Xilinx Tutorial

Pallavi Paliwal
(pallavip@ee.litb.ac.in)
Indian Institute of Technology, Bombay

Contents

1. Introduction to Xilinx

Purpose of Xilinx Tool

Xilinx Flow Overview

Available Xilinx Product Families
Selection Consideration for Xilinx Device
2. Creating new ISE Project

3. Synthesizing the Design
§ Understanding Synthesis Process Properties
§ Analyzing Synthesis Report
§ Generating Post-Synthesis Simulation Model
4, Specifying User Constraints
§ Understanding Timing Constraints
§ Assigning Package Pins
5. Translating the Design
6. Mapping the Design
§ Understanding MAP Options
§ Analyzing MAP Report
7. Placing and Routing the Design
§ Understanding PAR options
§ Analyzing PAR Report
§ Asynchronous Delay Report
§
§

§
§
§
§

Post PAR Static Timing Analysis
Generating Post PAR Simulation Model

8. Generating BitMap File

Purpose of Xilinx Tool

Requirement of Xilinx Tool :

Xilinx is a Synthesis Tool which converts Schematic/HDL Design Entry into functionally equivalent
logic gates on Xilinx FPGA, with optimized speed & area.

So, after specifying behavioral description for HDL, the designer merely has to select the Library and
specify Optimization Criteria; and Xilinx Synthesis Tool determines the netlist to meet the specification;
which is then converted into Bit-File to be loaded onto FPGA PROM .

Also, Xilinx Tool generates Post-Process Simulation Model after every Implementation Step, which is
used to functionally verify generated netlist after processes, like Map, Place & Route.

Some more Features of Xilinx :

» Allows Mixed Mode HDL Design Entry
» Xilinx ISE allows integration with other Synthesis Engine from Mentor Graphics/Exemplar,
Synopsys and Synplicity. (XST is proprietary Synthesis Tool of Xilinx.)

1)

2)

3)

Xilinx Flow Overview

Add HDL/Schematic Design Entry to ISE
Project, targeted for a particular Xilinx
Product Family:.

Design Synthesis : Converts HDL into
equivalent boolean equations; according to
which logic gates are then correspondingly
packed into Logic Cells, LUT’s & FF’s from
Xilinx UNISIM Library

Design Implementation :

Translate : Translate step checks the design
and ensures that netlist is consistent with
chosen architecture. Translate also checks
User-defined Constraint file, for any
inconsistencies.

The above mentioned Process Steps are
Technology-Independent Part of Xilinx, since
these processes would be carried out
successfully by tool, for any product family.
(irrespective of the resources available in that
particular Xilinx FPGA Product)

Dessigr = Diesign Yenfication
Entry i
F!lnrftin['nql
Sirmulation
Ciecigr }
Synthesis
b
Design
Implementation
State Tirming
o Analyaia
Dptimizati on
FPGAs
« Mapping
* Placement
* Rosuting
Dk Ti ming
CPLDs Annat ation ™ Simulation
*Hitling
E!ilblll:ltlllll
Generation
Download to a | In-Circuit
Zilinx Devace Verification

[Figure Source: Xilinx ISE 8 Software Manual]

Xilinx Flow Overview

The following mentioned Implementation Process Steps are Technology Dependent Part of Xilinx, wherein Design
could be Mapped, Placed & Routed, with desired Speed & Area constraint, only if Targeted Xilinx Product has

required speed grade, sufficient Logic Blocks & Interconnect resources available for Design Entry.

Il. Map : Calculates & Allocates Physical Combinational Logic Blocks (CLB) & Input Output Block (IOB)
Components in Targeted Device, to Logic Element symbols in Netlist that is generated during
Translation Process.

I11. Place & Route (PAR): Places CLBs into logical position and utilizes the routing resources on target
device, to connect logic cells on Xilinx Product such that desired Timing Specification are met.

4) Bit-File Generation : Creates Bit-Stream file containing Configuration Data for Target FPGA Device

Further in this tutorial, Xilinx Flow will be demonstrated through 32-bit Shift and Add Multiplier
Implementation on Spartan xc3s500e-5-pg208 device.

datal_i(31:0) product o(63:0)

This 32-bit Shift & Add Multiplier latches value on Input Data Bus, when data2_i(31:0)
START control signal is high; and outputs valid 64-bit Product, while
asserting DONE control signal high.

— clk_i mul done o[———

—rst i

DUT asserts READY control signal, when Multiplier FSM is in idle state. I _—rr

library IEEE;

use IEEE.STD_LOGIC_1164. ALL;

use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;

entity shift_add_multiplier is

port (datal_i : in std_logic_vector(31 downto 0);-- Multiplicand Input
data2_i : in std_logic_vector(31 downto 0);-- Multiplier Input
product_o : out std_logic_wvector(b3 downto 0);-- Data Product output
clk_1 : in std_logic;-- Input Clock Signal
rst_1i : in std_logic;-- Input Reset Signal
start_i : in std_logic;-- Input START Control Signal
mul_done_o: out std_logic;-- Multiplication DONE Output Control Signal

mul_rdy_o : out std_logic);-- Multiplier Block READY

end shift_add_multiplier;

-- On assertion of Start Input signal, Multiplier Block latches two Input Data
-— Double Word; and after 32 clock cycles, places multiplied value on 64-bit
-— product_o o/p signal, while asserting mul_done_o signal (indicating wvalid
-— 64-bit data product i1s available on output signal

architecture shift_add_multiplier_logic of shift_add _multiplier is

type state_type is (start_st,load_st,shift_add_st); -- Multiplier FSM States
signal cur_state, nxt_state : state_type := start_st; -- FSM Current/Next State Register
signal mull_shift_reg : std_logic_vector(63 downto 0); -- Multiplicand Shift Register

signal mul?_shift_reg : std_logic_vector(31l downto 0); -- Multiplier Shift Register

signal product_dl: std_logic_vector(63 downto 0); -- Product O/P Signal used in
-- Sequential Adder

signal product_d : std_logic_vector(63 downto 0); -- Temporary Product OQutput from Adder
-— Multiplier O/P is valid only when mul_done_o control signal is asserted

signal mul_done_d : std_logic; -- DONE Control Signal o/p from Combinational Block

-— Input data could be latched by Multiplier block, only when mul_rdy_o signal is high
signal mul_rdy_d : std_logic; -- READY Control Signal o/p from Combinational Block

begin

product_o <= product_dl;

processi(clk_1i,rst_1)
begin

-- Reset Multiplier Block asynchronously on Assertion of rst_i signal
if (rst_1 = '1") then
cur_state <= start_st
product_dl <= (others=>"'0");
mul_done_o <= '0' '
mul_rdy_o <= "0’
elsificlk _i'event and clk_1 = '1') then
cur_state <= nxt_state ;
product_dl <= product_d ;
mul_done_o <= mul_done_d

mul_rdy_o <= mul_rdy_d

end if;

end process;

process(clk_1,rst_1)
begin

if (rst_i = '1') then -- Asynchronous Reset

mull_shift_reg <= X"0000_0000_0000_0000"
mul2_shift_reg <= X"0000_0000"

elsif (clk_i'event and clk i = '1l') then

if (nxt_state = load_st) them --Next State as Load acts as Load Enable

--signal for Shift Register
mull shift_reg <= X"0000_0000" & datal_i;
mul2_shift_reg <= data2_i

elsif (nxt_state = shift_add_st) then --Next State as Shift_Add acts as Shift Enable
--signal for Shift Register

mull_shift_reg <= mull_shift_reg(62 downto 0) &'0";-- Shift Left Multiplicand
mul2_shift_reg <= '0" & mul2_shift_regi(3l downto 1);-- Shift Right Multiplier
end if;
end if;

end process;

process(cur_state,start_i,mul_done_d)
begin

case cur_state is

-— On assertion of Start Control I/P , load Input data words

when start_st =» 1if (start_1 = '1l')then
nxt_state <= load_st
else
nxt_state <= start_st,;
end if;

—-— Load State is asserted only for 1 clock cycle
when load_st =» nxt_state <= shift_add_st

—— FSM continues to remain in Shift_Add state, depending on width
—— of smaller data byte

when shift_add_st => if (mul_done_d = '1') then
nxt_state <= start_st,;
else
nxt_state <= shift_add_st;
end if;

when others => nxt_state <= start_ st
end case;

end process;

process(cur_state mul2_shift_reg mull_shift_reg, product_dl)
begin

case cur_state is

when start_st => product_d <= (others=>'0"]);

mul_done_d <= "0
mul_rdy_d <= "1'

when load_st => dif (mul2_shift_reg(0) = '"1') then-- Multiplier LSE checks whether 0 or shifted

product_d <= mull_shift_reg ; -- Multiplicand has to be added to temporary
else -- Product Register

product_d <= X"0000_0000_0000_0000"
end if;

mul_done_d <= '0°' :
mul_rdy_d <= "0° ;

when shift_add_st =»> if (mul2_shift_reg(0) = '1l') then
product_d <= product_dl + mull_shift_reg;
else
product_d <= product_dl ;
end if;

-- done_d signal asserts when Multiplier Shift Register value is 1

if (mul2_shift_reg = X"0000_0001") then
mul_done_d <= '"1°';
il _rdy_d <= '1';
else
mul_done_d <= '0°";
mul_rdy_d <= "0,
end if;

when others => product_d <= X"0000_0000_0000_0000™
mul_done_d <= "0 :

mul_rdy_d <= "1

end case:

end process;

end shift_add_multiplier_logic;

Spartan
Virtex
Coolrunner
XC9500

Avallable Xilinx Product Families

Functionality

F

VirtexIIPro, 4 to 16 transceivers, upto 4 Pov

-4

‘RTE}(-II VirtexIl, 1.5V,
v :

Feature Rich - :

High Density Virtex, 2.5V, 50,

C AR

QQ p Spartan 3. 1.2V, 50,000 tc

SpartanlIE. 1.8V, 50,000 to

-4 .
Spartandl, 2.5V, 15,000 to 200,000

- >

Spartan XL, 3.3V, 5,000 to 40,000 max sysfem
- >

Spartan, 5V, 5,000 to 40,000 max system zates

NC2Cxxx, L8V, 32 to 512 macrocells ﬁlﬂw’p "
- > L

‘XC‘-RSGUGXL 3.3\9',’32 to 512 macrocells

XCOS00XV, 2.5V, 306 to 288 macrocells
-+

NC9500XTL., 3.3V, 36 to 2858 macrocells
e

XCO500, 5V, 36 to 288 macrocells

' ' i
77

|
IK SK 10K S0K 100K 200K 300K 400K S00K .00 10 mil

Density (System Gates)
[Figure Source: Programmable Logic Design Quick Start Handbook, By Karen Pawell & Nick Mehta]

Selection Consideration for Xilinx Device

According to Design Specification, decide which device best meets the design criteria.
Selection Consideration in order of general priority are :-

1. Speed Requirement :- If the Maximum Frequency requirement for the design is not met with a
particular Xilinx device, choose a Xilinx device of higher Speed Grade (or) switch to next generation
Xilinx Product Family.

For eg. Following is the Speed Comparison of Shift & Add Multiplier synthesized on Spartan Device (with different
Speed Grade) & Virtex Device.

Target Device Maximum Frequency
(of Multiplier design)

Spartan :- xc3s500e-4-pg208 119 MHz

Spartan :- xc3s500e-5-pq208 137 MHz
Virtex :- xc5vIx30-2-ff324 259.639 MHz
Virtex :-xc5vIx30-3-ff324 295.683 MHz

Note :-

1) In Target Device Name, -2/-3/-4/-5 indicates Speed Grade available for the device. (Higher the
indicated Speed Grade number, higher is the maximum frequency obtained through that device)

I1) Virtex and Spartan Product Family are indicated by text “vIx” and *“s” respectively, in Xilinx
Device name.

Selection Consideration for Xilinx Device

2. Logic Density :- Choose the device which has Gate Count and Macro-Cells to meet the Logic
Density of the design.

For e.g. Following is Device Utilization Summary of Multiplier Implementation on xc3s500e-5-pg208 device.
(Here, number 500 in device name indicates that this device has 500k gates)

Device utilization summary:

Number of Slices: 198 out of 4656 4% (Small Designs like Multiplier can be implemented on CPLD
Number of Slice Flip Flops: 165 outof 9312 1% Series having minimum number of gates, amongst available
Number of 4 input LUTs: 379 outof 9312 4% Xilinx Product families)

Number of 10s: 133

Number of bonded 10Bs: 133 outof 158 84%

Number of GCLKs: 1 outof 24 4%

3. Package Type and Number of 10 Pins :- Based on Number of Input/Output Ports of the design,
decide on device having sufficient number of 10 Pins.

For e.g. 32-bit Multiplier Design cannot be implemented using device 3s500ecp132-5, since, this Chip-Scale Package only
has 92 1/0 pins, whereas Multiplier design here has 133 1/O ports.

xc3s500e-5-pg208 device can be used for Multiplier Design because this Plastic Quad Flat Package has 158 1/0
Pins.

Creating new ISE Project

1. From Project Navigator, select File > New Project.
(Specify the Project Name, Project Location; and select Top Level Source Type as HDL)

2. Click Next & describe Device Properties in New Project Wizard. (Based on the Selection Design Consideration
mentioned earlier, select Xilinx Product Family/ Device Type/ Package Type & Speed Grade)

Following image window indicates the Device Properties selected for Shift-Add Multiplier Implementation :-

+52| New Project Wizard - Device Properties o

—Select the Device and Design Flow far the Project

Property Name Value
Product Category All

Family Spartan3E
Device XC3S500E
Package PQz08
Speed -5

il

Top-Level Source Type
Synthesis Tool XST (WVHDLWerilog)
Simulator Modelsim-5E WHDL

Freferred Language VHDL

LedLedlel]

Enable Enhanced Design Summary [+
Enable Message Filtering —
Display Incremental Messages —

More Info |

3. Click Next & then click Add Source tab in New Project Wizard, to browse and add existing HDL source files to current
ISE Project

Synthesizing Design

Synthesis Tool Functionality :

During synthesis, HDL files are translated into gates and optimized for the target architecture.

Thus, XST Synthesis tool uses design’s HDL code and generates a supported netlist type (NGC) for Xilinx implementation

tools, by performing following general steps :-

» Analyze / Check Syntax of the Source Code.

» Compile : Translates and optimizes the HDL code into a set of components that the synthesis tool can recognize.
* Map : Translates the components from the compile stage into the target technology’s primitive components from UNISIM

Library.

Steps to Synthesize HDL Design :

» Select top-level HDL design in the Sources window.

» To set Synthesis options, right-click Synthesize - XST in the Processes
window; select Properties to display the Process Properties dialog box.

» With the top-level source file selected, right-click Synthesize - XST in the
Processes window & select Run option.

» Synthesis Report file is stored with extension <project_name>.syr
in ISE Project Directory.

Processes for: shift_add_multiplier - shift_add_multiplier_logic

=[] Lreate New Source

£ View Design Summary
+ % Design Utilities
+ 2 ~ User Constraints
=& 4k Synthesize - XST
: [2]E)View Synthesis Report
-5 View RTL Schematic
View Technology Schematic

C} Check Syntax

+-8) Generate Post-Synthesis Simulation Model

*;--Holmplement Design
+-f) Generate Pragramming File

4| |

Zf Processes l

Synthesizing Design — Understanding Synthesis Options

[Source : Xilinx Synthesis and Simulation Design Guide]

Synthesis options enables designer to modify the behaviour of the synthesis tool, to make optimizations according to the
needs of design.

Optimization Effort : constraint allows to choose synthesis optimization level as Normal or High optimization.

Optimization Goal : constraint allows to choose synthesis optimization strategy as Speed or Area.

For e.g. In Shift Add Multiplier implementation, when Optimization Goal is selected as Area, though Number of Slices
and LUTs utilized reduces by 1%, but the maximum frequency for the design also reduces by 8MHz, in comparison to
Synthesis done with default Optimization Goal (i.e. Speed).

Use Synthesis Constraint File : option allows to include (or) exclude .xcf Constraint File ,during synthesis process.

Keep Hierarchy : is a synthesis and implementation constraint. If hierarchy is maintained during Synthesis, the
Implementation tools will use this constraint to preserve the hierarchy throughout the implementation process and allow
a simulation netlist to be created with the desired hierarchy. Though preserving the hierarchy gives the advantage of fast
processing; but, merging the hierarchy blocks improves the fitting results (i.e. fewer device macrocells & better
frequency).

Global Optimization Goal : allows to optimize speed in different regions (register to register, inpad to register,
register to outpad, and inpad to outpad) of the design.

Write Timing Constraints : enables or disables propagation of timing constraints to the NGC file, which will be used
during place and route, as well as synthesis optimization.

Slice Utilization Ratio : defines the area size in absolute number or percent of total number of slices that XST must not
exceed, during timing optimization.

Synthesizing Design — Understanding HDL Options

[Source : Xilinx Synthesis and Simulation Design Guide]

 RAM/ROM/MUX/DECODER/PRIORITY ENCODER /LOGICAL SHIFTER/SHIFT REGISTER / LOGICAL

SHIFTER Extraction : constraints enable or disable corresponding macro inference.

. Following table indicates how various constraints control the way, the macro-generator implements the inferred

various macros:-

RAM Style
ROM Style
MUX Style
Multiplier Style
FSM Style

Case Implementation Style
(This option instructs XST
how to interpret Verilog Case
statements)

FSM Encoding Algorithm
(This constraint selects FSM
encoding technique to use)

Auto/Block/Distributed/Pipe-Distributed RAM

Auto/Block/Distributed ROM

Auto/MUXF/MUXCY (Value AUTO indicates that XST looks for best implementation for each macro inference)
Auto/Block/LUT/Pipe_Block/KCM/CSD/Pipe LUT

BRAMY/LUT ; [Large FSMs can be made more compact and faster by implementing them in Block RAM
resources (instead of LUTS) provided in Virtex and later technologies].

None/Full/Parallel/Full-Parallel
[- If full is used, XST assumes that the case statements are complete and avoids latch creation.
- If parallel is used, XST assumes that the branches cannot occur in parallel and does not use a priority encoder.]

Auto/One-Hot/Compact/Sequential/Gray/Johnson/Speed1/User
(FPGA State Machines are usually One-Hot encoded.)

Synthesizing Design — Understanding HDL Options

For e.g. In Shift Add Multiplier Synthesis, leaving FSM Encoding Algorithm as “Auto” causes One-Hot encoding to be
implemented for <cur_state> and <nxt_state> signal.

Using one-hot encoding for signal <cur_state>.
(NFO:Xst:2117 - HDL ADVISOR - Mux Selector <cur_state» of Case statement line 121 was re-encoded using one-hot encoding. The case statement will be optimized
(default statement optimization), but this optimization may lead to design imitialization problems. To ensure the design works safely, you can:
- add an 'INIT' attribute on signal <cur_state» (optimization is then donme without any risk)
- use the attribute 'signal_encoding user’ to avoid onehot optimization
- use the attribute 'safe_implementation yes' to force XST to perform a safe (but less efficient) optimization
Using one-hot encoding for signal <nxt_state>.

. Safe Implementation : constraint implements FSM with additional logic, that forces FSM to a valid state (recovery
state), if FSM gets into an invalid state.

. XOR Collapsing : controls collapsing of cascaded XORs into single XOR.

. Resource Sharing : constraint enables or disables resource sharing of arithematic operators.

Synthesizing Design — Understanding Xilinx Options

[Source : Xilinx Synthesis and Simulation Design Guide]

Add 1/0 Buffers : enables or disables 1/0 buffer insertion, to all the port names in the top level entity of the design

Max Fanout : constraint limits the fanout of nets or signals. Large fanouts can cause routability problems, therefore
XST tries to limit fanout by duplicating gates or by inserting buffers. (These buffers will be protected against logic
trimming at the implementation level by defining a KEEP attribute in the NGC file.)

Number Of Clock Buffers : controls maximum number of Clock Buffers created by XST.

Register Duplication : enables or disables register replication, during timing optimization and fanout control.
Equivalent Register Removal : enables or disables removal of equivalent registers, described at the RTL Level.
Reqister Balancing : option allows to move flip-flops and latches across logic to increase clock frequency.

(Forward Register Balancing will move a set of flip-flops that are at the inputs of a LUT to a single flip-flop at its output.
Backward Register Balancing will move a flip-flop which is at the output of a LUT to a set of flip-flops at its inputs.)

Move First Stage : constraint controls the retiming of registers with paths coming from primary inputs.
Move Last Stage : constraint controls the retiming of registers with paths going to primary outputs.
Pack 1/0O Reqisters into 10Bs : constraint packs flip-flops in the 1/Os to improve input/output path timing.

Slice Packing : option enables the XST internal packer, which attempts to pack critical LUT-to-LUT connections
within a slice or a CLB.

Use Clock Enable : enables or disables the use of clock enable function in flip-flops. The disabling of the clock
enable function is typically used for ASIC prototyping on FPGAs. In auto mode, XST tries to estimate a trade off
between using a dedicated clock enable input of a flip-flop input and putting clock enable logic on the D input of a flip-
flop.

Use Synchronous Set/Reset : constraint enables or disables the use of synchronous set/reset function in flip-flops.

Optimize Instantiated Primitives : Constraint allows XST to optimize Xilinx library primitives that have been
instantiated in HDL.

Synthesizing Design — Analyzing Synthesis Report

. HDL Compilation & Analysis

During HDL Compilation and HDL Analysis, XST parses and analyzes VHDL/Verilog files and gives the name of the
libraries into which they are compiled. During this step, XST may report potential mismatches between synthesis and

simulation results, potential multi-sources, and other issues.

Analyzing Entity <shift_add_multiplier> in library <works (Architecture <shift_add_multiplier_logic>).
Entity <shift_add_multiplier> analyzed. Unit <shift_add_multiplier> generated.

HDL Synthesis
During this step, XST tries to recognize as many basic macros as possible ,to create a technology specific implementation.

Performing bidirectional port resolution...

Synthesizing Unit <shift_add_multiplier>.
Related source file is "/home/users/pallavip/multiply/shift_add_multiplier_synth/shift_add_multiplier/shift_add_multiplier.vhd"
Using one-hot encoding for signal <cur_state>,
Using one-hot encoding for signal <nxt_statex.
WARNING:Xst - Property "use_dsp48" is not applicable for this technology.
Found 1-bit register for signal <mul_done_o>.
Found 1-bit register for signal <mul_rdy_o>.
Found 3-bit register for signal <cur_states,
Found 64-bit register for signal <mull_shift_reg>.
Found 32-bit register for signal <mul2_shift_reg>.
Found 64-bit register for signal <product_dl>.
Found 64-bit adder for signal <product_d1$addsub0000> created at line 174.
Summary:
inferred 162 D-type flip-flop(s).
inferred 1 Adder/Subtractor(s).
Unit <shift_add_multiplier> synthesized.

Synthesizing Design — Analyzing Synthesis Report

Following is the sectional details of Synthesis Report (.syr) file :-

» Advanced HDL Synthesis : During this step, XST performs advanced macro recognition and inference like recognizing
dynamic shift registers, implementing pipelined multipliers, coding state machines, etc.

(Following is the Advanced Synthesis Report section generated for Shift & Add Multiplier)

* Advanced HDL Synthesis *

Loading device for application Rf Device from file '3s500e.nph' in environment /cad/Xilinx.

Advanced HDL Synthesis Report

Macro Statistics

Adders/Subtractors 1
B4-bit adder c 1
Registers : 185
Flip-Flops : 185
. . . Final Results)))
- Low Level Synthesis : During this step XST ~ §IL Tep Leyel outpur siie Name : shift add muripiior.nes
. . ODutput Format . NGC
reports the potential removal of equivalent Optimization Goal . Speed
. . . . Keep Hierarchy 1 NO
flip-flops, register replication, etc Design Statistics
TIOs : 133

Cell Usage :
BELS T 5643

. Final Report : includes (NGC) output file name

= GMND S ¢
. i . # LuUT2 : 104
LUT= : 20
(having extension .ngr), target family and cell usage. £ LT 20
& MK CY T B
= MUXF5S : A27
= WCC H &
= HNORCY . B3
FlipFlops/Latches : A1B5
& FDC 164
& FDF S ¢
Clock Buffers A
= EUFGP . &
IO Buffers : A32
i#* IEUF T BB
OBUF . BB

Synthesizing Design — Analyzing Synthesis Report

Final Report also includes following information :-

Device Utilization Summary: where XST estimates the number of slices, gives the number of flip-flops, 10Bs,
BRAMS, etc. This report is very close to the one produced by MAP.

Following is the Device Utilization Summary & Clock Information for Shift Add Multiplier Synthesis :

Device utilization summary:

Selected Device : 3s500epq208-5

Number
Number
Number
Number
Number
Number

of Slices: 108
of Slice Flip Flops: 165
of 4 input LUTs: 380
of I0s: 133
of bonded IOBEs: 133
of GCLKs: 1

out
out
out

out
out

4656
8312
8312

158
24

Clock Information:

——————————————————————————————————— ey TS
Clock Signal | Clock buffer(FF name) | Load
——————————————————————————————————— s TS
clk_1 | BUEGP | 165

AY e e e e o +

12 Asynchronous Control Signals Information:
——————————————————————————————————— s TS

g4% Control Signal | Buffer(FF name) | Load

S T o +
rst_1 | IBUF | 165
——————————————————————————————————— e TS

Clock Information: gives information about the number of clocks in the design, how each clock is buffered and

how many loads it has.

Timing report : Timing Summary section gives a summary of following timing paths :-
(i) The path from any clock to any clock (i.e. flop to flop delay) in the design:
(i) The maximum path from all primary inputs to the sequential elements.
(iii) The maximum path from the sequential elements to all primary outputs.

(iv) The maximum path from input to output pad.

Timing Summary for Shift Add Multiplier Synthesis ->

Minimum
Minimum
Maximum
Maximum

Speed Grade: -5

Timing Summary:

period: 7.29%ns (Maximum Frequency: 137.079MHz)
input arrival time before clock: 5.269ns

output required time after clock: 4.182ns
combinational path delay: No path found

Synthesizing Design— Generating Post-Synthesis Simulation Model

Requirement & Generation of Post-Synthesis Simulation Model :

To verify whether the correct functionality of the design is retained, after synthesizing it into netlist; HDL Design’s
equivalent simulation model can be generated, by clicking on Generate Post-Synthesis Simulation Model option within
Synthesis-XST process list. (Netlist simulation model is generated in netgen/synthesis directory)

Post-Synthesis Simulation using Modelsim :

Post-Synthesis Simulation Model can be compiled & simulated using the same HDL testbench, that was used for HDL
behavioral code verification.

In Modelsim, after creating a new project for Post Synthesis Simulation, include Netlist (_synthesis.vhd) from
<ise_project>/netgen/synthesis directory. This netlist file is compiled along with testbench, instead of HDL behavioral
Code being compiled.

Post-Synthesis Simulation Result :

For the generated Post-Synthesis Simulation Model, no standard delay file (.sdf file) is back-annotated during
simulation.(Thus, UNISIM Library primitives, included in the synthesis generated netlist, do not have any delay
associated with it)

Therefore, expected Post-Synthesis Simulation result is same as Functional Verification result of HDL Design, as can be
seen in following Post-Synthesis simulation waveform for Shift-Add Multiplier design :-

‘L thmulTiclk i |0

‘Ler thmultirst i |0

¢ .bmulldatal | |00001011

¢ .bmuldata? i 00000111 FF... 00000111
F

4

Fl

4

| orr—— p— | pp———— |

Wullipreduct o {000ODOORBOY2221§0000000000000000 DOO00O0OODOT1121 | | Joooodod. Joo00o00.. |
LTmll rdy o |1
Jimul_done o |1

LAomulTistart i |1

Specifying User Constraints

Need for Setting Constraints :

For Design to meet desired Area/Frequency Specification on FPGA, it is required to tell the Implementation Tool for
what performance it should optimize the design implementation processes like Map, Place & Route. Thus, User Defined
Constraints allows to specify desired Clock period/ Pad to Setup/Clock to Pad delay & assign areas to hierarchical
blocks of logic.

Physical User Constraint also allows to allocate HDL design’s 1/0O signals to specific package pins.

Adding Constraints to Design :

User can specify Constraints for ISE Design Project , either through GUI by double-clicking on following options
available within User Constraints label in Processes Window:-

—

(i) Create Timing Constraints Processes for: shift_add_multiplier - shift_add_multip/ =
-~ Add Existing Source

(if) Assign Package Pins ~[1 Create New Source
(iii) Create Area Constraints ~ L View Design Summary
% Design Utilities
User Constraints
Create Timing Constraints

-
Assign Package Pins

(or) the User can specify constraints in .ucf file, through any text editor.

While opening Constraint Editor window, Translate step runs automatically Creis A CERE IR

because implementation stage must see the netlist before it can offer the user +-[2] Edit Constraints (Text)

the chance to constraint sections of design. ‘?J"ﬂi_Si’ nthesize - XST ﬂ f

21 Processes |

Specifying User Constraints — Timing Constraints

(1) Timing Constraints :

The Global Clock Domain and Input/Output_Ports tab of Create Timing Constraints window automatically displays all
clock nets in the design, and enables designer to define the associated Period, Pad to Setup, and Clock to Pad values.

& Xilinx Constraints Editor

Eile Edit View Window Help

1D & |X
A Global®
Clock Net Name | Period Pad to Setup |C|ﬂ':k to Pad Port Name ' |Port Direction || Pad to Setup Clock to Pad
cli_i 7.5ns HIGH 50 % 2 ns e INPUT A
data2_i<7> [INPUT N/A
data2_j<8> [InPUT N/A
data?_j<9> [InPUT N/A
q| | +| | |mul_done_o |ouTPuT N/A
mul_rdy_o |ouTPuT N/A
nrndirt nel= |= il ITPILIT Pl A
4

@ Global* @;Pms* @Advanced* @msc*
These constraints can be specified in .uef text file, as an alternative to using Constraint Editor
2l INET "clk_" TNM_NET = "clk_i". Rl
TIMESPEC "TS_clk_i" = PERIOD "clk_i" 7.5 ns HIGH 50 % > gypiax for Clock Period Costraint

OFFSET = IN 2 ns BEFORE "clk_i" : T A —
OFFSET = OUT 2 ns AFTER "clk_i" : T “Symiax for Clock to Pad Constraint

(Since, there are no combinatorial paths in Shift Add Multiplier design, Pad to Pad constraint is not specified for this case.)

ISE tool Timing Analyzer is used to analyze the results of these timing specifications for the design.

Specifying User Constraints — Timing Constraints

[Source : Xilinx Timing Constraint User Guide]

Clock Period constraint ensures that the internal paths starting and ending at synchronous points (Flip-Flops /RAM /
Latches) have logic delay less than Maximum Delay allowed in the design specification.

Pad to Setup is the path starting at Input Port of the design and ending at an input to a flip-flop/latch/RAM—wherever there
IS a setup time against a control signal.

The Pad to Setup constraint defines the maximum time required for the data to enter the FPGA, travel through logic and
routing, and arrive at the input before the clock or control signal arrives.

T _data _In
.......................... -
Pad-to-Setup Delay Constraint can be calculated as follows :- —
Toata t Tsetup = Tclock <= ToffsetIN_BEFORE i >
T clk_In T—
where, _ .
Tpaa = Total Data path delay from the Flip Flop PR

Teetup = Intrinsic Flip Flop setup time
Teiok = Total Clock path delay to the Flip Flop OFFSET-IN |
Torret_IN_serore = Overall Setup Requirement

Clock to Pad is the path starting at the Q output of a flip-flop or latch and ending at Output Port of the design. It includes the
Clock-to-Q delay of the flip-flop and path delay from that flip-flop to FPGA output.

The Clock to Pad constraint defines the maximum time required for the data to leave the source flip-flop, travel through logic
and routing, and arrive at output pin of FPGA.

The clock-to-pad path time is the maximum time required for the data to leave the source flip-flop, travel through logic and
routing, and leave the chip.

Specifying User Constraints — Timing Constraints

Clock to Pad Delay Constraint can be calculated as follows :-

To * Toatazout Teiock <= Toffset ouT AFTER

[Source : Xilinx Timing Constraint User Guide]

T_data_ount
ERTETTT TRV TP PR T T TR TP PR TELY 3

=

t} =

where,
TQ j IntrinSiC Flip Flop CIOCk to OUt [:::..
Teioek = Total Clock path delay to the Flip Flop Clk

Tpaaout = Total Data path delay from the Flip Flop
Torset ouT arter = Overall Clock to Out Requirement

I OFFSET-OUT

Pad to Pad constraint constrains combinatorial asynchronous paths having start and endpoints as Pads of the design.

it

Specifying User Constraints — Assigning Package Pins

(i) Assigning Package Pins :

Package Pins can be assigned to Design’s Input/Output Ports through LOC constraint in .ucf file or through Assign
Package Pin GUI Window.

B Xilinx PACE - fhome/users/pallavip/multiply/shift_add_multiplier_synth1/shift_add_multiplier/shift_add_multi... |Z” | [shift_add_multiplier. ucf (~/multiply/s

File Edit View I0Bs Areas Tools Window Help File Edit Tools Syntax Buffers Win
IEEF I 20 RAQAADNL c g EB | 9@ | BB
= Deesign Browser NET "product_o<49>" LOC = P185;

. NET "product_o<54>" LOC = P108;

: 7 " az_1<6>" = :

. Pinfame:"P1" Pin Type: 'PROG_B" JET “reial wele™ Mk = HIZ
/O Name | lfO Direction : E
clk_i Input . '
datal i<0= |Input Top Uiew :
datal_i=1= Input . E
datal j=Z> |Input :
datal i<3= |Input !
datal_i=4= |Input ; :
datal j<5= |Input : :
data-l_i{E} |nFJUt il IFT 1] EEER R N:] KNI - E ssnaflimsn masEmEE ll:

Package View f Architecture] i=

Translating Design

Translate Process Functionality :

During translation, the NGDBuild program performs the following functions :-

. Converts input design netlists and writes results to a single merged NGD netlist. The merged netlist describes the
logic in the design as well as any location and timing constraints.

. Performs timing specification and logical design rule checks.

. Adds constraints from the User Constraints File (UCF) to the merged netlist.

Steps to Translate the Design :

. Translate Process gets automatically executed while opening Consraint Editor GUI Window (or) User can right-click
Translate option in Processes Window and select Run option.
. To set Translate Properties, right-click Translate in the Processes window; select Properties to display the Process
Properties dialog box.
. Synthesis Report file is stored with extension <project_name>.bld in ISE Project Directory.
) Processes for: shift_add_multiplier - shift_add_multiplier_logic _‘J
Translate Process File Types : 5% Design Utifies '
Translate Process uses following files as input :- +‘§ User Constraints
§ NGC netlist file from Synthesis Process. -8\ Synthesize - XST !
§ UCF constraint file containing timing and layout constraints. '",‘?les'gn
Translate Process creates following files as output :- - »[Z)DTranslation Report i
8 NGD file, containing logical description of the design, expressed & Floorplan Design N Rerun
. - . . . X : +-f) Generate Post-Translate Simulation Model
in terms of lower Ieve! Xilinx Prlmltlv_es, with c_onstra_lnt applied t(_) design L Assign Package Pins Post-Translate =L Renn Al
8 BLD Report file shows following error in design or UCF file :- +-TaOMap o
- Missing or untranslatable hierarchical blocks +- 0@ Place & Route
- Invalid or incomplete timing constraints +-B) Generate Proarammina File A i
— Output contention, loadless outputs, and sourceless inputs L4 A, Propetties

2 Processes M]gﬁ

Translating Design — Understanding Translate Options

[Source : Xilinx Development System Reference Guide]

Use LOC Constraints :- Deselecting this option allows to ignore Location constraint in UCF file, when user may require to
migrate to a different device or architecture, because location in one architecture may not match location in another.

Create 1/O Pads from Ports :- Adds a PAD symbol to every signal that is connected to a port on the root-level cell.

Allow Unexpanded Blocks :- Translate Process generates an error if a block in the design cannot be expanded to NGD
primitives. If Allow Unexpanded Blocks option is selected, only warning is generated instead of an error, and NGD file
is still written, containing the unexpanded block.

This option is used to perform preliminary mapping, placement and routing, timing analysis, or simulation on the design,
even though the design is not complete.

Allow Unmatched LOC Constraints :- Translate Process generates error if the constraints specified for pin, net, or instance
names in the UCF file cannot be found in the design. If this error occurs, an NGD file is not written. If Allow Unmatched
LOC option is selected, Translate Process generates a warning instead of an error for LOC constraints, and still writes an

NGD file.

This option is useful if User Constraints File includes location constraints for pin, net, or instance names that have not
yet been defined in the HDL or schematic. This allows user to maintain single version of User Constraints File for

both partially complete and final designs.

Mapping the Design

MAP Process Functionality :

* Allocates CLB and IOB resources for all basic logic elements in the design.

* Processes all location and timing constraints, performs target device optimizations, and runs a design rule check on the
resulting mapped netlist.

Steps to Map the Design :

. To set Map Process Properties, right-click Map in the Processes window; select Properties to display the Process
Properties dialog box.

. Right-click Map label in Processes Window and select Run option.

. Synthesis Report file is stored with extension <project_name>.mrp in ISE Proiect Directorv.

Processes for: shift_add_multiplier - shift_add_multiplier_logic _‘_‘J

+- % User Constraints

+-0) 1\ Synthesize - XST

-- 82D Implement Design ‘

MAP Process uses NGD file, created during Translate Process, as Input file. f"faﬂs'm
¥ @ Map

Map Process File Types :

MAP Process creates following files as output :- - [2)DMap Report %
*:r--ﬂ Generate Post-Map Static Timing Rerun
« NCD (Native Circuit Description) file containing physical description - Floorplan Design Post-Map (Floorplanner) gy gop o a
. . . o . -G} Manually Place & Route (FPGA Editor)
of design in terms of the components in the target Xilinx device. 58) Generate PostMap Simulation Model | &

. PCF (Physical Constraints File) contains constraints specified during g Tt

design entry expressed in terms of physical elements. N L 2t Properties

MRP (MAP Report File) confirms the resources used within the device; ana aescribes trimmea ana mergea 10gic.
Detailed Report also describes exactly where each portion of the design is located in the device.

Mapping Design — Understanding MAP Options

[Source : Xilinx Development System Reference]

Perform Timing driven packing & Placement :- directs MAP to give priority to timing critical paths during packing,
then places the design.Timing-driven packing and placement is recommended to improve design performance, timing,
and packing for highly utilized designs.

Map Effort Level :- specifies the level of effort MAP uses to pack the design.

Extra Effort :- Continue on Impossible allows to direct MAP to continue and improve packing, until little or no
Improvement can be made.

Combinatorial Logic Optimization :-Invokes post-placement logic restructuring for improved timing and design
performance.

Regqister Duplication :-option duplicates registers to improve timing when running timing-driven packing.

Replicate Logic to Allow Logic level Reduction :- Logic replication is an optimization method in which MAP operates

on a single driver that is driving multiple loads and maps it as multiple components, each driving a single load which
makes it easier to meet timing requirements, since some delays can be eliminated on critical nets.

Allow Logic Optimization across Heirarchy :- specifies whether Area/Speed/Balanced criteria has to be used during the
cover phase of MAP, during which, MAP assigns the logic to CLB function generators (LUTS).

Use RLOC Constraints :- Unchecking this option allows to ignore the RLOC constraint that cannot be met.

Disable Register Ordering :- By default, MAP looks at the register bit names for similarities and tries to map register
bits in an ordered manner. Specify this option, register bit names are ignored when registers are mapped, and the bits are
not mapped in any special order.

CLB Pack Factor Percentage :- determines the degree to which CLBs are packed when the design is mapped.

MAP Slice Logic into Unused Block RAMs :- When block RAM mapping is enabled, MAP attempts to place LUTs and
FFs into single-output, single-port block RAMs.

Power Reduction :- Specifies that placement is optimized to reduce the power consumed by a design during timing-
driven packing and placement.

Mapping Design — Analyzing MAP Report

Following is the sectional details of MAP Report (.mrp) file :-

» Design Summary - Summarizes the mapper run, showing the number of errors and warnings, and how many of the

resources in the target device are used by the mapped design.

Design Summary
Number of errors:
Number of warnings:
Logic Utilization:

0
0

Number of Slice Flip Flops: 163 out of 9,312 1%
Number of 4 input LUTs: 379 out of 09,6312 4%
Logic Distribution:
Number of occupied Slices: 202 out of 4,656 4%
Number of Slices containing only related logic: 202 out of 202
Number of Slices containing unrelated logic: 0 out of 202

*See NOTES below for an explanation of the effects of unrelated logic

Total Number of 4 input LUTs: 379 out of 0,312 4%
Number of bonded IOBs: 133 out of 158 B4%
IOB Flip Flops: 2
Number of GCLKs: 1 out of 24 4%
Total equivalent gate count for design: 4 377
Additional JTAG gate count for IOBs: 6, 6384

0%

100y Section 4 - Removed Logic Summary

2 block(s) optimized away

Section 5 - Removed Logic

Optimized Block(s):

TYPE BLOCK
GND XST_GND
vCe X5T_vCC

* Removed Logic - Describes in detail all logic (design components and nets) removed for the following reasons, from the

input NGD file when the design is mapped :-

- The design uses only part of the logic in a library macro.

- The design has been mapped even though it is not yet complete.
- The mapper has optimized the design logic.

- Unused logic has been created in error during schematic entry.

Mapping Design — Analyzing MAP Report

» 10B Properties - Lists each 10B to which the user has supplied constraints along with the applicable constraints.

Section 6 - IOB Properties

+ ___
| IOE Name | IOE Type | Direction | IQ Standard | Drive | Slew | Reg (s) | Resistor | IBUE/IFD
| | | | | Strength | Rate | | | Delay
+ ___
| clk_1 | IBUF | INPUT | LVCMDS25 | | | | | O/ 0
| datal_i<0> | IBUF | INPUT | LVCMOS25 | | | | | O/ 0
| datal_i<1> | IEBUF | INPUT | LVCMODS25 | | | | | O/ 0
| datal_i<2> | IEBUF | INPUT | LVCMDS25 | | | | | O/ 0

» Timing Report - This section, produced with Perform Timing driven packing & Placement option, shows information on
timing constraints considered during the MAP run.

Section 11 - Timing Report

INFO:Timing: 3284 - This timing report was generated using estimated delay
information. For accurate numbers, please refer to the post Place and Route
timing report.

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

Constraint | Check | Worst Case | Best Case | Timing | Timing

| | Slack | Achievable | Errors | Score
TS_clk_di = PERIOD TIMEGRP "clk_i™ 7.5 ns | SETUP | -0, 091ns| 7.591ns| 1] a1
HIGH 50% | HOLD | 1.263ns| | 0] 0

1 constraint not met.

Placing and Routing the Design

Place And Route Process Functionality :-

. During placement, PAR places components into sites based on factors such as constraints, the length of connections,

and the available routing resources.

. After placing the design, the router performs a converging procedure for a solution that routes the design to

completion and meets timing constraints.

Steps to Place and Route the Design :-

. To execute PAR in the Processes tab, right-click Place & Route under the Implement Design process group, and

select Run option.

. To set Place and Route Properties, right-click Place & Route in the Processes window; select Properties to display

the Process Properties dialog box.

PAR Process File Types :-

PAR Process uses Mapped Design (NCD) File and Physical Constraint (PCF)
file created during MAP Process, as Input File.

PAR Process creates following files as output :-

- Placed and Routed NCD Design File
- PAR Report File, including summary information of all placement
and routing iterations.

Processes for: shift_add_multiplier - shift_add_multiplier_|log

-- ¥ f\Implement Design
+-LQ@Translate
j"ﬁOMaD

£k Place & Route

- [=]E)Place & Route Report p 8
@ Clock Region Report Rerun
Asynchronous Delay Report
EOPaE Report e g':t: Rerun Al
~[2] Guide Results Report s

+-% MPPR Results Utilities

+- P2 Generate Post-Place & Route —]
LR AfiawdCAit Dlarad Nacinn /Cln 7{, Properties.

1|

2 Processes |

Placing and Routing Design — Understanding PAR Options

[Source : Xilinx Development System Reference Guide]

Place and Route Effort Level :- specifies the level of effort PAR uses to place and route design to completion and to
achieve timing constraints.

Extra effort Level :- option Continue on Impossible allows user to direct PAR to continue routing, even if PAR
determines the timing constraints cannot be met. PAR , then, continues to attempt to route and improve timing until little
or no timing improvement can be made.

Use Timing Constraints :- On deselecting this option, all timing constraints are ignored and the implementation tools do
not use any timing information to place and route the design.

Power Reduction :- option optimizes the capacitance of non-timing driven design signals

Placing and Routing Design — Analyzing PAR Report

Following is the sectional details of PAR Report (. par) file :-

» Design Summary - Provides a breakdown of the resources in the design and includes the Device Utilization Summary

Design Summary Report:

Number of External IOBs 133 out of 158 84%
Number of External Input IOBs 67
Number of External Input IEBUFs 67
Number of LOCed External Input IBUF=s 67 out of &7 100%
Number of External Output IOEBs 66
Number of External Output IOEBs B6
Number of LOCed External Output IOEBs 66 out of 66 100%
Number of External Bidir IOEs 0
Number of BUFGMUXs 1 out of 24 4%
Number of Slices 202 out of 4656 4%
Number of SLICEMs 0 out of 2328 0%

* Clock Report - Lists all clocks in the design and provides information on the routing resources, number of fanout,
maximum net skew for each clock, and the maximum delay. The locked column in the clock table indicates whether the
clock driver (BUFGMUX) is assigned to a particular site or left floating..

Placing and Routing Design — Analyzing PAR Report

» Delay Summary Report - Summarizes the connection and pin delays for the design.

The NUMBER OF SIGNALS NOT COMPLETELY ROUTED for this design is: 0

The AVERAGE CONMECTION DELAY for this design is: 1.211
The MAXIMUM PIN DELAY I5: 4,125
The AVERAGE CONMECTION DELAY on the 10 WORST NETS is: 3.2080

Listing Pin Delays by wvalue: (nsec)

d < 1.00 <d < 2.00 <«<d=<3.00 «d< 400 <d< 5.00 4 =>= 5.00

» Timing Score - Lists information on timing constraints contained in the input PCF, including how many timing

constraints were met.
Timing Score: 0

Asterisk (*) preceding a constraint indicates it was not met.
This may be due to a setup or hold violation.

Constraint | Check | Worst Case | Best Case | Timing | Timing

| | Slack | Achiewvable | Errors | Score
TS_clk_1 = PERICD TIMEGRP "clk_1i" 7.5 ns | SETUP | 0.021ns| 7.479ns| 0] 0
HIGH 50% | HOLD | 1.148ns| | 0] 0

All constraints were met,

Slack value indicates the difference between the constraint and the analyzed value, with negative slack indicating an error condition.

o Setup Slack informs about the amount of setup violation seen for a path, and is calculated as :
Setup Slack = Constraint_requirement - To oo skew = T data_path = Tsu

+ Hold Slack :- Hold/Race checks are performed on register-to-register paths by taking the data path (Too* Troue totar + Tiogic totar) @Nd
subtracting the clock skew (T geg; o = Tore_oi) @nd the register hold delay (T,,) i.e.

HOId SIaCk = Tdata - TSkEW - Thold'

Placing and Routing Design — Asynchronous Delay Report

» Asynchronous Delay Report is concerned with Worst Path logic and routing delays in the design

For e.g. Following is the data from Shift Add Multiplier Design Asynchronous Delay Report :-
File: shift_add_multiplier.dly

The 20 worst nets by delay are:

e e Fom e +

| Max Delay | Netname |

o e +
4,125 start_i_IBUF
3.520 datal_i_4_IBUF
3.471 datal i_25_IBUF
3.438 product_dl<10>
3.325 cur_state<0>
3.057 product_dl<43>
3.050 product_dl<5i4d>
3.013 data2_i_8_IBUF
2.975 product_dl<41>
2.927 product_dl<2Z>
2.841 product_dl<289>
2.821 product_dl<Z24>
2. 785 product_dl<34>
2.690 cur_state<2>
2.656 product_dl<33>
2.648 datal_i_12_TBUF
2.617 datal _i_21 IBUF
2.617 product_dl<37>
2.611 mul?_shift_reg<0>
2.604 cur_state<l>

Placing and Routing Design - Post PAR Static Timing Analysis

Post PAR Static Timing report evaluates the logical block delays and the routing delays.

To display this report, run Analyze Post-Place & Route Static Timing
process in the Processes view under Implement Design > Place & Route
> Generate Post-Place & Route Static Timing label.

Processes for: shift_add_multiplier - shift_add_multiplier_logic

4]

--PJ \Place & Route

~[£])Place & Route Report

-[£]E)Clock Region Report

- [2]€)Asynchronous Delay Report

~[2]E)Pad Report

~[2] Guide Results Report

+-% MPPR Results Utilities

- P () Generate Post-Place & Route Static Timing
%G Analyze Post-Place & Route Static Timing
+-P) Generate Primetime Netlist

-4 ViewEdit Placed Design (Floorplanner)
B Wiew/Edit Raited Necinn (EPGA Fditnr

Zf Processes I

Advanced Design Analysis report can be generated by selecting Perform Advanced Analysis in Post Place and Route
Static Timing Report Properties (accessed by right-clicking on Generate Post-Place and Route Static Timing label and

selecting Properties option) Post-Place & Route Static Timing Report Properties

The Timing Report will open in Timing Analyzer window.

Property Name |"u"alue |
Report Type | Error Report |
Mumber of [tems in Errorf/Verbose Report (0 - 2 Billion) |3 ::j
Perform Advanced Analysis I

Placing and Routing Design - Post PAR Static Timing Analysis

Following is the sectional details of Analyze Post Place and Route Static Timing GUI window options and Static Timing
Report (. twr) text file :-

(i) Timing Constraints Analysis report compares the design’s performance to the timing constraints.

B Xilinx Timing Analyzer - shift_add_multiplier. ncd

File Edit “iew Anakze ‘Window Help
[D@d |85 = /| BeREEL N

- Timing Report Description

=8 Timing Constraints
. Default period analysis ft
. Default OFFSET IM BEF 10473 items analyzed, 0 timing errors detected. (0 setup errors, 0 hold errors
. Default OFFSET OUT Af| Minimum pericd is 7.479ns.
-~ Constraint compliance |
= Data Sheet report: @ e o e e e e e e e .
~Setup/Hold to clock clk_E| Timing constraint: Default OFFSET IN BEFORE analysis for clock "elk_i_BUFGE"
~Clock clk_i to Pad
- Clock to Setup on destini| 286 items analvzed, 0 timing errors detected.
- Timing summary Minimum allowakle offset is 5.031ns.

Timing constraint: Default period analysis for net "c¢lk i BUFGPE"

Timing constraint: Default OFFSET OUT AFTEE analvsis for clock "olk i BUFGE"

66 items analyzed, 0 timing errors detected.
Maximum allowakle offset is 9.604dns.

211 oconstralnts were met.

Placing and Routing Design - Post PAR Static Timing Analysis

(if) Data Sheet Report includes the source and destination PAD names, and either the propagation delay between the source
and destination or the setup and hold requirements for the source relative to the destination.

B Tirning Constraints Data Sheet report:
- Default period analysis f¢| ——————————————-—-
- Default OFFSET IM BEFe | 211 walues displayed in nancseconds (ns)
- Default OFFSET QUT AR St 1 A 6 Loak Bik i
- Constraint compliance f_Elf__f____f_f_?f__f__ji+ ____________ e P N
=) ata Sheet report: | Setup to | Hold to | | Clock |
-~ setup/Hold to clock clk_E| gouree | ¢lk (edge) | ¢lk (edge) |Internal Clock(s) | FPhase |
~-Clockclk_itoPad §] ————————— T I — S S I —— +
- Clock to Setup on destini| datal i<0= | 2.211(RY | -0.645(R) |olk_i EUFGP | O.oo0)
- Timing summary datal i<il= | 1.958(R)| -0.427(R)|clk_i_ BUFGE | 0.000]
datal i<Zz | 1.819(R)| -0.304(R) |elk_i BUFGPE | o.ooo)
datal i<3z | 2.253(R) | -0.675(R) |elk_i BUFGP | o.ooo)
- Default OFFSET IN BEF¢| Clock <¢lk 1 to Pad
-~ Default OFFSET QUT AR| ———~——~——~7~ T‘;;‘;&;;‘T “““““““““ T"EI;;;T
~ Constraint compliance Destination | to PAD | Internal Clock(s) | Phase |
=-Data Sheetreport, 8| _____________ PO e e e e e e e e +
~setup/Hold to clock clk_i| mu1_done_o | 5.611(R) |clk_i_BUFGP | 0.000]
] Clock clk_ito Pad ml_rdy o | 5.584(R) |clk_1i BUFGE | 0.000]
- Clock to Setup on destini| product o<l | 8.517(R) |clk_1i BUFGP | a.000|
- Timing summary product o<ls | T.T22(R) |clk 1 BUFGE | a.000|
Canstaint compliance Clock to Setup on destination clock clk i
=-Data Sheetreport) _____________"_ PR P P e e e "
g----SetuprnIcItn clock clk_ | Src:Rise| Zrc:Fall| Sro:Rise| Sro:Fall|
§""C|U'3k~ clk_ito Pad | Socurcs Clock |Dest:Rise|Dest:Pise|Dest:Fall |Dest:Fall|
B Clock 1o Setup on desting I to—— to——— o ittt +
- Timing summary clk_1 I T.aTy| I I I
——————————————— 4

Negative Hold Time indicates that data pin of the flip-flop can change ahead of the clock pin and still meet Hold Time check, due to
internal data path-delay of Flip-Flop.

Placing & Routing Design-Generating Post PAR Simulation Model

Requirement & Generation of Post-Place & Route Simulation Model :

Timing Simulation is required to verify whether the correct functionality of the design is retained, after the netlist is
back-annotated with logic and routing delay information.

Equivalent simulation model for Placed & Routed Netlist can be generated, by clicking on Generate Post-Place &
Route Simulation Model option within Place & Route process list. (Netlist simulation model is generated in
netgen/par directory)

Timing Simulation using Modelsim :

Post-PAR Simulation Model can be compiled & simulated using the same HDL testbench, that was used for HDL
behavioral code verification. =

_ _ _ _ Design | ¥HDL | werilog | Libraries = SDF] Others |
1) In Modelsim, after creating a new project for Post

Synthesis Simulation, include Netlist (_synthesis.vhd) from ——SDF Files
<ise_project>/netgen/par directory. This netlist file is =R F“f,ﬁm” }M””,, .
compiled along with testbench, instead of HDL behavioral - peeR Add. .
Code being compiled. OGS
Delete
i) After compiling Netlist & Testbench, add SDF file = @:1
(containing Netlist Logic & Routing Delay information) [— Esticaliiay
from <ise_project>/ netgen/ par directory, through e — m| hd
1 _ H H H _ — —Aapply to Region Crelay —
Simulate Menu -> Start Simulation Window -> SDF tab. o !Tty_p -
Il)esignlnsta.m:e Name in Ok | Cancel | | S

S Testhench

Placing & Routing Design-Generating Post PAR Simulation Model

Post-PAR Simulation Result :

Since, in this Timing Simulation, SDF file containing logic/routing delay information is back-annotated to the netlist,
simulation waveform result shows delay in updating output signal ports, after input clock and data is applied to the
design.

:shift_add_multiplier_th:mult:rst_i

:shift_add_multiplier_th:mult:clk_i

:shift_add_multiplier_th:mull:star_i

:shift_add_multiplier_th:mult:datal_i 001011 ogoaioid
:shift_add_multiplier_th:mull datag_ 000111 ooonaiil
:shift_add_multiplier_th:mull:product_o
:shift_add_multiplier_th:eault:mul_rdy_o

:shift_add_multiplier_th:mult:mul_done_o

[l e
Cursar 1 4RE074000 fs
459976895 fs

For e.g., In case of Shift-Add Multiplier Design, as indicated in Static Timing Report (.twr), Clock to Pad Output Path Delay is around
8ns for product_dly_o data bus, which is also observed in Post PAR Simulation Waveform, wherein Registered Product data
output appears after 8ns relative to Clock rising edge.

Generating BitMap Programming File

Purpose of Generating Programming File :

After design has been routed, it is required to generate the binary data which can be used to program the physical device.
The Programming BIT File for FPGA Device should contain all the configuration information, defining the internal
logic and interconnections of the FPGA, plus device-specific information from other files associated with the target

device. The binary data in the BIT file can then be downloaded into the FPGA's memory cells or it can be used to create
a PROM file.

Step to Generate Programming File :

To create BitMap file, right-click Generate Programming File label in Processes window & click Run option.

+- T2 t\Synthesize - XST

+- P2 !\ Implement Design

--f Generate Programming File
Programming File Generation Report % Run
::B Generate PROM, ACE, or JTAG File Rerun
1% Configure Device (IMPACT) 2t Rerun Al

D

2f Processes |

Zf Properties..

BitGen Process File Types :

Xilinx uses BitGen process for generating Bitstream program. BitGen takes a fully routed NCD file, generated during
PAR process as its input, and produces a configuration bitstream - a binary file with a .bit extension.

