
Application Note

RAM Initialization and ROM Emulation in
ProASICPLUS Devices

Introduction

ProASICPLUS FPGAs are reprogrammable and live at
power-up and therefore offer a single-chip solution for
programmable logic applications. The ProASICPLUS device
architecture includes dedicated embedded SRAM memory
blocks. The ProASICPLUS embedded SRAM blocks have the
flexibility of being initialized through the JTAG port. The
initialized memory blocks can also be used as read-only
memories.

Libero™ Integrated Design Environment (IDE) software
allows users to define the initialized RAM data for
simulation purposes. This document describes the
procedure and requirements for initializing the memory
blocks of the device using the test access port (JTAG TAP).

RAM Initialization

The initialization data needs to be loaded into the
ProASICPLUS FPGA through JTAG pins. Interfacing the TAP
to the device logic core is done through an embedded hard
macro called UJTAG. The UJTAG macro is implemented in
unused I/O tiles, and therefore, it does not consume any of
the core logic tiles. The core-accessible ports of the UJTAG
macro provide access to the contents of the TAP Instruction
Register and TAP Controller states as well as the JTAG pins
TDI, TDO, and TCK. For more information on the UJTAG
macro and its ports, please refer to Actel’s ProASICPLUS

PLL Dynamic Reconfiguration Using JTAG application
note.

Values 16 to 127 of the JTAG TAP Instruction Register (IR)
are user-defined OPCODEs and are not reserved. The user
can select any of these OPCODEs to define instructions for
different stages of the RAM initialization process. (For
example, the designer can define an IR OPCODE of 34 to
start the RAM initialization process and 35 to stop it). This
will be discussed further in the following sections.

UJTAG and RAM Block Interface

A user interface is required to receive the user command,
initialization data, and clock from the UJTAG macro. The
interface must synchronize and load the data into the
correct RAM block of the design. The main outputs of the
user interface block are the following:

• Memory block chip select: Selects a memory block of the
design to be initialized. The chip select signals for each
memory block can be generated from different

user-defined opcodes or simple logic such as a ring
counter (see below).

• Memory block write address: Identifies the address of the
memory cell that needs to be initialized.

• Memory block write data: The interface block receives the
data serially from the UTDI port of the UJTAG macro and
loads it in parallel into the write data ports of the memory
blocks.

• Memory block write clock: Drives the WCLK of the
memory block and synchronizes the write data, write
address, and chip-select signals.

Figure 1 on page 2 shows the user interface between the
UJTAG and the memory blocks.

An important component of the interface between the
UJTAG macro and the RAM blocks is a serial-in/parallel-out
shift register. The width of the shift register should equal
the data width of the RAM blocks. The data arrives serially
through the UTDI output of the UJTAG macro. The data
needs to be shifted into a shift register clocked by the JTAG
clock (provided at the UDRCK output of the UJTAG macro).
Then, after the shift register is fully loaded, the data needs
to be transferred to the write data port of the RAM block. In
order to synchronize the write data loading with the write
address and write clock, the output of the shift register can
be pipelined before driving the RAM block.

The write address can be generated in different ways. It can
be imported through the TAP using a different instruction
opcode and another shift register or generated internally
using a simple counter. Using a counter to generate the
address bits and sweep through the address range of the
RAM blocks is recommended, since it reduces the
complexity of the user interface block and the board-level
JTAG driver. Moreover, using an internal counter for
address generation speeds up the initialization procedure
since the user only needs to import the data through the
JTAG ports.

The designer may use different methods to select among the
multiple RAM blocks. Using counters along with
De-Multiplexers is one approach to set the Write Enable
signals. Basically, the number of RAM blocks needing
initialization determines the most efficient approach. For
example, if all the blocks are initialized with the same data,
one enable signal is enough to activate the write procedure
for all of them at the same time. Another alterative is to use
December 2002 1
© 2002 Actel Corporation

RAM Initialization and ROM Emulation in ProASICPLUS Devices
different opcodes to initialize each memory block. For a
small number of RAM blocks, using counters is an optimal
choice. For example, a ring counter can be used to select
among multiple RAM blocks. The clock driver of this counter
needs to be controlled by the address generation process.

Once the addressing of one block is finished, a clock pulse is
sent to the ring counter to select the next memory block.

Figure 2 presents a simple block diagram of an interface
block between UJTAG and RAM blocks.

Figure 1 • Interfacing TAP Ports and RAM Blocks

Figure 2 • The Block Diagram of a Sample User Interface

TDO

TDI

TMS

TCK

TRSTTDO

TDI

TMS

TCK

TRST

Package Pins

UIREG [7:0]

UTDI
UTDO

UDRCK

UDRUPD

UDRCAP

UDRSH

URSTB
WDATA

WADDR

WEN1

WEN2

WEN3

WCLK

IR[7:0]

Reset

DR_UPDATE

DR_SHIFT

DR_CAPTURE
DR_CLK
DIN
DOUT

WADDR

WD

WCLK

WEN

WADDR

WD

WCLK

WEN

WADDR

WD

WCLK

WEN

UJTAG User Interface

RAM 1

RAM 2

RAM 3

Serial-to-Port Shift Register

nSIN
POUT

Enable

CLK
SOUT

n

CLK

D Q

Compare with
Defined Opcode

In Result

Binary
Counter

Addr Counter

Data Reg.

En

Preset
CLK

Q

Ring
Counter

Chip Select

CLK

Reset

En

m

m

UTDI

UDRCK

UDRUPD

UDRSH

URSTB

UIREG

UTDO

WCLOCK

WDATA

WADDR

WEN1

WEN2

WENi
2

RAM Initialization and ROM Emulation in ProASICPLUS Devices
In the circuit of Figure 2 on page 2, the shift register is
enabled by the UDRSH output of the UJTAG macro. The
counters and chip-select outputs are controlled by the value
of the TAP instruction register. The comparison block
compares the UIREG value with the "start initialization"
opcode value (defined by user). If the result is true, the
counters start to generate addresses and activate the WEN
inputs of appropriate RAM blocks.

The UDRUPD output of the UJTAG macro, also shown in
Figure 2 on page 2, is used for generating the write clock
(WCLK) and synchronizing the data register and address
counter with WCLK. UDRUPD is high when the TAP
Controller is in the "Data Register Update" state, which is
an indication of completing the loading of one data word.
Once the TAP Controller goes into the Data Register Update
state, the UDRUPD output of the UJTAG macro goes high,
and therefore, the pipeline register and the address counter
place the proper data and address on the outputs of the
interface block. Meanwhile, WCLK is defined as the
inverted UDRUPD. This will provide enough time (equal to
the UDRUP high time) for the data and address to be placed
at the proper ports of the RAM block before the rising edge
of WCLK. The inverter is not required if the RAM blocks are
clocked at the falling edge of the write clock. An example of
this is illustrated in the following section.

Designers can use placement constraints to group the
interface block cells in a predefined area of the die. This
will isolate the RAM initialization logic from the main
design. For information regarding the ProASICPLUS

placement constraints, please refer to the Designer user's
guide.

An Example of RAM Initialization

This section of the document presents a sample design in
which a 4x4 RAM block is being initialized through JTAG
ports. A test feature has been implemented in the design to
read back the contents of the RAM after initialization to
verify the procedure.

The interface block of this example performs two major
functions – initialization of the RAM block and running a
test procedure to read back the contents. The clock output
of the interface is either the write clock (for initialization)
or the read clock (for reading back the contents). The
Verilog code for the interface block is included in the
“Appendix” on page 5.

In the example, declaring the JTAG port in the top-level
module is for simulation purposes. Without those ports,
instantiation of the UJTAG macro is enough for Designer
software to connect the TAP to the inputs of the UJTAG
during place-and-route. Declaration of the JTAG ports in
the top module of the design will cause the synthesis tool to
instantiate input and output buffers for these ports, which
will cause error in Designer since these are not regular I/O
pins. To avoid such problems, the user can remove the TAP
from the top module during synthesis or remove the I/O
buffers from the netlist before importing them into
Designer. However, the first solution is easier and will not
break the design flow integration.

Figure 3 shows the simulation results for the initialization
step of the example design.

Figure 3 • Simulation of Initialization Step
 3

RAM Initialization and ROM Emulation in ProASICPLUS Devices
The CLK_OUT signal, which is the clock output of the
interface block, is the inverted DR_UPDATE output of the
UJTAG macro. It is clear that it gives sufficient time (the
TAP Controller is in the Data Register Update state) for the
write address and data to become stable before loading
them into the RAM block.

Figure 4 presents the test procedure of the example. The
data read back from the memory block matches the written
data, thus verifying the correct functionality of the design.

ROM Emulation in ProASICPLUS
Devices

The ROM emulation application in ProASICPLUS devices is
based on RAM block initialization. If the user's main design
only has access to the read ports of the RAM block (RADDR,
RD, RCLK and REN) and the contents of the RAM are
already initialized through the TAP, then the memory blocks
will emulate ROM functionality for the core design. In this
case, the write ports of the RAM blocks are only accessed by
the user interface block and the interface is only activated
by the TAP Instruction Register contents.

Users should note that the contents of the SRAM blocks are
lost in the absence of applied power. During each power-up
cycle, the initial data of the RAM should be loaded into the
device through JTAG.

Conclusion

ProASICPLUS devices contain embedded dual-port RAM
blocks. The blocks can be cascaded together to form deeper
and wider memory blocks. These RAM blocks offer the
flexibility of being initialized through JTAG pins. The
initialization data is passed into the TAP and a user
interface block is required to synchronize the initialization
information.

The initialized memory blocks can be used in ROM
emulation applications where the user's design only reads
from the memory blocks and the data remains intact. Users
can reinitialize the RAM blocks or modify their contents
through JTAG by applying the appropriate signals to the
TAP of the device.

Note: The CLK_OUT output of the interface carries the read clock into the RAM.

Figure 4 • Simulation of the Test Procedure of the Example
4

RAM Initialization and ROM Emulation in ProASICPLUS Devices
Appendix

Interface Block
`define Initialize_start 8'h22 //INITIALIZA-
TION START COMMAND VALUE

`define Initialize_stop 8'h23 //INITIALIZA-
TION START COMMAND VALUE

module interface(IR, rst_n, data_shift,
clk_in, data_update, din_ser, dout_ser, test,

test_out,test_clk,clk_out,wr_en,rd_en,write_
word,read_word,rd_addr,

 wr_addr);

input [7:0] IR;

input [3:0] read_word; //RAM DATA READ BACK

input rst_n, data_shift, clk_in, data_update,
din_ser; //INITIALIZATION SIGNALS

input test, test_clk; //TEST PROCEDURE CLOCK
AND COMMAND INPUT

output [3:0] test_out; //READ DATA

output [3:0] write_word; //WRITE DATA

output [1:0] rd_addr; //READ ADDRESS

output [1:0] wr_addr; //WRITE ADDRESS

output dout_ser; //TDO DRIVER

output clk_out, wr_en, rd_en;

wire [3:0] write_word;

wire [1:0] rd_addr;

wire [1:0] wr_addr;

wire [3:0] Q_out;

wire enable, test_active;

reg clk_out;

//SELECT CLOCK FOR INITIALIZATION OR READBACK
TEST

always @(enable or test_clk or data_update)

 begin

 case ({test_active})

 1 : clk_out = test_clk ;

 0 : clk_out = !data_update;

 default : clk_out = 1'b1;

 endcase

 end

assign test_active = test && (IR == 8'h23);

assign enable = (IR == 8'h22);

assign wr_en = !enable;

assign rd_en = !test_active;

assign test_out = read_word;

assign dout_ser = Q_out[3];

//4-bit SIN/POUT SHIFT REGISTER

shift_reg data_shift_reg
(.Shiften(data_shift), .Shiftin(din_ser),
.Clock(clk_in), .Q(Q_out));

//4-bit PIPELINE REGISTER

D_pipeline pipeline_reg (.Data(Q_out),
.Clock(data_update), .Q(write_word));

//

addr_counter counter_1 (.Clock(data_update),
.Q(wr_addr), .Aset(rst_n), .Enable(enable));

addr_counter counter_2 (.Clock(test_clk),
.Q(rd_addr), .Aset(rst_n), .En-
able(test_active));

endmodule

The Appendix of this document includes the Verilog code
for the counter, shift register, pipeline register and the
memory blocks.

The following is a sample wrapper, which connects the
interface block to the UJTAG and the memory blocks:

// WRAPPER

module top_init (TDI, TRSTB, TMS, TCK, TDO,
test, test_clk, test_out);
 5

RAM Initialization and ROM Emulation in ProASICPLUS Devices
input TDI, TRSTB, TMS, TCK;

output TDO;

input test, test_clk;

output [3:0] test_out;

wire [7:0] IR;

wire reset, DR_shift, DR_cap, init_clk,
DR_update, data_in, data_out;

wire clk_out, wen, ren;

wire [3:0] word_in, word_out;

wire [1:0] write_addr, read_addr;

UJTAG UJTAG_U1
(.UIREG0(IR[0]),.UIREG1(IR[1]),.UIREG2(IR[2]
),.UIREG3(IR[3]),.UIREG4(IR[4]),

.UIREG5(IR[5]),.UIREG6(IR[6]),.UIREG7(IR[7])
,.URSTB(re-
set),.UDRSH(DR_shift),.UDRCAP(DR_cap),.UDRCK
(init_clk),

 .UDRUPD(DR_update),.UT-
DI(data_in),.TDI(TDI),.TMS(TMS),.TCK(TCK),

 .TRSTB(TRSTB),.TDO(TDO),.UT-
DO(data_out));

mem_block RAM_block (.DO(word_out),
.RCLOCK(clk_out), .WCLOCK(clk_out),
.DI(word_in), .WRB(wen),

 .RDB(ren), .WAD-
DR(write_addr), .RADDR(read_addr));

interface init_block (.IR(IR), .rst_n(reset),
.data_shift(DR_shift), .clk_in(init_clk),

 .data_update(DR_update),
.din_ser(data_in), .dout_ser(data_out),
.test(test),

 .test_out(test_out),
.test_clk(test_clk), .clk_out(clk_out),
.wr_en(wen),

 .rd_en(ren),
.write_word(word_in), .read_word(word_out),
.rd_addr(read_addr),

 .wr_addr(write_addr));

endmodule

Address Counter
module addr_counter (Clock, Q, Aset, Enable);

 input Clock;

 output [1:0] Q;

 input Aset;

 input Enable;

 reg [1:0] Qaux;

 always @(posedge Clock or negedge Aset)

 begin

 if (!Aset)

 Qaux <= 2'b11;

 else if (Enable)

 Qaux <= Qaux + 1;

 end

 assign Q = Qaux;

endmodule

Pipeline Register:

module D_pipeline (Data, Clock, Q);

 input [3:0] Data;

 input Clock;

 output [3:0] Q;

 reg [3:0] Q;

 always @ (posedge Clock)

 Q <= Data;

endmodule

4x4 RAM Block (Created by ACTgen Macro
Builder)
module mem_block(DO, RCLOCK, WCLOCK, DI, WRB,
RDB, WADDR, RADDR);

output [3:0] DO;

input RCLOCK;

input WCLOCK;

input [3:0] DI;

input WRB;

input RDB;

input [1:0] WADDR;
6

RAM Initialization and ROM Emulation in ProASICPLUS Devices
input [1:0] RADDR;

GND U1(.Y(VSS));

RAM256x9SSR M0(.RCLKS(RCLOCK),
.WCLKS(WCLOCK), .DO8(), .DO7(), .DO6(),
.DO5(), .DO4(),

 .DO3(DO[3]), .DO2(DO[2]), .DO1(DO[1]),
.DO0(DO[0]), .DOS(), .WPE(), .RPE(),
.WADDR7(VSS), .WADDR6(VSS),

 .WADDR5(VSS), .WADDR4(VSS),
.WADDR3(VSS), .WADDR2(VSS), .WADDR1(WAD-
DR[1]), .WADDR0(WADDR[0]),

 .RADDR7(VSS), .RADDR6(VSS),
.RADDR5(VSS), .RADDR4(VSS), .RADDR3(VSS),
.RADDR2(VSS),

 .RADDR1(RADDR[1]), .RADDR0(RADDR[0]),
.DI8(VSS), .DI7(VSS), .DI6(VSS), .DI5(VSS),
.DI4(VSS),

 .DI3(DI[3]), .DI2(DI[2]), .DI1(DI[1]),
.DI0(DI[0]), .WRB(WRB), .RDB(RDB),
.WBLKB(VSS), .RBLKB(VSS),

 .PARODD(VSS), .DIS(VSS));

endmodule
 7

Actel and the Actel logo are registered trademarks of Actel Corporation.
All other trademarks are the property of their owners.

http://www.actel.com

Actel Europe Ltd.
Maxfli Court, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom
Tel: +44 (0)1276 401450
Fax: +44 (0)1276 401490

Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
USA
Tel: (408) 739-1010
Fax: (408) 739-1540

Actel Asia-Pacific
EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan
Tel: +81-(0)3-3445-7671
Fax: +81-(0)3-3445-7668
5190005-0/12.02

	Introduction
	RAM Initialization
	UJTAG and RAM Block Interface
	Figure 1 . Interfacing TAP Ports and RAM Blocks
	Figure 2 . The Block Diagram of a Sample User Interface

	An Example of RAM Initialization
	Figure 3 . Simulation of Initialization Step
	Figure 4 . Simulation of the Test Procedure of the Example

	ROM Emulation in ProASICPLUS Devices
	Conclusion
	Appendix
	Interface Block
	Address Counter
	4x4 RAM Block (Created by ACTgen Macro Builder)

