
© 2002 Xilinx, Inc. All Rights Reserved

HDL Coding Style

HDL Coding Style - 5 - 3 © 2002 Xilinx, Inc. All Rights Reserved

Objective

After completing this module, you will be able to:
• Select a proper coding style to create efficient FPGA designs
• Specify Xilinx resources that need to be instantiated for various FPGA

synthesis tools

HDL Coding Style - 5 - 4 © 2002 Xilinx, Inc. All Rights Reserved

Outline

• Introduction
• Coding Tips
• Instantiating Resources
• Summary
• Appendix:

– Inferring Logic and Flip-flop Resources
– Inferring Memory
– Inferring I/Os and Global Resources

HDL Coding Style - 5 - 5 © 2002 Xilinx, Inc. All Rights Reserved

Instantiation Versus Inference

• Instantiate a component when you must dictate exactly which resource
is needed

– Synthesis tool is unable to infer the resource
– Synthesis tool fails to infer the resource

• Xilinx recommends inference whenever possible
– Inference makes your code more portable
– Synthesis tools cannot estimate timing delays through instantiated components

• Xilinx recommends the use of the CORE Generator™ System to create
ALUs, fast multipliers, FIR Filters, etc. for instantiation

HDL Coding Style - 5 - 6 © 2002 Xilinx, Inc. All Rights Reserved

Outline

• Introduction
• Coding Tips
• Instantiating Resources
• Summary
• Appendix:

– Inferring Logic and Flip-flop
Resources

– Inferring Memory
– Inferring I/Os and Global Resources

HDL Coding Style - 5 - 7 © 2002 Xilinx, Inc. All Rights Reserved

Multiplexers

• Multiplexers are generated from IF and CASE statements
– IF/THEN statements generate priority encoders
– Use CASE to generate complex encoding

• There are several issues to consider with a multiplexer
– Delay and size

• Affected by the number of inputs and number of nested clauses to an IF/THEN
or CASE statement

– Unintended latches or clock enables
• Generated when IF/THEN or CASE statements do not cover all conditions

HDL Coding Style - 5 - 8 © 2002 Xilinx, Inc. All Rights Reserved

Avoid Nested IF and CASE
Statements

• Nested IF or CASE statements infer cascaded logic
– More levels of logic → lower performance

• When nested IFs are necessary, put critical input signals on the
first (outer) IF statement

– The critical signal ends up in the last logic stage

HDL Coding Style - 5 - 9 © 2002 Xilinx, Inc. All Rights Reserved

Unintended Latch Inference

• In IF/CASE statements, latches are inferred when:
– All possible input values are not covered
– All outputs are not defined in all branches

• When the IF/CASE statement is in a clocked process (VHDL) or
always block (Verilog), latches are not inferred

– Clock enables are inferred instead
– This is not “wrong,” but it might generate a long clock-enable equation

• Use default assignments before the IF/CASE statement to
prevent latches or inferred clock enables

HDL Coding Style - 5 - 10 © 2002 Xilinx, Inc. All Rights Reserved

Clock Enables

• Coding style will determine if clock enables are used
• Reset and set have precedence over clock enable

VHDL

FF_AR_CE: process(ENABLE,CLK)
begin
if (CLK’event and CLK = ‘1’) then
if (ENABLE = ‘1’) then
Q <= D_IN;

end if;
end if;

end process

Verilog

always @(posedge CLOCK)
if (ENABLE)
Q = D_IN;

HDL Coding Style - 5 - 11 © 2002 Xilinx, Inc. All Rights Reserved

State Machine Design

• Put the next-state logic in one
CASE statement

– The state register may also be
included here or in a separate
process or always block

• Put the state machine outputs
in a separate process or
always block

– Easier for synthesis tools to
optimize logic this way

S1

S5

S4

S3

S2

State
Machine
Module

Inputs to FSM

Next-state logic

State register

State machine outputs

HDL Code

HDL Coding Style - 5 - 12 © 2002 Xilinx, Inc. All Rights Reserved

The Perfect State Machine

• The perfect state machine has
– Inputs: input signals, state jumps
– Outputs: output states, and control/enable signals to the rest of the design
– NO arithmetic logic, datapaths, or combinatorial functions inside the state

machine

State
Jumps
Only!Input Signals

Next State

Current State Feedback to Drive State Jumps
S

tate R
egister

Output State and Enables

HDL Coding Style - 5 - 13 © 2002 Xilinx, Inc. All Rights Reserved

State Machine Encoding

• Use enumerated types to define state vectors (VHDL)
– Most synthesis tools have commands to extract and re-encode state

machines described in this way
• Use one-hot encoding for high-performance state machines

– Uses more registers, but simplifies next-state logic
– Experiment to discover how your synthesis tool chooses the default

encoding scheme
• Register state machine outputs for higher performance

HDL Coding Style - 5 - 14 © 2002 Xilinx, Inc. All Rights Reserved

Outline

• Introduction
• Coding Tips
• Instantiating Resources
• Summary
• Appendix:

– Inferring Logic and Flip-flop
Resources

– Inferring Memory
– Inferring I/Os and Global Resources

HDL Coding Style - 5 - 15 © 2002 Xilinx, Inc. All Rights Reserved

Instantiation Tips

• Use instantiation only when it is necessary to access device
features or increase performance or decrease area

– Exceptions are noted at the end of this section
• Limit the location of instantiated components to a few source files,

to make it easier to locate these components when porting the code

HDL Coding Style - 5 - 16 © 2002 Xilinx, Inc. All Rights Reserved

Virtex-II Resources
• Shift register LUT (SRL16 / SRLC16)
• F5, F6, F7, and F8 MUX
• Carry Logic
• MULT_AND
• Memories (distributed and block, RAM and ROM)
• MULT18x18 / MULT18x18S
• SelectI/O
• I/O Registers (Single or Double Data Rate)
• Global clock buffers (BUFG, BUFGDLL, BUFGCE, BUFGMUX)
• DCM
• STARTUP_VIRTEX2

HDL Coding Style - 5 - 17 © 2002 Xilinx, Inc. All Rights Reserved

Synopsys FPGA Compiler II
• Can be inferred using constraints table:

– SelectI/O(single-ended)
– I/O Registers (Single Data Rate)
– BUFGDLL*

• Cannot be inferred:
– Memories (RAM)
– SelectI/O (differential)
– I/O Registers (Double Data Rate)
– Global clock buffers (BUFGCE, BUFGMUX)
– DCM
– STARTUP_VIRTEX2

• Can be inferred:
– Shift register LUT (SRL16 /

SRLC16)
– F5, F6, F7, and F8 MUX
– Carry Logic
– MULT_AND
– Memories (ROM)
– MULT18x18 / MULT18x18S
– Global clock buffers (BUFG)

HDL Coding Style - 5 - 18 © 2002 Xilinx, Inc. All Rights Reserved

Synplicity Synplify Pro 7.1

• Can be inferred:
– Shift register LUT (SRL16 /

SRLC16)
– F5, F6, F7, and F8 MUX
– Carry Logic
– MULT_AND
– Memories (distributed RAM)
– MULT18x18 / MULT18x18S
– Global clock buffers (BUFG)

• Can be inferred using
constraints editor or attributes:

– Memories (distributed ROM,
some block RAM*)

– SelectI/O(single-ended)
– I/O Registers (Single Data Rate)
– BUFGDLL**

HDL Coding Style - 5 - 19 © 2002 Xilinx, Inc. All Rights Reserved

Synplicity Synplify Pro 7.1

• Cannot be inferred:
– Memories (complex block RAM)
– SelectI/O (differential)
– I/O Registers (Double Data Rate)
– Global clock buffers (BUFGCE, BUFGMUX)
– DCM
– STARTUP_VIRTEX2

HDL Coding Style - 5 - 20 © 2002 Xilinx, Inc. All Rights Reserved

Exemplar Leonardo
Spectrum 2002b

• Can be inferred:
– Shift register LUT (SRL16 /

SRLC16)
– F5, F6, F7, and F8 MUX
– Carry Logic
– MULT_AND
– Memories (distributed ROM and

RAM, some block RAM*)
– MULT18x18 / MULT18x18S
– Global clock buffers (BUFG,

BUFGDLL**, BUFGCE,
BUFGMUX)

• Can be inferred using
constraints editor or attributes:

– SelectI/O (single-ended)
– I/O Registers (Single Data Rate)

• Cannot be inferred
– Memories (complex block RAM)
– SelectI/O (differential)
– I/O Registers (Double Data Rate)
– DCM
– STARTUP_VIRTEX2

HDL Coding Style - 5 - 21 © 2002 Xilinx, Inc. All Rights Reserved

XST 5.1i

• Can be inferred:
– Shift register LUT (SRL16 /

SRLC16)
– F5, F6, F7, and F8 MUX
– Carry Logic
– MULT_AND
– Memories (distributed ROM and

RAM, block RAM*)
– MULT18x18 / MULT18x18S
– Global clock buffers (BUFG)

• Can be inferred using
constraints editor or attributes:

– SelectI/O
– I/O Registers (Single Data Rate)
– Global clock buffers (BUFGCE,

BUFGMUX, BUFGDLL**)
• Cannot be inferred:

– I/O Registers (Double Data Rate)
– DCM
– STARTUP_VIRTEX2

HDL Coding Style - 5 - 22 © 2002 Xilinx, Inc. All Rights Reserved

Suggested Instantiation
• Xilinx recommends that you instantiate the following elements:

– Memory resources
• Block RAMs specifically (use CORE Generator™ to build large memories)

– SelectI/O resources
– Clock management resources

• DCM (use the Architecture Wizard)
• IBUFG, BUFG, BUFGMUX, BUFGCE

– Startup block

HDL Coding Style - 5 - 23 © 2002 Xilinx, Inc. All Rights Reserved

Suggested Instantiation

• Why do we suggest this?
– Easier to change (port)

to other and newer
technologies

– Fewer synthesis
constraints and
attributes to pass on

• Keeping most of the
attributes and
constraints in the Xilinx UCF file keeps it simple—one file contains critical
information

• Create a separate hierarchical block for instantiating these resources
– Above the top-level block, create a Xilinx “wrapper” with Xilinx specific

instantiations

Top-Level
Block

Top-Level
Block

BUFGDCMIBUFG

Xilinx “wrapper” top_xlnx

IBUF_SSTL2_I

OBUF_GTL

OBUF_GTL

OBUF_GTL

STARTUP

HDL Coding Style - 5 - 24 © 2002 Xilinx, Inc. All Rights Reserved

Outline

• Introduction
• Coding Tips
• Instantiating Resources
• Summary
• Appendix:

– Inferring Logic and Flip-flop Resources
– Inferring Memory
– Inferring I/Os and Global Resources

HDL Coding Style - 5 - 25 © 2002 Xilinx, Inc. All Rights Reserved

Review Questions
• What problem occurs with nested CASE and IF/THEN statements?

• Which encoding scheme is preferred for high-performance state
machines?

• Which Xilinx resources generally must be instantiated?

HDL Coding Style - 5 - 26 © 2002 Xilinx, Inc. All Rights Reserved

Answers
• What problem occurs with nested CASE and IF/THEN statements?

– Nested CASE and IF/THEN statements may generate long delays due to
cascaded functions

• Which encoding scheme is preferred for high-performance state
machines?

– One-hot
• Which Xilinx resources generally must be instantiated?

– Double Data Rate I/O registers
– BUFGMUX
– BUFGCE
– DCM
– STARTUP_VIRTEX2

HDL Coding Style - 5 - 27 © 2002 Xilinx, Inc. All Rights Reserved

Summary

• Your HDL coding style can affect synthesis results
• Infer functions whenever possible
• Most resources are inferable, either directly or with an attribute
• CASE and IF/THEN statements produce different types of

multiplexers
• Avoid nested CASE and IF/THEN statements
• Use one-hot encoding to improve design performance
• When coding a state machine, separate the next-state logic from

state machine output equations

HDL Coding Style - 5 - 28 © 2002 Xilinx, Inc. All Rights Reserved

Where Can I Learn More?
• Synthesis & Simulation Design Guide:

http://support.xilinx.com > Software Manuals
• Handbooks: http://support.xilinx.com > Documentation > “Virtex-II

Handbook” or “Virtex-II Pro Handbook”
– Part 2: Virtex-II User Guide > Chapter 2: Design Considerations

• Using the DCM, memory, etc.
• Technical Tips: http://support.xilinx.com > Tech Tips

– Click Exemplar, Synopsys FPGA Compiler, or Synplicity
• Answers Database: http://support.xilinx.com > Troubleshoot
• Synthesis documentation or online help

http://support.xilinx.com/

HDL Coding Style - 5 - 29 © 2002 Xilinx, Inc. All Rights Reserved

Outline

• Introduction
• Coding Tips
• Instantiating Resources
• Summary
• Appendix:

– Inferring Logic and Flip-flop Resources
– Inferring Memory
– Inferring I/Os and Global Resources

HDL Coding Style - 5 - 30 © 2002 Xilinx, Inc. All Rights Reserved

Shift Register LUT (SRL16)
Synopsys, Synplicity, Exemplar, and XST

• To infer the SRL, the primary characteristics the code must have are:
– No set/reset signal
– Serial-in, Serial-out

• SRLs can be initialized on power-up via an INIT attribute in the Xilinx
User Constraint File (UCF)

HDL Coding Style - 5 - 31 © 2002 Xilinx, Inc. All Rights Reserved

SRL16E Example

VHDL:
process(clk)
begin

if rising_edge(clk) then
if ce = ‘1’ then

sr <= input & sr(0 to 14);
end if;

end if;
end process;
output <= sr(15);

Verilog:
always @ (posedge clk)
begin

if (ce)
sr <= {in, sr[0:14]};

end
assign out <= sr[15];

HDL Coding Style - 5 - 32 © 2002 Xilinx, Inc. All Rights Reserved

Dynamically Addressable SRL
Synopsys, Synplicity, Exemplar, and XST

• SRL16/SRL16E, and SRLC16/SRLC16E
– SRLC16 has two outputs in Virtex™-II, q15 - final output,

and q - dynamically addressable output

HDL Coding Style - 5 - 33 © 2002 Xilinx, Inc. All Rights Reserved

SRLC16E Example

VHDL:
process(clk)
begin

if rising_edge(clk) then
if CE = ‘1’ then

sr <= input & sr(0 to 14);
end if;

end if;
end process;
output <= sr(15);
dynamic_out <= sr(addr);

Verilog:
always @ (posedge clk)
begin

if (ce)
sr <= {in, sr[0:14]};

end
assign out <= sr[15];
assign dynamic_out <= sr[addr];

HDL Coding Style - 5 - 34 © 2002 Xilinx, Inc. All Rights Reserved

Virtex-II Multiplexers
Synopsys, Synplicity, Exemplar, and XST

• F5MUX, F6MUX, F7MUX, F8MUX
primitives

– Dedicated multiplexers in Virtex™-II CLB
– Only F5/F6 available in Virtex family
– 4:1 multiplexer will use one slice
– 16:1 multiplexer will use 4 slices

(1 Virtex-II CLB)
– 32:1 multiplexer will use 8 slices

• No attribute needed -- inferred
automatically

data(2) F5MUX

LUT

F6MUX

data(0)
data(1)

data(3)

data(4)
data(5)

data(6)
data(7)

muxout

HDL Coding Style - 5 - 35 © 2002 Xilinx, Inc. All Rights Reserved

F5MUX and F6MUX Example

VHDL:
process(sel, data)
begin

case (sel) is
when “000” => out <= data(0);
when “001” => out <= data(1);
when “010” => out <= data(2);
when “011” => out <= data(3);
when “100” => out <= data(4);
when “101” => out <= data(5);
when “110” => out <= data(6);
when “111” => out <= data(7);
when others => out <= ‘0’;

end case;
end process;

Verilog:
always @ (sel or data)
case(sel)

3'b000: muxout = data[0];
3'b001: muxout = data[1];
3'b010: muxout = data[2];
3'b011: muxout = data[3];
3'b100: muxout = data[4];
3'b101: muxout = data[5];
3'b110: muxout = data[6];
3'b111: muxout = data[7];
default : muxout = 0;

endcase

HDL Coding Style - 5 - 36 © 2002 Xilinx, Inc. All Rights Reserved

Flip-flop Set/Reset Conditions

• When using asynchronous set and asynchronous reset,
reset has priority

• When using synchronous set and synchronous reset, reset
has priority

• When using any combination of asynchronous set/reset with
synchronous set/reset:

– Asynchronous set/reset has priority (furthermore, reset has highest
priority)

– In this mode, the synchronous set and/or reset is implemented in
the LUT

– The priority of the synchronous set versus synchronous reset is
defined by how the HDL is written

HDL Coding Style - 5 - 37 © 2002 Xilinx, Inc. All Rights Reserved

Flip-Flop Example

VHDL:
process(clk, reset, set)
begin

if (reset = ‘1’) then q <= ‘0’;
elsif (set = ‘1’) then q <= ‘1’;
elsif rising_edge(clk) then

if (sync_set = ‘1’) then
q <= ‘1’;

elsif (sync_reset = ‘1’) then
q <= ‘0’;

elsif (ce = ‘1’) then
q <= d;

end if;
end if;

end process;

Verilog:
always @ (posedge clk or posedge
reset or posedge set)

if (reset)
q = 0;

else if (set)
q = 1;

else if (sync_set)
q = 1;

else if (sync_reset)
q = 0;

else if (ce)
q = d;

end

HDL Coding Style - 5 - 38 © 2002 Xilinx, Inc. All Rights Reserved

Carry Logic
Synopsys, Synplicity, Exemplar, and XST

• Synthesis maps directly to the dedicated carry logic
• Access carry logic through adders, subtractors, counters,

comparators (>15 bits) and other arithmetic operations
– Adders / subtractors (SUM <= A + B)
– Comparators (if A < B then)
– Counters (COUNT <= COUNT + 1)

• Note: Carry logic will not be inferred if arithmetic components are
built with gates

– For example: XOR gates for addition and an AND gate for carry logic will
not infer carry logic

HDL Coding Style - 5 - 39 © 2002 Xilinx, Inc. All Rights Reserved

Carry Logic Examples

VHDL:
count <= count + 1 when

(addsub = ‘1’) else count - 1;

if (a >= b) then
a_greater_b <= ‘1’;

product <= constant * multiplicand;

Verilog:
assign count = addsub ? count + 1:
count - 1;

if (a >= b)
a_greater_b = 1;

assign product = constant *
multiplicand;

HDL Coding Style - 5 - 40 © 2002 Xilinx, Inc. All Rights Reserved

MULT18x18
Synopsys, Synplicity, Exemplar, and XST

• Synplicity and Exemplar infer MULT18x18 by default
– Synplify, to use MULT_18x18 set:

• syn_multstyle = block_mult (default)
– Possible values are “block_mult” and “logic”

– Exemplar, to use MULT_18x18 set:
• virtex2_multipliers = true (default)

HDL Coding Style - 5 - 41 © 2002 Xilinx, Inc. All Rights Reserved

• Synplicity set: syn_multstyle = logic
• Exemplar set: virtex2_multipliers = false
• Synopsys will use MULT_AND by default

CLB MULT_AND
Synopsys, Synplicity, Exemplar, and XST

By+1Ax-1
ByAx

DI CI
LOS MUXCY_L

LI

CI
LO

XORCY_L

MULT_AND

LUT

HDL Coding Style - 5 - 42 © 2002 Xilinx, Inc. All Rights Reserved

Multiplier Example

VHDL:
library ieee;
use ieee.std_logic_signed.all;
use ieee.std_logic_unsigned.all;
…
process (clk, reset)
begin

if (reset = ‘1’) then
product <= (others => ‘0’);

elsif rising_edge(clk) then
product <= a * b;

end if;
end process;

Verilog:
always @ (posedge clk or posedge
reset)
begin

if (reset)
product <= 0;

else
product <= a * b;

end

HDL Coding Style - 5 - 43 © 2002 Xilinx, Inc. All Rights Reserved

Outline

• Introduction
• Coding Tips
• Instantiating Resources
• Summary
• Appendix:

– Inferring Logic and Flip-flop Resources
– Inferring Memory
– Inferring I/Os and Global Resources

HDL Coding Style - 5 - 44 © 2002 Xilinx, Inc. All Rights Reserved

Block SelectRAM
Synplicity, Exemplar, and XST

• Synplicity: Set the syn_ramstyle attribute to “block_ram”
– Place the attribute on the output signal driven by the inferred RAM
– Requires synchronous write
– Requires registered read address
– Dual-port RAM inferred if read/write address index is different

• Exemplar: Automatically inferred under these conditions:
– Synchronous write
– Registered read address

• XST: Based on the size and characteristics of the code, XST can
automatically select the best style

– Available settings: Auto, Block, Distributed

HDL Coding Style - 5 - 45 © 2002 Xilinx, Inc. All Rights Reserved

Block RAM Inference Notes
Synplicity, Exemplar, and XST

• Synthesis tools cannot infer:
– Dual-Port block RAMs with configurable aspect ratios

• Ports with different widths
– Block RAMs with enable or reset functionality

• Always enabled
• Output register cannot be reset

– Dual-Port block RAMs with read and write capability on both ports
• Block RAMs with read capability on one port and write on the other port can be

inferred
– Dual-Port functionality with different clocks on each port

• These limitations on inferring block RAMs can be overcome by
creating the RAM with the CORE Generator™ or instantiating
primitives

HDL Coding Style - 5 - 46 © 2002 Xilinx, Inc. All Rights Reserved

Block RAM Example

VHDL:
signal mem: mem_array;
attribute syn_ramstyle of mem: signal
is “block_ram”;
…
process (clk)
begin

if rising_edge(clk) then
addr_reg <= addr;
if (we = ‘1’) then

mem(addr) <= din;
end if;

end if;
end process;
dout <= mem(addr);

Verilog:
reg [31:0] mem[511:0] /*synthesis
syn_ramstyle = “block_ram”*/;

always @ (posedge clk)
begin

addr_reg <= addr;
if (we)

mem[addr] <= din;
end

assign dout = mem[addr_reg];

HDL Coding Style - 5 - 47 © 2002 Xilinx, Inc. All Rights Reserved

Distributed SelectRAM
Synplicity, Exemplar, and XST

• Each LUT can implement a 16x1-bit synchronous RAM
• Automatic inference when code is written with two requirements:

– Write must be synchronous
– Read must be asynchronous

• However, if the read address is registered, the SelectRAM can be inferred
and will be driven by a register

– Synplicity: Automatically used -- turn off by setting attribute:
• syn_ramstyle = registers or block_ram

– Exemplar: Automatically used if RAM is less than eight bits wide
• Or set block_ram = false on RAM output signal

– XST: Specify block or distributed RAM, or let XST automatically select the
best implementation style

HDL Coding Style - 5 - 48 © 2002 Xilinx, Inc. All Rights Reserved

Distributed RAM Example

VHDL:
signal mem: mem_array;
…
process (clk)
begin

if rising_edge(clk) then
if (we = ‘1’) then

mem(addr) <= din;
end if;

end if;
end process;
dout <= mem(addr);

Verilog:
reg [7:0] mem[31:0];

always @ (posedge clk)
begin

if (we)
mem[addr] <= din;

end

assign dout = mem[addr];

HDL Coding Style - 5 - 49 © 2002 Xilinx, Inc. All Rights Reserved

ROM
Synopsys, Synplicity, Exemplar, and XST

• Synplicity: infer ROM primitives with an attribute
– Set syn_romstyle = select_rom
– Otherwise, Synplify will infer a LUT primitive with equations

• Same implementation, except it is not a ROM primitive
• Exemplar, Synopsys, and XST will automatically map to

ROM primitives

HDL Coding Style - 5 - 50 © 2002 Xilinx, Inc. All Rights Reserved

Distributed ROM Example

VHDL:
type rom_type is array(7 downto 0) of
std_logic_vector(1 downto 0);
constant rom_table: rom_type :=
(“10”, “00”, “11”, “01”, “11”, “10”,
“01”, “00”);
attribute syn_romstyle: string;
attribute syn_romstyle of rom_table:
signal is “select_rom”;
…
rom_dout <= rom_table(addr);

Verilog:
reg [1:0] rom_dout /*synthesis
syn_romstyle = “select_rom”*/;

always @ (addr)
case (addr)

3’b000: rom_dout <= 2’b00;
3’b001: rom_dout <= 2’b01;
3’b010: rom_dout <= 2’b10;
3’b011: rom_dout <= 2’b11;
3’b100: rom_dout <= 2’b01;
3’b101: rom_dout <= 2’b11;
3’b110: rom_dout <= 2’b00;
3’b111: rom_dout <= 2’b10;

endcase

HDL Coding Style - 5 - 51 © 2002 Xilinx, Inc. All Rights Reserved

Outline

• Introduction
• Coding Tips
• Instantiating Resources
• Summary
• Appendix:

– Inferring Logic and Flip-flop Resources
– Inferring Memory
– Inferring I/Os and Global Resources

HDL Coding Style - 5 - 52 © 2002 Xilinx, Inc. All Rights Reserved

SelectI/O
Synopsys, Synplicity, and Exemplar

• Instantiate in HDL code (required for differential I/O)
– For a complete list of buffers, see the following elements in

the “Libraries Guide”:
• IBUF_selectIO, IBUFDS
• IBUFG_selectIO, IBUFGDS
• IOBUF_selectIO
• OBUF_selectIO, OBUFT_selectIO, OBUFDS, OBUFTDS

• Use attribute (Synplicity, Exemplar)
• Specify in the UCF file
• Use Xilinx Constraints Editor

– In the Ports tab, check the I/O Configuration Options box

HDL Coding Style - 5 - 53 © 2002 Xilinx, Inc. All Rights Reserved

SelectI/O

• Synopsys: Ports tab of FPGA Compiler II constraints editor
• Synplicity: Use xc_padtype attribute
• Exemplar: Use buffer_sig attribute
• XST: Instantiate or use Xilinx Constraints Editor

HDL Coding Style - 5 - 54 © 2002 Xilinx, Inc. All Rights Reserved

SelectI/O Example

VHDL:
component IBUF_HSTL_III

port (I: in std_logic;
O: out std_logic);

end component;
...
ibuf_data_in_inst: IBUF_HSTL_III

port map (I => data_in, O =>
data_in_i);

Verilog:
/* For primitive instantiations in
Verilog you must use UPPERCASE
for the primitive name and port
names */

IBUF_HSTL_III ibuf_data_in_inst
(.I(data_in), .O(data_in_i));

HDL Coding Style - 5 - 55 © 2002 Xilinx, Inc. All Rights Reserved

IOB Registers
Synopsys, Synplicity, Exemplar, and XST

• For Single Data Rate I/O registers:
– Set Map Process Properties > Pack I/O Registers/Latches into IOBs
– Use the IOB = TRUE attribute in the UCF file

• Use on instantiated FFs or inferred FFs with known instance name
• Example: INST <FF_instance_name> IOB = TRUE;

– Synopsys: Ports tab in FPGA Compiler II constraints editor
– Synplicity: Automatically packs registers in the IOB, based on timing

• To override default behavior, use the syn_useioff attribute
– Exemplar: virtex_map_iob_registers = TRUE
– XST: Automatically packs registers in the IOB, based on timing

• To override default behavior under Synthesize > Properties > Xilinx Specific
Options tab > Pack I/O Registers into IOBs > Auto, Yes, or No

HDL Coding Style - 5 - 56 © 2002 Xilinx, Inc. All Rights Reserved

IOB Registers
Synopsys, Synplicity, Exemplar, and XST

• Double Data Rate registers must be instantiated
– See the following elements in the “Libraries Guide”:

• IFDDRCPE, IFDDRRSE (for input flip-flops)
• OFDDRCPE, OFDDRRSE (for output or 3-state enable flip-flops)
• OFDDRTCPE, OFDDRTRSE (for output flip-flops)

HDL Coding Style - 5 - 57 © 2002 Xilinx, Inc. All Rights Reserved

IOB Registers

• Limitations:
– All flip-flops that are packed into the same IOB must share the same clock

and reset signal
• They can have independent clock enables

– Output and 3-state enable registers must have a fanout of one
• Synopsys and Synplicity will automatically replicate 3-state enable registers to

enable packing into IOBs
• Exemplar can replicate 3-state enable registers for packing into IOBs by setting

virtex_map_iob_registers = TRUE
– Output 3-state enables must be active-low

• There is logic in the IOB to invert 3-state enable signal before the register
– DDR registers must use clk and not clk with 50 percent duty-cycle or DLL

outputs clk0 and clk180

HDL Coding Style - 5 - 58 © 2002 Xilinx, Inc. All Rights Reserved

I/O Register Example

VHDL:
process(clk, reset)
begin

if (reset = ‘1’) then
data_in_i <= ‘0’;
data_out <= ‘0’;
out_en <= ‘1’;

elsif rising_edge(clk) then
data_in_i <= data_in;
out_en <= out_en_i;
if (out_en = ‘0’) then

data_out <= data_out_i;
end if;

end if;
end process;

Verilog:
always @ (posedge clk or posedge reset)

if (reset)
begin

data_in_i <= 0;
data_out <= 0;
out_en <= 1;

end
else
begin

data_in_i <= data_in;
out_en <= out_en_i;
if (~out_en)

data_out <= data_out_i;
end

HDL Coding Style - 5 - 59 © 2002 Xilinx, Inc. All Rights Reserved

Global Buffers

• BUFG
– All synthesis tools will infer on input signals that drive the clock pin of any

synchronous element
• BUFGDLL

– Synopsys: Specify in the Ports tab of FPGA Compiler II constraints editor
– Synplicity: Can be inferred through synthesis by setting attribute

xc_clockbuftype = BUFGDLL
– Exemplar: Can be inferred through synthesis by setting attribute PAD =

BUFGDLL or BUFGDLLHF
– XST: Must instantiate

• BUFGCE
– Exemplar: Can be inferred by setting virtex2_clock_mux = TRUE

HDL Coding Style - 5 - 60 © 2002 Xilinx, Inc. All Rights Reserved

DCM

• Digital Clock Manager
– Clock de-skew
– Frequency synthesis
– Phase shifting

• Must be instantiated
– Port names are as shown in diagram

HDL Coding Style - 5 - 61 © 2002 Xilinx, Inc. All Rights Reserved

STARTUP_VIRTEX2
• Provides three functions

– Global set/reset (GSR)
– Global Three-State for output pins (GTS)
– User-defined configuration clock to synchronize configuration startup

sequence
• Must be instantiated

– Port names are GSR, GTS, and CLK
• Note: Using GSR is not recommended for Virtex™-II designs

– Normal routing resources are faster and plentiful

	HDL Coding Style
	Objective
	Outline
	Instantiation Versus Inference
	Outline
	Multiplexers
	Avoid Nested IF and CASE Statements
	Unintended Latch Inference
	Clock Enables
	State Machine Design
	The Perfect State Machine
	State Machine Encoding
	Outline
	Instantiation Tips
	Virtex-II Resources
	Synopsys FPGA Compiler II
	Synplicity Synplify Pro 7.1
	Synplicity Synplify Pro 7.1
	Exemplar Leonardo Spectrum 2002b
	XST 5.1i
	Suggested Instantiation
	Suggested Instantiation
	Outline
	Review Questions
	Answers
	Summary
	Where Can I Learn More?
	Outline
	Shift Register LUT (SRL16)Synopsys, Synplicity, Exemplar, and XST
	SRL16E Example
	Dynamically Addressable SRLSynopsys, Synplicity, Exemplar, and XST
	SRLC16E Example
	Virtex-II MultiplexersSynopsys, Synplicity, Exemplar, and XST
	F5MUX and F6MUX Example
	Flip-flop Set/Reset Conditions
	Flip-Flop Example
	Carry LogicSynopsys, Synplicity, Exemplar, and XST
	Carry Logic Examples
	MULT18x18Synopsys, Synplicity, Exemplar, and XST
	CLB MULT_ANDSynopsys, Synplicity, Exemplar, and XST
	Multiplier Example
	Outline
	Block SelectRAMSynplicity, Exemplar, and XST
	Block RAM Inference NotesSynplicity, Exemplar, and XST
	Block RAM Example
	Distributed SelectRAMSynplicity, Exemplar, and XST
	Distributed RAM Example
	ROMSynopsys, Synplicity, Exemplar, and XST
	Distributed ROM Example
	Outline
	SelectI/OSynopsys, Synplicity, and Exemplar
	SelectI/O
	SelectI/O Example
	IOB RegistersSynopsys, Synplicity, Exemplar, and XST
	IOB RegistersSynopsys, Synplicity, Exemplar, and XST
	IOB Registers
	I/O Register Example
	Global Buffers
	DCM
	STARTUP_VIRTEX2

