i

Check. Schematic

<Al Symbols:
<cuftmpdopld_designs/desi
Arithrnetic

Buffer

Comparator

Counter

Decoder

Flip_Flop

S -

General -
4 I I [

Symbaolz

acclB
accd
accdxz
acch
acchxz
add1
add1E
add1Ex1

T
ledded oBUFB
0 entee e {ERD
g

dizp_cnt.sch obuf.sch |

add 12 =l

Symbol Mame Filter

Qrientatiorn

I Fatate O j

Check the active schematic

[2486.883] -

The Schematic Check Errors window will appear showing two errors. We can find the place
in the schematic where the error occurs by clicking on the associated error message. Then
clicking on the Zoom In button to see an enlarged view of the area where the error lies.

: Schematic Check Errors
Error No. Error M=sg Center
1 Errar: Pin '=(6:0) iz connected to a
hus of & different width Zoom |n N
2 Errar: Pin 'OC7-00 iz connected to a i
hus of & different width Zoom Dut
Cloze
Help

The first error indicates that the seven-bit output of the LED decoder does not match with the
byte-wide input of the output buffer symbol. Note how the output of the leddcd symbol is
highlighted to indicate the error. The second error is similar to the first in that the byte-wide
output of the OBUF8 symbol does not match the width of the seven-bit output pin marker.

FE= Kiling ECS - [disp_cnt.sch]
=1 File Edit Wiew Add Toolz Window Help _|ﬁ’|ﬂ

[ozEagze |tmeoc @ |aaxzanE [Eg22em)
JI?‘"IJ#@P—%|R:E> @|“\.O\DA|Q Ak ‘N.|~/ J_ISeIectEranches j

N | Categories

.. <8l Syrnbalss

.. <c./tmp/cpld_designs/desit

il Arthmetic
Buffer

S R Comparator
.. Counter
.. Decoder

.. F|I|:I_F|CI|3

 ledded opurs Il

i o6y e ey | | ||| [—
.. accd
RS S R SRR SRS S S SNSRI accdnz
.. acch
.. acchxz
SRR R R R R RS SRR SRS SRS SRR add]
.. add1E
.. addle

.. add‘l EHE ;I

"""""""""""""""""""""""""""""" Symbol Mame Filter

.LI. .. LIJ Bt
disp_crt.sch obuf2.zch | IHDtEItE a j

Feady % [23291653] »

We could try solve these problems by using subsets of the buses or by adjusting the width of
the output buffers. But the simplest solution is to remove the byte-wide output buffer and

replace it with a group of seven output buffers. To start this process, click on the % button

and then click on the OBUF8 symbol. Then press the delete key. Then click on the u button
and add bus segments to the schematic as shown below.

Rz Rilinx ECS - [disp_cnt_sch]

—] File Edit “Wiew Add Took: Window Help == =]
[De@@gzr||iaes (@ |@aXEaR||Sd 5 RBB0
JW|ﬂ$ﬂF%|R%|@|WD\DA|leh‘l‘l|~/ J_ISelectWires j

—
—

LCateqaories

Flip_Flop =]
General

Latzh
Logic
b

dizp_cnt.zch I

Shift_Register
Shifter
TTL

1| I L3

Symbaols

ibuif
ibuf16
ibuf4
ibufg
abuf
obuf1E
oburd
obuf8
obufe
obufelB =l

1]

|+

Symbol M ame Filter

Qrientation

I Ratate 0 j

Feady

[2481.1818] .~

At this point it is a good idea to rename the bus connected to the LED decoder output so it has
a less cumbersome name. Double-click on the bus and the Object Properties window will

appear.

i Object Properties | x|
Cateqgory
Net Attributes
= HLEN_11[6:0)
Hame Value Mew |
hame WM 110600

E dit Trait
PortPaolarity Mot & port crb I

i:

Eelete

k. I Cancel Apply | Help

Replace the automatically-assigned name for the seven-bit bus, XLXN_11(6:0), with the bus
name A(6:0). Then click on the OK button.

i Object Properties | x|
Cateqgory
=k Mets Net Attributes
"""" LN _11(E:0)
Hame Value Mew |
Mame ArED

E dit Trait
PortPaolarity Mot & port crb I

i:

Eelete

k. [I Cancel Apply Help

Next select a single-bit output buffer, obuf, from the list of symbols and drop seven of them into
the schematic drawing area.

Fe= Xilink ECS - [disp_cnt_sch]
| File Edit “iew Add Toolz ‘window Help

=18 %]

DEEas 7w

[[# el o |

| ® & = Rl

mE o BEO

—
—

[Rwew =28 (@ NoNDOA (@O 48 |v

J ISeIect Wires j

i TOBUR
i TOBUR
n& EREEE.
i TOBUR
n& EREEE
i TOBUR
n& EREEE.
i TOBUR
n& EREEE
i TOBUR
:H»
T i 1= 1] =R

.

LCategories

Symbaolz

Flip_Flop =]
General

Latch

Logiz

P
Shift_Register
Shifter

TTL

4I I *

1|

ibuf
ibuf1E
ibuf4
ibufg
obuf
obuf1E
obuf4
obufg
obufe

|+

obufelB =l

Symbol M ame Filter

dizp_cnt.zch I

Qrientation

I Ratate 0 j

Ready

[28731742] .~

Now the output buffers have to be attached to the buses. Click on the = button and attach
seven bus taps to each bus as shown below. (Use the rotation button to rotate the bus tap

symbol.)

Rz Rilinx ECS - [disp_cnt_sch]
=1 Eile Edit “iew Add Toolz Window Help

=181 x]

loeg@a 7wl o @)=

—

|Bg s &8 m

[[=veeie o (@S0 N DA (EE 4 1|

ISelect Wires j

—

dizp_cnt.zch I

LCateqaories

Flip_Flop =]
General

Latzh

Logic

b
Shift_Register
Shifter

TTL

1| I L3

Symbaols

ibuif -
ibuf16

ibuf4

ibufg

abuf

obuf1E

oburd
obuf8
obufe
obufelB =l

Symbol M ame Filter

Qrientation

I Ratate 0 j

Feady

[2339.1750] .~

Once all the bus taps are in place, attach the output buffers to the taps using wire segments.

Fe= Xilink ECS - [disp_cnt_sch]
| File Edit “iew Add Toolz ‘window Help =8| x|

jDERderr ||i 2o e W ||@aXHAl||Bd BB D
K|E$QP—Z|R%|@|‘\O\\DA|Q dlhﬂ,|‘/ JJFManuaI % Autarnatic

LCategories

Flip_Flop =]
General

Latch

Logiz

P
Shift_Register
Shifter

TTL

4 I I L3
Symbaolz

ibuf
ibuf1E
ibuf4
ibufg
obuf
obuf1E
obuf4
obufg
obufe
obufelB =l

1|

|+

Symbol M ame Filter

Qrientation

dizp_cnt.zch I IHDtatE 0 j

Feady [2757.1855]

Now the question becomes: “How do we know each output buffer is attached to the right LED
decoder output and output pin?” The answer is: “We don’t!”” We have to manually set the
connections to the buses to make sure they are correct. Double-click on the wire segment
connecting the output buffer to the S(6:0) output bus. (Make sure you double-click the wire
segment and not the bus tap symbol or the OBUF symbol.) The Object Properties window will
appear with the name for the wire segment that was automatically assigned by the schematic
editor.

Cateqgory

Met Attributes
e LXN_19

Hame Value Mew
Mame ¥LER_19
PortPaolarity Mot & port

Edit Traitz

Eelete

i:

k. I Cancel Apply Help

Change the name of the wire segment to S(0) which is the least-significant bit of the output bus.
Then click on OK.

: Object Properties Ed
LCateqgory
=l Nets MNet Attributes
- KLXN_-I E
Hame Value Hew |
Marme s

Edit Traitz

PortPolarity Mot a port

[elete

i

()% [I Cancel Apply Help

Repeat the process to rename each wire segment as shown below. (The visible labels for each
wire segment were added afterward. The wire segment labels will not be shown by the
schematic editor.)

Rz Rilinx ECS - [disp_cnt_sch]
=1 Eile Edit “iew Add Toolz Window Help =1

|DER@& TR || aee - B QAL ||BdE BB M
K|H“—"EQP—Z|R%|@|“\D‘\DA|Q dlh‘l‘l|~/ JJFManuaI % Automatic

LCateqaories

Flip_Flop =]
General

Latzh

Logic

b
Shift_Register
Shifter

TTL

N I
Symbaols

ibuif
ibuf16
ibuf4
ibufg
abuf
obuf1E
oburd
obuf8
obufe
obufelB =]

"

|+

Symbol M ame Filter

Qrientation

dizp_cnt. sch I IHDtatE 0 j

Feady [27571855] 2

XESS Corporation - www.xess.com ©2001 by XESS Corp.

Now when we click on the schematic check button, - we see the errors have been
corrected.

i Schematic Check Emmors

Mo errors detected

Introduction to WebPACK 4.1 for CPLDs 94

Once the outputs from the circuit are in place, we can create the analogous circuitry for the
input. We connect a single input buffer module to the clock input of the counter and then we
connect a single input I/0O marker to the IBUF symbol. After this, perform another schematic
check to detect any errors, save the schematic using the File=»Save command and then close

the schematic editor.

FT= Xilinx ECS - [disp_cnt_sch]

= Eile Edit “Wiew Add Tools Window Help

=& %]

[oema@s 7w 8o | ||&ax=s

—

Bg==em|

(<o o s

A ~NoNDOA B0 48|«

ISelect Branches j

—

dizp_cht.sch I

LCateqoriez

Comparator =]
Counter

Decoder

Flip_Flop

General
0|
Latch

Logic

b L =
+| ool

Symbaols

ibuflG

ibuf4

ibufs

obuf

obuflB

obuf4

obufg

nbufe

obufelE =l

Symbol Mame Filter

Orientation

I Rotate O j

FReady

[12731639] 4

Once we save the schematic for the top-level module, we see the updated hierarchy in the
Sources pane of the Project Navigator window. Now the counter and leddcd modules are
shown as lower-level modules that are included within the top-level disp_cnt module.

Xilim: - Project Havigator - c-Atmphcpld_deszignsidezign2ideszign?_npl - [counter.vhd]

|a® File Edit “iew Project Source Process Macro Window Help =] x|
NSHd FFEEERFE EF& (2R |[f = e [Efs r
==
| library IEEE; =

Sources in Project:

use IEEE.3TD_LOGIC 1164.ALL:
use IEEE.STD LOGIC ARTTH.LLL:
use IEEE.3TD_LOGIC UNSIGHED.ALL:

entity counter is
Fort [eclk : in std logic:

| | 5
= 2 count : out =td logic wvector (3 downto 0));
B hodule .. l A Shapsho... J |E Library .. I end counter:
2=l architecture Behavioral of counter is

Proceszes for Current Source: signal cnt: std logic vector (27 downto O);
G Diesign Entry Utilities begin
; Synthesize process(clk)
hegin

Implement D ezign

Generate Pragramming File if clk'event and olk='1l' then

cnt <= cnt + 1;
end if;
end process;
count (3 downto 0) <= cnt (27 downto 24);

end Behawvioral; =
1 _>l—I

B Process Vien I [counter.vhd I

x| Done: cowmpleted successfully.

i

=
‘ Ilh‘d:onsoly(FranFs J ;Ij

Hierarchy iz up to date. |Ln 21, Col 16 [=

Checking the VHDL Syntax

We can check the entire design by highlighting the disp_cnt object in the Sources pane and then
double-clicking the Analyze Hierarchy process. This checks the VHDL for each module and their

interconnections with each other. The & that appears after the Analyze Hierarchy process
completes shows we have no syntax problems in our modules.

Xilim: - Project Havigator - c-Atmphcepld_deszignsidezign2ideszign?_npl - [dizp_cnt_vhf]

|_.®, File Edit “iew Project Source Process Macro Window Help =121 x|
CHO FFEBEHE REE[E® || ER s & Hfas r
x|
Saumas [et I -— Vhdl wodel created from schewatic disp cnt.sch - St
------ B design?

LIBERARY ieee:;
LIERARY UNISIM;
U3E ieee.sztd logic 1164.ALL:

El E,'E AC35108 F'E84 5T \r"HDL

- @ counler [c:u:uunter vhd]

: USE ieee.numeric std.LLL:
T [ledded £ \tmp\‘c':ldl des'gnsl“deii USE UNISIM.Veomponents.ALL:
B2 hodule View l X Shapshot... I |E Library ... I ENTITY disp ont IS
PORT | cIk H IN STD LOGIC:
==l 5 : OUT 3TD_LOGIC VECTOR (6 DOVNTO O}):
Proceszes for Current Source: |
----- W Dresign Entr}l |Itilities end disp_ent:

LARCHITECTURE SCHEMATIC OF disp_cnt IS

i ITIGHNAL A : 3TD LOGIC WECTOR (& DOUMTO O):
..... O |mp|ementesign : SIGNAL XLIN 2 : STD_LOGIC VECTOR (3 DOWNTO 0),
----- ¥ Generate Programming File SIGNAL XLEN S : STD_LOGIC;

ATTRIBUTE fpga dont touch : ITRING :
ATTRIBUTE fpgs dont touch OF XLET 4 : LABEL IS "tr1,|
L3

Kl
B Process Uieuul [countsrvhd [E) disp_ent.whf ||§| dizp_ent.tim

x| Done: cowmpleted successfully.

i

=l
‘ Ilh‘d:onsoly(FranFs J ;Ij

Process "Analyze Hierarchy' is up to date. |Ln1, Cold B

Constraining the Design

Before synthesizing the displayable counter, we need to assign the pins which the inputs and
outputs will use. Highlight the disp_cnt object in the Sources pane and then double-click the Edit
Implementation Constraints (Constraints Editor) process. In the Ports tab of the Constraint Editor
window that appears, set the pin assignments for the clock input and LED segment drivers as
follows:

.:EiﬁXilinx Constraints Editor - [Ports - disp_cnt.ngd / disp_cnt.ucf]
File Edit Yiew “Window Help

D= x| =l==o] 2%

Port Hame Port Direction Location Pad to Setup Clock to Pad =
clk IMPLIT Pa MR, IR,
s<0= QUTPUT P21 MR,
g=1= QUTPUT P23 A,
F=d= QUTPUT P19 MR,
F=3= QUTPUT P17 MR,
s=4= OUTPUT P15 M2,
Z=5= QUTPUT P14 A, o
s=6> QUTPUT P15 RN -
| | _;|_I
Fad Groups
[~ /0 Configuration Options B (e I l—ICreate Bl
FBrohibit 1/0 Locations... | Gelect Group: I j
Clack to Pad... |
Global Parts I Advanced | Mizc I
MET “z¢1s" LOC = "P23"; ﬂ|
MWET "s¢2»" LOC = "P19"; -
| UGF Gonziraintz [read-write] |UCF Constraints [read-anky] Source Congtraints [read-only) I
For Help, press F1 l_l_l_ i

Assigning the clk input to pin P9 lets us use the onboard oscillator of the XS95 Board to drive
the counter. The output assignments connect the displayable counter to the seven-segment
LED on the XS95 Board as in the previous design example.

Synthesizing the Logic Circuitry for the Design

Now we can synthesize the logic circuit netlist by highlighting the top-level disp_cnt module in
the Sources pane and double-clicking the Synthesize process.

Xilim: - Project Havigator - c:Atmphcpld_designs\deszsign2idesign2_npl - [dizp_cnt.vhi]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help _|5’|i|
D@ HFELEF D[eme|ew |[»2e 2 e | @ B
2=

- — -— Whdl model created from schematic C:vEilinx WehPACE) (&
Sources in Project: | -

LIBRARY ieee;

LIBRARY UNISIM;

USE ieee.std_logic_1164.ALL:
U3E ieee.nuweric std.ALL;
USE TNISIM.Vcomwponents. ALL:

L
1]
whd]

o
S ¥ counter [counter,

------ @ ledded [C:\mpheplddesignshd

| | o
=t ol .. | i0m Srapsho...| [Ly | ENTITY OBUFE MXILINX IS
PORT { I : IN STD LOGIC WECTCR (7 DOWNTO O ;
=lx 0 : OUT 5TD_LOGIC WECTOR {7 DOWNTO O}) ;

Frocesses for Current Source: |

end OBUFS MXTLINI:

View Sunthesis Report ARCHITECTURE SCHEMATIC OF OBUFS MXILINX IS

Y3 Analyze Hierarchy
Implemant D ezign
Generate Programming File

ATTRIEUTE fpga dont touch : STRING ;

ATTRIEUTE fpgs dont touch OF I 36 30 : LABEL I3 "trus

ATTRIEUTE fpga dont touch OF I 36 31 : LABEL IS "true

ATTRIBUTE fpgs dont_touch OF T 36 32 : LABEL I3 "true

ATTRIBUTE fpgsa dont_ touch OF I 36 33 : LABEL I3 "trii_.l
L4

EXl
B Process U’iewl [countervhd [2] disp_cntvhf

fll ISE huto-Make Log File
¥

L

For Help, press F1 |Ln1, Cal1 H i

Fitting the Logic Circuitry Into the CPLD

Once the netlist is synthesized, we can begin the process of fitting it into the CPLD. Before
activating the fitting process, however, we will give the fitter some information on the speed of
the CPLD we are targeting. The XC95108 on the XS95 Board has a -20 speed grade which
means that the pad-to-pad delay through a single macrocell is 20 ns. To set the device speed,
right-click on the Implement Design process and select the Properties item in the pop-up menu.

Xilim: - Project Havigator - c:Atmphcpld_designs\deszsign2idesign2_npl - [dizp_cnt.vhi]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help _|5’|i|
D@ HFELEF D[eme|ew |[»2e 2 e | @ B
2=

- — -— Whdl model created from schematic C:vEilinx WehPACE) (&
Sources in Project: | -

LIBRARY ieee;

LIBRARY UNISIM;

USE ieee.std_logic_1164.ALL:
U3E ieee.nuweric std.ALL;
USE TNISIM.Vcomwponents. ALL:

M counter [counter.vhd)
e @ ledded [C:\mpheplddesignshd

1] | [+
=t ol .. | i0m Srapsho...| [Ly | ENTITY OBUFE MXILINX IS
FORT | I : IN 3TD_LoGIC VECTOR (7 DOWNTO 0O):
== 0 OUT STD_LOGIC WECTOR (7 DOWNTO O)):
Frocesses for Current Source: |
----- #F Design Entry Utiities end OBUFS_MATLINX;
B ¥ 3 Synthesize
. [R¢# View Sunthesis Report ARCHITECTURE SCHEMATIC OF OBUFS MXILINX IS
ATTRIEUTE fpga dont touch : STRING ;
..... G Generate Pragran Bun ATTRIEUTE fpgs dont touch OF I 36 30 : LABEL I3 "trus
Remn ATTRIEUTE fpga dont touch OF I 36 31 : LABEL IS "true
Remn Al ATTRIBUTE fpgs dont_touch OF T 36 32 : LABEL I3 "true
Stop - ATTRIEUTE fpga dont_touch OF I _36_33 : LABEL I3 "true.'
L e L1 .
B Process U’iewl [countervhd [2] disp_cntvhf
:’:Il ISE huto-Make Log File i’

Edit the properties for the highlighted Process |Ln1, Cal1 H i

XESS Corporation - www.xess.com ©2001 by XESS Corp.

In the Process Properties window that appears, we set the speed to -20 in the Speed Grade
field of the Design tab. Then we click on OK. There are many other parameters we can adjust to
affect the fitting process, but we don't need to alter any of them from their default values for this
design. (We would probably adjust these parameters if we were pushing the CPLD to the limit
in terms of logic density or operating speed.)

Process Properties

Introduction to WebPACK 4.1 for CPLDs 101

Once the speed grade of the CPLD is set, we can double-click on the Implement Design process

to initiate the fitting process. The & that appears indicates that the fitting process was
successful.

Xilim: - Project Havigator - c:Atmphcpld_designs\deszsign2idesign2_npl - [dizp_cnt.vhi]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help _|5’|i|
D@ HFELEF D[eme|ew |[»2e 2 e | @ B
2=

- — -— Whdl model created from schematic C:vEilinx WehPACE) (&
Sources in Project: | -

LIBRARY ieee;

LIBRARY UNISIM;

USE ieee.std_logic_1164.ALL:
U3E ieee.nuweric std.ALL;
USE TNISIM.Vcomwponents. ALL:

| | o
= ol . | g Srapsho...| [y Livary.. | ENTITY OBUFS_MXILINX I3
PORT [I : IN 3TD_LoGIC VECTOR (7 DOWNTO 0O):
== oo OUT STD LOGIC VECTOR (7 DOWNTO 0)):
Frocesses for Current Source: |
Dresign Entry Utilities end OBUFS_MXTLINX:
Sunthesize
&J Wiew Sprithesis Report ARCHITECTURE 3CHEMATIC OF OBUFE_ MXTILINX IS
Y3 Analyze Hierarchy
Implement ATTRIEUTE fpga dont touch : STRING ;
Generate Pragramming File ATTRIEUTE fpgs dont touch OF I 36 30 : LABEL I3 "trus

ATTRIEUTE fpga dont touch OF I 36 31 : LABEL IS "true

ATTRIBUTE fpgs dont_touch OF T 36 32 : LABEL I3 "true

ATTRIEUTE fpga dont_touch OF I _36_33 : LABEL I3 "true.'
L4

KXl
B Process Vien I [countervhd [2] disp_cntvhf
f'l Done: completed successfully. ;l
L
: .
AT Conzoled FrinFes
Process “Implement Design' is up ta date. |Ln1, Cal1 H i

Checking the Fit

After the fitting process is done, we can check the logic utilization by double-clicking on the Fitter
Report process. At the top of the file we find:

cpldfit: version E.30 Xilinx Inc.
Fitter Report
Design Name: disp cnt Date: 10-21-2001, 11:49AM
Device Used: XC95108-20-PC84
Fitting Status: Successful

KkkKkkkkkkkkkkkkkkkkkkkkk*¥%* ReESOUrCe SUMMATYY Frrhkkkkkkkhkhkkkkkhhhkrhkkkkhhxx

Macrocells Product Terms Registers Pins Function Block
Used Used Used Used Inputs Used
35 /108 (32%) 52 /540 (9%) 28 /108 (25%) 8 /69 (11%) 48 /216 (22%)

The displayable counter consumes 35 of the 108 macrocells: 28 for the four-bit counter and 7
for the LED decoder. Looking further, we find the pin assignments for the clock input and LED
decoder outputs match the assignments we made in the Constraint Editor:

*kkkkkkkkkkk*k*k**Regources Used by Successfully Mapped Logic******************

B9 ILOGIC 9

Signal Total Signals Loc Pwr Slew Pin Pin Pin
Name Pt Used Mode Rate # Type Use
N52 1 24 FB3 18 STD (b) (b)
N53 1 25 FB3 17 STD 31 I/0 (b)
N54 1 26 FB3 16 STD 26 I/0 (b)
N55 1 27 FB3 15 STD 25 I/0 (b)
s<0> 4 4 FB3 11 STD FAST 21 I/0 O
s<1> 3 4 FB3 12 STD FAST 23 I/0 6}
S<2> 3 4 FB3_8 STD FAST 19 I/0 O
S5<3> 2 4 FB3 5 STD FAST 17 I/0 O
s<4> 4 4 FB3 6 STD FAST 18 I/0 O
s<5> 4 4 FB3 2 STD FAST 14 I/0 6}
S<6> 4 4 FB3 3 STD FAST 15 I/0 O
x1xi_1/cnt 0 1 1 FB2 18 STD (b) (b)
x1xi 1/cnt 1 1 1 FB2_ 17 STD 84 1I/0 (b)
x1xi_1/cnt_10 1 10 FB1 18 STD (b) (b)
Xlxi_l/cnt_ll 1 11 FB1 17 STD 13 I/0 (b)
x1lxi 1/cnt 12 1 12 FB1 16 STD 12 GCK/I/0 (b)
Xlxi_l/cnt_l3 1 13 FB1 15 STD 11 I/0 (b)
x1lxi 1/cnt 14 1 14 FB1 14 STD 10 GCK/I/0 (b)
x1xi 1/cnt_ 15 1 15 FB1 13 STD (b) (b)
x1lxi 1/cnt 16 1 16 FB1 12 STD 9 GCK/I/0 GCK
x1xi 1/cnt_17 1 17 FB1 11 STD 7 I/0 (b)
x1xi 1/cnt_18 1 18 FB1 10 STD (b) (b)
Xlxi_l/cnt_l9 1 19 FB3 14 STD 24 I/0 (b)
x1xi 1/cnt_2 1 2 FB2 16 STD 83 I/0 (b)
xlxi 1/cnt 20 1 20 FB3 13 STD (b) (b)
x1xi 1/cnt 21 1 21 FB3_10 STD (b) (b)
x1xi 1/cnt_22 1 22 FB3 9 STD 20 I/0 (b)
x1xi 1/cnt 23 1 23 FB3 7 STD (b) (b)
x1xi 1/cnt_3 1 3 FB1_ 9 STD 6 I/0 (b)
xlxi 1/cnt 4 1 4 FB1 8 STD 5 I/0 (b)
xlxi 1/cnt 5 1 5 FB1 7 STD (b) (b)
xlxi 1/cnt 6 1 6 FB1 6 STD 4 I/0 (b)
xlxi 1/cnt 7 1 7 FB1 5 STD 3 1/0 (b)
xlxi 1/cnt_8 1 8 FB1 4 STD (b) (b)
x1xi_1/cnt_9 1 9 FB1 3 STD 2 1/0 (b)
AN PRSIk

Signal Loc Pin Pin Pin
Name # Type Use
clk FB1 12 9 GCK/I/0 GCK

End of Resources Used by Successfully Mapped Logic

Also note that there are 28 signals in addition to the input and outputs. There are the upper
four output bits from the counter (N26, N27, N28, and N29) and the twenty-four lower bits of the
counter (xIxi_1/cnt_*). They will not appear on the pins of the CPLD because their macrocells
have been buried. In effect, a macrocell is buried when the output buffer from the macrocell to
its associated 1/O pin is placed in a high-impedance state.

Checking the Timing

We have the displayable counter synthesized and fitted to the XC95108 CPLD with the correct
pin assignments. But how fast can we run the counter? To find out, double-click on the
Generate Timing process.

Xilim: - Project Havigator - c-Atmphcepld_deszignsidezign2ideszign?_npl - [dizp_cnt_vhf]

|_.®, File Edit “iew Project Source Process Macro Window Help =] x|
DEE@ =7 2@ EER2R | @ - - Ef B
=
e I I—— Whdl model created from schematic CihvEilinx WebPACES (2
B design2
LIBERARY ieee:
El- £ #¥C95108 PCB4-XST WwHDL
BN cisp, ort (disp.cri.sch] LIBRERY UNISIN;
T e [nunter vhd] USE ieee.std logic 1164.ALL:
) . USE ieee.nuweric std.ALL;
ledded [C:\tmphepld_d hd -
| [tedded | mpl':p o Es'gnsﬂ USE UNISIM.Voomponents. iLl:
B ol .. | i snapsho...| [Py Livary...| ENTITY OBUFE MXILINX I3
FORT | I : IN STD_LOGIC _WECTOR (7 DOWNTO 0);
x| 0 OUT STD_LOGIC WECTOR (7 DOWNTO 0O)):
Proceszes for Current Source: |;|
FC3e? Translate end OBUFS MYILINX:
B3 Fit
; (y Fitter Repart ARCHITECTURE SCHEMATIC OF OBUFS_MIILINXE IS
YWigw Fitted Dezig
Lock Pins ATTRIEUTE fpgs dont_touch : 3TRING !
ATTRIEUTE fpga dont touch OF I 36 30 : LABEL I5 "true
Generate kinst-Fit Simula ATTRIBUTE fpgs dont_touch OF T 36 31 : LABEL I3 "true
Generate IB1S Model ATTRIEUTE fpga dont touch OF I 36 32 : LABEL IS5 "true
[z G Generate Pragramming File ATTRIBUTE fpgs dont touch OF T 36 33 : LABEL IS5 "true.
a | Lr‘ KNl i
B Process Uieuul [countervhd [2] disp_cnt.vhf
Zll Done: completed successfully. =

i

“ Ilh‘d:onsoly(FranFs J ;Ij

For Help, press F1 |Ln1, Cold B

After the static timing delays are calculated, double-click the Timing Report to view the results of
the analysis.

Xilim: - Project Havigator - c:Atmphcpld_designs‘deszsign2idesign2_npl - [dizp_cnt.tim [READ OMLY]]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help _|5’|i|
DEU@ HFELEFE [ame|2w |[r2e 2 e | r
2= -
Sources in Project: e 0909090909000 TTTTTTTTTTTTTTTTTTTTTTTTTT
L Dezign: disp cnt J
. | Dewvice: XC951058-20-PC54
I
T . Zpeed File: Version 3.0
i counter [countervhd) e .
i @ ledded [Cmphepld. designshd Program: Timing Report Generator: wversion E.30
. - | o o Date: Jat Cet 20 15:57:09 2001
BT hodule ... l I0m Shzpsho.. J E Libtary... I Performance Summary:
== Clock net 'clk' path delays:
Frocesses for Current Source: |;|
= yaf Fit Clock Pad to Output Fad (tCO) : Za.0
(f Fitter Fepart Clock Pad 'clk' to COutput Pad 's<0>!
B Wiew Fitted Desiq
O Lock Pins Clock to Setup [(tCTC) : 20.0
E--¥3g# Gererate Timing Clock to Q, net 'xlxi 1/cnt 0.Q' to TFF Setup(D) at 'HS:
El
£l Ainalyze Pasthgt 5 Hinimwuam Clock Period: Z0.0ns
G Generate Post-Fit Simul Maximwum Internal Clock Speed: 50.01
[].....G Generate [BIS Model (Limited by Cyocle Time) -
i | .H KXl i
B Process U’iewl [counter.vhdl@ disp_crtvhf (2] disp_cnttim
f'l Done: completed successfully. ;l
L
. .
AT Conzoled FrinFes
For Help, press F1 |Ln1, Cal1 H i

The timing report contains the following information:

Performance Summary Report

Design: disp cnt

Device: XC95108-20-PC84

Speed File: Version 3.0

Program: Timing Report Generator: version E.30
Date: Sun Oct 21 11:51:18 2001

Performance Summary:

Clock net 'clk' path delays:

Clock Pad to Output Pad (tCO) g 22.0ns (2 macrocell levels)
Clock Pad 'clk' to Output Pad 's<O0>' (GCK)
Clock to Setup (tCYC) g 20.0ns (1 macrocell levels)
Clock to Q, net 'xlxi 1/cnt 0.Q' to TFF Setup(D) at 'N52.D' (GCK)

Minimum Clock Period: 20.0ns

Maximum Internal Clock Speed:

(Limited by Cycle Time)

50.0Mhz

This table says that there is a 22.0 ns time delay between the rising edge on the clk input and a
change in any one of the LED driver outputs. (This is the reason we changed the speed grade
property in the fitter: so the reported delay would be accurate for our chip.) The minimum clock

period is stated to be 20 ns so the design should run at 50 MHz.

Generating the Bitstream

Now we are ready to generate the bitstream for the displayable counter. To initiate the
programmer, we highlight the disp_cnt object in the Source pane and double-click on the Configure

Device (iMPACT) process.

Xilim: - Project Havigator - c:Atmphcpld_designs‘deszsign2idesign2_npl - [dizp_cnt.tim [READ OMLY]]

|)@ Fil= Edit “iew Project Souce Process Macio Window Help ;lilil
D@ BFE(BEFE [BEE (2% (L 28 2 & B

S|

Sources in Project:

B- EE #C95108 PCB4-<5T WHDL
= @ dizp_cnt [disp_cnt.zch)
¥ counter [counter. vhd)

De=sign:
Device:
Gpeed File: Version 3.0

disp cnt

ECO51058-20-PCE4

@ ledded [C:hmpheplddesignshdesic
4| | +

N BT hiodule View l m Stipshot... I |E Library ... I

S

Frocesses for Current Source: |
Dezign Entry Utilities

Configure Devi

Prograt:

Date:

Tiwing Feport Generator:
Sun Oct 21 11:57:57 Z001

Performance 3wmmary:

Clock

Clock
Clock

Clock
Clock

kil

net 'clk' path delays:

Pad to Output Pad (LCO)

Pad 'clk' to Output Pad 's<0>!
to 3etup (LCYC)
to Q, net 'xlxi l/cnt 0.0

Minimum Clock Period: Z0.0n:
Maximum Internal Clock Speed: 50 .|
L4

B Process Vien I

[] countervhd | B disp_cnt.vhfl@ disp_crtipt [2) disp_cnttim |

to TFF Setupi(l) at 'I

wversion E.30

20

x| Done: completed successfully.

i

gt

‘

Process "Generate Timing'' iz up to date.

|Ln1, Cal1

The iMPACT window will appear and once again it will try and fail to establish a connection
with the CPLD through the various ports of the PC. As in the previous design example, just
click on the OK button and proceed.

" Untitled - iMPACT = 3] =]

ile Edit Operationz: Output Yiew Help
IR D T AEE
Boundary Scan |5Iave Seriall Select Mapl

ilinx iIMPACT =]

Communications with the cable could not be establizhed.
Please check the cable connections and cable power source.

0K |

Cahle connection failed. =~
Connecting to cable (COTd4 Port).
Cable connection failed.

Elapsed tirne = 24 sec.

Cable antodetection fatled.

==

Kl

Connecting to the selected cable... |Wo Connection |

S Pl

Click the Cancel button in the next window and proceed.

Cable Communication Setup E |

Communication kode
= Parallsl ' MultilingS erial
= Multiline/USE
Baud Rate: Part;

57500 [[Ipt1 -]
Help |

The iMPACT window now shows the JTAG chain of chips that are to be programmed. We only
have one chip in our LED decoder design, so only one XC95108 CPLD is shown. Click on the

xc95108 icon to highlight it. Then continue by selecting an SVF file as the destination for the
bitstream so we can use GXSLOAD for programming the CPLD in the XS95 Board.

D Untitled - iIMPACT =] E3

File Edit Operations | Output Wiew Help

J [0 | % B Cableduto Connect
Cable Setup...
Cable Beset

[rable isconmest

Boundary Scan | :

Usze Cable...

Create S%F File...

T STAFL File » Append to SYF File...
[Elaze 5 E Eile
xcR510a
disp_cnt.jed
TDD —
done. -~

Dewvice #1 selected
Device #1 selected

] ;Ij

Create an S%F file and direct subsequent operations o it |Nao Connection | | 4

Now a window appears where we can enter the name for the file that will hold the bitstream.
We can click on Save to accept the default name of disp_cnt.svf.

Save i |@ design j ﬁl

1 _ngo

P

File hame: Iu:lisp_u:nt Save [: I

Save as type: | 5VF Files(* 3w =] Cancel |
o

XESS Corporation - www.xess.com ©2001 by XESS Corp.

We then proceed to generate the bitstream by selecting the Operations=»Program menu item.

Introduction to WebPACK 4.1 for CPLDs 109

XESS Corporation - www.xess.com ©2001 by XESS Corp.

A Program Options window appears where we can set the Erase Before Programming option for
the generated bitstream. Once we click OK in the Program Options window, the bitstream
generation process begins.

Program Options

r

r &I WEET Array

= Lo FEEE

[i R

s
ul

S e R

Introduction to WebPACK 4.1 for CPLDs 110

The progress is reported in the lower pane of the iMPACT window:

O Untitled - iIMPACT _ O] x|
File Edit Operations Output “iew Help

EEEIEEEE R EEE

Boundary Scan | Slave Serial I Select Map |

'1": Prograraning desice... -~

dome.

'1': Programmming corapleted successfully.
PROGRESS END - End Operation.
Elapsed tivne = 1 zec.

==

]

For Help, press F1 |File: | 5%F | |

Once the bitstream file is generated, we click on File=»Exit to close the window.

Downloading the Bitstream

Now we download the bitstream file into the CPLD of the XS95 Board. We double click the

aX

RSB icon to bring up the gxsload window. Then we drag the disp_cnt.svf file from the
C:\tmp\cpld_designs\design2 folder and drop it into the gxsload window.

& design?2 M=EI| | X gxsload = |07 x|

J File Edt “iew Go Favortes Help |ﬁ Board Type IXSEIE-'I na j Load
B m T E RN [tPr2 5]
|

Address | C:\mptopld_designsdesign? j

E st

FPGA/CPLD Flazh/EEFROM

@ dizp_cnt.pris
j dISp cht.prj

Kl

a1 dizp_cnt.mfd dizp_cnt.zch
@ dizp_cnt.mod izp_cnt gl
a dizp_cnt.ngc dizp_cnt.zyr
@ dizp_cht.hgd diszp_cnt. tim

dizp_cnt.ucf
disp_cnt vhi High Address | |

disp_cnt.vmb Low ésddress | |

|] Upload Format IHEX j] IHEX j =

|'I abject(z] selected

| Mp Ce 2

Click the Load button and the XC95108 CPLD programming starts and completes in about a
minute.

X gxsload

Board Type [595-108 =
Port ILPTE TI Exit |

FPGA/CPLD RAM Flazh/EEFROM

|

High Address | |

Low &ddress I I

Il pload Forrnat IHEK j] IHEK j]

Configure CPLD

Dawrloading dizp_cht. wf
[TTTTTTTTT]

Testing the Circuit

Once the XC95108 CPLD on the XS95 Board is programmed, the circuit will begin operating
without any further action from us. The LED display should repeatedly count through the
sequence &, 1,2, 3,4 56, 1, 8, 5 R B 5 D E F with a complete cycle taking 5.4 seconds.

Going Further...

OK! You made it to the end! You have scratched the surface of programmable logic design,
but how do you learn even more? Here are a few easy things to do:

In the Project Navigator window, select Help=ISE Help Contents. You will be presented with a
browser window containing topics that will let you learn more about the WebPACK
software.

Get Essential VHDL (ISBN:0-9669590-0-0) or The Designer's Guide to VHDL (ISBN:1-
55860-270-4) to learn more about VHDL for logic design.

Go to the Xilinx web site and read their application notes and data sheets.

Read the comp.arch.fpga newsgroup for helpful questions and answers about
programmable logic design.

	Introduction to WebPACK 4.1 for CPLDs
	What This Is�and Is Not
	CPLD Programming
	Installing WebPACK
	Getting WebPACK
	Installing WebPACK
	Getting XSTOOLs
	Installing XSTOOLs

	Our First Design
	An LED Decoder
	Starting WebPACK Project Navigator
	Describing Your Design With VHDL
	Checking the VHDL Syntax
	Fixing VHDL Errors
	Synthesizing the Logic circuitry for Your Design
	Fitting the Logic Circuitry Into the CPLD
	Checking the Fit
	Constraining the Fit
	Viewing the Chip
	Generating the Bitstream
	Downloading the Bitstream
	Testing the Circuit

	Hierarchical Design
	A Displayable Counter
	Starting a New Design
	Adding the LED Decoder
	Adding a Counter
	Tying Them Together
	Checking the VHDL Syntax
	Constraining the Design
	Synthesizing the Logic Circuitry for the Design
	Fitting the Logic Circuitry Into the CPLD
	Checking the Fit
	Checking the Timing
	Generating the Bitstream
	Downloading the Bitstream
	Testing the Circuit

	Going Further…

