
 

April 1996

 

6-11

 

© 1996 Actel Corporation

 

Paper published in the 1995 PLD Conference Proceedings

 

Customer-Authored
Application Note

 

6

 

A 256 Channel Control System 
Using FPGAs and a PLD

 

Dave DeLauter, Consultant
DeltaT 

 

This paper describes the development process and the latest
design iteration of a simple Pulse Width Modulation (PWM)
Digital to Analog Converter (DAC) system. From an original
micro based design to the high speed serial implementation
and the extensions described in this paper, the design seems
to continuously evolve with each step opening new
possibilities. The unique flexibility of PLDs and FPGAs allows
the design to have the capability of implementations from a
few 16 bit PWM DACs in an FPGA up to 256 DACs on a
printed circuit board. It also allows the use of more DACs of
less resolution per FPGA such as 8 bit or even smaller. Using
a fast PLD for the microwire-like interface and then
dispersing data to up to 256 DACs implemented in slower
FPGAs is the current level of evolution.

 

Background

 

Since we knew that PWMs would work in our application, our
original design called for using a micro and its PWM
capabilities to control few analog signals. As the design
continued we found more places where PWM control would
be adequate and would allow software control of sections of
the product that were not even considered earlier. This
additional level of control would allow software
customization of each implementation while increasing the
reliability of the system.

As the number of possible PWMs being considered grew, we
also decided that it would be useful to drop the micro from
certain implementations of the design and use a parallel PC
port interface with the PWMs in an FPGA. When we
approached our customer with this idea, he reacted with
more possible applications which would include as many as
256 PWM DACs.

 

Design

 

The design was then changed to have one “master” FPGA
controlling the parallel port and distributing data to as many
“slave” FPGAs for the PWM DACs as the implementation
required (Figure 1). In some previous designs we had used
PWM DACs in an Actel 1280. In this case we decided initially
to put as many 12 bit PWM DACs in an Actel 1020 as possible
and then clone that part several times on the board. This
structure was developed for the prototype. The actual design

for PWM DACs is well known as is the design of various
parallel port interfaces. The use of the multiple 1020s to add
as many DACs as needed for a particular customer
application allows us to use one printed circuit board for this
design. The Actel 1020s change to support specific
implementations.

 

PWM Design

 

As indicated earlier there is nothing unique about the PWM
structure we are using. Our PWMs consist of a counter, a
latch, a comparator, and a flip flop. The latch data is
compared to the counter on each clock cycle and when they
are equal the flip flop is set (Figure 2). The flip flop gets reset
by the carry out of the counter and the cycle begins again. In
the Actel implementation, setting the flip flop drives the
enable of a tristate pin that has ground as its input. This pin
in the simplest case drives a resistor-capacitor combination
to convert the asymmetry of the waveform into a DC level
with a 50 percent duty cycle being the nominal midpoint. The
latches we use are reset to a 50 percent duty cycle for
convenience. With this structure, a zero in the latch will force
the output pin to always be ground, so that the external
resistor-capacitor combination (i.e., the DAC output) will

 

Figure 1 •

 

Parallel Port Diagram

Actel 1020

PWM 

Slave

Actel 1020

PWM 

Slave

Actel 1020

PWM 

Slave

Actel 1020

Master



 

6-12

 

also be ground. As the latch increases in value, the output pin
stays high longer which causes a corresponding increase in
the DAC output voltage. The frequency of the counter sets the
basis of the ripple of the DAC and also the response time.

Only one counter is required to support as many comparators
and latches as the FPGA will hold. There are also tricks that
can be done such as in a mostly 16 bit FPGA adding a carryout
from the counter at 8 bits to have some faster frequency 8 bit
DACs. In our implementations, we have not used a loadable
counter since this changes the range of the DAC. There are
more minimal gate implementation, but the software for
them is more complicated as well. In this implementation, an
8 bit PWM requires 21

 

 

 

modules, a 12 bit, 30 modules, and a 16
bit 39

 

 

 

modules. The latch-comparator-flip flop combination is
replicated usually to a nice number or if only a few parts are
used to the maximum per FPGA. In some systems the input
muxes are added to allow reading the latch data and in some
cases the counter output by the software. No attempt has
been made yet to read in the microwire design.

 

Microwire

 

The latest evolution of the design is to allow this customer to
move his system or systems further from the computer by
using a high speed dedicated microwire interface to replace
the parallel port interface. The original idea was to have a
simple 8 bit microwire type port and then feed data to the
Actel 1020s for the PWM control.

When we designed the original microwire version we simply
converted the parallel port FPGA to microwire. This we
realized would have speed limitations which would slow down
the control rate. This paper is the result of rethinking that
portion of the design and using a high speed PLD to allow a
faster microwire for those situations. In this sense it also
reflects a design that is evolving. We could have used a shift
register for the very high speed section and then moved bytes
at the byte rate to the FPGA. Instead we are using a PLD
which will allow us to include more control and sync logic as
well as quickly changing the data path width without
changing our board.

When we were thinking about this paper, we realized that the
whole structure can be applied in more general applications
with each FPGA being different if that is required. Some
PWMs could be 8 bit which would allow more per part and/or
a higher frequency versus others at 16 bit for better
resolution. We have only begun to look at that structure, but
the inherent nature of the FPGA allows for that kind of
change without changing the pcb every time. Also, for this
paper we have looked at using a pinout for the ACT 1 PLCC84
that would also work for the Actel 1240 or even 1280 for some
more complex design changes by adding cuts and jumpers.
This has not been tested.

The initial high speed version of the board will use a PA7024
for the microwire. The pcb will also be set to allow jumpering
directly to the master control FPGA allowing for a slower

 

Figure 2 •

 

PWM Structure

CLK

GN

DIN

CLRN

JKF

PWM

Tribuf

To other PWMs
16-Bit

16-Bit 16-Bit

Counter

ComparatorLatch



 

6-13

A 256 Channel Control System Using FPGAs and a PLD

 

6

 

speed minimal implementation with a master Actel 1020. The
microwire version of the design is completely new and has yet
to be tested outside the lab. 

The initial microwire design is set up so that an ICT PA7024
receives data from the high speed serial bit link and then
transfers bytes to an ACT 1 FPGA that does chip select,
control, and buffering of the DAC data and address
(Figure 3). This data and address is then passed to one of the
individual slave PWM FPGA modules on the board. Each of
the FPGA slaves contains its own counter which is run from
the master clock on the board.

The PA7024 fully buffers the high speed serial data. The
FPGAs run on a much slower independent clock. The speed of
the FPGA clock is a function of the desired frequency of the
PWMs. Higher frequencies will have less ripple and/or
quicker response. Since in our application most signals do not
change or do not change very often, we use a slower 8 Mhz
clock. There is a lot of flexibility here. At 24 Mhz with a 3 byte
per channel overhead the rate of change of one channel is 1

 

µ

 

sec so changing all channels is a 256 

 

µ

 

sec minimum. In a
parallel port system with a nominal 30K byte per second
capacity, these numbers become 10K channels per second
max or 100 

 

µ

 

sec per channel. In some applications we have
used block io software commands to output when all
channels have to be written, but for the most part very few
channels in our system change at once so that the actual data

rate to the channels is fine at 10K or even less. In one
instance where we needed more speed we reduced the data
width and number of channels so that the standard parallel
port worked. It is the ability to adapt the design that makes
the PLDs and the FPGAs of value here by extending generic
circuit designs without completely new boards for each
design.

While we have not needed to change yet, we anticipate using
fast parallel ports, speeding up the software, and using the
higher speed PLD design discussed here for future
implementations. In addition several remote microwire sites
could be controlled from the central control location. The
PLD speed also opens the possibility for future designs
involving interfaces to coax or fiber. At the moment it seems
more practical to let the PC handle this level of interface if it
is required.

 

Summary

 

What started as a limited scope application has evolved into a
larger structure which is being designed with the goal of
minimal board changes components and maximum flexibility
of implementation. The use of both PLDs and FPGAs
increases this flexibility. In addition each stage of the design
seems to open more possibilities for the customer as well as
the designers.

 

Figure 3 •

 

Microwire Diagram

D
AT

A

A
D

D
R

C
S

N

R
S

T
N

D
AT

A

A
D

D
R

C
S

N

R
S

T
N

PWM
Slave

PWM
Slave

PWM
Slave

PA7024
PLCC28

Serial

ACT
1020

CONTROL

RSTN
UCLK

UDATA

CLK

D
AT

A

A
D

D
R

C
S

N

R
S

T
N

PWM
Channels

CSN
ADDR
DATA

ACT
1010

ACT
1020

ACT
1240

PWM
Channels

PWM
Channels

CLK



 

6-14


