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Objective

After completing this module, you will be able to:
• Select a proper coding style to create efficient FPGA designs
• Specify Xilinx resources that need to be instantiated for various FPGA 

synthesis tools
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Outline

• Introduction
• Coding Tips
• Instantiating Resources
• Summary
• Appendix:

– Inferring Logic and  Flip-flop Resources
– Inferring Memory
– Inferring I/Os and Global Resources
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Instantiation Versus Inference 

• Instantiate a component when you must dictate exactly which resource 
is needed

– Synthesis tool is unable to infer the resource
– Synthesis tool fails to infer the resource

• Xilinx recommends inference whenever possible
– Inference makes your code more portable
– Synthesis tools cannot estimate timing delays through instantiated components

• Xilinx recommends the use of the CORE Generator™ System to create 
ALUs, fast multipliers, FIR Filters, etc. for instantiation
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Multiplexers

• Multiplexers are generated from IF and CASE statements 
– IF/THEN statements generate priority encoders 
– Use CASE to generate complex encoding 

• There are several issues to consider with a multiplexer
– Delay and size

• Affected by the number of inputs and number of nested clauses to an IF/THEN 
or CASE statement

– Unintended latches or clock enables
• Generated when IF/THEN or CASE statements do not cover all conditions 
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Avoid Nested IF and CASE 
Statements

• Nested IF or CASE statements infer cascaded logic
– More levels of logic → lower performance

• When nested IFs are necessary, put critical input signals on the
first (outer) IF statement

– The critical signal ends up in the last logic stage
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Unintended Latch Inference

• In IF/CASE statements, latches are inferred when:
– All possible input values are not covered
– All outputs are not defined in all branches

• When the IF/CASE statement is in a clocked process (VHDL) or 
always block (Verilog), latches are not inferred

– Clock enables are inferred instead
– This is not “wrong,” but it might generate a long clock-enable equation

• Use default assignments before the IF/CASE statement to 
prevent latches or inferred clock enables
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Clock Enables

• Coding style will determine if clock enables are used
• Reset and set have precedence over clock enable

VHDL

FF_AR_CE: process(ENABLE,CLK)
begin
if (CLK’event and CLK = ‘1’) then
if (ENABLE = ‘1’) then
Q <= D_IN;

end if;
end if;

end process

Verilog

always @(posedge CLOCK)
if (ENABLE)
Q = D_IN;
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State Machine Design

• Put the next-state logic in one 
CASE statement

– The state register may also be 
included here or in a separate 
process or always block

• Put the state machine outputs 
in a separate process or 
always block

– Easier for synthesis tools to 
optimize logic this way
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State register
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The Perfect State Machine

• The perfect state machine has
– Inputs: input signals, state jumps
– Outputs: output states, and control/enable signals to the rest of the design
– NO arithmetic logic, datapaths, or combinatorial functions inside the state 

machine 
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State Machine Encoding

• Use enumerated types to define state vectors (VHDL)
– Most synthesis tools have commands to extract and re-encode state 

machines described in this way
• Use one-hot encoding for high-performance state machines

– Uses more registers, but simplifies next-state logic
– Experiment to discover how your synthesis tool chooses the default 

encoding scheme
• Register state machine outputs for higher performance
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Instantiation Tips

• Use instantiation only when it is necessary to access device 
features or increase performance or decrease area

– Exceptions are noted at the end of this section
• Limit the location of instantiated components to a few  source files, 

to make it easier to locate these components when porting the code
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Virtex-II Resources
• Shift register LUT (SRL16 / SRLC16)
• F5, F6, F7, and F8 MUX
• Carry Logic
• MULT_AND
• Memories (distributed and block, RAM and ROM)
• MULT18x18 / MULT18x18S
• SelectI/O
• I/O Registers (Single or Double Data Rate)
• Global clock buffers (BUFG, BUFGDLL, BUFGCE, BUFGMUX)
• DCM
• STARTUP_VIRTEX2



HDL Coding Style - 5 - 17 © 2002 Xilinx, Inc. All Rights Reserved

Synopsys FPGA Compiler II
• Can be inferred using constraints table:

– SelectI/O(single-ended)
– I/O Registers (Single Data Rate)
– BUFGDLL*

• Cannot be inferred:
– Memories (RAM)
– SelectI/O (differential)
– I/O Registers (Double Data Rate)
– Global clock buffers (BUFGCE, BUFGMUX)
– DCM
– STARTUP_VIRTEX2

• Can be inferred:
– Shift register LUT (SRL16 / 

SRLC16)
– F5, F6, F7, and F8 MUX
– Carry Logic
– MULT_AND
– Memories (ROM)
– MULT18x18 / MULT18x18S
– Global clock buffers (BUFG)
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Synplicity Synplify Pro 7.1

• Can be inferred:
– Shift register LUT (SRL16 / 

SRLC16)
– F5, F6, F7, and F8 MUX
– Carry Logic
– MULT_AND
– Memories (distributed RAM)
– MULT18x18 / MULT18x18S
– Global clock buffers (BUFG)

• Can be inferred using 
constraints editor or attributes:

– Memories (distributed ROM,  
some block RAM*)

– SelectI/O(single-ended)
– I/O Registers (Single Data Rate)
– BUFGDLL**
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Synplicity Synplify Pro 7.1

• Cannot be inferred:
– Memories (complex block RAM)
– SelectI/O (differential)
– I/O Registers (Double Data Rate)
– Global clock buffers (BUFGCE, BUFGMUX)
– DCM
– STARTUP_VIRTEX2
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Exemplar Leonardo 
Spectrum 2002b

• Can be inferred:
– Shift register LUT (SRL16 / 

SRLC16)
– F5, F6, F7, and F8 MUX
– Carry Logic
– MULT_AND
– Memories (distributed ROM and 

RAM, some block RAM*)
– MULT18x18 / MULT18x18S
– Global clock buffers (BUFG, 

BUFGDLL**, BUFGCE, 
BUFGMUX)

• Can be inferred using 
constraints editor or attributes:

– SelectI/O (single-ended)
– I/O Registers (Single Data Rate)

• Cannot be inferred
– Memories (complex block RAM)
– SelectI/O (differential)
– I/O Registers (Double Data Rate)
– DCM
– STARTUP_VIRTEX2
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XST 5.1i

• Can be inferred:
– Shift register LUT (SRL16 / 

SRLC16)
– F5, F6, F7, and F8 MUX
– Carry Logic
– MULT_AND
– Memories (distributed ROM and 

RAM, block RAM*)
– MULT18x18 / MULT18x18S
– Global clock buffers (BUFG)

• Can be inferred using 
constraints editor or attributes:

– SelectI/O
– I/O Registers (Single Data Rate)
– Global clock buffers (BUFGCE, 

BUFGMUX, BUFGDLL**)
• Cannot be inferred:

– I/O Registers (Double Data Rate)
– DCM
– STARTUP_VIRTEX2
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Suggested Instantiation
• Xilinx recommends that you instantiate the following elements:

– Memory resources
• Block RAMs specifically (use CORE Generator™ to build large memories)

– SelectI/O resources
– Clock management resources 

• DCM (use the Architecture Wizard)
• IBUFG, BUFG, BUFGMUX, BUFGCE

– Startup block
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Suggested Instantiation

• Why do we suggest this?
– Easier to change (port)                                         

to other and newer                                              
technologies

– Fewer synthesis                                                 
constraints and                                                 
attributes to pass on 

• Keeping most of the                                             
attributes and                                                  
constraints in the Xilinx UCF file keeps it simple—one file contains critical 
information

• Create a separate hierarchical block for instantiating these resources
– Above the top-level block, create a Xilinx “wrapper” with Xilinx specific 

instantiations

Top-Level 
Block

Top-Level 
Block

BUFGDCMIBUFG

Xilinx “wrapper” top_xlnx

IBUF_SSTL2_I

OBUF_GTL

OBUF_GTL

OBUF_GTL

STARTUP
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Review Questions
• What problem occurs with nested CASE and IF/THEN statements?

• Which encoding scheme is preferred for high-performance state 
machines?

• Which Xilinx resources generally must be instantiated?
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Answers
• What problem occurs with nested CASE and IF/THEN statements?

– Nested CASE and IF/THEN statements may generate long delays due to 
cascaded functions

• Which encoding scheme is preferred for high-performance state 
machines?

– One-hot
• Which Xilinx resources generally must be instantiated?

– Double Data Rate I/O registers
– BUFGMUX
– BUFGCE
– DCM
– STARTUP_VIRTEX2
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Summary

• Your HDL coding style can affect synthesis results
• Infer functions whenever possible 
• Most resources are inferable, either directly or with an attribute
• CASE and IF/THEN statements produce different types of 

multiplexers
• Avoid nested CASE and IF/THEN statements
• Use one-hot encoding to improve design performance
• When coding a state machine, separate the next-state logic from 

state machine output equations
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Where Can I Learn More?
• Synthesis & Simulation Design Guide:                                   

http://support.xilinx.com > Software Manuals
• Handbooks: http://support.xilinx.com > Documentation > “Virtex-II 

Handbook” or “Virtex-II Pro Handbook”
– Part 2: Virtex-II User Guide > Chapter 2: Design Considerations

• Using the DCM, memory, etc.
• Technical Tips: http://support.xilinx.com > Tech Tips

– Click Exemplar, Synopsys FPGA Compiler, or Synplicity
• Answers Database: http://support.xilinx.com > Troubleshoot
• Synthesis documentation or online help

http://support.xilinx.com/
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Shift Register LUT (SRL16)
Synopsys, Synplicity, Exemplar, and XST

• To infer the SRL, the primary characteristics the code must have are: 
– No set/reset signal
– Serial-in, Serial-out

• SRLs can be initialized on power-up via an INIT attribute in the Xilinx 
User Constraint File (UCF)
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SRL16E Example

VHDL:
process(clk)
begin

if rising_edge(clk) then
if ce = ‘1’ then

sr <= input & sr(0 to 14);
end if;

end if;
end process;
output <= sr(15);

Verilog:
always @ (posedge clk)
begin

if (ce)
sr <= {in, sr[0:14]};

end
assign out <= sr[15];
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Dynamically Addressable SRL
Synopsys, Synplicity, Exemplar, and XST

• SRL16/SRL16E, and SRLC16/SRLC16E
– SRLC16 has two outputs in Virtex™-II, q15 - final output, 

and q - dynamically addressable output
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SRLC16E Example

VHDL:
process(clk)
begin

if rising_edge(clk) then
if CE = ‘1’ then

sr <= input & sr(0 to 14);
end if;

end if;
end process;
output <= sr(15);
dynamic_out <= sr(addr);

Verilog:
always @ (posedge clk)
begin

if (ce)
sr <= {in, sr[0:14]};

end
assign out <= sr[15];
assign dynamic_out <= sr[addr];
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Virtex-II Multiplexers
Synopsys, Synplicity, Exemplar, and XST

• F5MUX, F6MUX, F7MUX, F8MUX 
primitives

– Dedicated multiplexers in Virtex™-II CLB
– Only F5/F6 available in Virtex family
– 4:1 multiplexer will use one slice
– 16:1 multiplexer will use 4 slices                           

(1 Virtex-II CLB)
– 32:1 multiplexer will use 8 slices

• No attribute needed -- inferred 
automatically

data(2) F5MUX

LUT

F6MUX

data(0)
data(1)

data(3)

data(4)
data(5)

data(6)
data(7)

muxout
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F5MUX and F6MUX Example

VHDL:
process(sel, data)
begin

case (sel) is
when “000” => out <= data(0);
when “001” => out <= data(1);
when “010” => out <= data(2);
when “011” => out <= data(3);
when “100” => out <= data(4);
when “101” => out <= data(5);
when “110” => out <= data(6);
when “111” => out <= data(7);
when others => out <= ‘0’;

end case;
end process;

Verilog:
always @ (sel or data)
case(sel)

3'b000: muxout = data[0];
3'b001: muxout = data[1];
3'b010: muxout = data[2];
3'b011: muxout = data[3];
3'b100: muxout = data[4];
3'b101: muxout = data[5];
3'b110: muxout = data[6];
3'b111: muxout = data[7];
default : muxout = 0;

endcase



HDL Coding Style - 5 - 36 © 2002 Xilinx, Inc. All Rights Reserved

Flip-flop Set/Reset Conditions

• When using asynchronous set and asynchronous reset, 
reset has priority

• When using synchronous set and synchronous reset, reset 
has priority

• When using any combination of asynchronous set/reset with 
synchronous set/reset:

– Asynchronous set/reset has priority (furthermore, reset has highest
priority)

– In this mode, the synchronous set and/or reset is implemented in
the LUT

– The priority of the synchronous set versus synchronous reset is 
defined by how the HDL is written
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Flip-Flop Example

VHDL:
process(clk, reset, set)
begin

if (reset = ‘1’) then q <= ‘0’;
elsif (set = ‘1’) then q <= ‘1’;
elsif rising_edge(clk) then

if (sync_set = ‘1’) then
q <= ‘1’;

elsif (sync_reset = ‘1’) then
q <= ‘0’;

elsif (ce = ‘1’) then
q <= d;

end if;
end if;

end process;

Verilog:
always @ (posedge clk or posedge 
reset or posedge set)

if (reset)
q = 0;

else if (set)
q = 1;

else if (sync_set)
q = 1;

else if (sync_reset)
q = 0;

else if (ce)
q = d;

end
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Carry Logic
Synopsys, Synplicity, Exemplar, and XST

• Synthesis maps directly to the dedicated carry logic
• Access carry logic through adders, subtractors, counters, 

comparators (>15 bits) and other arithmetic operations
– Adders / subtractors (SUM <= A + B)
– Comparators (if A < B then)
– Counters (COUNT <= COUNT + 1)

• Note: Carry logic will not be inferred if arithmetic components are 
built with gates 

– For example: XOR gates for addition and an AND gate for carry logic will 
not infer carry logic
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Carry Logic Examples

VHDL:
count <= count + 1 when 

(addsub = ‘1’) else count - 1;

if (a >= b) then
a_greater_b <= ‘1’;

product <= constant * multiplicand;

Verilog:
assign count = addsub ? count + 1: 
count - 1; 

if (a >= b)
a_greater_b = 1;

assign product = constant * 
multiplicand;



HDL Coding Style - 5 - 40 © 2002 Xilinx, Inc. All Rights Reserved

MULT18x18
Synopsys, Synplicity, Exemplar, and XST 

• Synplicity and Exemplar infer MULT18x18 by default
– Synplify, to use MULT_18x18 set:

• syn_multstyle = block_mult  (default)
– Possible values are “block_mult” and “logic”

– Exemplar, to use MULT_18x18 set:
• virtex2_multipliers = true (default)
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• Synplicity set: syn_multstyle = logic
• Exemplar set: virtex2_multipliers = false
• Synopsys will use MULT_AND by default

CLB MULT_AND
Synopsys, Synplicity, Exemplar, and XST

By+1Ax-1
ByAx

DI CI
LOS MUXCY_L

LI

CI
LO

XORCY_L

MULT_AND

LUT
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Multiplier Example

VHDL:
library ieee;
use ieee.std_logic_signed.all;
use ieee.std_logic_unsigned.all;
…
process (clk, reset)
begin

if (reset = ‘1’) then
product <= (others => ‘0’);

elsif rising_edge(clk) then
product <= a * b;

end if;
end process;

Verilog:
always @ ( posedge clk or posedge 
reset)
begin

if (reset)
product <= 0;

else 
product <= a * b;

end
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Block SelectRAM
Synplicity, Exemplar, and XST

• Synplicity: Set the syn_ramstyle attribute to “block_ram”
– Place the attribute on the output signal driven by the inferred RAM
– Requires synchronous write
– Requires registered read address
– Dual-port RAM inferred if read/write address index is different

• Exemplar: Automatically inferred under these conditions:
– Synchronous write
– Registered read address

• XST: Based on the size and characteristics of the code, XST can 
automatically select the best style

– Available settings: Auto, Block, Distributed
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Block RAM Inference Notes
Synplicity, Exemplar, and XST

• Synthesis tools cannot infer:
– Dual-Port block RAMs with configurable aspect ratios

• Ports with different widths
– Block RAMs with enable or reset functionality

• Always enabled
• Output register cannot be reset

– Dual-Port block RAMs with read and write capability on both ports
• Block RAMs with read capability on one port and write on the other port can be 

inferred
– Dual-Port functionality with different clocks on each port

• These limitations on inferring block RAMs can be overcome by 
creating the RAM with the CORE Generator™ or instantiating 
primitives
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Block RAM Example

VHDL:
signal mem: mem_array;
attribute syn_ramstyle of mem: signal 
is “block_ram”;
…
process (clk)
begin

if rising_edge(clk) then
addr_reg <= addr;
if (we = ‘1’) then

mem(addr) <= din;
end if;

end if;
end process;
dout <= mem(addr);

Verilog:
reg [31:0] mem[511:0] /*synthesis 
syn_ramstyle = “block_ram”*/;

always @ ( posedge clk)
begin

addr_reg <= addr;
if (we)

mem[addr] <= din;
end

assign dout = mem[addr_reg];
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Distributed SelectRAM
Synplicity, Exemplar, and XST

• Each LUT can implement a 16x1-bit synchronous RAM
• Automatic inference when code is written with two requirements:

– Write must be synchronous
– Read must be asynchronous

• However, if the read address is registered, the SelectRAM can be inferred 
and will be driven by a register

– Synplicity: Automatically used -- turn off by setting attribute:
• syn_ramstyle = registers or block_ram 

– Exemplar: Automatically used if RAM is less than eight bits wide
• Or set block_ram = false on RAM output signal

– XST:  Specify block or distributed RAM, or let XST automatically select the 
best implementation style
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Distributed RAM Example

VHDL:
signal mem: mem_array;
…
process (clk)
begin

if rising_edge(clk) then
if (we = ‘1’) then

mem(addr) <= din;
end if;

end if;
end process;
dout <= mem(addr);

Verilog:
reg [7:0] mem[31:0];

always @ ( posedge clk)
begin

if (we)
mem[addr] <= din;

end

assign dout = mem[addr];
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ROM
Synopsys, Synplicity, Exemplar, and XST

• Synplicity: infer ROM primitives with an attribute
– Set syn_romstyle = select_rom
– Otherwise, Synplify will infer a LUT primitive with equations

• Same implementation, except it is not a ROM primitive
• Exemplar, Synopsys, and XST will automatically map to 

ROM primitives
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Distributed ROM Example

VHDL:
type rom_type is array(7 downto 0) of 
std_logic_vector(1 downto 0);
constant rom_table: rom_type := 
(“10”, “00”, “11”, “01”, “11”, “10”, 
“01”, “00”);
attribute syn_romstyle: string;
attribute syn_romstyle of rom_table: 
signal is “select_rom”;
…
rom_dout <= rom_table(addr);

Verilog:
reg [1:0] rom_dout /*synthesis 
syn_romstyle = “select_rom”*/;

always @ ( addr)
case (addr)

3’b000: rom_dout <= 2’b00;
3’b001: rom_dout <= 2’b01;
3’b010: rom_dout <= 2’b10;
3’b011: rom_dout <= 2’b11;
3’b100: rom_dout <= 2’b01;
3’b101: rom_dout <= 2’b11;
3’b110: rom_dout <= 2’b00;
3’b111: rom_dout <= 2’b10;

endcase
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SelectI/O
Synopsys, Synplicity, and Exemplar

• Instantiate in HDL code (required for differential I/O)
– For a complete list of buffers, see the following elements in 

the “Libraries Guide”:
• IBUF_selectIO, IBUFDS
• IBUFG_selectIO, IBUFGDS
• IOBUF_selectIO
• OBUF_selectIO, OBUFT_selectIO, OBUFDS, OBUFTDS

• Use attribute (Synplicity, Exemplar)
• Specify in the UCF file
• Use Xilinx Constraints Editor

– In the Ports tab, check the I/O Configuration Options box
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SelectI/O

• Synopsys:  Ports tab of FPGA Compiler II constraints editor
• Synplicity:  Use xc_padtype attribute
• Exemplar:  Use buffer_sig attribute
• XST:  Instantiate or use Xilinx Constraints Editor
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SelectI/O Example

VHDL:
component IBUF_HSTL_III

port (I: in std_logic;
O: out std_logic);

end component;
...
ibuf_data_in_inst: IBUF_HSTL_III

port map (I => data_in, O => 
data_in_i);

Verilog:
/* For primitive instantiations in 
Verilog you must use UPPERCASE 
for the primitive name and port 
names */

IBUF_HSTL_III ibuf_data_in_inst
(.I(data_in), .O(data_in_i));
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IOB Registers
Synopsys, Synplicity, Exemplar, and XST

• For Single Data Rate I/O registers:
– Set Map Process Properties > Pack I/O Registers/Latches into IOBs
– Use the IOB = TRUE attribute in the UCF file

• Use on instantiated FFs or inferred FFs with known instance name
• Example: INST <FF_instance_name> IOB = TRUE;

– Synopsys:  Ports tab in FPGA Compiler II constraints editor 
– Synplicity:  Automatically packs registers in the IOB, based on timing

• To override default behavior, use the syn_useioff attribute
– Exemplar:  virtex_map_iob_registers = TRUE
– XST:  Automatically packs registers in the IOB, based on timing

• To override default behavior under Synthesize > Properties > Xilinx Specific 
Options tab > Pack I/O Registers into IOBs > Auto, Yes, or No
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IOB Registers
Synopsys, Synplicity, Exemplar, and XST

• Double Data Rate registers must be instantiated
– See the following elements in the “Libraries Guide”:

• IFDDRCPE, IFDDRRSE (for input flip-flops)
• OFDDRCPE, OFDDRRSE (for output or 3-state enable flip-flops)
• OFDDRTCPE, OFDDRTRSE (for output flip-flops)
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IOB Registers

• Limitations:
– All flip-flops that are packed into the same IOB must share the same clock 

and reset signal
• They can have independent clock enables

– Output and 3-state enable registers must have a fanout of one
• Synopsys and Synplicity will automatically replicate 3-state enable registers to 

enable packing into IOBs
• Exemplar can replicate 3-state enable registers for packing into IOBs by setting 

virtex_map_iob_registers = TRUE
– Output 3-state enables must be active-low

• There is logic in the IOB to invert 3-state enable signal before the register
– DDR registers must use clk and not clk with 50 percent duty-cycle or DLL 

outputs clk0 and clk180
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I/O Register Example

VHDL:
process(clk, reset)
begin

if (reset = ‘1’) then 
data_in_i <= ‘0’;
data_out <= ‘0’;
out_en <= ‘1’;

elsif rising_edge(clk) then
data_in_i <= data_in;
out_en <= out_en_i;
if (out_en = ‘0’) then

data_out <= data_out_i;
end if;

end if;
end process;

Verilog:
always @ (posedge clk or posedge reset)

if (reset)
begin

data_in_i <= 0;
data_out <= 0;
out_en <= 1;

end
else
begin

data_in_i <= data_in;
out_en <= out_en_i;
if (~out_en)

data_out <= data_out_i;
end
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Global Buffers

• BUFG
– All synthesis tools will infer on input signals that drive the clock pin of any 

synchronous element
• BUFGDLL

– Synopsys:  Specify in the Ports tab of FPGA Compiler II constraints editor
– Synplicity:  Can be inferred through synthesis by setting attribute 

xc_clockbuftype = BUFGDLL
– Exemplar:  Can be inferred through synthesis by setting attribute PAD = 

BUFGDLL or BUFGDLLHF
– XST:  Must instantiate

• BUFGCE
– Exemplar:  Can be inferred by setting virtex2_clock_mux = TRUE
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DCM

• Digital Clock Manager
– Clock de-skew
– Frequency synthesis
– Phase shifting

• Must be instantiated
– Port names are as shown in diagram
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STARTUP_VIRTEX2
• Provides three functions

– Global set/reset (GSR)
– Global Three-State for output pins (GTS)
– User-defined configuration clock to synchronize configuration startup

sequence
• Must be instantiated

– Port names are GSR, GTS, and CLK
• Note: Using GSR is not recommended for Virtex™-II designs

– Normal routing resources are faster and plentiful
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