

Application Note

v3.0 9-2-98

Minimizing Single Event Upset
Effects Using Synplicity

This application note gives an overview of some single event
upset (SEU) resistant design techniques and describes how
to implement these techniques using Synplicity Synplify 3.0C
or later. Familiarity with Synplify is assumed. For additional
information about radiation resistant design techniques,
refer to the Actel application note Design Techniques
for RadHard FPGAs available on the Actel Web site
(http://www.actel.com).

Background and Terminology

The Actel ACT 2, ACT 3, 3200DX, and 42MX device families
contain two types of logic modules, sequential modules
(S-modules) and combinatorial modules (C-modules).
S-modules contain a sequential logic element and some
combinatorial logic. C-modules contain only combinatorial
logic. Flip-flops and latches can be implemented using the
sequential logic element of an S-module (S-FF) or by using
combinatorial logic (CC-FF). The combinatorial logic in a
CC-FF may come from the combinatorial portion of an
S-module, from a C-module, or from both.

The 54SX device family also contains two types of logic
modules, register cells (R-cells) and combinatorial cells
(C-cells). R-cells contain only a sequential logic element.
C-cells contain only combinatorial logic. Flip-flops and
latches currently can only be implemented using the
sequential logic element of an R-cell, also referred to as an
S-FF in this application note.

The ACT 1 and 40MX device families contain only C-modules.
All flip-flops and latches are implemented as CC-FFs.

SEU Resistant Design Techniques

The resistance of a device to SEU effects can be influenced by
using certain logic design techniques. The default technique,
using S-FFs, produces designs that are the most susceptible
to SEU effects. Because ACT 1 and 40MX devices do not have
S-modules, S-FFs cannot be implemented in these devices.

In addition to the default there are two SEU resistant design
techniques that can be used in Actel devices using Synplicity.
In order of increasing resistance to SEU effects the
techniques are: using CC-FFs and using triple voting.
Synplicity also allows for custom implementations. A single
design may use any or all of these design techniques.

Using CC-FFs

Using CC-FFs produces designs that are more resistant to
SEU effects than designs using S-FFs. CC-FFs are used by
default in ACT 1 and 40MX devices because these devices
only contain CC-FFs. CC-FFs cannot currently be
implemented in 54SX devices. CC-FFs typically use twice the
area resources of S-FFs.

Using Triple Voting

Triple voting, also called triple module redundancy (TMR),
produces designs that are the most resistant to SEU effects.
Instead of a single flip-flop, triple voting uses three flip-flops
leading to a majority gate voting circuit. This way, if one
flip-flop is accidentally flipped to the wrong state, the other
two out-vote it and the correct value is propagated to the rest
of the circuit. Because of the cost (typically three to four
times the area and two times the delay required for S-FF
implementations), triple voting is usually implemented using
S-FFs. However, triple voting can be implemented using only
CC-FFs in Synplicity.

Implementing a Technique

Synplify has eight sequential primitives that are used to
implement latches and flip-flops. The basic latch and flip-flop
each have a variation with set, reset or both. The primitives
are shown in Table 1.

Synplicity provides supplemental library files that contain
compiler directives to ensure that the intended sequential
mapping is implemented. The files, available in both Verilog
and VHDL, are as follows:

• cc.v(hd)—for CC-FF implementation

• tmr.v(hd)—for TMR implementation without CC-FFs

• tmr_cc.v(hd)—for TMR implementation using CC-FFs

Table 1 • Synplicity Sequential Primitives

Flip-Flop Latch

dff lat

dffr latr

dffs lats

dffrs latrs
August 1998 1
© 1998 Actel Corporation

Although the procedure to implement one of these
techniques is simple, the order in which the source files are
added is critical. The Actel family library file must appear
first, then supplemental library file, then the design file(s).
Use the following procedure to implement a technique.

1. Invoke Synplify and open a project or start a new project.

2. Click the Change Target button and select the Actel
family, device, and speed grade, then click OK.

3. Click the Add button to add source file(s) to the project.
If there are multiple design files, make sure the top level
file appears at the bottom of the source files list.

4. Click the Add button to add one of the supplemental
library files (cc, tmr, or tmr_cc). The files are located in
the “<synplify_install_directory>\lib\actel” directory.
Make sure to use the one with the correct extension
(.v or .vhd).

5. Click the Add button to add the appropriate Actel family
to the top of the source files list. This file is also located
in “<synplify_install_directory>\lib\actel” directory.

6. Click the Run button to compile the design.

You can make sure that your sequential logic has been
implemented correctly by selecting the Technology View
command from the HDL Analyst menu. The Actel Macro
Library Guide can be used to determine whether each macro
used contains S-modules (or R-cells) and/or C-modules
(C-cells).

Figure 1 illustrates how Synplify implements a design using
the “tmr_cc.vhd” supplemental library file during
compilation. S-FFs have been replaced with TMR
implementations comprised of only CC-FFs. Notice the use of
the “DFP1” macro, which contains only C-modules.

Figure 1 • Synplify Implementation Using the “tmr.vhd” Supplemental Library File
2

Minimizing Single Event Upset Effects Using Synplicity

Hierarchy

The procedure in the previous section implies that only one
design technique can be employed for the entire design.
However, it is possible to apply separate techniques to
sections of the design. This is achieved through black boxing.
For example, if you have a design, A, that has hierarchical
blocks B and C (Figure 2) and you wanted to implement
CC-FFs in A, TMR in B, and TMR using CC-FFs in C, the
procedure would be as follows:

1. Using a text editor, write blocks B and C into separate
design files.

2. Synthesize B and C using the appropriate supplemental
library files as described in the previous section. The
result files will be EDIF (.edn). Remember to click the
disable I/O insertion box in the Set Device Options dialog
box, so that I/O cells are not inserted into the sub-blocks.

3. Instantiate B and C as black boxes in block A. If you
don't already know how to do this, there is a good
description in the Synplify on-line help menu - search for
“instantiating black boxes.” Synthesize A with the
“cc.v(hd)” supplemental library file.

4. Run the Actel “edn2adl” utility. For example, type the
following command at the DOS or UNIX prompt:

edn2adl fam:act2 ednin:B.edn+C.edn+A.edn
adl:A.adl A

“A” is the top level entity or module name in the
command line above. The top level EDIF file is listed last
in the ednin string.

You can then compile the new design in the Actel Designer
software. Make sure you select the output file from step 4
above (A.adl) when compiling the new design.

Customization

The supplemental library files provided by Synplicity use
compiler directives to perform the macro substitution and
implement the design techniques. The directives,
“syn_implement” and “syn_preserve,” are used to map the
primitive functions to the desired hardware implementation
and ensure that the mapping is not overridden by further
optimization. For example, in Figure 3, a section of “cc.vhd,”
the bold lines make sure that the CC-FF macro “DFP1” is
actually used at the gate level. Figure 4 illustrates the Verilog
versions of the directives.

To generate a custom implementation of the techniques, copy
one of the supplemental library files to your local area and
modify it for the desired implementation. Then, include this
new supplemental library file in the Synplify source file
list.

Figure 2 • Hierarchical Block Diagram

A

B C

entity dfp1_dff is
 port (q : out std_logic;
 d,c : in std_logic);
 end dfp1_dff;

 architecture arch1 of dfp1_dff is
 attribute syn_implement of arch1 : architecture is "dff";
 attribute syn_preserve of arch1 : architecture is true;
 begin

U1: DFP1 port map (d=>d,clk=>c,pre =>'0',q=>q);

 end arch1;

Figure 3 • Substitution Complier Directives (VHDL)
3

Additional Information

For additional information about designing radiation
resistant devices, visit the following Web site:

http://www.actel.com/products/radhard.html

If you have any comments or suggestions about Actel's line of
radiation resistant devices, e-mail Actel at
radhard.designer@actel.com. For technical support contact
the Actel Customer Application Center at 1-800-262-1060 or
tech@actel.com.

module dfpc_dffrs(q,d,c,s,r)/* synthesis syn_preserve=1
syn_implement=dffrs */;
output q;
input d,c,s,r;

wire r_i = ~r;
DFPC u1 (d,c,s,r_i,q);

endmodule

Figure 4 • Substitution Compiler Directives (Verilog)
4

5

Minimizing Single Event Upset Effects Using Synplicity

Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.

http://www.actel.com

Actel Eur ope Ltd.

Daneshill House, Lutyens Close
Basingstoke, Hampshire RG24 8AG
United Kingdom

Tel:

+44.(0)1256.305600

Fax:

+44.(0)1256.355420

Actel Corporation

955 East Arques Avenue
Sunnyvale, California 94086
USA

Tel:

408.739.1010

Fax:

408.739.1540

Actel Japan

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ka
Tokyo 150 Japan

Tel:

+81.(0)3.3445.7671

Fax:

+81.(0)3.3445.7668

5192643-0

	Minimizing Single Event Upset Effects Using Synpli...
	Background and Terminology
	SEU Resistant Design Techniques
	Using CC-FFs
	Using Triple Voting

	Implementing a Technique
	Hierarchy
	Customization

	Additional Information

