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Introduction

VHDL is a high-level description language for system and circuit 
design that supports various abstraction levels, including system design 
without regard to a specific technology. However, to achieve optimal 
performance and area from your target device, you must become 
familiar with the architecture of the device and code your design for 
the architecture.

The ACTmap VHDL Synthesis Methodology Guide contains information 
and techniques for using ACTmap VHDL to design an Actel device. 
This includes information about writing VHDL code for ACTmap, 
optimization techniques, and sample code. This guide also includes 
information about using the ACTmap VHDL Synthesis tool in batch 
mode. Refer to the Designing with Actel manual and the ACTmap on-
line help for information about the ACTmap user interface. Refer to the 
Actel HDL Coding Style Guide for additional information about HDL 
coding.

Document Organization
The ACTmap VHDL Synthesis Methodology Guide is divided into the 
following chapters:

Chapter 1 - ACTmap Design Flow describes the design flow for 
creating Actel designs with the ACTmap VHDL synthesis tool.

Chapter 2 - Using ACTmap VHDL describes how to write VHDL for 
use with the ACTmap VHDL synthesis tool.

Chapter 3 - Advanced Optimization Techniques contains 
information about the optimization features of ACTmap and describes 
how to implement optimization techniques in a design.

Appendix A - Using ACTmap in Batch Mode contains information 
about using command-line commands and command files in the 
ACTmap VHDL synthesis tool.

Appendix B - Product Support provides information about 
contacting Actel for customer and technical support.
vii



Introduction
Document Assumptions
The information in this guide is based on the following assumptions:

1. You have installed the Designer Series software, including ACTmap.

2. You are familiar with UNIX workstations and operating systems.

3. You are familiar with PCs and Windows operating environments.

4. You are familiar with FPGA design software, including design 
synthesis and simulation tools.

Document Conventions
The following conventions are used throughout this manual:

Information that is meant to be input by the user is formatted as 
follows:

keyboard input

The contents of a file is formatted as follows:

file contents

VHDL code appear as follows, with VHDL keywords in bold:

entity  actel is
port  (

a: in  bit;
y: out  bit);

end  actel;

Messages that are displayed on the screen appear as follows:

The <act_fam> variable represents an Actel device family. To reference 
an actual family, substitute the name of the Actel device when you see 
this variable. Available families are act1, act2 (for ACT 2 and 1200XL 
devices), act3, 3200dx, 40mx, 42mxand 54sx.

Screen Message
viii



Introduction
Actel Manuals
The Designer Series software includes printed and on-line manuals. 
The on-line manuals are in PDF format on the CD-ROM in the “/
manuals” directory. These manuals are also installed onto your system 
when you install the Designer software. To view the on-line manuals, 
you must install Adobe® Acrobat Reader® from the CD-Rom.

The Designer Series includes the following manuals, which provide 
additional information on designing Actel FPGAs:

Designing with Actel. This manual describes the design flow and user 
interface for the Actel Designer Series software, including information 
about using the ACTgen Macro Builder and ACTmap VHDL Synthesis 
software.

Actel HDL Coding Style Guide. This guide provides preferred coding 
styles for the Actel architecture and information about optimizing your 
HDL code for Actel devices.

ACTmap VHDL Synthesis Methodology Guide. This guide contains 
information, optimization techniques, and procedures to assist 
designers in the design of Actel devices using ACTmap VHDL.

Silicon Expert User’s Guide. This guide contains information and 
procedures to assist designers in the use of Actel’s Silicon Expert tool.

DeskTOP Interface Guide. This guide contains information about using 
the integrated VeriBest® and Synplicity® CAE software tools with the 
Actel Designer Series FPGA development tools to create designs for 
Actel Devices.

Cadence® Interface Guide. This guide contains information and 
procedures to assist designers in the design of Actel devices using 
Cadence CAE software and the Designer Series software.

Mentor Graphics® Interface Guide. This guide contains information 
and procedures to assist designers in the design of Actel devices using 
Mentor Graphics CAE software and the Designer Series software.

MOTIVE Static Timing Analysis Interface Guide. This guide contains 
information and procedures to assist designers in the use of the 
MOTIVE software to perform static timing analysis on Actel designs.
ix



Introduction
Synopsys® Synthesis Methodology Guide. This guide contains preferred 
HDL coding styles and information and procedures to assist designers 
in the design of Actel devices using Synopsys CAE software and the 
Designer Series software.

Viewlogic Powerview® Interface Guide. This guide contains 
information and procedures to assist designers in the design of Actel 
devices using Powerview CAE software and the Designer Series 
software.

Viewlogic Workview Office Interface Guide. This guide contains 
information and procedures to assist designers in the design of Actel 
devices using Workview Office CAE software and the Designer Series 
software.

VHDL Vital Simulation Guide. This guide contains information and 
procedures to assist designers in simulating Actel designs using a Vital 
compliant VHDL simulator.

Verilog Simulation Guide. This guide contains information and 
procedures to assist designers in simulating Actel designs using a 
Verilog simulator.

Activator and APS Programming System Installation and User’s Guide. 
This guide contains information about how to program and debug 
Actel devices, including information about using the Silicon Explorer 
diagnostic tool for system verification.

Silicon Sculptor User’s Guide. This guide contains information about 
how to program Actel devices using the Silicon Sculptor software and 
device programmer.

Silicon Explorer Quick Start. This guide contains information about 
connecting the Silicon Explorer diagnostic tool and using it to perform 
system verification.

Designer Series Development System Conversion Guide UNIX® 

Environments. This guide describes how to convert designs created in 
Designer Series versions 3.0 and 3.1 for UNIX to be compatible with 
later versions of Designer Series.

Designer Series Development System Conversion Guide Windows 
Environments. This guide describes how to convert designs created in 
x



Introduction
Designer Series versions 3.0 and 3.1 for Windows to be compatible 
with later versions of Designer Series.

Actel FPGA Data Book. This guide contains detailed specifications on 
Actel device families. Information such as propagation delays, device 
package pinout, derating factors, and power calculations are found in 
this guide.

Macro Library Guide. This guide provides descriptions of Actel library 
elements for Actel device families. Symbols, truth tables, and module 
count are included for all macros.

A Guide to ACTgen Macros. This Guide provides descriptions of 
macros that can be generated using the Actel ACTgen Macro Builder 
software.

On-Line Help
The Designer Series software comes with on-line help. On-line help 
specific to each software tool is available in Designer, ACTgen, 
ACTmap, Silicon Expert, Silicon Explorer, Silicon Sculptor, and APSW.
xi





1
ACTmap Design Flow

This chapter illustrates and describes the design flow for creating Actel 
designs using the ACTmap VHDL synthesis tool and third party tools.

Design Flow Illustrated
Figure 1-1 illustrates the design flow for creating an Actel device using 
the Designer Series, ACTmap, and 3rd party CAE software1.

1. Actel-specific utilities/tools are denoted by the grey boxes in Figure 1-1.
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Figure 1-1. ACTmap Design Flow
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Chapter 1: ACTmap Design Flow
Design Flow Overview
The ACTmap design flow has four main steps; design creation/
verification, design implementation, programming, and system 
verification. These steps are described in detail in the following 
sections.

Design 
Creation/
Verification

During design creation/verification, a design is captured in an RTL-
level (behavioral) VHDL source file. After capturing the design, 
behavioral simulation of the VHDL file can be performed to verify that 
the VHDL code is correct. The code is then synthesized into an Actel 
gate-level (structural) VHDL netlist using ACTmap. After synthesis, 
structural simulation of the design can be performed. Finally, an EDIF 
netlist is generated for use in Designer or a third party CAE tool. A 
structural VHDL netlist is also generated for timing simulation.

VHDL Design Source Entry
Enter your VHDL design source using a text editor or a context-
sensitive VHDL editor. Your VHDL design source can contain RTL-level 
constructs as well as instantiations of structural elements, such as 
ACTgen macros. Refer to Chapter 2, “Using ACTmap VHDL” on page 5, 
for information about ACTmap VHDL coding techniques.

Behavioral Simulation
Perform a behavioral simulation of your design before synthesis. 
Behavioral simulation verifies the functionality of your VHDL code. 
Typically, unit delays are used and a standard VHDL test bench can be 
used to drive simulation. Refer to the documentation included with 
your simulation tool for information about performing behavioral 
simulation.

Synthesis
After you have created your behavioral VHDL design source, create a 
project in ACTmap and synthesize your design before placing and 
routing it in Designer. Synthesis transforms the behavioral VHDL file 
into a gate-level netlist and optimizes the design for a target 
technology. Refer to the Designing with Actel manual for information 
about synthesizing a design in ACTmap.
2



Design Flow Overview
EDIF Netlist Generation
After you have created, synthesized, and verified your design, you 
must generate an EDIF netlist for place and route in Designer. ACTmap 
also can be used to create symbols and wire files for use in Viewlogic 
tools. Most third party CAE tools can also import the EDIF netlist as a 
block for use in a schematic capture tool. Refer to the Actel Interface 
Guides and the documentation included with your CAE tools for 
information about importing EDIF blocks.

This EDIF netlist is also used to generate a structural VHDL netlist. 
Refer to the Designing with Actel manual for information about 
generating an EDIF netlist from ACTmap.

Structural VHDL Netlist Generation
Generate a structural VHDL netlist from your EDIF netlist for use in 
structural and timing simulation by exporting it from ACTmap. Refer to 
the Designing with Actel manual for information about generating a 
structural netlist from ACTmap.

Structural Simulation
Perform a structural simulation of your design before placing and 
routing it. Structural simulation verifies the functionality of your post-
synthesis structural VHDL netlist. Default unit delays included in the 
compiled Actel VITAL libraries are used for every gate. Refer to the 
documentation included with your simulation tool for information 
about performing structural simulation.

Design 
Implementation

During design implementation, a design is placed and routed using 
Designer. Additionally, static timing analysis can be performed in 
Designer with the DT Analyze tool. After place and route, post-layout 
(timing) simulation is performed.

Place and Route
Use Designer to place and route your design. Make sure to specify 
GENERIC as the Edif Flavor and VHDL as the Naming Style when 
importing the EDIF netlist into Designer. Refer to the Designing with 
Actel manual for information about using Designer.
3



Chapter 1: ACTmap Design Flow
Timing Analysis
Use the DT Analyze tool in Designer to perform static timing analysis 
on your design. Refer to the Designer with Actel manual for 
information on using DT Analyze.

Timing Simulation
Perform a timing simulation of your design after placing and routing it. 
Timing simulation verifies that the design meets timing requirements. 
Timing simulation requires information extracted from Designer, which 
overrides default unit delays in the compiled Actel VITAL libraries. 
Refer to the documentation included with your simulation tool for 
information about performing timing simulation and the Designing 
with Actel manual for information about extracting timing information 
from Designer.

Programming Program a device with programming software and hardware from Actel 
or a supported 3rd party programming system. Refer to the Designing 
with Actel manual and the Activator and APS Programming System 
Installation and User’s Guide or Silicon Sculptor User’s Guide for 
information about programming an Actel device.

System 
Verification

You can perform system verification on a programmed device using 
the Actel Silicon Explorer diagnostic tool. Refer to the Activator and 
APS Programming System Installation and User’s Guide or Silicon 
Explorer Quick Start for information about using the Silicon Explorer.
4



2
Using ACTmap VHDL

This chapter provides descriptions and examples of how to write 
VHDL for use with the ACTmap VHDL synthesis tool. This includes 
information about VHDL naming conventions and keywords, about 
declaring circuits and signals in VHDL, and a description of supported 
operators. Also included is information about using logic conditions 
and repetitive operations, assigning attributes, and instantiating cells.

Other sections include how to create hierarchical designs for ACTmap, 
how to infer ACTgen macros, and information about writing processes. 
State machine design is described and guidelines for using procedures 
are also given. Finally, supported packages and limitations are listed.

VHDL Naming Conventions and Keywords
There are naming conventions you must follow when writing VHDL 
code. Additionally, VHDL has reserved words that cannot be used for 
signal or entity names. This section lists the naming conventions and 
reserved keywords for each.

Naming 
Conventions

The following naming conventions apply to VHDL designs:

• VHDL is not case sensitive.

• Two dashes “--” are used to begin comment lines.

• Names can use alphanumeric characters and the underscore “_” 
character.

• Names must begin with an alphabetic letter.

• You may not use two underscores in a row, or use an underscore as 
the last character in the name.

• Spaces are not allowed within names.

• An entity cannot have the same name as an Actel Library macro.
5



Chapter 2: Using ACTmap VHDL
Keywords The following is a list of the VHDL reserved keywords that cannot be 
used for signal or entity names:

Declaring a Circuit
A circuit description consists of the interface defining the signal 
connections of the circuit and a description of the circuit’s behavior or 
composition. The interface is referred to as an entity and the signal 
connections are ports. The section of code that defines the entity 
behavior or composition is referred to as the architecture. The entity in 
VHDL is equivalent to a symbol. The architecture is equivalent to a 
schematic.

abs downto library postponed subtype

access else linkage procedure then

after elsif literal process to

alias end loop pure transport

all entity map range type

and exit mod record unaffected

architecture file nand register units

array for new reject until

assert function next rem use

attribute generate nor report variable

begin generic not return wait

block group null rol when

body guarded of ror while

buffer if on select with

bus impure open severity xnor

case in or shared xor

component inertial others signal

configuration inout out sla

constant is package sra

disconnect label port srl
6



Declaring a Circuit
Entity 
Description

An entity consists of the entity name, the names of entity’s ports, the 
direction of the ports (input, output, etc.), and a VHDL signal type for 
each of the ports. Below is an example entity description for a half 
adder, illustrated in Figure 2-1.

entity  halfadder is
port  (a, b: in  bit;

s, co: out  std_logic);
end  halfadder;

Architecture 
Description

The behavior or composition of the entity is described in the 
architecture section of code. The level of the VHDL description of the 
architecture can be behavioral, register transfer level (RTL), or 
structural.

A behavioral description describes how the system behaves in 
response to input signals without regard for hardware implementation. 

An RTL description defines the circuit behavior, much like a detailed 
block diagram describes traditional logic design. Clock and reset 
signals are defined, and data busses and storage devices (registers, 
counters, memory, etc.) have specific numbers of bits assigned. 
However, the level of abstraction used to describe the logic functions is 
higher than the gate-level details of a conventional schematic.

A structural description is used in the same manner as a netlist.

Figure 2-1. Half Adder

a

b

s

co
7



Chapter 2: Using ACTmap VHDL
The structure of the design is described by components interconnected 
by signals. Regardless of the VHDL description level, the syntax of the 
architecture must have a type and an entity association, as in the 
following example:

architecture behavioral  of example is  
... signals and  constants are declared...

begin
... lines of code describing the behavior of entity exam-

ple...
end  example;

Below is an architectural description of the functionality of a half adder 
entity. The half adder is illustrated in Figure 2-2.

architecture behavioral  of halfadder is
begin

s <= a xor  b;
c <= a and  b;

end  behavioral;

Figure 2-2. Half Adder
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Signals
Signals
Signal declarations are made in the declaration section of the 
architecture. This is the section of code that appears after the 
architecture type and entity association have been defined and before 
the begin statement. Constants are also defined in the declaration 
section, often after the signals are declared.

As in a physical hardware system, signals can be single bits, such as a 
clock or a reset, or they can be busses of a specified width. All signals 
are declared with both a name and a data type. VHDL by itself does 
not predefine characteristics of signals such as logic states or driving 
strengths. Instead it makes provisions for doing so by means of VHDL 
files grouped together into packages and libraries, which are normally 
shipped with VHDL simulators or synthesis tools. This section lists the 
data types that ACTmap supports.

Enumerated 
Types

Types that have a fixed number of unique states are called enumerated 
types. You can choose to use one of the standard types or define your 
own.

Bit and Boolean
The bit and boolean types are standard enumerated types defined as 
part of ACTmap VHDL and have two states each.

• bit can be ‘0’ or ‘1’

signal  a: bit;

• boolean can be true or false

signal  a: boolean;
9
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User-Defined
Enumerated types are often defined by the user for a specific purpose, 
such as declaring the states of a state machine. Each state of the 
defined type must be a unique identifier. The enumerated type must 
be defined using the following syntax before a signal can be declared 
of that type.

type  speedtype is  (stop, fast, faster);

Once a signal of type speedtype is defined, it can only contain one of 
the three values. Below is an example of a signal defined as type 
speedtype:

signal  speed: speedtype;

The following example shows how user defined types are defined and 
used.

architecture  behavioral of  drive is  
signal  light: bit_vector(0 to  1);
type  speedtype is  (stop, fast, faster);
signal  speed: speedtype;

constant  red: bit_vector(0 to  1) := “00”;
constant  yellow: bit_vector(0 to  1) := “01”;
constant  green: bit_vector(0 to  1) := “10”;

begin
with  light select

speed <= stop when red;
fast when green,
faster when others ;

end  behavioral;
10
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Std_Logic Two state types are often not sufficient for most simulations. For 
unknown values and varying signal strengths, a 9-state logic system, 
often referred to as MVL9, was adopted as a standard by IEEE. This 
standard enumerated type is called std_logic. The following states are 
defined:

• U for uninitialized

• X for unknown

• Z for tri-state

• W for weak strength

• H for high (resistive) - used for open collector outputs

• L for low (resistive) - used for open emitter outputs

• - for don’t care

Note: During VHDL compilation, ACTmap treats ‘0’ and ‘L’ as low, ‘1’ 
and ‘H’ as high, and ‘U’, ‘X’, ‘W’ and ‘-’ as don’t care.

Std_Ulogic Actel does not recommend using the std_ulogic data type. ACTmap, 
ACTgen, and Designer do not have the capability to write VHDL 
netlists using the std_ulogic data type. All VHDL netlists are written 
using the std_logic data type. Test benches written using the std_ulogic 
data types generally do not work with gate-level VHDL netlists created 
by the Designer Series tools.

Vectors Busses or multibit signals are referred to as vectors. The data types bit 
and std_logic are definable as vectors. When vectors are defined, a 
range for the vector array must be declared. The range can be either 
ascending or descending. For an ascending range, the most significant 
bit is on the left and is defined using the “to” keyword as follows:

signal databus : std_logic_vector( 0 to 7);

0 1 2 3 4 5 6 7
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Chapter 2: Using ACTmap VHDL
For descending range, the most significant bit is on the right, and is 
defined using the “downto” keyword as follows:

signal databus : std_logic_vector( 7 downto 0);

To use the entire vector, use the name of the vector as shown:

databus

Individual bits of a bus or register are used as shown:

databus(4) -- for bit 4

A portion of a bus or register is referred to as a slice and is used as 
shown:

databus(7 downto  3)

Databus (7 downto  3)= “slice”

Note: The “to” or “downto” statement of the slice must agree with the 
to or downto statement of the vector declaration.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
12
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Integer Types An integer type defines the set of integer values in its range. When 
designing arithmetic behavior, it is very helpful to work with integer 
types. VHDL pre-defines an integer type called “integer” that covers a 
range of integer values that can be represented in two’s complement 
with 32 bits:

signal  s32_int: integer;

An object can also be defined to be a sub-range of an integer:

signal  s4_int: integer range  0 to  15;

The sub-range should be always be defined, otherwise, ACTmap will 
automatically transfer the integer signal into a 32-bit bus during 
synthesis.

Constants Similar to a signal declaration, constants can be declared and given 
names. The following is an example of a constant declaration:

constant yellow: bit_vector := “01”;

In this example, the name of the constant is yellow and it is a 
bit_vector whose value is always “01.” The constant declaration uses a 
similar syntax to the signal declaration with the addition of the “:=” and 
the assigned value of the constant. Binary values of vectors are always 
enclosed in double quotes as shown, and are referred to as bit string 
literals. You can, but you do not need to, specify how many bits are in 
the constant with a to or downto statement.
13
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Operators
The standard logical and arithmetic operations that are supported by 
ACTmap are shown in Table 2-1.

Table 2-1. Supported Arithmetic Operators

Type Symbol Operation Operand Type

Arithmetic + addition
integer, bit_vector, 
std_logic_vector

- subtraction
integer, bit_vector, 
std_logic_vector

* multiplication
integer, bit_vector, 
std_logic_vector

Logical and logical and bit, boolean

or logical or bit, boolean

nand logical nand bit, boolean

nor logical nor bit, boolean

xor logical excusive-or bit, boolean

not logical compliment bit, boolean

Relational = equal any type

/= not equal any type

< less than any type

> greater than any type

<= less than or equal any type

>=
greater than or 
equal

any type
14



Logic Conditions
The following guidelines should be used when using the operators in 
your VHDL design:

• Parentheses must be included where the intended function may be 
ambiguous. The expression “a and b or not (c)” could be interpreted 
as “a and (b or not(c))” or “(a and b) or not(c)”, which are not 
equivalent. For example:

y <= (a and  b) or  not  (c);

• The following example would mean a signal assignment without the 
if keyword. Within the if statement, the operator means less than or 
equal.

if  databus_1 <= databus_2 then

Logic Conditions
The various means of testing for logic conditions include the if, when, 
select, and case statements. If and case statements are used only in 
processes. Select and when statements are used only outside of 
processes.

If Statement An if statement is a conditional statement that may only be used in a 
process. The syntax for an if statement is as follows:

if  condition 1 then
some action;

elsif  condition 2 then

Concatenation & concatenation
bit, bit_vector, 
std_logic, 
std_logic_vector

Table 2-1. Supported Arithmetic Operators (Continued)

Type Symbol Operation Operand Type
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some action;
end  if ;

The following is an example of an if-then-else statement that 
synthesizes a 3 stage shift register and is illustrated in Figure 2-3:

if  (reset = '1') then
a <= '0';
b <= '0';
c <= '0';

elsif  (clock'event and  clock = '1') then
a <= shiftin;
b <= a;
c <= b;

end  if ;

When 
Statement

A when statement is a conditional state assignment that synthesizes as 
combinatorial logic. The syntax for a when statement is as follows:

signal  <= 'value'  when condition
else  'value';

Below is an example of a when statement that synthesizes as an N bit 
“greater than” comparator:

signal  <= '1'  when databus > register
else  '0';

Figure 2-3. 3 Stage Shift Register

shiftin

clock

a b c
16



Logic Conditions
Select 
Statement

A select statement is a selected signal assignment that synthesizes into 
combinatorial logic. The syntax for a select statement is as follows:

with  signal select
target output <=waveform 1 

when condition 1,
waveform 2  when condition  2,  
waveform N when condition N;

Below is an example of a select statement that synthesizes as a four to 
one multiplexer controlled by “sel,” a two-bit control signal, whereby 
“y” is switched to one of the four data lines:

with  sel select
y <= a when “00”,
b when “01”, 
c when “10”, 
d when “11”;

Case 
Statement

A case statement is a selected signal assignment within a process. The 
syntax for a case statement is as follows:

case  state is
when condition 1 => target output <= waveform 1;
when condition 2=> target output <= waveform 2;
when condition N=> target output <= waveform N;
when others  => target output <= default waveform;

end  case ;

Below is an example of a case statement that synthesizes the same 
logic as the select code above when used within an unclocked 
process:

case  sel is
when “00” => y <= a;
when “01” => y <= b;
when “10” => y <= c;
when others => y <= d;

end  case ;
17
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Case statements must specify all possible cases. The “when others =>” 
statement should be added to VHDL case statements using std_logic 
data types. The following error message is displayed in ACTmap if all 
cases are not specified in a case statement:

Repetitive Operations
Repetitive structures are declared with a generate statement.

If-Generate 
Statement

The if-generate statement is supported for static (non-dynamic) 
conditions. 

loop label:  if  condition generate
loop actions;

end  generate ;

For-Generate 
Statement

The for-generate statement is supported for static (non-dynamic) 
conditions. 

loop label:  for  variable in  start condition to  end condition 
generate

loop actions;
end  generate ;

For-Generate 
Loop

For component instantiations, function or procedure calls inside a for 
generate loop, a block statement has to be used inside the loop to be 
accepted by the ACTmap VHDL Compiler. The following is an 
example of a for generate loop inside a block statement:

entity  example is
...
end example;

architecture  arch of  example is
component small

ERROR:   (VHP_0812). Line 29. A value is missing in case
18



Attributes
...
end component ;

...
for all:  small use entity work.small(arch);
begin

loop1:  for i in 0 to 3 generate
-- begin  block statement

block1 : block
begin

instance1 : small port map ( a(i), b(i), s(i) );
end block ; -this line is added

end generate  loop1;
end arch;

Attributes
The ACTmap VHDL Compiler uses the “donttouch” attribute to control 
synthesis of the described circuit. The “donttouch” attribute directs 
ACTmap not to optimize a given instance. Before the attribute can be 
used, it must first be declared with a type. The attribute can only be 
attached to instances of previously optimized macros or modules. 

The syntax for declaring the donttouch attribute is as follows:

attribute  donttouch : string;

The syntax for attaching the “donttouch” attribute is as follows:

attribute  donttouch of  instance label: label  is  “attribute 
value”;

Below is an example of adding the value true to the donttouch 
attribute:

for instance actgen_1:
attribute  donttouch : string;
attribute  donttouch of  actgen_1: label is  “true”;

Note: The value of the attribute is not important in this case.
19
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Instantiating Cells
In order to instantiate an entity into a VHDL description, you must first 
declare a component for it. If you use a component instantiation in 
your VHDL design, ACTmap tries to find the definition of that 
component. There are three possibilities for defining an instantiated 
cell:

1. The component is a cell in the specified Actel macro library.

2. The component has a matching entity in the VHDL source file.

3. The component has no definition.

Library Macros Components in the Actel macro library are considered black boxes 
during synthesis since there is no entity/architecture description for 
them. Actel library cells defined in the VHDL code are not optimized in 
VHDL Compiler, but are treated as black boxes. 

When the optimized EDIF netlist is written, the contents for each 
macro is completed. An added benefit is that the time needed for 
optimization of the whole circuit can be reduced, since ACTmap does 
not have to optimize the implementation of the dedicated functions.

Note: Components found in the specified Actel macro library do not 
need component statements. ACTmap maintains a compiled 
version of these component statements.

The following example, illustrated in Figure 2-4, instantiates the ACT 3 
“clkint” macro:

clkint_1:  clkint  port map  (signal_a, signal_y);

a y

Figure 2-4. CLKINT Symbol
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Port mapping may be positional as in the example or it may be done 
by name. In positional mapping, the signals are associated to the ports 
by the order the ports are declared in the component declaration. In 
name mapping, explicitly specify the name of the port followed by the 
signal tied to it. For name mapping, use any port order. Positional and 
name mapping are functionally identical. The following is an example 
of a component instantiation for the clkint macro using name mapping:

clkint_1: clkint port map  (a => signal_a, y => signal_y);

ACTgen 
Macros

Use the following procedure to instantiate an ACTgen macro into a 
VHDL description:

1. Invoke ACTgen.

2. Select the family, macro type, and macro options.

3. Generate your macro as a VHDL description. Make sure you 
specify VHDL as the Netlist/CAE Format when generating the 
macro.

4. Add a component declaration in the entity of your VHDL 
description for the macro. For example:

entity  cnt4 is
port (

data : in  std_logic_vector (3 downto  0);
enable, sload, aclr, clock : in  std_logic;
q :  out  std_logic_vector (3 downto  0));

end  cnt4;

5. Instantiate the macro into your VHDL description using a 
port map statement. For example:

u1 : cnt4 port map  (signaldata => data, signalenable => 
enable, signalsload => sload, signalaclr => aclr,
signalclock =>clock, signalq => q);

6. Compile your VHDL description. Refer to “Implementing a 
Hierarchical Project” in the Designing with Actel manual for 
information about compiling a VHDL description in ACTmap.

Refer to the Designing With Actel manual or the ACTgen on-line help 
for information about using ACTgen.
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Creating Hierarchy
Up to this point, the discussions have focussed on logic circuits that 
most likely would be part of a single VHDL entity or functional block 
of logic. These blocks should generally be limited in size so that they 
can be synthesized and simulated relatively quickly. Most FPGA 
designs consist of multiple entities or logic blocks. Hierarchical designs 
can be created using a structural VHDL description.

Consider the schematic of a full adder that consists of two half adders, 
shown in Figure 2-5.

This design uses two separate instances of half adders, designated as 
components “ha1” and “ha2.” Like any other schematic, the actual 
signals connected to the component pins may have different names 
than the individual entity’s port names. Without this capability, you 
would not be able to use an entity more than once in a design. 

The following is the entity and architecture description for the half 
adder logic block:

entity halfadder is
port  (x, y: in  bit;

s, c: out  bit);
end  halfadder  ;  

architecture behavioral  of halfadder  is 
begin 

s <= x xor  y;  
c <= x and  y;  

end  behavioral;

Figure 2-5. Full Adder Schematic
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Creating Hierarchy
The architecture of the full adder, top-level logic block, is a structural 
VHDL interconnection of the entity components and signals. The 
architecture consists of two parts: the declaration and instantiation 
sections.

Declaration Section
The declaration section includes Signal declarations for signals such as 
“c1” that are internal to the full adder entity, component declarations 
for the “parts” used, constant declarations, if needed, and configuration 
declarations to bind all instances to the desired architecture 
description.

Instantiation Section
The instantiation section includes Component Instances, such as “ha1,” 
“ha2,” etc., with their specific signal connections defined in a port map 
declaration.

The entity and architecture for a full adder are as follows:

architecture  structural of  fulladder is
signal  c1, c2, s1: bit;

component  halfadder
port  (

x, y: in  bit; 
s, c: out  bit); 

end  component ;

begin
ha1: halfadder  port  map (a, b, s1, c1);
ha2: halfadder  port  map (x=>cin, y=>s1, s=>sum, c=>c2);
cout <= c1 nand  c2;

end  structural;

Note: Notice that instance “ha1” was instantiated using positional 
mapping, and instance “ha2” was instantiated using name 
mapping.
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Inferring ACTgen Macros
Macros such as counters, multiplexers, adders and subtractors can be 
described in your VHDL code and created using the ACTgen Macro 
Builder. This section describes how to infer different types of ACTgen 
macros.

Counters ACTmap recognizes counters from the VHDL specification and calls 
ACTgen to generate an optimized counter for the final design. The 
following guidelines apply to the previous example for inferring a 
counter:

• The data_load and the data signals can be of type bit_vector, 
std_logic_vector, or unsigned.

• The reset, sload, and updown signals are optional. However, when 
used they must be a simple name comparison to ‘1’ or ‘0’.

• The data must be set to a constant value upon reset.

• The count may only increment or decrement by one.

• An ACTgen macro is not be inferred if the asynchronous load signals 
exist.

• Counters that use both enable and synchronous load can not be 
inferred.

Counters, including those requiring an asynchronous reset, a 
synchronous load, count enable, and up-down count facilities, can be 
inferred with the following general counter template:

library  ieee;
use  ieee.std_logic_1164. all ;
use  ieee.std_logic_unsigned. all ;

entity  gencount is
generic  ( msb : integer := 7);

port  (
clk: in     std_logic ;
reset: in     std_logic ;
sload: in     std_logic ;
updown: in     std_logic;
load_data: in  std_logic_vector ( msb downto  0);
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data: inout  std_logic_vector ( msb downto  0));
end  gencount;

architecture  template of  gencount is
signal  data: std_logic_vector (msb downto  0);

begin
counter_1: process  (clk, reset, sload)
begin

if  ( reset =  '0' ) then
data <= "00000000";

elsif  ( clk'event and  clk = '1' ) then
if  (load = '0') then

data <= load_data;
elsif ( updown = '1') then

data <= data + '1' ;
else

data <= data - '1';
end if ;

end if ;
end process  counter_1;

end  template;

The template can be more flexible. For example, the “reset” statement 
can be: 

“ if (reset1=’0’ and reset2=’1’)”

Multiplexers ACTmap recognizes multiplexers from the VHDL specification and 
calls ACTgen to generate optimized macros for the final design. From 2 
to 32 inputs may be multiplexed with busses of up to 24 bits for every 
input in ACT 1 and 40MX, and busses up to 32 bits for every input in 
all other device families. There are three templates that may be used to 
infer multiplexers in VHDL and generate them with the ACTgen Macro 
Builder.

The following guidelines apply to the examples for inferring a 
multiplexer:

• If more than half of the data inputs are constant values, the macro 
block is not inferred, because simplifications are possible in the 
netlist due to this constant value.

• Although std_logic_vector is allowed in the template, the “-” (don’t 
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care value) is not considered.

• When using “if” or “case” statements to infer a multiplexer, some 
values of the selector may be unspecified (no “else” or no “when 
others” statement).

Multiplexer Using an If Statement
In this example, a 6 to 1 multiplexer, illustrated in Figure 2-6, is 
generated by ACTgen. Some logic is generated and connected to the 
selection port of the multiplexer in order to select the correct inputs 
according to the values of signals “a,” “b,” “c,” and “d.”

library  ieee;
use  ieee.std_logic_1164. all ;
use  ieee.std_logic_unsigned. all ;

entity  genmx1 is
port  (

data0: in     bit_vector(11 downto  0);
data1: in     bit_vector(11 downto  0);
data2: in     bit_vector(11 downto  0);
data3: in     bit_vector(11 downto  0);
data4: in     bit_vector(11 downto  0);
data5: in     bit_vector(11 downto  0);

data0

data1

data2

data3

data4

data5

data_out

sel2 sel1 sel0

sel2 = !a0.(b1+b0).!c.!(a2.a1)
sel1 = !a0.(b1+b0).(c+a2.a1)
sel0 = !a0.(!b1.!b0+!c.(a2.a1+d))

Figure 2-6. Multiplexer Using an If Statement
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data_out: out  bit_vector(11 downto  0);
a: in     bit_vector(2 downto  0);
b: in     bit_vector(1 downto  0);
c: in     bit;
d: in     bit);

end  genmx1;

architecture  template of  genmx1 is
begin

mux: process  
(a,b,c,d,data0,data1,data2,data3,data4,data5)

begin
if  ( a(0) =  '0' ) then

data_out <= data0;
elsif  ( b = '0' ) then

data_out <= data1;
elsif  ( c = '1' ) then

data_out <= data2;
elsif  ( a(2 downto  1) = “11” ) then

data_out <= data3;
elsif  ( d = '0' ) then

data_out <= data4;
else

data_out <= data5;
end if ;

end process  mux;
end  template;
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Multiplexer Using a With Statement
In this example, an 8 to 1 multiplexer, illustrated in Figure 2-7, is 
generated by ACTgen. The “sel” signals are connected to the selection 
ports directly.

library  ieee;
use  ieee.std_logic_1164. all ;
use  ieee.std_logic_unsigned. all ;

entity  genmx2 is
port  (

data0: in     bit_vector(11 downto  0);
data1: in     bit_vector(11 downto  0);
data2: in     bit_vector(11 downto  0);
data3: in     bit_vector(11 downto  0);
data4: in     bit_vector(11 downto  0);
data5: in     bit_vector(11 downto  0);
data6: in     bit_vector(11 downto  0);
data_out: out  bit_vector(11 downto  0);
sel: in     bit_vector(2 downto  0));

end  genmx2;

architecture  template of  genmx2 is
begin

with  sel select
data_out <= data6 when “110” | “111”,

data2 when “010”,

Figure 2-7. Multiplexer using a With or Case Statement
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data1 when “001”,
data5 when “101”,
data0 when “000”,
data3 when “011”,
data4 when others ;

end  template;

Multiplexer Using a Case Statement
In this example, an 8 to 1 multiplexer, illustrated in Figure 2-7, is 
generated by ACTgen. The “sel” signals are connected to the selection 
ports directly.

library  ieee;
use  ieee.std_logic_1164. all ;
use  ieee.std_logic_unsigned. all ;

entity  genmx3 is
port  (

data0: in     bit_vector(11 downto  0);
data1: in     bit_vector(11 downto  0);
data2: in     bit_vector(11 downto  0);
data3: in     bit_vector(11 downto  0);
data4: in     bit_vector(11 downto  0);
data5: in     bit_vector(11 downto  0);
data6: in     bit_vector(11 downto  0);
data_out: out  bit_vector(11 downto  0);
sel: in     bit_vector(2 downto  0));

end  genmx3;

architecture  template of  genmx3 is
begin

mux:  process (data0,data1,data2,data3,data4,data5,data6,sel)
begin

case  sel is
when “110” | “111” =>

data_out <= data6;
when “010”=>

data_out <= data2;
when “001”=>

data_out <= data1;
when “101”=>

data_out <= data5;
when “000”=>

data_out <= data0;
when “011”=>

data_out <= data3;
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when others  =>
data_out <= data4;

end case ;
end process ;
end  template;

Adders and 
Subtractors

ACTmap recognizes adders and subtractors from the VHDL 
specification and calls ACTgen to generate optimized macros for the 
final design. The following guidelines apply when inferring adders and 
subtractors:

• The data_a, data_b, and data_out signals can be of type bit_vector, 
std_logic_vector, or unsigned.

• The output data, “data_out,” must have a size equal to the input data 
busses, “data_a” and “data_b.”

Adders and subtractors can be inferred by using the following 
subtractor example (to infer an adder, change the “-” operator to “+”):

library  ieee;
use  ieee.std_logic_1164. all ;
use  ieee.std_logic_unsigned. all ;

entity  gensub is
generic  ( msb : integer := 7);

port  (
data_a: in  std_logic_vector ( msb downto  0);
data_b: in  std_logic_vector ( msb downto  0);
data_out: out  std_logic_vector ( msb downto  0));

end  gensub;

architecture  template of  gensub is
begin

data _out <= data_a - data_b;
end  template;

Multipliers ACTmap recognizes multipliers from the VHDL specification and calls 
ACTgen to generate optimized macros for the final design. The 
following guidelines apply when inferring multipliers:

• Multiplier inferring is not supported for ACT1, and 40 MX devices.
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• the “A” and “B” signals can be of type bit_vector, std_logic_vector, or 
unsigned.

• An ACTgen macro is inferred when “A * B” is found (if both “A” and 
“B” are not a constant).

• An ACTgen macro is only inferred if the following constraints are 
met; 2 <= WidthA <= 29, 2 <= WidthB <= 29, and WidthA + WidthB 
<= 32.

• If WidthA < 2 or WidthB < 2, ACTmap does not work.

• If WidthA > 29, or WidthB > 29, or WidthA + WidthB > 32, which is 
beyond the ACTgen limitation, ACTmap does not infer an ACTgen 
macro. Library based synthesis is employed instead.

• Although in ACTgen WidthA must be greater than or equal to 
WidthB, this limitation does not apply when inferring a multiplier.

Multipliers can be inferred by using the following example:

library  IEEE;
use  IEEE.std_logic_1164.all;
use  IEEE.std_logic_unsigned.all;

entity  testmultiplier is

port (a : in  std_logic_vector ( 3 downto  0 ) ;
 b : in  std_logic_vector ( 4 downto  0 ) ;
 product : out  std_logic_vector ( 8 downto  0 ) ) ;

end  testmultiplier;

architecture  template of  testmultiplier is
begin

product <= a * b ;
end  template;

Incrementers 
and 
Decrementers

ACTmap recognizes incrementers and decrementers from the VHDL 
specification and calls ACTgen to generate optimized macros for the 
final design. The following guidelines apply when inferring 
incrementers and decrementers:

• Incrementer and Decrementer inferring is not supported in ACT1 and 
40 MX devices.
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• The “a” and “p” signals can be of type bit_vector, std_logic_vector, or 
unsigned.

• An ACTgen macro is inferred when p <= a + 1, p <= a - 1, a <= a + 
1, and a <= a - 1, when the width of “a” and “p” is 1 < width <= 32.

• An ACTgen macro is inferred when “a + 1” or “a - 1” is found in a 
top level VHDL specification, function, procedure, and hierarchy 
model.

Incrementers and decrementers can be inferred by using the following 
example:

library  IEEE;
use  IEEE.std_logic_1164.all;
use  IEEE.std_logic_unsigned.all;

entity  testinc is
port (s : in  std_logic;

 a : in  std_logic_vector(7 downto  0 ) ;
 p : out  std_logic_vector(7 downto  0));

end  testinc;

architecture  template of  testinc is
begin

proc: process (s, a)
begin

if  (s = '1') then
p <= a  + 1 ;

else
p <= a - 1 ;

end  if ;
end  process ;

end  template;

Accumulator 
Inferring

The following example infers an Accumulator with only asynchronous 
clear, enable, and clock: 

accum : process  (clk, reset, enable)

begin
if  (reset = ‘0’ ) then

data <= (others=>’0’);
elsif ( clk’event and  clk = ‘0’ ) then

if  (enable = ‘0’ ) then
32



Inferring ACTgen Macros
 data <=data + load_data;
end if ;

end if ;
end process

• The width of the “data” and “load_data” is 2 <= Width <= 24 for act1 
and 40 MX devices, and 2 <= Width <= 32 for other families.

• The condition can also be defined using logical parameters as 
follows: “reset1 = ‘1’ and reset2 = ‘1’.” For example, even if the 
process is defined as follows, an accumulator can still be inferred: 

accum : process  (clk, reset1, reset2)

begin
if  (reset1 = ‘1’ and  reset2 = ‘0’) then

data <= (others=>’0’);
elsif ( clk’event and clk = ‘1’ ) then

if  (clk (0) = ‘1’ or clt(1) = ‘0’) then
 data <=data + load_data;

end if ;
end if ;

end process

Comparator 
Inferring

The following examples infer a comparator:

library  IEEE;
use  IEEE.std_logic_1164.all;
use  IEEE.std_logic_unsigned.all;

entity  testcomp is
port ( a : in std_logic_vector( 8 downto  0) ;

b : in std_logic_vector( 8 downto  0) ;
p : inout  std_logic_vector( 8 downto  0) ) ;

end  testcomp;
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architecture  template of testcomp is
begin

processes (a,b)
begin

if ( a > b ) then
p <= p + ‘1’;

else
p <= p - ‘1’;

end  if;
end process ;

end template;

or,

library  IEEE;
use  IEEE.std_logic_1164.all;
use  IEEE.std_logic_unsigned.all;

entity  testcomp is
port ( a : in std_logic_vector( 8 downto 0) ;

b : in std_logic_vector( 8 downto 0) ;
p : out std_logic);

end  testcomp;

architecture  template of  testcomp is
begin

processes (a,b)
begin

if ( a >= b ) then
p <= ‘1’;

else
p <= ‘0’;

end if ;
end process ;

end  template;

• All 6 compressions “>, >=,<, <=, =, /=” can be inferred
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XOR Tree 
Inferring

The following example infers an XOR tree with positive polarity:

XorP: Process  ( Data ) 
Variable t : Std_Logic;
Begin

t := ‘0’;
For i In (Data’Length-1)DownTo 0 Loop

t := t xor Data(i)
End Loop ;

Result <= t;
End Process  XorP; 

or
Result<=d(0) xor d(1) xord(2) xord(3)xor d(4) xor d(5) 
xor d(6) xor d(7)

The following example infers an XOR tree with the negative polarity:

XorP: Process  ( Data )
Variable t : Std_Logic;
Begin

t := ‘1’;
For i In (Data’Length-1)DownTo 0 Loop

t := t xor Data(i);
End Loop ;

Result <= t;
End Process  XorP;

or

Result<= not ( (0)xor d(1) xor d(2) xor d(3) xor d(4) xor d(5) 
xor d(6) xor d(7) );

The following example infers an xor tree with the negative polarity:

• The width of the data is 4 <= width <= 64. 

Processes
Processes are sections of sequentially executed statements. While in 
the dataflow syntax, all statements are executed concurrently. In a 
process, the order of the statements does not matter. Processes 
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resemble the sequential coding style of high-level programming 
languages.

A process can be called from the dataflow section of VHDL code. Each 
process is a sequentially executed program, but all processes run 
concurrently. Processes communicate with each other via signals that 
are declared in the declaration section of the architecture. The signals 
that the process waits for are included in the sensitivity list of the 
process. During the normal flow of a VHDL simulation, the process 
waits for a change to occur on one of the signals in the sensitivity list. 
It executes the statements between the begin and the end of the 
process.

Processes are labeled and use the following syntax:

label: process  (sensitivity list) 
begin
... lines of code describing the behavior of the process...
end process  label;

The actions described in the process can be of two forms; a clocked 
process that is synthesized into clocked or sequential logic, or an 
unclocked process that produces combinatorial logic. Clocked 
processes always include the clock signals in the sensitivity list.

There are two types of expressions that can be used to infer clocked 
logic, a 'event attribute or a function call. For example:

(clk'event and  clk='1') --rising edge 'event attribute
(clk'event and  clk='0') --falling edge 'event attribute
rising_edge(clock) --rising edge function call
falling_edge(clock) --falling edge function call

A clock signal cannot use the rising edge procedure if it has been 
defined as type bit. In order to use the rising edge procedure, the clock 
must be defined as type std_logic. The following error message is 
displayed in ACTmap if a rising edge is not properly defined:

ERROR:   (VHP_0808). Line 17. rising_edge can not have such 
operands in this context.
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Inferring 
Multiplexers

The following example, illustrated in Figure 2-8, infers a 2 to 1 
multiplexer:

architecture behavioral  of mx2 is 
begin 

mx2_1: process (a,  b, select)
begin

if (select = '0')  then
y <= a;

else
y <= b;

end if ;
end process mx2_1;

end behavioral;

Inferring Flip-
Flops

The following example, illustrated in Figure 2-9, infers a single bit D 
flip-flop with an active low asynchronous clear:

architecture behavioral  of flipflop  is 

Figure 2-8. 2 to 1 Multiplexer
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y

Figure 2-9. Single Bit D Flip-Flop
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begin 
dff_1: process (clock, reset)
begin

if (reset = '0')  then
 q <= '0';

elsif (clock'event and  clock = '1')  then
 q <= data;

end if;
end process dff_1;

end behavioral;

Inferring 
Latches

The following example, illustrated in Figure 2-10, infers a multi-bit D 
latch with an active high enable and an active low asynchronous clear:

architecture behavioral  of latches  is 
begin 

dlc_1: process (enable, reset, d)
begin

if (reset = '0')  then
y <= “0000”;

elsif (enable = '1') then
y <= d;

end if;
end process dlc_1;

end behavioral;

Incomplete 
Sensitivity Lists

Incomplete sensitivity lists in a process may cause differences in the 
pre and post synthesis behavior. The following example demonstrates 
the incorrect way to synthesize a three-input AND gate, because the 
signal “c” is not in the sensitivity list. Therefore, the variable “y” is not 
re-evaluated when c changes.

Figure 2-10. Multi-bit D Latch

d
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architecture behavioral  of tand3  is 
begin 

and3_1: process (a, b)
begin

if (reset = '0')  then
y <= a and  b and  c;

end process and3_1;
end behavioral;

The correct method to synthesize a three-input and gate is as follows:

architecture behavioral  of tand3  is 
begin 

and3_1: process ( a, b, c )
begin

if ( reset = '0')  then
y <= a and  b and  c;

end process and3_1 ;
end behavioral ;

Note: ACTmap does not always correctly report missing signals in the 
sensitivity list of a process. To avoid erroneous results during 
simulation, make sure that all sensitivity lists do not have missing 
signals.

Incomplete 
Construct 
Value 
Specification

The if then else and case statements can infer latches instead of 
multiplexers if all possible states or values are not specified. The 
following example, illustrated in Figure 2-11, infers a 2 to 1 
multiplexer:

Figure 2-11. 2 to 1 Multiplexer
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if  (select = '0') then
y <=a;

else
y <= b;

end if;

If you do not specify the else statement, a latch, illustrated in Figure 2-
12, is inferred:

if  (select) then
y <= a;

end if;

State Machine Design
A state machine is a sequencer that is organized as a finite set of states. 
Each state represents one set of actions, such as enabling a counter to 
increment or generating an acknowledge output. Almost all states also 
contain a method of transferring control to another state based on 
certain conditions. Any state that does not have a means of going to 
another state would have to be the last state of the state machine, and 
the system would remain in this state forever. Transferring between 
states can be conditional (based on the values of other signals in the 
system) or non-conditional.

There are many ways to describe a finite state machine (FSM) in 
VHDL. The important point is that the synthesis tool should optimize 
the corresponding logic in an efficient way for both speed and area. 
This is done by applying optimized automatic state assignments. This 
section describes three types of FSM, the single-process, the double 
process, and a user defined FSM.

Figure 2-12. Latch Diagram
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Single Process 
FSM

Figure 2-13 illustrates a single-process FSM that controls a traffic light. 
The sensitivity list of the process contains only two signals: the clock 
and the reset signals. To describe the transitions between states, a case 
statement identifies which state is considered. In the case statement, all 
state register values have to be enumerated in when statements. The 
state registers may be assigned conditionally in an if statement or not. 
The conditions are boolean expressions of the input ports.

library  ieee;
use  ieee.std_logic_1164.all;

entity  light is
port  (

clock: in  std_logic;
reset: in  std_logic;
car_on_farm_road: in  std_logic;
set_green_on_highway: out  std_logic);

end  tlight;

architecture  state_machine of  light is
type  state_type is  (red, green);
signal  next_state: state_type;

begin
sequencer: process  (reset, clock)
begin

if  (reset = '0') then
next_state <= green;
set_green_on_highway <= '1';

elsif  (clock'event and  clock = '1') then
case next_state  is

when green =>
set_green_on_highway <= '1';
if (car_on_farm_road  = '1')  then

Figure 2-13. 

RESET

GREEN

RED

Car-on-farm-road=0
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41



Chapter 2: Using ACTmap VHDL
next_state <= red;
else

next_state <= green;
end if ;

when red =>
set_green_on_highway <= '0';
next_state <= green;

end case ;
end if ;

end process  sequencer;
end  state_machine;

Double Process 
FSM

A common approach to describing an FSM uses two processes. One 
process defines registers or synchronization. The other process 
describes the combinatorial logic to define the next state and the 
outputs.

The first process sets the current state and the registered outputs of the 
FSM. This process is triggered by the clock and the reset signals. 
Therefore, it is executed when either signal changes. The FSM must be 
triggered on the clock edge. You can trigger on either a rising or falling 
edge. It is not necessary to have a reset, but if a reset signal exists, it 
must be asynchronous. It may be active high or active low. The 
process should use the following template:

registers: process  (clock, reset)
begin

if  (reset = <'1','0'>) then
... reset the value of the state ...
... optionally reset the registered outputs ...

elsif  (clock'event and  clock = <'1','0'>) then
... Set the new FSM state ...
... Assign values to the registered outputs ...

end if ;
end process registers;

Another process updates the present state with the next state and takes 
care of any combinatorial logic. The process is sensitive to all of the 
input signals and the signal that maintains the current state. It must 
also include all the internal signals that affect the output of the process. 
A case statement typically calculates the next state and the outputs as 
in the following template:
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transitions : process  (clock, reset)
begin

... Assign default values to all unregistered outputs ...
case present_state  is

when state_0 => 
output <= <value>;
next_state <= <value>;

when state_1 => ...;
.
.
.
when others  => ...;

end case ;
end process registers;

Note: A value must be assigned to all unregistered outputs for each 
state. If you do not assign output values, the FSM maintains the 
previous values and creates unnecessary latches during synthesis. 
To avoid this problem, assign a default value to all unregistered 
outputs at the beginning of this process before the case 
statement. Default assignments of an if statement within a case 
statement must be declared explicitly.
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The following is an example of a simple Mealy FSM using two 
processes. Figure 2-14 and Table 2-2 illustrate the example:

library  ieee;
use  ieee.std_logic_1164.all;

entity  mealy is
port  (

a: in  std_logic;

Figure 2-14. Mealy FSM

reset

s0 0/0

s2 s1 0/1

0/0

1/0

1/0

1/1

Table 2-2. Mealy FSM State Table

Present 
State

Next State Output

x=0 x=1 x=0 x=1

s0 s0 s1 0 0

s1 s1 s2 1 0

s2 s0 s1 0 1
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clock: in  std_logic;
reset: in  std_logic;
z: out  std_logic);

end  mealy;

architecture  state_machine of  mealy is
type  state_type is  (s0, s1, s2);
signal  current_state, next_state: state_type;

begin
registers: process  (reset, clock)
begin

if  (reset = '0') then
current_state <= s0;

else
if  (clock'event and  clock = '1') then

current_state <= next_state;
end  if ;

end  if ;
end process  registers;

combinatorial: process  (current_state)
begin

case  current_state is
when s0 =>

if  (a = '0') then
z <= '0';
next_state <= s0;

else
z <= '0';
next_state <= s1;

end if ;
when s1 =>

if  (a = '0') then
z <= '1';
next_state <= s1;

else
z <= '0';
next_state <= s2;

end if ;
when s2 =>

if  (a = '0') then
z <= '0';
next_state <= s0;

else
z <= '1';
next_state <= s1;

end if ;
end case ;
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end process combinatorial;
end  state_machine;

User Defined 
FSM

An FSM can also be defined to your specification. Each state is defined 
as a constant with a unique value. Below is an example of a counter 
defined as an FSM using user-defined states:

entity  count4c is
port  (

reset: in  bit;
clock: in  bit;
s : out  bit_vector(3 downto 0);
load_data : in  bit_vector(3 downto 0);
load : in  bit;
enable : in  bit);

end  count4c;

architecture  state_machine of  count4c is
signal  state, next_state: bit_vector(3 downto  0);
-- usually this can be an integer
constant  state0: bit_vector ( 3 downto  0) := "1111";
constant  state1: bit_vector ( 3 downto  0) := "1110";
constant  state2: bit_vector ( 3 downto  0) := "1101";
constant  state3: bit_vector ( 3 downto  0) := "1100";
constant  state4: bit_vector ( 3 downto  0) := "1011";
constant  state5: bit_vector ( 3 downto  0) := "1010";
constant  state6: bit_vector ( 3 downto  0) := "1001";
constant  state7: bit_vector ( 3 downto  0) := "1000";
constant  state8: bit_vector ( 3 downto  0) := "0111";
constant  state9: bit_vector ( 3 downto  0) := "0110";
constant  statea: bit_vector ( 3 downto  0) := "0101";
constant  stateb: bit_vector ( 3 downto  0) := "0100";
constant  statec: bit_vector ( 3 downto  0) := "0011";
constant  stated: bit_vector ( 3 downto  0) := "0010";
constant  statee: bit_vector ( 3 downto  0) := "0001";
constant  statef: bit_vector ( 3 downto  0) := "0000";

begin
sequential:  process  (clock, reset)
begin

if  (reset = '1') then
state <= state0;

elsif  (clock'event and  clock = '1') then
if  ( load = '1' ) then

state <= load_data;
elsif  ( enable = '1' ) then
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state <= next_state;
else

state <= state;
end if ;

end if ;
end process  sequential;

combinatorial:  process  (state)
begin

case  state is
when state0 =>

next_state <= state1;
s <= x"0";

when state1 =>
next_state <= state2;
s <= x"1";

when state2 =>
next_state <= state3;
s <= x"2";

when state3 =>
next_state <= state4;
s <= x"3";

when state4 =>
next_state <= state5;
s <= x"4";

when state5 =>
next_state <= state6;
s <= x"5";

when state6 =>
next_state <= state7;
s <= x"6";

when state7 =>
next_state <= state8;
s <= x"7";

when state8 =>
next_state <= state9;
s <= x"8";

when state9 =>
next_state <= statea;
s <= x"9";

when statea =>
next_state <= stateb;
s <= x"a";

when stateb =>
next_state <= statec;
s <= x"b";

when statec =>
next_state <= stated;
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s <= x"c";
when stated =>

next_state <= statee;
s <= x"d";

when statee =>
next_state <= statef;
s <= x"e";

when statef =>
next_state <= state0;
s <= x"f";

when others  => null;
end case ;

end process combinatorial;
end  state_machine;

Supported Packages
There are a number of operations in VHDL that occur regularly. An 
example is translation of vectors to integers and back. For this reason, 
ACTmap provides packages that define attributes, functions and 
procedures that are often used. Using the functions and procedures 
reduces the amount of initial circuitry that is generated, compared to 
writing the behavior explicitly in a user-defined function or procedure. 
This reduces the time for compilation and also could result in a smaller 
circuit implementation due to improved optimization.

Actel 
Component 
Packages

Users instantiating Actel macros in their designs do not need to declare 
the Actel components. ACTmap maintains a compiled version of the 
component. The VHDL source for these packages is located in the 
“<actel_install_directory>/lib/actel/vhdl/<act_fam>” directory. The 
macro component declarations are included by using the following use 
statement:

library <act_fam>;
use  <act_fam>.components. all ;

Note: The component package for the Actel family being targeted 
should be compiled before the VHDL code referencing the 
components. 
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IEEE Packages ACTmap supports the following IEEE packages:

• std_logic_1164

• std_logic_unsigned

• std_logic_arith

The textio package is not supported.

Using Procedures
This section lists guidelines to follow when using procedures in 
ACTmap.

Intermediate 
Signals

When using procedures, ACTmap requires the use of intermediate 
signals.

The following example does not work:

user_procedure(conv_integer(aaa));

The procedure should be written as follows:

int_aaa <= conv_integer(aaa);
user_procedure(int_aaa);

Inout 
Parameters Not 
Supported

ACTmap does not support the use of inout parameters for procedures. 
The parameters must be either in or out. ACTmap displays the 
following error message if a procedure has an inout parameter:

ERROR:   (VHDL_1768). Line 88. Inout parameter not yet
supported.
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Limitations
This section lists known limitations and unsupported features in 
ACTmap VHDL

Bi-Directional 
Buffers

When using bi-directional buffers, make sure the feedback signal 
connects to internal logic. If the feedback signal is not connected to 
internal logic, ACTmap changes the BIBUF to OUTBUF.

Preserving 
Character 
Case

The “AMP_EDIFUPPER” environment variable, which forces all 
characters to upper case, is set to “YES” in ACTmap. If you want 
ACTmap to preserve character case in your VHDL code, you must set 
the “AMP_EDIFUPPER” environment variable to no.

Event Construct ACTmap does not support the event construct for a vector bit. The 
following example produces an error:

architecture  behavioral of  bug is
signal  vector : std_logic_vector( 7 downto  0);
begin

process  (vector)
begin

if  (vector(0)'event ) then
k <= jj;

else
k(6 downto  0) <= jj and  vector(6 downto  0);
k(7) <= '1';

end if
end process ;

end  behavioral;

The above example should be written as follows:

architecture  behavioral of  bug is
signal  vector : std_logic_vector( 7 downto  0);
signal  e_vector: std_logic; -this line is added
begin
e_vector <= vector(0); -this line is added

process  (e_vector, vector) -this line is changed
begin
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if  (e_vector'event ) then -this line is changed
k <= jj;

else
k(6 downto  0) <= jj and  vector(6 downto  0);
k(7) <= '1';

end if
end process ;

end  behavioral;

Multiple Clock 
Events

Multiple clock events are not supported. The following examples do 
not work:

if  (rst'event and  rst = '0') then
...

elsif  (clk'event and  clk = '1') then
...

end if ;

if  ((rst'event and  rst = '0') and  (clk'event and  clk = '1')) 
then

...
end if ;

VHDL 92 and 93 The set of constructs added in the VHDL 92 and 93 specification were 
intended to be used for simulation purposes and are not supported in 
ACTmap.

Bus Width Errors ACTmap does not always correctly report bus width errors. Make sure 
that all of your bus widths match in your VHDL code or ACTmap may 
produce erroneous results.

Multi-
Dimensional 
Buses

ACTmap does not support multi-dimensional buses. 
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Unsupported 
Data Types

The following data types are not supported: physical, floating point, 
signed arrays, access, and file. User defined arrays are only supported 
for a dimension not exceeding 2.

Wait For Time 
Construct

The “wait for time” construct is not supported.

Loop 
Statements

The “while...loop... end loop” and the “loop...end loop” statements are 
not supported.
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3
Advanced Optimization Techniques

This chapter describes optimization guidelines and features in 
ACTmap. This includes ACTmap VHDL and general optimization 
guidelines, information about optimizing state machines, and using 
design constraints during optimization. Also included is information 
about the ACTmap automatic global I/O insertion and sequential 
remapping features, and information about using special cells in 
3200DX and 42MX devices to improve performance. Finally, 
information about gated macro usage and about where to find 
radiation environment design techniques is given.

ACTmap VHDL Guidelines
The following are ACTmap VHDL guidelines to assist you in obtaining 
the best synthesis results possible:

• For the ACT 3 FPGA family devices, Actel recommends that you 
avoid describing reset and clear flips-flops and latches in your VHDL 
descriptions. The ACT 3 preset and clear flip-flops cannot be 
connected to the hardwired global clock networks driven by 
HCLKBUF. For ACT 2 and ACT 3 family devices, use asynchronous 
clear latches and flip-flops. The active low asynchronous clear flip-
flops and latches are ACTmap’s basic building blocks. Using them 
may result in better optimization.

• Actel recommends that you avoid describing any flips flops and latch 
configurations that do not have an asynchronous clear input. The JK 
or toggle flip-flops, without any asynchronous clear or preset (with 
sequential remapping) feature may not be simulated by your CAE 
simulator tools.

General Optimization Guidelines
One of the most powerful features of the ACTmap program is its 
optimization capability. The optimization and mapping technique used 
in ACTmap is designed to improve the area or speed of most designs 
targeted for Actel devices. However, this does not mean that the 
algorithm can improve all designs. This section lists guidelines to keep 
in mind when optimizing your design with ACTmap.
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Logic Design 
Type

The type of logic used in the design affects how much of the design 
can be optimized. ACTmap’s algorithm produces excellent results 
when optimizing random logic, but it does not work as well for 
structured logic blocks such as adders, subtractors, comparators, and 
accumulators. Many counters, adders, subtractors, decoders and 
multiplexers can be inferred through VHDL descriptions or generated 
using the ACTgen Macro Builder. Other logic blocks can also be 
created by the ACTgen Macro Builder and added to a design. Refer to 
“Inferring ACTgen Macros” on page 24” and “ACTgen Macros” on page 
21 for information about integrating an ACTgen macro into your 
design.

Design 
Optimization 
Level

You must consider whether to optimize the complete design, or only a 
part of the design (generally, Actel recommends that you use smaller 
blocks for better optimization). At times it is beneficial to optimize the 
whole chip because chip optimization can break down the boundaries 
between the functional blocks. This allows ACTmap to globally 
consider the logic that is optimized, which often produces better 
results.

Note: ACTmap may not produce improved results when optimizing 
highly structured or optimized designs.

Limited 
Optimization

If you are using an original design that has only structured or 
optimized sections, you can instruct ACTmap to ignore the optimal 
sections.

ACTmap ignores optimal sections when you add a donttouch attribute 
to an instance by editing the EDIF, ADL, or VHDL netlist files. The 
following example shows the “DONTTOUCH:TRUE” attribute used in 
an ADL design file:

USE FLIP; I1I386; DONTTOUCH:TRUE.
USE ADLIB:OR3; DONTTOUCH:TRUE
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This example shows an EDIF design file with the “donttouch:true” 
property added.

(instance (rename i1i235”)
(viewref Netlist (cellref or3 (libraryref act2)))
(property donttouch (string “true”) )
)
instance (rename i1i386 “i1i386”)
(viewref netlist (cellref flip (libraryref this_design)))
(property donttouch (string “true”)
)

This example shows an ACTmap VHDL design description with the 
“donttouch:true” property added:

architecture  structural of  example is
attribute donttouch : string;
attribute  donttouch of  u0 : label  is  “true”;

component  inva
port  (

a: i n bit;
y: out bit);

end  component ;

begin
u0: inva port  map (a, s1);

end  structural;

Structural VHDL ACTmap does not optimize structural VHDL netlists. Structural netlists 
are treated as though they have the “donttouch” attribute added to 
them. VHDL netlists created by ACTgen are not optimized when they 
are added as part of a project, they are merged into the project.

Design Size Memory requirements and ACTmap run time vary with design type. If 
the ACTmap functions exceed hardware limitations, you may want to 
optimize by functional block, rather than the whole design. Actel 
recommends limiting VHDL blocks to less than 1500 logic modules and 
netlists to less than 800 logic modules.
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Memory Size ACTmap’s two primary goals are efficient memory usage and short 
run-times. However, optimizing certain designs, such as designs with 
adders, multipliers, and some counters, causes ACTmap to use large 
amounts of memory. These designs contain highly structured logic 
blocks. Use ACTgen to build these macros with donttouch attributes, 
and instantiate them directly into your ACTmap design. You can also 
use ACTmap to merge the top-level netlist with ACTgen macros after 
optimization.

State Machine Optimization
ACTmap allows you to select between five state machine encoding 
algorithms. ACTmap uses the following methods to generate state 
machines from VHDL source files to netlists.

• One-Hot. The One-Hot algorithm reduces each bit in the state 
machine to a single register for maximum speed. 

• Compact. The Compact algorithm produces decoded states for 
minimum area.

• Gray. The Gray Code algorithm identifies long paths without 
branching. It applies successive Gray codes on path nodes.

• Johnson. Like the Gray Code, the Johnson algorithm identifies long 
paths and applies successive Johnson codes on the path nodes. 

• Sequential. Sequential encoding identifies the long paths and 
applies successive radix 2 codes on the nodes of the paths. The radix 
2 code helps in minimizing area because it can efficiently minimize 
next-state equation complexity of paths.

• User Defined. The User Defined encoding is based on the states 
defined in the VHDL.

When optimizing smaller designs, optimizing the design for area 
frequently produces the greatest speed. Actel recommends that you 
first optimize small designs for area and save the results. You can then 
optimize the design for speed and compare the results.
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Setting Design Constraints
During netlist optimization, preferential treatment can be assigned to a 
given global design constraint (through the Set Constraint command in 
the Options menu). The ACTmap Netlist Optimizer will optimize the 
netlist so that the preferred global constraint receives the greatest 
amount of optimization. You can only set global constraints through 
the Netlist Optimizer window. It is not possible to set specific values 
for global constraints.

The following Global Constraints can be specified:

• Clock Frequency. Synthesis is targeted toward the optimization of 
the clock frequency.

• Inpad to Outpad. Synthesis is targeted toward the optimization of 
paths, starting at an input port and ending at an output port.

• Inpad to Setup. Synthesis is targeted toward the optimization of 
paths, starting at an input port and ending at the setup for latches and 
flip-flops.

• Clock to Outpad. Synthesis is targeted toward the optimization of 
paths, starting at the clock and ending at an output port.

• All to Setup. Synthesis is targeted toward the optimization of all 
paths, ending at the setup for latches and flip-flops.

• All to Outpad. Synthesis is targeted toward the optimization of 
paths, ending at an output port.

• Maximum Delay. Synthesis is targeted toward the minimization of 
the maximum path delay for the design.

Automatic Global I/O Insertion
ACTmap automatically inserts global I/Os and buffers in all Actel 
family devices. ACTmap inserts CLKBUF macros to drive the CLKA 
global network in ACT 1 and 40MX devices, the CLKA and CLKB 
global networks in ACT 2, 1200XL, 3200DX, and 42MX devices, and 
the CLKA, CLKB, and HCLK global networks in ACT 3 and 54SX 
devices.
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During insertion, ACTmap inserts CLKBUF macros in all dangling clock 
network input ports. It inserts INBUF macros in all other dangling 
input ports, and OUTBUF macros in all dangling output ports.

You can set your I/O insertion commands, and set the automatic I/O 
insertion commands at the command line or in your .ami file. Refer to 
“I/O Macros” on page 70 for a description of the commands.

3200DX and 42MX
The 3200DX and 42MX device families have specialized cells and 
clocks that can be used to improve performance. This section 
describes how to utilize those specialized cells and clocks.

Wide Decoders 
and RAM Cells

You can use the wide decoder modules and the RAM cells in ACTmap, 
but they must be instantiated and their utilization must be monitored 
by the user. They cannot be inferred. Actel recommends that logic 
blocks using wide decoders and RAM cells are generated using 
ACTgen and instantiated into the design. 

Quad Clocks The quad clock modules may be utilized using ACTmap, but they must 
be instantiated, and their utilization must be monitored by the user. 
They cannot be inferred. 

Sequential Remapping in Netlist Optimization
For almost all ACT 3 flip-flops and some ACT 2 flips-flops, ACTmap 
performs pre-optimized, sequential remapping. The sequential 
remapping feature enhances the optimizer performance to take 
advantage of combinatorial and sequential combining features. It 
divides sequential library elements into smaller and more basic 
elements that may generate better results during optimization. 
Sequential remapping applies to both VHDL synthesis and 
optimization. This feature is available for the ACT2, 3200DX, 42MX, 
and ACT 3 families.
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The following are the sequential remapping options available.

• All - All sequential logic modules are remapped into basic ACT 2 and 
ACT 3 flip-flops before they are optimized. These cells (DFC1B, 
DFC1D, DF1B, DL1, DL1B, DLC and DLCA) are combinable 
sequential elements. For example, DFE1C, a D-type flip-flop with 
active enable and clock, remaps into MX2, a two-to-one multiplexer, 
and DF1B, a D-type flip-flop with an active low clock. The two input 
multiplexer can be combined with other combinatorial logic.

• No - No sequential remapping is performed.

The following figures demonstrate a sequential remapping process. 
Figure 3-1 shows two library cells, DFC1E and DFM7A before 
remapping. Figure 3-2 shows the library cells instantiated and 
remapped to other sequential cells that are easier to route and 
combine.

• Basic - All sequential logic modules are remapped to basic ACT 2 
and ACT 3 flip-flops.

• .Complex - Complex flip-flops and latches are remapped to Actel 
internal logic modules.
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Gated Macros
Gated macros must be instantiated to be utilized because ACTmap 
cannot synthesize to gated macros. Designs that must gate clocks on 
the dedicated clock network should utilize the gated macros “gand2,” 
“gmx4,” “gnand2,” “gnor2,” and “gxor2.”

Designing for Radiation Environments
ACTmap can compile and optimize Actel designs for radiation 
environments. Refer to Enhanced Tools for Minimizing Single Event 
Upset Effects on the Actel Web site (http://www.actel.com) and the 
ACTmap On-line Help for additional information.
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A
Using ACTmap in Batch Mode

This appendix contains information and procedures for using ACTmap 
in batch mode. This includes information about invoking ACTmap in 
batch mode and a description of command line format. Also included 
is batch file and configuration file creation information. Finally, 
available batch mode options are listed and usage examples for the 
options are given.

Invoking ACTmap in Batch Mode
This sections describes the procedures for invoking ACTmap in batch 
mode.

UNIX Both ACTmap functions and option settings can be specified on the 
command line or in the configuration file (ami file). Type the following 
command at the prompt to invoke ACTmap in batch mode:

actmap

Microsoft 
Windows

You can execute ACTmap functions and set options in the ACTmap 
windows or define options in the configuration file (ami file). Use the 
following procedure to invoke ACTmap in batch mode:

1. Create a batch file using a text editor. Refer to “Creating a Batch 
File” on page 62 for and example batch file.

2. Choose the Run command from the Start menu. The Run 
dialog box is displayed.

3. Invoke ACTmap with the complete path of a batch file. Type 
the following command in the Run box:

actmapw.exe bfile:<batch_file_location>\<batch_file>.bat
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Command Line Format
The command line format for using ACTmap in batch mode is:

actmap [function:{vhdl,netopt,translate}] [<option-
name>:<option_value>] <design_name>

The function parameter invokes a specific ACTmap utility. When the 
function parameter is set to “vhdl,” the ACTmap VHDL Compiler is 
invoked. The default function parameter is “vhdl.” The <optionname> 
variable is the name of one of the ACTmap options and the 
<option_value> variable is a legal value for that option.

All options can be specified in the configuration file. By default, 
ACTmap reads the <design_name>.ami file located in the project 
directory, if it exists. To specify another configuration file name or 
location, use the initfile option.

Creating a Batch File
You can use batch files with ACTmap in Windows. This allows you to 
run ACTmap for several designs or for one design with different 
options. The following is an example batch file:

actmap infile:\username\designs\decoder.v initfile:\user-
name\designs\decoder1.ami

actmap infile:\username\designs\decoder.vhdl initfile:\user-
name\designs\decoder2.ami

actmap infile:\username\designs\atm.vhdl

actmap infile:\username\designs\counter.vhdl informat:vhdl 
state:onehot effort:lo fam:act2 outformat:edif mode:chip 
cell:best mapstyle:speed maxfanout:10 counter

In the above example, “decoder.v,” “decoder.vhdl,” “atm.vhdl,” and 
“counter.vhdl” are design file names and formats and “decoder1.ami” 
and “decoder2.ami” are configuration files. Refer to “Specifying Input 
and Output Files” on page 66 for information about input and output 
files and “Creating a Configuration File” on page 63 for information 
about configuration files.
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Creating a Configuration File
All options for each ACTmap function can be specified in the 
configuration file (ami file). The format for specifying options in the 
ami file is:

fam:act3
mapstyle:area

The options in the configuration files are applied to given ACTmap 
functions as follows:

1. All options specified after the function declaration statement and 
before another function declaration statement are applied to the 
given ACTmap function at runtime.

function:vhdl
infile:design.vhd
fam:act3
mapstyle:area
state:onehot

function:netopt
infile:design.edn
fam:act3
mapstyle:area
maxfanout:12

function:translate
infile:design.edo
fam:act3
outformat:verilog
merge:on

The options specified between the “function:vhdl” and the 
“function:netopt” statements are read by the ACTmap VHDL 
Compiler. The options specified between the “function:netopt” and 
the “function:translate” statements are read by the ACTmap Netlist 
Optimizer. The options specified after the “function:translate” 
statement are read by the ACTmap Translator utility.

2. When the “informat” option is set in the configuration file, all other 
options are applied to that ACTmap utility only. When the 
“informat” option is set to “vhdl,” “edif,” or “adl” the other options 
are applied to the VHDL Compiler, and the Netlist Optimizer 
respectively.
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3. When neither the “informat” option nor a function declaration 
statement has been specified in the configuration file, all options 
are applied to the ACTmap VHDL Compiler only.

ACTmap Options
Table A-1 describes the available ACTmap batch mode options. The 
default value for the option is shown in bold.

Table A-1. ACTmap Options

Option Name Option Values Applicable 
Functions

Reference 
Page

actgenmacro on, blackbox, off vhdl page 69

cell best, lm, lib vhdl, netopt page 68

clka
<port name of first 
clkbuf>

vhdl, netopt page 70

clkb
<port name of sec-
ond clkbuf>

vhdl, netopt page 70

edninflavor
generic, wv,
mentor

netopt, trans-
late

page 67

fam
act1, act2, act3, 
3200dx, 1200xl, 
40mx, 42mx, 54sx

vhdl, netopt, 
translate

page 67

flatten on, off vhdl page 69

globalconstraint

clock_freq, 
inpad_to_outpad, 
inpad_to_gated, 
clock_to_outpad, 
all_to_gated, 
all_to_outpad, 
max_delay

netopt page 69
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hclk
<port name of 
hclkbuf>

vhdl, netopt page 71

infile
<name of design 
file to read>

vhdl, netopt, 
translate

page 66

initfile
<name of configu-
ration file>

vhdl, netopt, 
translate

page 66

logfile <log file name>
vhdl, netopt, 
translate

page 66

mapstyle speed, area vhdl, netopt page 68

maxfanout 2 to 24 vhdl, netopt page 68

merge on, off translate page 72

mode block, chip vhdl, netopt page 68

outfile
<name of output 
file>

vhdl, netopt, 
translate

page 67

outformat
designer, vhdl, 
edif, adl, verilog, vl

translate page 67

portinstname match, unique vhdl, netopt page 71

seqremap off, on vhdl, netopt page 68

state
compact, onehot, 
gray, johnson, 
sequential, user

vhdl page 69

ff_type

default, cc (ACT 2, 
ACT 3, 3200DX, 
42MX only), tmr
(ACT 1 and 40MX 
are not supported)

vhdl, netopt page 72

Table A-1. ACTmap Options (Continued)

Option Name Option Values Applicable 
Functions

Reference 
Page
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Batch Mode Options Usage Examples
This section describes the batch mode options, and gives an example 
usage of each.

Specifying the 
Configuration 
File

Use the “initfile” option to specify the name of the configuration file to 
be read into ACTmap. Actel recommends using the “.ami” extension. 
The default value is <design_name>.ami. For example:

initfile:config1.ami

Specifying the 
Log File

Use the “logfile” option to specify the name of your log file to store 
ACTmap output messages. Actel recommends using the “.aml” 
extension. The default value is <design_name>.aml. For example:

logfile:run1.aml

Specifying 
Input and 
Output Files

The following options are used to specify input and output file names 
and formats.

Specifying Input File Name
Use the “infile” option to specify the name of your input file. Actel 
recommends using the following extensions:

• ACTmap VHDL - use “.vhd” 

• ADL input file - use “.aal” or “.adl”

• EDIF input file - use “.edn” 

For example:

infile:<filename>.vhd
infile:<filename>.aal or .adl
infile:<filename>.edn
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Specifying Output File Format
Use the “outformat” option to specify which output files to generate 
during netlist translation. The default value is “designer.” For example:

outformat:vhdl

Specifying the EDIF Output Filename
Use the “outfile” option to specify the name of the EDIF file to be 
written by the VHDL Compiler. Actel recommends using an “.edo” 
extension for the optimized EDIF netlists written by the VHDL 
Compiler. For example:

outfile:<filename>.edo

Specifying EDIF 
Netlist Flavor

Use the “edninflavor” option to specify the flavor of the EDIF netlist to 
be read. Use “viewlogic” for Viewlogic, “mgc” for Mentor Graphics and 
“generic” for all other EDIF netlists. The default value is “generic.” For 
example:

edninflavor:viewlogic

Specifying the 
Target Family

This section describes how to specify the target device family.

Specifying the Target Family
Use the “fam” option to specify the target family of the netlist to be 
retargeted. The default value is “42mx.” For example:

fam:act3

In this example, the retargeted netlist is created using the ACT 3 Family 
architecture.
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Technology 
Mapping

This section describes how to specify technology mapping options.

Specifying Mapping Approach
Use the “cell” option to specify the mapping. Use “lm” to map to the 
Actel internal module. All logic is mapped to CM8 or CM8A. Use “lib” 
to map to predefined Actel library cells. Since not all possible 
combinations have predefined cells in the library, mapping to the CM8 
or CM8A module can produce better results. To allow the Compiler to 
choose the mapping, specify “best” for the “cell” option. The default 
value is “best.” For example:

cell:lib

Specifying Optimization Type
Use the “mapstyle” option to specify the type of optimization. Use 
“area” for area optimization and “speed” for speed optimization. The 
default value is “speed.” For example:

mapstyle:speed

Specifying the Maximum Fanout
Use the “maxfanout” option to specify the maximum fanout limit 
during netlist optimization. You can set a fanout range from 2 to 24. 
The default value is “16” for the ACT 2, ACT 3, 3200DX, 42MX, and SX 
families. The default value is “10” for the ACT 1 and 40 MX families. 
For example:

maxfanout:8

Specifying the Remapping of Sequential Elements
Use the “seqremap” option to specify which sequential elements 
should be remapped to basic Actel sequential elements before Netlist 
optimization. Use “all” to remap all sequential elements, “basic” for 
basic sequential elements, “complex” for complex sequential elements, 
and “No” for no sequential remapping. The default value is “all” or 
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“on.” Refer to “Sequential Remapping in Netlist Optimization” on page 
58 for more information. For example:

seqremap:all

Specifying the Encoding Algorithm for State Machines
Use the “state” option to specify the encoding algorithm used to map 
state machines by the VHDL Compiler. The following option values 
may be specified: “onehot,” “compact,” “gray,” “johnson,” “sequential,” 
and “user.” The default option is “compact.” For a description of these 
options, refer to “State Machine Optimization” on page 56. For 
example:

state:user

In this example, the user-defined encoding specified in the VHDL file 
is used during optimization.

Specifying ACTgen Macro Usage
Use the “actgenmacro” option to specify when ACTgen macros are to 
be generated for identified templates. Use “on” to let ACTgen generate 
any macros it can identify, use “off” to force ACTmap to generate the 
logic. The default value is “on.” For example:

actgenmacro:off

Preserving Hiearchy
Use the “flatten” option to specify when the design hierarchy will be 
flattened during VHDL compilation. Use “off” to preserve the hierarchy 
during VHDL compilation. Use “on” to let ACTmap flatten the design. 
The default value is “off.” For example:

flatten:on

Specifying Global Optimization Constraints
Use the “globalconstraint” option to specify the optimization constraint. 
For a description of these options, refer to “Setting Design Constraints” 
on page 57. The default value is “clock_freq.” For example:
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globalconstraint:clock_freq

In this example, synthesis is targeted toward the optimization of the 
clock frequency.

I/O Macros The following describes how to specify the options related to inserting 
I/O macros. Refer to “Automatic Global I/O Insertion” on page 57 for 
more information.

I/O Buffer Insertion
Use the “mode” option to specify when I/O macros are to be inserted. 
Use “chip” to add I/O macros to top-level ports that do not have I/O 
macros already added. Use “block” when no I/O insertion is desired. 
The default value is “block.” For example:

mode:chip

Specifying the First Clock
Use the “clka” option to specify the first global routed clock port name. 
A CLKBUF macro is added to the specified port when the “mode” 
option is set to “chip.” For example:

clka:clock1

In this example, a CLKBUF macro is added to the clock1 port during 
optimization.

Specifying the Second Clock
Use the “clkb” option to specify the second global routed clock port 
name. A CLKBUF macro is added to the specified port when the 
“mode” option is set to “chip.” For example:

clkb:clock2

In this example, a CLKBUF macro is added to the clock2 port during 
optimization.
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Specifying the Hardwired Clock
Use the “hclk” option to specify the global hardwired clock port name. 
An HCLKBUF macro is added to the specified port when the “mode” 
option is set to “chip.” This option is only available for ACT 3 and SX 
devices. For example:

hclk:hclock

In this example, an HCLKBUF macro will be added to the hclock port 
during optimization.

Port and 
Instance Name 
Matching

Use the “portinstname” option to specify a unique port name and I/O 
macro instance name. A number of CAE systems do not allow identical 
names to be used for the port and the I/O macro instance names. Use 
“unique” to specify that different names be used for the port name and 
the I/O macro instance name. Use “match” to specify that identical 
names be used. The default value is “unique.” For example:

portinstname:match
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Block Merging Use the “merge” option to set specify when external netlists are to be 
merged. The default value is “on.” For example:

merge:on

In this example, all referenced ADL and EDIF netlists are merged into 
the top-level design.

Sequential 
Type

Use the “ff_type” to specify what implementation of sequential macros 
to use if you are designing for radiation environments. The “cc” option 
implements combinatorial macros only (54SX devices to not support 
combinatorial macros). The “tmr” option implements triple voting 
macros only. The default value is “default,” which uses standard 
macros. For example:

ff_type:tmr

In this example, ACTmap will use triple voting macros only in the 
design that is being compiled/optimized.
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Actel backs its products with various support services including 
Customer Service, a Customer Applications Center, a Web and FTP site, 
electronic mail, and worldwide sales offices. This appendix contains 
information about using these services and contacting Actel for service 
and support.

Actel U.S. Toll-Free Line
Use the Actel toll-free line to contact Actel for sales information, 
technical support, requests for literature about Actel and Actel 
products, Customer Service, investor information, and using the Action 
Facts service.

The Actel Toll-Free Line is (888) 99-ACTEL.

Customer Service
Contact Customer Service for non-technical product support, such as 
product pricing, product upgrades, update information, order status, 
and authorization.

From Northeast and North Central U.S.A., call (408) 522-4480.
From Southeast and Southwest U.S.A., call (408) 522-4480.
From South Central U.S.A., call (408) 522-4434.
From Northwest U.S.A., call (408) 522-4434.
From Canada, call (408) 522-4480.
From Europe, call (408) 522-4252 or +44 (0) 1256 305600.
From Japan, call (408) 522-4743.
From the rest of the world, call (408) 522-4743.
Fax, from anywhere in the world (408) 522-8044.
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Customer Applications Center
The Customer Applications Center is staffed by applications engineers 
who can answer your hardware, software, and design questions.

All calls are answered by our Technical Message Center. The center 
retrieves information, such as your name, company name, phone 
number and your question, and then issues a case number. The Center 
then forwards the information to a queue where the first available 
application engineer receives the data and returns your call. The 
phone hours are from 7:30 a.m. to 5 p.m., Pacific Standard Time, 
Monday through Friday.

The Customer Applications Center number is (800) 262-1060.

European customers can call +44 (0) 1256 305600.

Guru Automated Technical Support
Guru is a Web based automated technical support system accessible 
through the Actel home page (http://www.actel.com/guru/). Guru 
provides answers to technical questions about Actel products. Many 
answers include diagrams, illustrations and links to other resources on 
the Actel Web site. Guru is available 24 hours a day, seven days a 
week.

Web Site
Actel has a World Wide Web home page where you can browse a 
variety of technical and non-technical information. Use a Net browser 
(Netscape recommended) to access Actel’s home page.

The URL is http://www.actel.com. You are welcome to share the 
resources we have provided on the net. 

Be sure to visit the “Actel User Area” on our Web site, which contains 
information regarding: products, technical services, current manuals, 
and release notes.
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FTP Site
Actel has an anonymous FTP site located at ftp://ftp.actel.com. You 
can directly obtain library updates, software patches, design files, and 
data sheets.

Electronic Mail
You can communicate your technical questions to our e-mail address 
and receive answers back by e-mail, fax, or phone. Also, if you have 
design problems, you can e-mail your design files to receive assistance. 
The e-mail account is monitored several times per day. 

The technical support e-mail address is tech@actel.com.
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Appendix : Product Support
Worldwide Sales Offices

Headquarters
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
Toll Free: 888.99.ACTEL

Tel: 408.739.1010
Fax: 408.739.1540

US Sales 
Offices

California

Bay Area
Tel: 408.328.2200
Fax: 408.328.2358

Irvine
Tel: 949.727.0470
Fax: 949.727.0476

San Diego
Tel: 619.938.9860
Fax: 619.938.9887

Thousand Oaks
Tel: 805.375.5769
Fax: 805.375.5749

Colorado

Tel: 303.420.4335
Fax: 303.420.4336

Florida

Tel: 407.677.6661
Fax: 407.677.1030

Georgia

Tel: 770.831.9090
Fax: 770.831.0055

Illinois

Tel: 847.259.1501
Fax: 847.259.1572

Maryland

Tel: 410.381.3289
Fax: 410.290.3291

Massachusetts

Tel: 978.244.3800
Fax: 978.244.3820

Minnesota

Tel: 612.854.8162
Fax: 612.854.8120

North Carolina

Tel: 919.376.5419
Fax: 919.376.5421

Pennsylvania

Tel: 215.830.1458
Fax: 215.706.0680

Texas

Tel: 972.235.8944
Fax: 972.235.965

International Sales 
Offices

Canada
Suite 203
135 Michael Cowpland Dr.,
Kanata, Ontario  K2M 2E9

Tel: 613.591.2074
Fax: 613.591.0348

France
361 Avenue General de Gaulle
92147 Clamart Cedex

Tel: +33 (0)1.40.83.11.00
Fax: +33 (0)1.40.94.11.04

Germany
Bahnhofstrasse 15
85375 Neufahrn

Tel: +49 (0)8165.9584.0
Fax: +49 (0)8165.9584.1

Hong Kong
Suite 2206, 
Parkside Pacific Place, 
88 Queensway

Tel: +011.852.2877.6226
Fax: +011.852.2918.9693

Italy
Via Giovanni da Udine No. 34
20156 Milano

Tel: +39 (0)2.3809.3259
Fax: +39 (0)2.3809.3260

Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150

Tel: +81 (0)3.3445.7671
Fax: +81 (0)3.3445.7668

Korea
135-090, 18th Floor, 
Kyoung AmBldg
157-27 Samsung-dong
Kangnam-ku, Seoul

Tel: +82 (0)2.555.7425
Fax: +82 (0)2.555.5779

Taiwan
4F-3, No. 75, Sec. 1,
Hsin-Tai-Wu Road,
Hsi-chih, Taipei, 221 

Tel: +886 (0)2.698.2525
Fax: +886 (0)2.698.2548

United Kingdom
Daneshill House,
Lutyens Close
Basingstoke,
Hampshire RG24 8AG

Tel: +44 (0)1256.305600
Fax: +44 (0)1256.355420
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Glossary

ACTgen Macro Builder Software A program developed by Actel to 
generate custom macros for a specific Actel Family architecture. 

architecture VHDL name used for the section of code that defines the 
behavior or composition of a block.

attribute A VHDL property that can be attached to signals or 
instances.

behavioral VHDL VHDL code written to describe the functionality of 
a design without regard for a specific architecture.

binding statement VHDL declaration of entity/architecture pair.

bit Signal type having logic states 0 and 1.

case A VHDL statement used to synthesize a selected signal 
assignment within a process.

clocked process A VHDL statement used to synthesize circuits with 
flip flops, registers, latches, or any other type of clocked logic.

compact encoding When states are decoded for minimum area.

component declaration A VHDL statement that references the name 
and I/O ports of an entity that will be used in a block.

component instantiation The occurrence of an entity in a VHDL 
block, similar to the placement of a part on a schematic.

configuration file A text file used to assign values to ACTmap 
options.

constant declaration A VHDL statement defining the type and value 
of a constant.

dataflow method A style of VHDL code that represents a lower level 
of abstraction than behavioral VHDL while still not resorting to a true 
gate- level structure.

design file A text file used to describe the behavior of a design block.

entity A VHDL statement used to identify a functional piece of a 
system and its I/O connections.
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Glossary
enumerated types VHDL data types that are defined to have a fixed 
number of unique states.

explicit mapping A VHDL port mapping style that maps the port 
name to a signal, regardless of the port order. This is also referred to as 
Named Port Mapping.

function A VHDL subprogram that has only one output. This is used 
to simplify the coding of repetitive or commonly used circuit 
operations.

Gray encoding States are defined so that only one bit changes at a 
time.

implicit mapping A VHDL port-mapping style that maps the a given 
signal to a given port, based on the port order.

initialization file A text file used to assign values to ACTmap options. 
This is also referred to as a configuration file.

I/O insertion The automatic addition of I/O buffers to ports not 
having I/O buffers.

Johnson encoding Like the Gray Code, the Johnson algorithm 
identifies long paths and applies successive Johnson codes on the path 
nodes. 

keywords Words reserved by the VHDL language.

libraries A convenient mechanism for storing commonly used VHDL 
functions and for defining data types.

one-hot encoding each bit in the state machine is mapped to a single 
register for maximum speed.

operators A VHDL keyword or symbol that causes an operation to 
occur between signals. 

overloading A VHDL technique used to define operations between 
the same and different types of data, thus making it possible to mix 
integer, bit, and other data types.

package VHDL code that is generally used to define the names and 
the inputs and outputs of the functions in the library.
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port map A list of the specific signals connected to the I/O ports of a 
instance of an entity.

procedures A VHDL subprogram having multiple outputs used to 
simplify the coding of repetitive or commonly used circuit operations.

processes A VHDL block of code that waits for some condition to 
occur and, in response, causes some other action.

reserved words Words reserved by the VHDL language.

resource sharing A style of writing VHDL that takes advantage of 
commonly shared functions such as adders, thus reducing the number 
of gates needed to implement a function.

Register Transfer Level (RTL) VHDL VHDL code written to describe 
the detail behavior of a design, but without regard for the gate-level 
details. 

sensitivity list A list of the signals that a process waits for.

sequential encoding Sequential encoding identifies the long paths 
and applies successive radix 2 codes on the nodes of the paths. The 
radix 2 code helps in minimizing area because it can efficiently 
minimize next-state equation complexity of paths.

sequential remapping A pre-optimization technique that divides 
sequential library elements into smaller and more basic elements.

slices A portion of a bus or register.

std_ulogic A nine state logic value system. Also referred to as MVL9, 
for Multi-Valued Logic, 9 states. Actel does not recommend using this 
state system in VHDL designs.

test bench A VHDL entity used to generate the input signals for the 
design being tested and to monitor the results at the output ports or at 
points internal to the entity.

VHDL VHSIC Hardware Description Language developed by the 
United States Government during the 1980s to support the electronic 
design communities.
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Manuals ix
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Unsupported Data Types 52
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Wait For Time Construct 52
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ami file 63
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B
Batch Mode 61–72
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Command Line Format 62
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hclk 71
infile 66
initfile 66
logfile 66
mapstyle 68
maxfanout 68
merge 72
mode 70
Options 64
outfile 67
outformat 67
portinstname 71
seqremap 68
state 69

Bi-directional Buffers 50
Bit Type 9
Block Statement 18
Blocks 3

Functional 55
Boolean Type 9
Bus

Multi-dimensional 51
Bus Width 51

C
Capturing a Design 2
Case Statement 17
cell 68
Cells

ACTgen Macros 21
Instantiating 20–21
Library Macros 20
RAM 58
Wide Decoder 58

Character Case 50
Circuit 6–8
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Clock Frequency Constraint 57
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Compact Encoding 56
Comparator Inferring 33
Configuration (ami) File 63
Constant Type 13
Constraint 57

All to Outpad 57
All to Setup 57
Clock Frequency 57
Clock to Outpad 57
Global 57
Inpad to Outpad 57
Inpad to Setup 57
Maximum Delay 57

Construct 50
Wait For Time 52

Contacting Actel
Customer Service 73
Electronic Mail 75
Technical Support 74
Toll-Free ??–73
Web Based Technical Support 74

Conventions viii
<act_fam> variable viii
Naming, VHDL 5

Counters 24
Creating a Configuration (ami) File 63
Customer Service 73

D
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Unsupported 52
Declaring a Circuit 6–8

Architecture Description 7
Entity Description 7

Declaring a Signal 9
Design Constraint 57
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All to Setup 57
Clock Frequency 57
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Global 57
Inpad to Outpad 57
Inpad to Setup 57
Maximum Delay 57
Setting Design Constraints 57

Design Creation/Verification 2
Behavioral Simulation 2
EDIF Netlist Generation 3
Structural Netlist Generation 3
Structural Simulation 3
Synthesis 2
VHDL Source Entry 2

Design Flow 2
Design Creation/Verification 2
Design Implementation 3
Schematic-Based 4

Design Implementation 3
Place and Route 3
Timing Analysis 4
Timing Simulation 4

Design Layout 3
Design Optimization 53–60

Automatic I/O Insertion 57
Design Constraints 57
Design Size 55
Gated Macros 60
General Guidelines 53
Limiting Optimization 54
Logic Design Type 54
Memory Requirements 56
Optimization Level 54
Optimizing Functional Blocks 55
Quad Clocks 58
RAM Cells 58
Sequential Remapping 58
State Machine 56
State Machine Algorithms 56
Structural VHDL 55
VHDL Guidelines 53
Wide Decoder Cells 58

Design Synthesis 2
Designer

DT Analyze Tool 4
Place and Route 3
Timing Analysis 4

Device
Families viii
Programming 4
Verification 4

Document Assumptions viii
Document Conventions viii
Document Organization vii
donttouch 19, 54, 55
Double Process Finite State Machine (FSM) 42
DT Analyze

Static Timing Analysis 4

E
EDIF Netlist Generation 3
edninflavor 67
Electronic Mail 75
Entity Description 7
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Enumerated Type 9
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fam 67
Finite State Machine (FSM) 40–48

Algorithms 56
Double Process 42
Mealy State Machine Code 44
Single Process 41
User Defined 46

flatten 69
Flip-Flops 37
For-Generate

Loop 18
Statement 18

G
Gated Macros 60
Gate-Level Netlist 2
Generating

EDIF Netlist 3
Gate-Level Netlist 2
Structural Netlist 3

globalconstraint 69
Gray Encoding 56

H
Half Adder 8
hclk 71
HDL

Design Flow 2
Hierarchy in VHDL 22

I
I/O Insertion 57
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Inout Parameters 49
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Library Macros 20

Integer Type 13
Intermediate Signals 49
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Johnson Encoding 56
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Keywords, VHDL 5
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Mapping 21
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Maximum Delay Constraint 57
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Memory Requirements for Optimization 56
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mode 70
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Netlist Generation
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One-Hot Encoding 56
On-Line Help xi
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Optimization 53–60
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State Machine 56

outfile 67
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Packages 48

Actel Component 48
IEEE 49
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Port Mapping 21
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