
Application Note

Performing Internal In-System Programming Using Actel's
ProASICPLUS Devices
Actel's ProASICPLUS FPGA family is the only FPGA family to
combine the high density of an FPGA with the nonvolatility
and re-programmability of the FLASH technology. Unlike
SRAM-based FPGAs, the contents of the devices are not lost
when the system is powered down. Therefore, there is no
external ROM needed to reload the device at power up. The
contents remain in the device until there is a reason to
change them. The FLASH technology makes it possible for a
system containing a ProASICPLUS device to reprogram the
device itself, with no outside influence (external
programmer) except for the delivery of a new data file.

The ability to reprogram a device that has already been
mounted onto a system board is referred to as In-System
Programming (ISP). There are two types of ISP to
accommodate different system requirements:

• External ISP: The device is mounted onto the system, but
an outside programmer is used to implement the
programming. Although the device is in-system, the
programming control comes from outside the system, thus
the name, External ISP. Actel's Flash Pro device
programmer can be used for this purpose.

• Internal ISP: There is no outside programmer used to
configure the FPGA. All programming control comes from
the system itself, using the native processor, operating
system, and memory. The data used for configuring the
device could be resident in ROM (as in the case of
pre-designed configuration alternatives), arrive via some
other media (such as a floppy disk), or come through a
communication channel like a network connection. The
only external influence is the data itself.

This application note focuses solely on Internal ISP. See
Actel’s web site for future application notes concerning
information on using External ISP with ProASIC and
ProASICPLUS devices.

Note: One additional concept, too complicated to
summarize in this application note, is known as In-Circuit
Reconfiguration (ICR). ICR refers to the real-time changing
of all or part of the contents of a device in order to
implement on-the-fly context switches or function changes
while the system continues to function normally. This
capability requires consideration far more complex than
ISP and will not be addressed in this application note.

Overview

Internal ISP uses its own system for reconfiguration, and
the details of the implementation depend on the nature of
the system. Details vary according to the processor,
operating system, bus structure, and memory architecture.
This application note does not discuss all of the possible
variations, but instead focuses on important considerations
for successful implementation of internal ISP.

There are three main aspects to Internal ISP
implementation:

• The hardware structure

• The software program that will execute the programming
process

• The data file that contains the programming instructions

Internal ISP is accomplished by designing access from the
system processor to the IEEE 1149.1 (JTAG) port of the
ProASICPLUS device and then running a program that will
take a data file and configure the FPGA. The data format
used for programming ProASICPLUS devices is a JEDEC
standard known as the Standard Test And Programming
Language (STAPL) format. For more information on JTAG
go to www.ieee.org; the STAPL standard can be obtained
through JEDEC at www.jedec.org.

The program that interprets the contents of the STAPL file
is called a STAPL Player. The STAPL Player reads the
STAPL file and executes the programming instructions
contained within the file. Because all programming details
are in the STAPL file, the STAPL Player is completely
device-independent. In other words, the system does not
need to implement any programming algorithm details; the
STAPL file provides all of the details.

Because ProASICPLUS devices are programmed through a
JTAG port, it is possible to program multiple devices on a
JTAG chain. Some considerations for chain programming
are addressed in “Chain Programming” on page 6.

A high-level drawing of the Internal ISP process is shown in
Figure 1 on page 2.

The hardware and software considerations will be
addressed separately in the following sections.
October 2002 1
© 2002 Actel Corporation

Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
Hardware Considerations

Internal ISP requires the following components:

• Processor for running the STAPL Player

• Nonvolatile memory for storing the STAPL Player

• RAM for storing and manipulating the STAPL file

• Access to the JTAG port of the FPGA or to the JTAG chain

• DC voltage generator

• Optional free-running oscillator

Figure 2 on page 3 illustrates an example of how a system
can be interconnected. Access to the JTAG port is shown via
an interface block. This is one way of mapping the JTAG port
into the memory map. If the processor has general I/Os, they
could also be connected directly to the JTAG signals.

Note the optional inclusion of an external JTAG port would
be required if the JTAG port was also being used for system
test and diagnostics. In this diagram, the interface block
decides whether the control of the JTAG chain should come
from the processor or from the external port.

Although not shown in Figure 2 on page 3, the JTAG
standard allows for an optional TRST pin. This is not shown,
but can be used. The usage of this pin would be accounted
for in the low-level API function that implements the reset
function. Refer to “Software Considerations” on page 4 for
information on API.

FPGA Interaction with the System

A very important aspect of Internal ISP is the behavior of
the FPGA before, during, and after programming. The signal
connections shown in Figure 2 on page 3 are only those
required for programming. Not shown are all of the
connections between the FPGAs and other system
components. These other connections constitute the normal
function of the FPGAs when they are not being programmed.
When other FPGAs not are programmed correctly, there is
the possibility of system damage due to incorrect operation
or signal contention. During programming itself, the FPGAs
have no program, and therefore, cannot be expected to
operate as they would during normal system operation. The
ProASICPLUS devices have been designed with this in mind
and therefore, have the following characteristics:

• As soon as the programming sequence is started, all user
I/Os are put into a tristate condition and are weakly pulled
to the VCC level used for the I/Os. (VDDP)

• As soon as the programming sequence has successfully
been completed, the device will wake up into the state
determined by the contents of the program, and should
therefore be consistent with desired system behavior.

• If the programming sequence is not completed
successfully, the I/Os will remain in a tristate condition,
eliminating the risk of unexpected signals.

Figure 1 • Internal ISP Elements

Processor
Sub-system
Running
STAPL Player

STAPL
File

ProASIC
PLUS

FPGA

ProASIC
PLUS

FPGA

JTAG Chain
2

Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
Note that these features only apply to the correct
programming of the data in a STAPL file. If the STAPL file
itself is incorrect, there are several possible outcomes:

• If there was corruption resulting in an illegal file, then the
STAPL Player will reject the file, programming will not
complete successfully, and the device will remain in a
tristate condition.

• If there was corruption resulting in a legal file but an
incorrect programming sequence, then programming will
not complete successfully, and the device will remain in a
tristate condition.

• If the STAPL file is legal and contains a valid programming
sequence but the data is incorrect, then the device will
successfully be programmed with incorrect data. In
reality, this will not occur due to corruption, but due to
logic errors in the design. The implications of this are the
same as the implications of any logic error in an FPGA; the
system will not work as expected. Thorough validation of
the design is always important before configuring an
FPGA.

Power Supplies

The ProASICPLUS devices require four power supplies:

• VDD to power the core (used in normal operation)

• VDDP to power the I/Os (used in normal operation)

• VPP as the positive voltage for programming

• VPN as the negative voltage for programming.

VPP and VPN are generated by the Voltage Generator block,
consisting of DC-DC converters and some passive elements
to generate the appropriate voltage levels. “Appendix A:
Suggested Voltage Generator Circuit” on page 9 provides a
diagram of the required circuits and recommended
components for the Voltage Generator block. Table 1
provides the voltage levels required during normal
operation; Table 2 on page 4 provides the voltage levels
required during programming. The DC current that must be
available on the voltages is shown in Table 3 on page 4.

Figure 2 • Example of System Configuration

TDI

TDO

TDO
TCK

TCK

TCK

RCK

RCK

TMS

TMS

TMS

TDO
TDI

TDI

VPP/VPN

VPP/VPN

ProASIC
PLUS

FPGA

ProASIC
PLUS

FPGA

Processor

Nonvolatile
Memory
(contains

STAPL Player)

RAM

Interface

External
JTAG

Access
(optional)

Voltage
Generator

Oscillator
(optional)

Table 1 • Voltages during Normal Operation

Power Supply Voltage Range (V)

VDD 2.5
VDDP 2.3 - 2.7 or 3.0 - 3.6
VPP 0 - 16.5 or floating
VPN -13.8 - 0 or floating
 3

Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
Required Bypass Capacitors:

Bypass capacitors are required for the VPP and VPN pads.
The capacitors should be placed directly next to the device
to be effective. To filter low frequency noise, use a 4.7uF
(low ESR, <1 Ω, tantalum, 25V or greater rating) capacitor.
To filter high frequency noise, use a 0.01µF to 0.1µF
ceramic capacitor with a 25V or greater rating. The smaller
high frequency capacitor should be placed closer to the
device pins than the larger low frequency capacitor. The
capacitors should be located as close to the device pins as
possible (within 2.5cm, if possible). The same dual capacitor
circuit should be used on both the VPP and VPN pins
(Figure 3).

Power-Up Sequences

For ProASICPLUS ES devices, a special power-up sequence
must be observed. The four power supplies must be brought
up in the following sequence:

VDD, VDDP, VPN, VPP

Interruptability

There are several critical portions of the programming
sequence that should not be interrupted. Timing during
those portions is very important, and an uninterruptible
clock must be provided. If the system is set up such that the
processor can be guaranteed not to be interrupted while
programming, then the JTAG pins are sufficient to
implement the programming.

If it is possible that the sequence could be interrupted, then
the JTAG clock should not be used to time the programming.
Instead, there is an RCK signal to which an oscillator circuit
can be attached. This signal will then provide the needed
clock for timing inside the chip.

In order for RCK to be used, you must edit the STAPL file.
Open it in an ASCII editor and find the line.

BOOLEAN USE_RCK=0

Change that line to

BOOLEAN USE_RCK=1

In addition, you should enter the frequency of RCK into the
STAPL file using the following line:

INTEGER freq=X

where X is the frequency in megahertz.

Clock Considerations

Because TCK is a bussed signal in JTAG, it could have high
fanout. The quality of the clock network layout impacts the
quality of the clock signal. As with any other clock network,
care should be taken during board design to ensure that the
clock signals are clean, as clean clock signals enable the
JTAG engine to operate reliably.

Software Considerations

The STAPL Player

The STAPL Player consists of two basic portions: the
high-level C code that executes the main program, and a
low-level API that is called by the higher-level program. The
high-level portion is intended to be portable across systems,
and then API allows adaptation into a particular system.

Because of this feature, the majority of the work to develop a
STAPL Player can be used across all systems. Such a STAPL
Player has been written and is available in C code on Actel's
web site at
http://www.actel.com/products/proasicplus/info.html.
While every attempt has been made to make the code
generic enough to use across many kinds of systems, the
designer should inspect the code to ensure that there is
nothing incompatible with any special situations that might
exist in his system.

Table 2 • Voltages during programming

Power Supply Voltage Range (V)

VDD 2.3 - 2.7
VDDP 2.3 - 2.7 or 3.0 - 3.6
VPP 15.9 - 16.5
VPN -13.8 - -13.4

Table 3 • Current Requirements

Power Supply Voltage (V)
Maximum

Current (mA)

VDD 2.7 20
VDDP 3.6 20
VPP 16.5 35
VPN -13.8 15*
Note: Absolute value; current is negative.

Figure 3 • Bypass Capacitors

0.1µF
or

0.01µF
4.7µF +

0.1µF
or

0.01µF

Actel

FPGA

Voltage
Generator

2.5cm

4.7µF
++

+
+

ProASICPLUS

VPP

VPN
4

Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
The STAPL Player Interface

Actel's STAPL Player can be run in command-line mode in a
DOS or Windows system. The command has the form

STAPL.exe [optional switches]

There are several switches that might be used in an
embedded context (Table 4).

The -a switch indicates to the Player that a specific action,
like programming or verification, is to be undertaken.
Actions are defined in the STAPL file.

The -d switch allows pre-initialization of variables in the
STAPL file. A thorough understanding of the variables
defined in the STAPL file and their usage should be
obtained before using this switch.

The STAPL Player API

The API is a series of low-level functions that interact with
the operating system. The API used with Actel's STAPL
Player is shown below. Each user must write the low-level
routines that will provide these services to the STAPL
Player.

There are two categories of function: those that manipulate
the JTAG port, and those that provide operating system
services (Table 5 and Table 6).

After the API has been written, it is linked with the C-base
STAPL Player, and the final executable can then be run in
the system.

Exception Handling

There are two kinds of errors that must be addressed. The
STAPL file creates the first type of error. After the STAPL
file has been executed, it returns an exit code that indicates
the result of the programming. Actel's STAPL file supports
the following exit codes (Table 7).

Unlike the first type of error, the STAPL Player finds the
second type of error. For example, if the STAPL Player reads
a STAPL file and runs across a syntax error, it will generate
an error. Table 8 on page 6 lists the error codes that the
STAPL Player is capable of returning.

Table 4 • STAPL Player Command-line Switches

Optional Switches Description
-h Show help message
-v Show verbose messages
-a<action> Specify action name (with STAPL file)
-d<var=val> Initialize variable to specified value

Table 5 • High Level JTAG API Functions

Function Description

JtagReset Send TMS=1,1,1,1,1 to go to Test Logic
Reset State, or send TRST=1 if TRST is
implemented

JtagIdle Traverse the state machine from Pause to
Idle

JtagIrEnter Traverse the state machine from Idle or
Reset to Shift-IR or Pause-IR

JtagDrEnter Traverse the state machine from Idle or
Reset to Shift-DR or Pause-DR

JtageShift Shift <bits> data bits starting at bit 0 of
data[0]

JtagRead Return data output on TDO from previous
shift sequence

JtagWait Pause until <ticks> TCK's have been output

Table 6 • Low Level JTAG and OS API Functions

Function Description

stp_getc Returns a single character from the STAPL
files

stp_seek Moves the pointer within the STAPL file
stp_jtag_io Low level I/O JTAG function
stp_message Returns a message to the STAPL player
stp_delay Generates a delay loop for n seconds
stp_malloc Allocates memory
stp_free Frees up memory

Table 7 • STAPL File Exit Codes

Exit code Description
0 Success
5 Entering ISP failure
6 Unrecognized device ID
7 Unsupported device version
8 Erase failure
11 Verify failure
12 Read failure
90 Unexpected RCK detected
91 Calibration data parity error
 5

Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
Chain Programming

Chain programming is defined as programming several
devices that are on the same JTAG chain. There are several
device configurations for such a chain, and different ways to
approach programming:

• ProASICPLUS devices ONLY, programmed one at a time

• ProASICPLUS devices ONLY, programmed concurrently

• ProASICPLUS devices along with other non-programmable
JTAG devices

• ProASICPLUS devices along with other programmable (and
potentially non-programmable) JTAG devices

The Actel STAPL file currently supports the first type of
chain programming. Concurrent programming will be
supported in a future release. If a chain has multiple
programmable devices, they can successfully be
programmed one at a time by bypassing the devices not
being programmed.

In the case where other non-programmable devices are in
the chain, they must be bypassed and then the
programmable device(s) can be programmed. If there are
multiple ProASICPLUS devices, then they should be
programmed individually.

It is not possible to concurrently program devices from
different vendors. If non-ProASICPLUS programmable
devices coexist on the same chain, then the non-
ProASICPLUS devices should be treated just like
non-programmable devices when programming the
ProASICPLUS devices.

All JTAG-compliant devices have a bypass mode that
bypasses the data register. Any device in bypass mode will
have a data register length of one. If an entire chain is in
bypass mode, then the apparent length of the entire chain's
data register is equal to the number of devices in the chain.
When programming a single device, bypass all other devices.
In this case, the complete length of the chain data register
will be the length of the programmable device's data
register plus one bit (corresponding to bypass mode) for
other devices in the chain. This means that the bit-stream
intended for the data register of the programmable device
must be padded on the front and back end by as many bits as
there are devices before and after the programmable device.
(Figure 4 on page 7).

A device can be placed into bypass mode by loading an
instruction of all ones. This will vary from device to device
only because different devices have different instruction
registers lengths. Therefore, it is important to know the
length of the instruction register for each device in the
JTAG chain. Figure 5 on page 8 illustrates this concept.

In order to account for more than one device on a chain,
there are some instructions in the STAPL language that
allow for the necessary padding of the bit-streams. The
instructions can be added to the STAPL file, as shown in
Table 9 on page 8. Note when configuring a bit-stream, the
first bits end up in the last device of the chain, so the
padding at the front end of the bit-stream is for the devices
at the end of the chain.

These instructions must be added to the Procedure
Initialize section of the STAPL file.

Table 8 • STAPL Player Exit Codes

Exit code Description

0 Success
1 Out of memory
2 I/O error
3 Syntax error
4 Unexpected end
5 Undefined symbol
6 Redefined symbol
7 Integer overflow
8 Divide by zero
9 CRC error
10 Internal error
11 Bounds error
12 Type mismatch
13 Assign to const
14 Next unexpected
15 Pop unexpected
16 Return unexpected
17 Illegal symbol
18 Vector map failed
19 User abort
20 Stack overflow
21 Illegal opcode
22 Phase error
23 Scope error
24 Action not found
6

Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
Figure 4 • Illustration of Data Register Padding

Other
Device

Data register
of length "n"

Total data register
length is n+8;

padding is 3 bits
before, 5 bits after

Device
being

programmed

Bypass
Register

Other
Device

Other
Device

Other
Device

Other
Device

Other
Device

Other
Device

Other
Device
 7

Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
Summary

Internal ISP can be performed on the ProASICPLUS family.
The user must make the JTAG chain accessible to the
system processor, and memory must be available both to
house the STAPL Player and to manipulate the STAPL file. A
simple, inexpensive voltage generator circuit is used to
provide the required voltages. The STAPL Player is created
by linking the high-level STAPL Player code available from
Actel with user generated low-level API routines. In sum, a
well-designed system including these elements can provide
robust and reliable reprogramming for an unlimited number
of ProASICPLUS devices in a JTAG chain.

Figure 5 • Putting Devices into Bypass Mode

Other
Device

Other
Device

Other
Device

Other
Device

Other
Device

Other
Device

Other
Device

Other
Device

Instruction
Register

13 instruction bits before;
16 instruction bts after

Device
being

programmed

5 5

3

3

3

2
4

4

Table 9 • Register-padding instructions

Instruction Purpose

PREIR n Used to put the devices after the
programmable device into Bypass mode; n is
the number of instruction bits after the
programmable device

POSTIR n Used to put the devices before the
programmable device into Bypass mode; n is
the number of instruction bits before the
programmable device

PREDR n Used to pad the data by the number of
bypassed devices after the programmable
device; n is the number of devices after the
programmable device

POSTDR n Used to pad the data by the number of
bypassed devices before the programmable
device; n is the number of devices before the
programmable device
8

Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
Appendix A: Suggested Voltage
Generator Circuit
A circuit for generating the required voltages for Internal
ISP is shown in Figure 6 and Figure 7. See Table 10 and
Table 11 on page 10 for a list of Building Materials required
for building circuits.

There are two Linear Tech voltage converters in the circuit.
Application notes for each of them can be found at:

www.linear-tech.com/pdf/1930f.pdf for the positive
converter

www.linear-tech.com/pdf/1931f.pdf for the negative
converter

Schematics

Figure 6 • Boost Schematic

Figure 7 • Inverter Schematic

E1

E3

E4

E2

JPI R1

R2

C1 C2 U1 C3 C4 C52

4 33

5

2

VIN

V
IN

V OUT
5V

GND

L1

LT1930

S
W

G
N

D

D1

FB

SHDN

SHDN

9 E

JP3
R7 R5

R6

C13 C14 U3
C15

C16 C172

4

4

D3

3

5

2

VIN

V
IN

V OUT
5V

GND

L3A L3B

LT1931

S
W

G
N

D

C12

NFB

SHDN

SHDN
 9

Performing Internal In-System Programming Using Actel’s ProASICPLUS Devices
Bill Of Materials

Table 10 • Boost Circuit (positive converter)

Item QTY Reference Part Description

1 2 C1, C5 CAP, X5R, 1µF, 16V, 0805
2 1 C2 CAP, X5R, 2.2µF, 16V, 1206
3 1 C3 CAP, NPO, 10pF, 25V, 10%, 0402
4 1 C4 CAP, X5R, 4.7µF, 16V, 1206
5 1 D1 DIO, SCHOTTKY, 30V, 0.5A
6 1 L1 Inductor, 10µH, 20%
7 1 R1 RES, CHIP, 156K, 1/16W, 1%, 0402
8 1 R2 RES, CHIP, 13.3K, 1/16W, 1%, 0402
9 1 U1 I.C., LINEAR, LT1930ES5#25117

Table 11 • Inverter Circuit (negative converter)

Item QTY Reference Part Description

1 2 C13, C17 CAP, X5R, 1µF, 16V, 0805
2 2 C14, C16 CAP, X5R, 4.7µF, 16V, 1206
3 1 C12 CAP, X5R, 1µF, 25V, 1206
4 1 D3 DIO, SCHOTTKY, 30V, 0.5A
5 2 L3A, L3B Inductor, 10µH, 30%
6 1 R5 RES, CHIP, 10K, 1/16W, 0.1%, 0402
7 1 R6 RES, CHIP, 1K, 1/16W, 0.1%, 0402
8 1 R7 RES, CHIP, 402K, 1/16W, 1%, 0402
9 1 U3 I.C., LINEAR, LT1931ES5#25118
10

Acte
Maxf
Cam
Unite
Tel:
Fax:
Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

l Europe Ltd.
li Court, Riverside Way
berley, Surrey GU15 3YL
d Kingdom
+44 (0)1276 401450
 +44 (0)1276 401590

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540

Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81-(0)3-3445-7671
Fax: +81-(0)3-3445-7668
5192691-4/10.02

	Overview
	Figure 1 . Internal ISP Elements

	Hardware Considerations
	Figure 2 . Example of System Configuration
	FPGA Interaction with the System
	Power Supplies
	Table 1 . Voltages during Normal Operation
	Table 2 . Voltages during programming
	Table 3 . Current Requirements

	Required Bypass Capacitors:
	Figure 3 . Bypass Capacitors

	Power-Up Sequences
	Interruptability
	Clock Considerations

	Software Considerations
	The STAPL Player
	The STAPL Player Interface
	Table 4 . STAPL Player Command-line Switches

	The STAPL Player API
	Table 5 . High Level JTAG API Functions
	Table 6 . Low Level JTAG and OS API Functions

	Exception Handling
	Table 7 . STAPL File Exit Codes
	Table 8 . STAPL Player Exit Codes

	Chain Programming
	Figure 4 . Illustration of Data Register Padding
	Figure 5 . Putting Devices into Bypass Mode
	Table 9 . Register-padding instructions

	Summary
	Appendix A: Suggested Voltage Generator Circuit
	Schematics
	Figure 6 . Boost Schematic
	Figure 7 . Inverter Schematic

	Bill Of Materials
	Table 10 . Boost Circuit (positive converter)
	Table 11 . Inverter Circuit (negative converter)

