

April 1996

6-19

© 1996 Actel Corporation

Paper published in the 1995 PLD Conference Proceedings

Customer-Authored
Application Note

6

Bus Translation Design
Using FPGAs

Venkata Ramana Kalapatapu, Design Engineer
Sand Microelectronics, Inc.

Abstract

This paper discusses the use of a 6K gate FPGA to implement
a design that controls and manages the communication
between a Motorola 68040 bus, two SUN S-BUS devices, and
two static RAMs at the rate of 25 MHz.

Introduction

The above diagram describes the configuration of the board
with multi-processors and the role of the FPGA to control the
communication between all the devices.

Each processor can be a master or a slave in a particular
configuration while both RAMs have a slave role at all times.
When the Motorola 68040 is the master, either of the SBUS
devices or both can be a slave. When either of the SBUS
devices is the master, only the 68040 can be the slave and the
other SBUS device is idle.

The chip controlling the communication between the various
devices on the board must determine where an incoming
address has initiated, the destination device of choice,
perform bus translation, and detect and correct any parity
errors that occur during transmission.

Requirements

The choice of the device had to meet the following criteria:

• Data transfer rate of 25 MHz.

• High I/0 count (157 I/Os) with a high degree of flexibility
for ease of board layout (pins had to be fixed early in the
design and cannot be restricted to be of one type or
another).

• Reliability and high level of signal integrity.

• Fast prototyping ability.

• Synthesizability (verilog code).

• Low cost.

• Ease of debugging, and ability to re-place and route
without changing pin assignments.

FPGA Details

The device of choice for this design was Actel’s A1460A-1 in a
208-pin PQFP package. The device had a core capacity of
6000 gates. The device has three high fanout clock networks
for the core and one for the I/Os. Two of the core clock
networks was used in this design. The HCLK hard wired high
speed internal clock ran at 40 MHz. It clocked the control
state machines, the address decoding, and the data
transmission. Another clock network (CLKA) ran at 25 MHz.
It controlled the parity error checking and correction. The
fine granularity of this FPGA was highly suitable for synthesis
and the closest in performance to a full ASIC.

The core of the chip was partitioned into two major blocks:

• Control logic and address decoding.

• Data Path.

The control logic section occupied the majority of the core. It
included the functions of detecting the Master device,
determining the slave device, controlling data transmission,
and checking and correcting any parity errors that occurred
during bus translation and transmission. The decoding logic
took care of address decoding and of translation.

The Data Path block consisted of the bus translation function
between the Motorola 68040 and the S-bus devices (both the
S-bus and the Motorola bus are 32 bits wide). Also, the Data
Path section included the Read/Write operations from any of
the master devices to the RAMs and visa versa.

The S-Bus operates in a burst transfer mode while the
Motorola bus is not capable of burst transfer mode operation.
Thus a data transfer from the S-Bus device to the Motorola
68040 is a single burst cycle operation.

RAM

S-BUS #1

S-BUS #2

RAM

FPGA
Mototola
68040

6-20

The RAMs are 16-bit wide. Thus a Read/Write operation
involving any of the master devices and a RAM is done in two
cycles, each cycle covering 16 bits of data.

Design Encoding and Simulation

The design was encoded using standard verilog VHDL. It was
then simulated using a zero-delay verilog behavioral model
simulator. The design was then synthesized using the
Synopsys standard compiler. The gate level netlist was then
simulated using Actel’s macrocells verilog models library
(unit delay models).

The design was then placed and routed using Actel’s ALS
software. The ALS timer was used to check the post place and
route timing on the critical paths as well as overall chip
performance.

In the encoding process some specific flip-flops were directly
instantiated. All the I/Os were also directly instantiated. Our
experience has been that the performance one gets from an
FPGA using synthesis is highly dependent on proper coding
that makes use of the particular architecture of that FPGA
(mux based in the case of the A1460).

Post layout delays were back annotated to the verilog gate
level netlist using Actel’s SDF interface. The back annotated
design was then simulated using the verilog-XL simulator. The
design was simulated by the same set of input vectors for both
the behavioral design and the back annotated gate level
design producing the same result.

Sample Code

module SRamCtrl (SC_NIO_CLK,
SC_MEZZ_RESET, SC_ICE2SRAM,
SC_ISP2SRAM,,
SC_SRAM_UB_L, SC_SRAM_LB_L);
input [1:0] SC_NIO_SIZE;
input [2:0] SC_SBUS_ACK_L;
input [2:0] SC_SBUS_SIZE;
input SC_NIO_CLK, SC_MEZZ_RESET,
SC_ICE2SRAM, SC_ISP2SRAM, SC_INT_TS,
SC_AS_L,
 SC_NIO_RW, SC_SBUS_RW,
SC_NIO_ADR:
output SC_SRAMCYC_L, SC_CSDELAY,
SC_SRAM_CS_L, SC_SRAM_OE_L,
SC_SRAM_WE_L,
 SC_SRAM_UB_L, SC_SRAM_LB_L;
 wire n640, n641, n642, n630, n631, n632,
n633, n634, n635, n636, n637,
 n638, n639, n627, n628, n629,

IspSRamCyc, *cell* 111/Z_O,
 *cell*106/CONTROL1;
 DFP1 SC_SRAM_CS_L_reg (
.PRE(SC_MEZZ_RESET),
.CLK(SC_NIO_CLK), .D(n637),
 .Q(SC_SRAM_CS_L));
 DFP1 SC_SRAM_WE_L_reg (
.PRE(SC_MEZZ_RESET),
.CLK(SC_NIO_CLK), .D(n640),
 .Q(SC_SRAM_WE_L));
....................
....................
 DFP1 SC_SRAMCYC_L_reg (
.PRE(SC_MEZZ_RESET),
.CLK(SC_NIO_CLK), .D(n639),
 .Q(SC_SRAMCYC_L));
endmodule;

Results

The design went through two iterations. In the first pass the
core utilization was 98 percent and the design included JTAG
testing. The results were satisfactory but a decision was made
to get rid of the JTAG. The design was modified in a major
manner to push the performance further. The pinout was
fixed from the first round. Re-placing and re-routing the
design went through without any problems at all. The final
core utilization was 70 percent. The final design was
backannotated and simulated at gate level. It was fully
functional at a data transfer rate of 30 MHz.

Although a “–2” speed grade was available for this part
allowing for another 10 percent speed improvement. The
design was finalized in a A1460-1 in a 208-pin PQFP package.

After the design was verified a fuse file was generated in the
ALS environment and Actel’s activator was used to program
prototypes.

Conclusions

Using FPGAs for bus translation applications proved to be
feasible, easy, and reliable. FPGAs provided high I/0 counts
needed for such an application. Also, sufficient core gates
were available for control and arbitration logic. I/0
instantiation and writing code that makes use of the available
architecture is instrumental in obtaining optimal results.

