
v2.0

CoreAES128

Product Summary

Intended Use

• Whenever Data is Transmitted across an Accessible
Medium (wires, wireless, etc.)

• E-commerce Transactions Where Dedicated
Encryption/Decryption Hardware can Ease the Load on
Servers

• Personal Security Devices
• Bank Transactions Where State-of-the-Art Financial

Security is Mandatory

Key Features

• Compliant with FIPS PUB 197
• ECB (Electronic Codebook) Implementation per NIST SP

800-38A
• 128-bit Cipher Key
• Encryption and Decryption Possible with the Same Core
• 44 Clock Cycle Operation to Encrypt or Decrypt 128 Bits of

Data
• Pause/Resume Functionality to Continue Encryption or

Decryption at Will
• Provides Redundant Security

Targeted Devices

• ProASICPLUS Family
• Axcelerator Family

Core Deliverables

• Evaluation Version
– Compiled RTL Simulation Model Fully Supported in

Actel's Libero™ Integrated Design Environment
(IDE)

• Netlist Version
– Structural Verilog and VHDL Netlists (with and

without I/O pads) Compatible with Actel's Designer
Software Place-and-Route Tool

– Compiled RTL Simulation Model Fully Supported in
Actel's Libero IDE

• RTL Version
– Verilog and VHDL Core Source Code

– Core Synthesis Scripts

• Actel-Developed Testbench (Verilog and VHDL)

Synthesis and Simulation Support

• Synthesis: Synplicity, Synopsys (Design Compiler/FPGA
Compiler/FPGA Express), Exemplar

• Simulation: OVI-Compliant Verilog Simulators and
Vital-Compliant VHDL Simulators

Core Verification

• Actel-Developed Simulation Testbench Verifies
CoreAES128 against Tests Available on the National
Institute of Standards and Technology (NIST) Website:
http://csrc.nist.gov/encryption/aes/rijndael/

• User can Easily Modify Testbench Using Existing Format
to Add Custom Tests

General Description

The CoreAES128 macro implements the Advanced
Encryption Standard (AES), which provides a means of
securing data. AES utilizes the Rijndael algorithm, which is
described in detail in the Federal Information Processing
Standards (FIPS) Publication (PUB) 197 and is shown in
Figure 1 on page 2.

The AES (Rijndael) algorithm takes as inputs 128 bits of
plaintext data and 128 bits of a cipher key and after several
rounds of computation, produces a 128-bit ciphered version of
the original plaintext data as output.1 During the rounds of
the algorithm, the data bits are subjected to byte substitution,
data shift operations, data mixing operations, and addition
(XOR) operations with an expanded version of the original
128-bit cipher key.

CoreAES128 consists of four main blocks (Figure 2 on
page 2).

1. Data schedule logic – computes the intermediate data
values at each round of the AES algorithm.

2. State correlator logic – maintains coherency between
data and key schedule logic.

3. Key schedule logic – controls the intermediate key
schedules at each round of the AES algorithm.

4. Key expansion logic – expands the original 128-bit key
for use in encryption or decryption operations.

1. FIPS PUB 197 allows for key sizes of 128, 192, and 256 bits; however, this
implementation supports a cipher key size of 128 bits only.
December 2002 1
© 2002 Actel Corporation *See Actel’s website for the latest version of the datasheet.

CoreAES128
Figure 1 • AES Algorithm (128-bit Cipher Key)

Figure 2 • CoreAES128 Block Diagram

Data input

Expand key into
schedules for each

round of computation
Cipher key Add

round key

Repeat
9 times

Byte
substitution

Row
shift

Column
mix

Add
round key

Data output

Byte
substitution

Row
shift

Add
round key

Cipher Key

Data Valid

Data In Data Out

Key
expansion

logic

Data
schedule

logic

Key
schedule

logic

State
correlator

Key Expanded
2 v2.0

CoreAES128
Design Security
Figure 3 shows a typical system diagram. Note that the cipher
key, which is the "secret" key, can be made up of FPGA logic
cells preventing the possibility of design and data theft.
Actel’s Flash-based devices (ProASICPLUS) employ
FlashLock™ technology, and Actel’s antifuse-based devices
(Axcelerator) use FuseLock™ technology, each of which

secures the cipher key and the rest of the logic. The output of
the CoreAES128 macro should be connected to registers or
FIFOs, since it is only valid for one clock cycle, as shown by
example in the “Encryption” section on page 6 and the
“Decryption” section on page 7.

CoreAES128 Device Requirements

The CoreAES128 macro has been implemented into Actel's ProASICPLUS and Axcelerator device families. A summary of the
implementation data is listed in Table 1.

Data throughput is computed by taking the bit width of the
data (128 bits), dividing by the number of cycles (44), and
multiplying by the clock rate (performance); the result is
listed in Mbps (millions of bits per second).

CoreAES128 Verification

The comprehensive verification simulation testbench
(included with the Netlist and RTL versions of the core)
verifies the CoreAES128 macro against test cases listed on
the NIST website for AES:
http://csrc.nist.gov/encryption/aes/rijndael/.

The verification testbench applies several tests to the
CoreAES128 macro, including: variable text tests, variable
key tests, table tests, and Monte Carlo tests. Using the
supplied user testbench as a guide, the user can easily
customize the verification of the core by adding or removing
tests.

I/O Signal Descriptions

The port signals for the CoreAES128 macro are defined in
Table 2 on page 4 and illustrated in Figure 4 on page 4. All
signals are either "Input" (input-only) or "Output"
(output-only).

CoreAES128 Initialization

After a reset condition, as illustrated in Figure 5 on page 4,
the CoreAES128 macro performs a self-initialization
process. This initialization process takes 1,024 clock cycles
to perform, after which, the READY signal becomes active
at logic '1.' Once READY is active, the CoreAES128 macro is
ready for cipher key expansion, followed by encrypt or
decrypt operations.

CoreAES128 Operation

As shown on the left side of Figure 1 on page 2, the AES
algorithm requires an expanded version of the original
cipher key for use in encrypting or decrypting data. Upon a
power-up condition, the cipher key and the expanded

Figure 3 • Typical CoreAES128 System

Encrypted
data

output

To other logic or
global distribution,
e.g., internet, etc.

Plaintext
(unencrypted)

data
source

Local device

Actel FPGA

CoreAES128

Registers or
FIFO

Cipher
key

Other
logic

Other
logic

Table 1 • CoreAES128 Device Utilization and Performance

Family
Cells or Tiles

RAM blocks
Utilization

Performance ThroughputSequential Combinatorial Device Total
ProASICPLUS 316 5,239 24 APA450-STD 46% 35 MHz 102 Mbps
Axcelerator 425 2,687 10 AX500-3 39% 100 MHz 291 Mbps
Note: Data in this table achieved using typical synthesis and layout settings
v2.0 3

CoreAES128
version of the cipher key are undefined. Therefore, they
must be setup after the initialization process, described in
the “CoreAES128 Initialization” section on page 3, and
before encryption or decryption operations can take place.
The following procedures (located in the “Cipher Key
Expansion” section on page 5) for writing and expanding

the cipher key must be repeated anytime a new 128-bit
cipher key is required, such as after a reset or power-up
condition. Note: if the same cipher key is to be used for all
encryption and decryption operations, the following
procedures for writing and expanding the cipher key only
need to be performed once.

Table 2 • CoreAES128 I/O Signal Descriptions

Name Type Description
NRESET Input Active-low asynchronous reset
CLK Input System clock: reference clock for all internal logic
EN Input Enable signal: set to '1' for normal continuous encrypt/decrypt operation, set to '0' to pause
CLR Input Synchronous clear signal: set to '1' to clear logic at any time
ED Input Encrypt/decrypt: '1' to encrypt, '0' to decrypt
D[127:0] Input Data in: 128-bit data input bus
K[31:0] Input Key: 32-bit cipher key input bus

KSEL[1:0] Input Key select: selection bits to direct K[31:0] to one of four 32-bit words comprising internal 128-bit
cipher key

KWR Input Key write: set to '1' to write K[31:0] to one of four 32-bit words comprising internal 128-bit cipher
key

KEXP Input Key expand: set to '1' to expand the 128-bit internal key
Q[127:0] Output Data out: 128-bit ciphertext (encrypt operation) / plaintext (decrypt operation) output bus
QVAL Output Q Valid: '1' indicates that valid encrypt/decrypt data is available on Q[127:0]

READY Output Ready: '1' indicates that CoreAES128 has finished its initialization sequence 1,024 clock cycles
after the rising edge of NRESET

KRDY Output Key ready: '1' indicates that the internal 128-bit cipher key was expanded and the macro is
ready for encryption/decryption

Figure 4 • CoreAES128 I/O Signal Diagram

Figure 5 • CoreAES128 Initialization

CoreAES128

CLR

KSEL[1:0]

D[127:0] READY
QVAL
Q[127:0]

ED

CLK
EN

NRESET

K[31:0]

KWR
KEXP

KRDY

CLK

1cycle

READY

NRESET

2 ... 1022 10233 1024

Don't care Undefined
4 v2.0

CoreAES128
Cipher Key Expansion
Prior to any encryption or decryption operation, the 128-bit
cipher key needs to be written to CoreAES128, and expanded,
as illustrated in Figure 6. Refer to FIPS PUB 197 for the
algorithmic details of the key expansion process.

To write the four 32-bit words that make up the 128-bit cipher
key, and to expand the 128-bit cipher key, the following
procedures need to be performed:

1. Set EN to logic '0.'

2. Set KSEL[1:0] to "00" to select the lowest 32 bits (LSB
word) of the internal 128-bit cipher key.

3. Set K[31:0] to the value of the lowest 32-bit word of the
desired 128-bit cipher key.

4. Set KWR to logic '1' for one clock cycle.

5. Set KSEL[1:0] to "01" to select the second lowest 32 bits
of the internal 128-bit cipher key.

6. Set K[31:0] to the value of the second lowest 32-bit word
of the desired 128-bit cipher key.

7. Set KWR to logic '1' for one clock cycle.

8. Set KSEL[1:0] to "10" to select the second highest 32 bits
of the internal 128-bit cipher key.

9. Set K[31:0] to the value of the second highest 32-bit
word of the desired 128-bit cipher key.

10. Set KWR to logic '1' for one clock cycle.

11. Set KSEL[1:0] to "11" to select the highest 32 bits (MSB
word) of the internal 128-bit cipher key.

12. Set K[31:0] to the value of the highest 32-bit word of the
desired 128-bit cipher key.

13. Set KWR to logic '1' for one clock cycle.

14. Set KWR back to logic '0.'

15. Set KEXP to logic '1' for one clock cycle.

16. Set KEXP back to logic '0.'

17. Wait for 52 clock cycles.

Note that the four 32-bit words which comprise the 128-bit
cipher key can be written in any order. It is not necessary to
write them in sequential order, i.e., lowest 32-bit word to
highest 32-bit word.

If the KRDY signal was active at a logic '1' value, prior to
setting the KWR signal to logic '1' (from a previously
expanded cipher key), it becomes inactive on the next rising
clock edge after performing step 4 in the list above. After 52
clock cycles, the KRDY signal becomes active, i.e., logic '1,' to
indicate that the 128-bit cipher key was expanded internally,
and the CoreAES128 macro is now ready for encryption or
decryption operations. The KRDY signal initializes to the
inactive state of logic '0' after a reset condition, as illustrated
in Figure 6, and prior to the key expansion process.

Figure 6 • Cipher Key Write and Expand

CLK

1cycle

KRDY

KSEL[1:0]

EN

K[31:0]

KWR

k1a k1b k1c k1d

00 01 10 11

KEXP

2 ... 49 503 51

Don't care Undefined

52
v2.0 5

CoreAES128
Encryption
To begin the process of encrypting data, as shown in Figure 7,
perform the following procedures:

1. Write and expand the 128-bit cipher key, if not already
done (refer to the “Cipher Key Expansion” section on
page 5).

2. Set D[127:0] to the plaintext data ("d1" in Figure 6) to be
encrypted.

3. Set ED to logic '1.'

4. Set EN to logic '1.'

5. Wait for 44 clock cycles.

After 44 clock cycles of the EN input being held continuously
at a logic '1' value, the QVAL signal will transition from logic
'0' to logic '1' and remain valid for one clock cycle. This
indicates that valid ciphered (encrypted) data ("q1" in
Figure 7) is available on the Q[127:0] outputs. Note that the
encrypted data is only available during clock cycle 44, thus
the user must register or latch the data on Q[127:0] using the
QVAL signal as a qualifying register enable or latch enable.

As shown in Figure 7, continuous encryption is possible. For
example, the second 128-bit plaintext data word ("d2" in
Figure 7) can be immediately encrypted by setting the D[127:0]
inputs to d2 on the rising clock edge of clock cycle 45.

Figure 7 • Example Encryption Sequence

CLK

1cycle

QVAL

EN

D[127:0] d1

2 ... 43

ED

44 45 46

Q[127:0]

Don't care Undefined

3 42

KRDY

d2

q1
6 v2.0

CoreAES128
Decryption
To begin the process of decrypting data, as shown in
Figure 8, perform the following procedures:

1. Write and expand the 128-bit cipher key, if not already
done (refer to the “Cipher Key Expansion” section on
page 5).

2. Set D[127:0] to the ciphertext data ("d1" in Figure 7) to
be decrypted.

3. Set ED to logic '0.'

4. Set EN to logic '1.'

5. Wait for 44 clock cycles.

After 44 clock cycles of the EN input being held
continuously at a logic '1' value, the QVAL signal will
transition from logic '0' to logic '1' and remain valid for one
clock cycle, indicating that valid plaintext (unencrypted
data, shown as "q1" in Figure 8) is available on the Q[127:0]
outputs. Note that the decrypted plaintext data is only
available during clock cycle 44, thus the user must register
or latch the data on Q[127:0] using the QVAL signal as a
qualifying register enable or latch enable.

As shown in Figure 8, continuous decryption is possible. For
example, the second 128-bit ciphertext data word ("d2" in
Figure 8) can be immediately decrypted by setting the
D[127:0] inputs to d2 on the rising clock edge of clock cycle 45.

Figure 8 • Example Decryption Sequence

CLK

1cycle

QVAL

EN

D[127:0] d1

2 ... 43

ED

44 45 46

d2

q1Q[127:0]

Don't care Undefined

3 42

KRDY
v2.0 7

CoreAES128
Pause/Resume
For normal operation, the EN input is held at a logic '1'
value. The core can be paused by holding the EN input at a
logic '0' value, indefinitely, as shown by the example in
Figure 9 where cycle 3 of an encryption operation is paused.
To resume operation, bring the EN input back to a logic '1'
value. This functionality applies to either encryption or
decryption. Note that the ED input must remain at logic '1'
throughout an entire encryption cycle or at logic '0'
throughout an entire decryption cycle; otherwise,
unpredictable results on the Q[127:0] outputs will occur.

The pause/resume functionality is provided as an aid to the
user. One possible use for the pause functionality is a case
where many blocks of data are encrypted one after another.
For example, if the EN input is held statically at a logic '1'
value, the data inputs need to change every 44 clock cycles

to encrypt the next block. After all blocks of data are
encrypted, the user would then need to hold the EN input at
a logic '0' value. If it is left at a logic '1,' data will continue to
be encrypted ad infinitum. When ready for the next blocks of
data, the user can then resume the encryption process by
holding the EN input at a logic '1' value. Another possibility
occurs if the user has an elastic buffer (FIFO) connected to
the Q[127:0] outputs. If the FIFO is filling up with encrypted
data faster than the encrypted data is being read out of the
FIFO, the user may want to pause the CoreAES128 macro by
setting the EN input to a logic '0' when the full or almost-full
flag logic from the FIFO is active. When the FIFO full or
almost-full flag logic clears, the CoreAES128 macro can then
resume operation by again setting the EN input to a logic '1'
value.

Figure 9 • Example Encryption Pause/Resume Sequence

CLK

1cycle

QVAL

EN

D[127:0] d1

2 ... 43

ED

44

Q[127:0]

Don't care Undefined

3a 3b 3c 4 5 45 46

q1

d2

cycle 3
"paused"

KRDY
8 v2.0

CoreAES128
Clear/Abort
At any point in the process of encrypting or decrypting data,
the user can abort the current operation by setting the CLR
input to logic '1.' This will clear all current calculations
within the key schedule and data schedule logic. Then, the
user can immediately begin to write and expand a different
cipher key, as described in the “Cipher Key Expansion”
section on page 5, or use a different data input on the very
next cycle, as shown in Figure 10, with "d2" as the next
128-bit data block to be encrypted.

Note that the CLR signal does not clear the 128-bit cipher
key, the expanded version of the cipher key, nor the KRDY
signal. Only the signals NRESET, K[31:0], KWR, and KEXP,
affect the value of the 128-bit cipher key, the expanded
version of the cipher key, and the KRDY output signal.

The clear/abort functionality is provided as another aid to
the user. An example of its use occurs when the user wants
to change the cipher key, possibly in the middle of an
encryption or decryption sequence. Immediately, the user
can stop the current operation simply by holding the CLR
input at a logic '1' value for at least one clock cycle and
immediately commence on the following clock cycle with
writing and expanding a new cipher key. After the new
cipher key is expanded, new data can be encrypted. If the
CoreAES128 macro is integrated into a system containing a
processor, the processor may wish to abort the encryption
or decryption operation for some specific event (e.g., low or
failing power condition).

Figure 10 • Example Encryption Abort Sequence

CLK

1cycle

QVAL

EN

D[127:0] d1

2 ... 43

ED

44

Q[127:0]

Don't care Undefined

3 45 46

q2

d3

1 2

CLR

internal logic cleared/flushed;
data (d1) calculations aborted

d2

encrypted data using data (d2)

KRDY
v2.0 9

CoreAES128
Ordering Information
Order CoreAES128 through your local Actel sales
representative. Use the following number convention when
ordering: CoreAES128-XX, where XX is listed in Table 3.

Export Restrictions

CoreAES128 is subject to strict export controls and is
licensable under the U.S. Department of Commerce's Export
Administration Regulations, the U.S. Department of State's
International Traffic in Arms Regulations, or other laws,
government regulations or restrictions. Actel is in the
process of obtaining additional permissions to ship
CoreAES128 to a wider audience. The licensee will not
import, export, reexport, divert, transfer or disclose
CoreAES128 without complying strictly with the export
control laws and all legal requirements in the relevant
jurisdictions, including, without limitation, obtaining the
prior approval of the U.S. Department of Commerce or the
U.S. Department of State, as applicable.

Table 3 • Ordering Codes

XX Description

EV Evaluation Version

SN Single-use Netlist for use on Actel devices

AN Netlist for unlimited use on Actel devices

AR RTL for unlimited use on Actel devices

UR RTL for unlimited use and not restricted to Actel
devices
10 v2.0

CoreAES128
Datasheet Categories

Product Definition

This version of the datasheet is the definition of the product. A prototype may or may not be available. Data presented is subject
to significant changes.

Advanced

This version of the datasheet provides nearly complete information for a prototype IP product. Code is fully operational, but may
not support all features expected in the production release. A prototype core and a preliminary testbench are available.

Production (unmarked)

This version of the datasheet contains complete information on the final core. All components are fully operational and the
core has been thoroughly verified.
v2.0 11

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

Actel Europe Ltd.
Maxfli Court, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540

Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81 03-3445-7671
Fax: +81 03-3445-7668
51700011-0/12.02

	Product Summary
	Intended Use
	Key Features
	Targeted Devices
	Core Deliverables
	Synthesis and Simulation Support

	Core Verification
	General Description
	Figure 1 . AES Algorithm (128-bit Cipher Key)
	Figure 2 . CoreAES128 Block Diagram

	Design Security
	Figure 3 . Typical CoreAES128 System

	CoreAES128 Device Requirements
	Table 1 . CoreAES128 Device Utilization and Performance

	CoreAES128 Verification
	I/O Signal Descriptions
	CoreAES128 Initialization
	CoreAES128 Operation
	Table 2 . CoreAES128 I/O Signal Descriptions
	Figure 4 . CoreAES128 I/O Signal Diagram
	Figure 5 . CoreAES128 Initialization

	Cipher Key Expansion
	Figure 6 . Cipher Key Write and Expand

	Encryption
	Figure 7 . Example Encryption Sequence

	Decryption
	Figure 8 . Example Decryption Sequence

	Pause/Resume
	Figure 9 . Example Encryption Pause/Resume Sequence

	Clear/Abort
	Figure 10 . Example Encryption Abort Sequence

	Ordering Information
	Table 3 . Ordering Codes

	Export Restrictions
	Datasheet Categories
	Product Definition
	Advanced
	Production (unmarked)

