
ACTmap VHDL Synthesis
Methodology Guide
Windows ® & UNIX® Environments

Actel Corporation, Sunnyvale, CA 94086
© 1999 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5579007-2

Release: April 1999

No part of this document may be copied or reproduced in any form or by
any means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims
any implied warranties of merchantability or fitness for a particular pur-
pose.

Information in this document is subject to change without notice. Actel as-
sumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to
be disclosed to any unauthorized person without prior written consent of
Actel Corporation.

Trademarks
Actel and the Actel logotype are registered trademarks of Actel Corpora-
tion.

Adobe and Acrobat Reader are registered trademarks of
Adobe Systems, Inc.

Cadence is a registered trademark of Cadence Design Systems, Inc.

Mentor Graphics is registered trademark of Mentor Graphics, Inc.

Synopsys is a registered trademark of Synopsys, Inc.

UNIX is a registered trademark of X/Open Company Limited.

Verilog is a registered trademark of Open Verilog International.

Viewlogic is a registered trademark and MOTIVE is a trademark of
Viewlogic Systems, Inc.

Windows is a registered trademark of Microsoft Corporation in the U.S. and
other countries.

All other products or brand names mentioned are trademarks or registered
trademarks of their respective holders.
ii

Table of Contents

Introduction . vii
Document Organization vii

Document Assumptions viii

Document Conventions viii

Actel Manuals . ix

On-Line Help . xi

1 ACTmap Design Flow 1
Design Flow Illustrated . 1

Design Flow Overview . 2

2 Using ACTmap VHDL 5
VHDL Naming Conventions and Keywords 5

Declaring a Circuit. . 6

Signals . 9

Operators . 14

Logic Conditions . 15

Repetitive Operations . 18

Attributes . 19

Instantiating Cells . 20

Creating Hierarchy. . 22

Inferring ACTgen Macros 24

Processes . 35

State Machine Design . 40

Supported Packages . 48

Using Procedures . 49

Limitations . 50

3 Advanced Optimization Techniques 53
ACTmap VHDL Guidelines 53

General Optimization Guidelines 53

State Machine Optimization 56

Setting Design Constraints 57
iii

Table of Contents
Automatic Global I/O Insertion. 57

3200DX and 42MX. . 58

Sequential Remapping in Netlist Optimization 58

Gated Macros . 60

Designing for Radiation Environments 60

A Using ACTmap in Batch Mode 61
Invoking ACTmap in Batch Mode 61

Command Line Format. 62

Creating a Batch File. . 62

Creating a Configuration File 63

ACTmap Options . 64

Batch Mode Options Usage Examples 66

B Product Support . 73
Actel U.S. Toll-Free Line 73

Customer Service . 73

Customer Applications Center 74

Guru Automated Technical Support 74

Web Site . 74

FTP Site . 75

Electronic Mail . 75

Worldwide Sales Offices 76

Glossary. . 77

Index . 81
iv

List of Figures

ACTmap Design Flow . 1

Half Adder . 7

Half Adder . 8

3 Stage Shift Register . 16

CLKINT Symbol . 20

Full Adder Schematic . 22

Multiplexer Using an If Statement 26

Multiplexer using a With or Case Statement 28

2 to 1 Multiplexer . 37

Single Bit D Flip-Flop . 37

Multi-bit D Latch . 38

2 to 1 Multiplexer . 39

Latch Diagram . 40

Single Process FSM . 41

Mealy FSM . 44

Library Cells DFC1E and DFM7A before Remapping 59

Library Cells DFC1E and DFM7A before Remapping 59

 . 59

Library Cells DFC1E and DFM7A after Remapping 60
v

Introduction

VHDL is a high-level description language for system and circuit
design that supports various abstraction levels, including system design
without regard to a specific technology. However, to achieve optimal
performance and area from your target device, you must become
familiar with the architecture of the device and code your design for
the architecture.

The ACTmap VHDL Synthesis Methodology Guide contains information
and techniques for using ACTmap VHDL to design an Actel device.
This includes information about writing VHDL code for ACTmap,
optimization techniques, and sample code. This guide also includes
information about using the ACTmap VHDL Synthesis tool in batch
mode. Refer to the Designing with Actel manual and the ACTmap on-
line help for information about the ACTmap user interface. Refer to the
Actel HDL Coding Style Guide for additional information about HDL
coding.

Document Organization
The ACTmap VHDL Synthesis Methodology Guide is divided into the
following chapters:

Chapter 1 - ACTmap Design Flow describes the design flow for
creating Actel designs with the ACTmap VHDL synthesis tool.

Chapter 2 - Using ACTmap VHDL describes how to write VHDL for
use with the ACTmap VHDL synthesis tool.

Chapter 3 - Advanced Optimization Techniques contains
information about the optimization features of ACTmap and describes
how to implement optimization techniques in a design.

Appendix A - Using ACTmap in Batch Mode contains information
about using command-line commands and command files in the
ACTmap VHDL synthesis tool.

Appendix B - Product Support provides information about
contacting Actel for customer and technical support.
vii

Introduction
Document Assumptions
The information in this guide is based on the following assumptions:

1. You have installed the Designer Series software, including ACTmap.

2. You are familiar with UNIX workstations and operating systems.

3. You are familiar with PCs and Windows operating environments.

4. You are familiar with FPGA design software, including design
synthesis and simulation tools.

Document Conventions
The following conventions are used throughout this manual:

Information that is meant to be input by the user is formatted as
follows:

keyboard input

The contents of a file is formatted as follows:

file contents

VHDL code appear as follows, with VHDL keywords in bold:

entity actel is
port (

a: in bit;
y: out bit);

end actel;

Messages that are displayed on the screen appear as follows:

The <act_fam> variable represents an Actel device family. To reference
an actual family, substitute the name of the Actel device when you see
this variable. Available families are act1, act2 (for ACT 2 and 1200XL
devices), act3, 3200dx, 40mx, 42mxand 54sx.

Screen Message
viii

Introduction
Actel Manuals
The Designer Series software includes printed and on-line manuals.
The on-line manuals are in PDF format on the CD-ROM in the “/
manuals” directory. These manuals are also installed onto your system
when you install the Designer software. To view the on-line manuals,
you must install Adobe® Acrobat Reader® from the CD-Rom.

The Designer Series includes the following manuals, which provide
additional information on designing Actel FPGAs:

Designing with Actel. This manual describes the design flow and user
interface for the Actel Designer Series software, including information
about using the ACTgen Macro Builder and ACTmap VHDL Synthesis
software.

Actel HDL Coding Style Guide. This guide provides preferred coding
styles for the Actel architecture and information about optimizing your
HDL code for Actel devices.

ACTmap VHDL Synthesis Methodology Guide. This guide contains
information, optimization techniques, and procedures to assist
designers in the design of Actel devices using ACTmap VHDL.

Silicon Expert User’s Guide. This guide contains information and
procedures to assist designers in the use of Actel’s Silicon Expert tool.

DeskTOP Interface Guide. This guide contains information about using
the integrated VeriBest® and Synplicity® CAE software tools with the
Actel Designer Series FPGA development tools to create designs for
Actel Devices.

Cadence® Interface Guide. This guide contains information and
procedures to assist designers in the design of Actel devices using
Cadence CAE software and the Designer Series software.

Mentor Graphics® Interface Guide. This guide contains information
and procedures to assist designers in the design of Actel devices using
Mentor Graphics CAE software and the Designer Series software.

MOTIVE Static Timing Analysis Interface Guide. This guide contains
information and procedures to assist designers in the use of the
MOTIVE software to perform static timing analysis on Actel designs.
ix

Introduction
Synopsys® Synthesis Methodology Guide. This guide contains preferred
HDL coding styles and information and procedures to assist designers
in the design of Actel devices using Synopsys CAE software and the
Designer Series software.

Viewlogic Powerview® Interface Guide. This guide contains
information and procedures to assist designers in the design of Actel
devices using Powerview CAE software and the Designer Series
software.

Viewlogic Workview Office Interface Guide. This guide contains
information and procedures to assist designers in the design of Actel
devices using Workview Office CAE software and the Designer Series
software.

VHDL Vital Simulation Guide. This guide contains information and
procedures to assist designers in simulating Actel designs using a Vital
compliant VHDL simulator.

Verilog Simulation Guide. This guide contains information and
procedures to assist designers in simulating Actel designs using a
Verilog simulator.

Activator and APS Programming System Installation and User’s Guide.
This guide contains information about how to program and debug
Actel devices, including information about using the Silicon Explorer
diagnostic tool for system verification.

Silicon Sculptor User’s Guide. This guide contains information about
how to program Actel devices using the Silicon Sculptor software and
device programmer.

Silicon Explorer Quick Start. This guide contains information about
connecting the Silicon Explorer diagnostic tool and using it to perform
system verification.

Designer Series Development System Conversion Guide UNIX®

Environments. This guide describes how to convert designs created in
Designer Series versions 3.0 and 3.1 for UNIX to be compatible with
later versions of Designer Series.

Designer Series Development System Conversion Guide Windows
Environments. This guide describes how to convert designs created in
x

Introduction
Designer Series versions 3.0 and 3.1 for Windows to be compatible
with later versions of Designer Series.

Actel FPGA Data Book. This guide contains detailed specifications on
Actel device families. Information such as propagation delays, device
package pinout, derating factors, and power calculations are found in
this guide.

Macro Library Guide. This guide provides descriptions of Actel library
elements for Actel device families. Symbols, truth tables, and module
count are included for all macros.

A Guide to ACTgen Macros. This Guide provides descriptions of
macros that can be generated using the Actel ACTgen Macro Builder
software.

On-Line Help
The Designer Series software comes with on-line help. On-line help
specific to each software tool is available in Designer, ACTgen,
ACTmap, Silicon Expert, Silicon Explorer, Silicon Sculptor, and APSW.
xi

1
ACTmap Design Flow

This chapter illustrates and describes the design flow for creating Actel
designs using the ACTmap VHDL synthesis tool and third party tools.

Design Flow Illustrated
Figure 1-1 illustrates the design flow for creating an Actel device using
the Designer Series, ACTmap, and 3rd party CAE software1.

1. Actel-specific utilities/tools are denoted by the grey boxes in Figure 1-1.

Libraries
VITALDesign Creation/Verification

Silicon Explorer

Data I/O

System General

Fuse
File

Actel
Device

BP Microsystems

SMS Sprint

Design Implementation

System Verification

Compile

Layout

DT Edit PinEdit

DT Analyze ChipEdit

ExportFuse

EDIF
Netlist

Programming

APS Software
Activator 2/2s Programmer

Silicon Sculptor

Behavioral/Structural/
Timing Simulation

ACTgen
Macro Builder

Timing
File

Standard
VHDL

Testbench

Behavioral
VHDL

ACTmap
VHDL Synthesis

Structural
VHDL
Netlist

Schematic Capture Tool

Figure 1-1. ACTmap Design Flow
1

Chapter 1: ACTmap Design Flow
Design Flow Overview
The ACTmap design flow has four main steps; design creation/
verification, design implementation, programming, and system
verification. These steps are described in detail in the following
sections.

Design
Creation/
Verification

During design creation/verification, a design is captured in an RTL-
level (behavioral) VHDL source file. After capturing the design,
behavioral simulation of the VHDL file can be performed to verify that
the VHDL code is correct. The code is then synthesized into an Actel
gate-level (structural) VHDL netlist using ACTmap. After synthesis,
structural simulation of the design can be performed. Finally, an EDIF
netlist is generated for use in Designer or a third party CAE tool. A
structural VHDL netlist is also generated for timing simulation.

VHDL Design Source Entry
Enter your VHDL design source using a text editor or a context-
sensitive VHDL editor. Your VHDL design source can contain RTL-level
constructs as well as instantiations of structural elements, such as
ACTgen macros. Refer to Chapter 2, “Using ACTmap VHDL” on page 5,
for information about ACTmap VHDL coding techniques.

Behavioral Simulation
Perform a behavioral simulation of your design before synthesis.
Behavioral simulation verifies the functionality of your VHDL code.
Typically, unit delays are used and a standard VHDL test bench can be
used to drive simulation. Refer to the documentation included with
your simulation tool for information about performing behavioral
simulation.

Synthesis
After you have created your behavioral VHDL design source, create a
project in ACTmap and synthesize your design before placing and
routing it in Designer. Synthesis transforms the behavioral VHDL file
into a gate-level netlist and optimizes the design for a target
technology. Refer to the Designing with Actel manual for information
about synthesizing a design in ACTmap.
2

Design Flow Overview
EDIF Netlist Generation
After you have created, synthesized, and verified your design, you
must generate an EDIF netlist for place and route in Designer. ACTmap
also can be used to create symbols and wire files for use in Viewlogic
tools. Most third party CAE tools can also import the EDIF netlist as a
block for use in a schematic capture tool. Refer to the Actel Interface
Guides and the documentation included with your CAE tools for
information about importing EDIF blocks.

This EDIF netlist is also used to generate a structural VHDL netlist.
Refer to the Designing with Actel manual for information about
generating an EDIF netlist from ACTmap.

Structural VHDL Netlist Generation
Generate a structural VHDL netlist from your EDIF netlist for use in
structural and timing simulation by exporting it from ACTmap. Refer to
the Designing with Actel manual for information about generating a
structural netlist from ACTmap.

Structural Simulation
Perform a structural simulation of your design before placing and
routing it. Structural simulation verifies the functionality of your post-
synthesis structural VHDL netlist. Default unit delays included in the
compiled Actel VITAL libraries are used for every gate. Refer to the
documentation included with your simulation tool for information
about performing structural simulation.

Design
Implementation

During design implementation, a design is placed and routed using
Designer. Additionally, static timing analysis can be performed in
Designer with the DT Analyze tool. After place and route, post-layout
(timing) simulation is performed.

Place and Route
Use Designer to place and route your design. Make sure to specify
GENERIC as the Edif Flavor and VHDL as the Naming Style when
importing the EDIF netlist into Designer. Refer to the Designing with
Actel manual for information about using Designer.
3

Chapter 1: ACTmap Design Flow
Timing Analysis
Use the DT Analyze tool in Designer to perform static timing analysis
on your design. Refer to the Designer with Actel manual for
information on using DT Analyze.

Timing Simulation
Perform a timing simulation of your design after placing and routing it.
Timing simulation verifies that the design meets timing requirements.
Timing simulation requires information extracted from Designer, which
overrides default unit delays in the compiled Actel VITAL libraries.
Refer to the documentation included with your simulation tool for
information about performing timing simulation and the Designing
with Actel manual for information about extracting timing information
from Designer.

Programming Program a device with programming software and hardware from Actel
or a supported 3rd party programming system. Refer to the Designing
with Actel manual and the Activator and APS Programming System
Installation and User’s Guide or Silicon Sculptor User’s Guide for
information about programming an Actel device.

System
Verification

You can perform system verification on a programmed device using
the Actel Silicon Explorer diagnostic tool. Refer to the Activator and
APS Programming System Installation and User’s Guide or Silicon
Explorer Quick Start for information about using the Silicon Explorer.
4

2
Using ACTmap VHDL

This chapter provides descriptions and examples of how to write
VHDL for use with the ACTmap VHDL synthesis tool. This includes
information about VHDL naming conventions and keywords, about
declaring circuits and signals in VHDL, and a description of supported
operators. Also included is information about using logic conditions
and repetitive operations, assigning attributes, and instantiating cells.

Other sections include how to create hierarchical designs for ACTmap,
how to infer ACTgen macros, and information about writing processes.
State machine design is described and guidelines for using procedures
are also given. Finally, supported packages and limitations are listed.

VHDL Naming Conventions and Keywords
There are naming conventions you must follow when writing VHDL
code. Additionally, VHDL has reserved words that cannot be used for
signal or entity names. This section lists the naming conventions and
reserved keywords for each.

Naming
Conventions

The following naming conventions apply to VHDL designs:

• VHDL is not case sensitive.

• Two dashes “--” are used to begin comment lines.

• Names can use alphanumeric characters and the underscore “_”
character.

• Names must begin with an alphabetic letter.

• You may not use two underscores in a row, or use an underscore as
the last character in the name.

• Spaces are not allowed within names.

• An entity cannot have the same name as an Actel Library macro.
5

Chapter 2: Using ACTmap VHDL
Keywords The following is a list of the VHDL reserved keywords that cannot be
used for signal or entity names:

Declaring a Circuit
A circuit description consists of the interface defining the signal
connections of the circuit and a description of the circuit’s behavior or
composition. The interface is referred to as an entity and the signal
connections are ports. The section of code that defines the entity
behavior or composition is referred to as the architecture. The entity in
VHDL is equivalent to a symbol. The architecture is equivalent to a
schematic.

abs downto library postponed subtype

access else linkage procedure then

after elsif literal process to

alias end loop pure transport

all entity map range type

and exit mod record unaffected

architecture file nand register units

array for new reject until

assert function next rem use

attribute generate nor report variable

begin generic not return wait

block group null rol when

body guarded of ror while

buffer if on select with

bus impure open severity xnor

case in or shared xor

component inertial others signal

configuration inout out sla

constant is package sra

disconnect label port srl
6

Declaring a Circuit
Entity
Description

An entity consists of the entity name, the names of entity’s ports, the
direction of the ports (input, output, etc.), and a VHDL signal type for
each of the ports. Below is an example entity description for a half
adder, illustrated in Figure 2-1.

entity halfadder is
port (a, b: in bit;

s, co: out std_logic);
end halfadder;

Architecture
Description

The behavior or composition of the entity is described in the
architecture section of code. The level of the VHDL description of the
architecture can be behavioral, register transfer level (RTL), or
structural.

A behavioral description describes how the system behaves in
response to input signals without regard for hardware implementation.

An RTL description defines the circuit behavior, much like a detailed
block diagram describes traditional logic design. Clock and reset
signals are defined, and data busses and storage devices (registers,
counters, memory, etc.) have specific numbers of bits assigned.
However, the level of abstraction used to describe the logic functions is
higher than the gate-level details of a conventional schematic.

A structural description is used in the same manner as a netlist.

Figure 2-1. Half Adder

a

b

s

co
7

Chapter 2: Using ACTmap VHDL
The structure of the design is described by components interconnected
by signals. Regardless of the VHDL description level, the syntax of the
architecture must have a type and an entity association, as in the
following example:

architecture behavioral of example is
... signals and constants are declared...

begin
... lines of code describing the behavior of entity exam-

ple...
end example;

Below is an architectural description of the functionality of a half adder
entity. The half adder is illustrated in Figure 2-2.

architecture behavioral of halfadder is
begin

s <= a xor b;
c <= a and b;

end behavioral;

Figure 2-2. Half Adder

a

b

s

c

8

Signals
Signals
Signal declarations are made in the declaration section of the
architecture. This is the section of code that appears after the
architecture type and entity association have been defined and before
the begin statement. Constants are also defined in the declaration
section, often after the signals are declared.

As in a physical hardware system, signals can be single bits, such as a
clock or a reset, or they can be busses of a specified width. All signals
are declared with both a name and a data type. VHDL by itself does
not predefine characteristics of signals such as logic states or driving
strengths. Instead it makes provisions for doing so by means of VHDL
files grouped together into packages and libraries, which are normally
shipped with VHDL simulators or synthesis tools. This section lists the
data types that ACTmap supports.

Enumerated
Types

Types that have a fixed number of unique states are called enumerated
types. You can choose to use one of the standard types or define your
own.

Bit and Boolean
The bit and boolean types are standard enumerated types defined as
part of ACTmap VHDL and have two states each.

• bit can be ‘0’ or ‘1’

signal a: bit;

• boolean can be true or false

signal a: boolean;
9

Chapter 2: Using ACTmap VHDL
User-Defined
Enumerated types are often defined by the user for a specific purpose,
such as declaring the states of a state machine. Each state of the
defined type must be a unique identifier. The enumerated type must
be defined using the following syntax before a signal can be declared
of that type.

type speedtype is (stop, fast, faster);

Once a signal of type speedtype is defined, it can only contain one of
the three values. Below is an example of a signal defined as type
speedtype:

signal speed: speedtype;

The following example shows how user defined types are defined and
used.

architecture behavioral of drive is
signal light: bit_vector(0 to 1);
type speedtype is (stop, fast, faster);
signal speed: speedtype;

constant red: bit_vector(0 to 1) := “00”;
constant yellow: bit_vector(0 to 1) := “01”;
constant green: bit_vector(0 to 1) := “10”;

begin
with light select

speed <= stop when red;
fast when green,
faster when others ;

end behavioral;
10

Signals
Std_Logic Two state types are often not sufficient for most simulations. For
unknown values and varying signal strengths, a 9-state logic system,
often referred to as MVL9, was adopted as a standard by IEEE. This
standard enumerated type is called std_logic. The following states are
defined:

• U for uninitialized

• X for unknown

• Z for tri-state

• W for weak strength

• H for high (resistive) - used for open collector outputs

• L for low (resistive) - used for open emitter outputs

• - for don’t care

Note: During VHDL compilation, ACTmap treats ‘0’ and ‘L’ as low, ‘1’
and ‘H’ as high, and ‘U’, ‘X’, ‘W’ and ‘-’ as don’t care.

Std_Ulogic Actel does not recommend using the std_ulogic data type. ACTmap,
ACTgen, and Designer do not have the capability to write VHDL
netlists using the std_ulogic data type. All VHDL netlists are written
using the std_logic data type. Test benches written using the std_ulogic
data types generally do not work with gate-level VHDL netlists created
by the Designer Series tools.

Vectors Busses or multibit signals are referred to as vectors. The data types bit
and std_logic are definable as vectors. When vectors are defined, a
range for the vector array must be declared. The range can be either
ascending or descending. For an ascending range, the most significant
bit is on the left and is defined using the “to” keyword as follows:

signal databus : std_logic_vector(0 to 7);

0 1 2 3 4 5 6 7
11

Chapter 2: Using ACTmap VHDL
For descending range, the most significant bit is on the right, and is
defined using the “downto” keyword as follows:

signal databus : std_logic_vector(7 downto 0);

To use the entire vector, use the name of the vector as shown:

databus

Individual bits of a bus or register are used as shown:

databus(4) -- for bit 4

A portion of a bus or register is referred to as a slice and is used as
shown:

databus(7 downto 3)

Databus (7 downto 3)= “slice”

Note: The “to” or “downto” statement of the slice must agree with the
to or downto statement of the vector declaration.

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0

7 6 5 4 3 2 1 0
12

Signals
Integer Types An integer type defines the set of integer values in its range. When
designing arithmetic behavior, it is very helpful to work with integer
types. VHDL pre-defines an integer type called “integer” that covers a
range of integer values that can be represented in two’s complement
with 32 bits:

signal s32_int: integer;

An object can also be defined to be a sub-range of an integer:

signal s4_int: integer range 0 to 15;

The sub-range should be always be defined, otherwise, ACTmap will
automatically transfer the integer signal into a 32-bit bus during
synthesis.

Constants Similar to a signal declaration, constants can be declared and given
names. The following is an example of a constant declaration:

constant yellow: bit_vector := “01”;

In this example, the name of the constant is yellow and it is a
bit_vector whose value is always “01.” The constant declaration uses a
similar syntax to the signal declaration with the addition of the “:=” and
the assigned value of the constant. Binary values of vectors are always
enclosed in double quotes as shown, and are referred to as bit string
literals. You can, but you do not need to, specify how many bits are in
the constant with a to or downto statement.
13

Chapter 2: Using ACTmap VHDL
Operators
The standard logical and arithmetic operations that are supported by
ACTmap are shown in Table 2-1.

Table 2-1. Supported Arithmetic Operators

Type Symbol Operation Operand Type

Arithmetic + addition
integer, bit_vector,
std_logic_vector

- subtraction
integer, bit_vector,
std_logic_vector

* multiplication
integer, bit_vector,
std_logic_vector

Logical and logical and bit, boolean

or logical or bit, boolean

nand logical nand bit, boolean

nor logical nor bit, boolean

xor logical excusive-or bit, boolean

not logical compliment bit, boolean

Relational = equal any type

/= not equal any type

< less than any type

> greater than any type

<= less than or equal any type

>=
greater than or
equal

any type
14

Logic Conditions
The following guidelines should be used when using the operators in
your VHDL design:

• Parentheses must be included where the intended function may be
ambiguous. The expression “a and b or not (c)” could be interpreted
as “a and (b or not(c))” or “(a and b) or not(c)”, which are not
equivalent. For example:

y <= (a and b) or not (c);

• The following example would mean a signal assignment without the
if keyword. Within the if statement, the operator means less than or
equal.

if databus_1 <= databus_2 then

Logic Conditions
The various means of testing for logic conditions include the if, when,
select, and case statements. If and case statements are used only in
processes. Select and when statements are used only outside of
processes.

If Statement An if statement is a conditional statement that may only be used in a
process. The syntax for an if statement is as follows:

if condition 1 then
some action;

elsif condition 2 then

Concatenation & concatenation
bit, bit_vector,
std_logic,
std_logic_vector

Table 2-1. Supported Arithmetic Operators (Continued)

Type Symbol Operation Operand Type
15

Chapter 2: Using ACTmap VHDL
some action;
end if ;

The following is an example of an if-then-else statement that
synthesizes a 3 stage shift register and is illustrated in Figure 2-3:

if (reset = '1') then
a <= '0';
b <= '0';
c <= '0';

elsif (clock'event and clock = '1') then
a <= shiftin;
b <= a;
c <= b;

end if ;

When
Statement

A when statement is a conditional state assignment that synthesizes as
combinatorial logic. The syntax for a when statement is as follows:

signal <= 'value' when condition
else 'value';

Below is an example of a when statement that synthesizes as an N bit
“greater than” comparator:

signal <= '1' when databus > register
else '0';

Figure 2-3. 3 Stage Shift Register

shiftin

clock

a b c
16

Logic Conditions
Select
Statement

A select statement is a selected signal assignment that synthesizes into
combinatorial logic. The syntax for a select statement is as follows:

with signal select
target output <=waveform 1

when condition 1,
waveform 2 when condition 2,
waveform N when condition N;

Below is an example of a select statement that synthesizes as a four to
one multiplexer controlled by “sel,” a two-bit control signal, whereby
“y” is switched to one of the four data lines:

with sel select
y <= a when “00”,
b when “01”,
c when “10”,
d when “11”;

Case
Statement

A case statement is a selected signal assignment within a process. The
syntax for a case statement is as follows:

case state is
when condition 1 => target output <= waveform 1;
when condition 2=> target output <= waveform 2;
when condition N=> target output <= waveform N;
when others => target output <= default waveform;

end case ;

Below is an example of a case statement that synthesizes the same
logic as the select code above when used within an unclocked
process:

case sel is
when “00” => y <= a;
when “01” => y <= b;
when “10” => y <= c;
when others => y <= d;

end case ;
17

Chapter 2: Using ACTmap VHDL
Case statements must specify all possible cases. The “when others =>”
statement should be added to VHDL case statements using std_logic
data types. The following error message is displayed in ACTmap if all
cases are not specified in a case statement:

Repetitive Operations
Repetitive structures are declared with a generate statement.

If-Generate
Statement

The if-generate statement is supported for static (non-dynamic)
conditions.

loop label: if condition generate
loop actions;

end generate ;

For-Generate
Statement

The for-generate statement is supported for static (non-dynamic)
conditions.

loop label: for variable in start condition to end condition
generate

loop actions;
end generate ;

For-Generate
Loop

For component instantiations, function or procedure calls inside a for
generate loop, a block statement has to be used inside the loop to be
accepted by the ACTmap VHDL Compiler. The following is an
example of a for generate loop inside a block statement:

entity example is
...
end example;

architecture arch of example is
component small

ERROR: (VHP_0812). Line 29. A value is missing in case
18

Attributes
...
end component ;

...
for all: small use entity work.small(arch);
begin

loop1: for i in 0 to 3 generate
-- begin block statement

block1 : block
begin

instance1 : small port map (a(i), b(i), s(i));
end block ; -this line is added

end generate loop1;
end arch;

Attributes
The ACTmap VHDL Compiler uses the “donttouch” attribute to control
synthesis of the described circuit. The “donttouch” attribute directs
ACTmap not to optimize a given instance. Before the attribute can be
used, it must first be declared with a type. The attribute can only be
attached to instances of previously optimized macros or modules.

The syntax for declaring the donttouch attribute is as follows:

attribute donttouch : string;

The syntax for attaching the “donttouch” attribute is as follows:

attribute donttouch of instance label: label is “attribute
value”;

Below is an example of adding the value true to the donttouch
attribute:

for instance actgen_1:
attribute donttouch : string;
attribute donttouch of actgen_1: label is “true”;

Note: The value of the attribute is not important in this case.
19

Chapter 2: Using ACTmap VHDL
Instantiating Cells
In order to instantiate an entity into a VHDL description, you must first
declare a component for it. If you use a component instantiation in
your VHDL design, ACTmap tries to find the definition of that
component. There are three possibilities for defining an instantiated
cell:

1. The component is a cell in the specified Actel macro library.

2. The component has a matching entity in the VHDL source file.

3. The component has no definition.

Library Macros Components in the Actel macro library are considered black boxes
during synthesis since there is no entity/architecture description for
them. Actel library cells defined in the VHDL code are not optimized in
VHDL Compiler, but are treated as black boxes.

When the optimized EDIF netlist is written, the contents for each
macro is completed. An added benefit is that the time needed for
optimization of the whole circuit can be reduced, since ACTmap does
not have to optimize the implementation of the dedicated functions.

Note: Components found in the specified Actel macro library do not
need component statements. ACTmap maintains a compiled
version of these component statements.

The following example, illustrated in Figure 2-4, instantiates the ACT 3
“clkint” macro:

clkint_1: clkint port map (signal_a, signal_y);

a y

Figure 2-4. CLKINT Symbol
20

Instantiating Cells
Port mapping may be positional as in the example or it may be done
by name. In positional mapping, the signals are associated to the ports
by the order the ports are declared in the component declaration. In
name mapping, explicitly specify the name of the port followed by the
signal tied to it. For name mapping, use any port order. Positional and
name mapping are functionally identical. The following is an example
of a component instantiation for the clkint macro using name mapping:

clkint_1: clkint port map (a => signal_a, y => signal_y);

ACTgen
Macros

Use the following procedure to instantiate an ACTgen macro into a
VHDL description:

1. Invoke ACTgen.

2. Select the family, macro type, and macro options.

3. Generate your macro as a VHDL description. Make sure you
specify VHDL as the Netlist/CAE Format when generating the
macro.

4. Add a component declaration in the entity of your VHDL
description for the macro. For example:

entity cnt4 is
port (

data : in std_logic_vector (3 downto 0);
enable, sload, aclr, clock : in std_logic;
q : out std_logic_vector (3 downto 0));

end cnt4;

5. Instantiate the macro into your VHDL description using a
port map statement. For example:

u1 : cnt4 port map (signaldata => data, signalenable =>
enable, signalsload => sload, signalaclr => aclr,
signalclock =>clock, signalq => q);

6. Compile your VHDL description. Refer to “Implementing a
Hierarchical Project” in the Designing with Actel manual for
information about compiling a VHDL description in ACTmap.

Refer to the Designing With Actel manual or the ACTgen on-line help
for information about using ACTgen.
21

Chapter 2: Using ACTmap VHDL
Creating Hierarchy
Up to this point, the discussions have focussed on logic circuits that
most likely would be part of a single VHDL entity or functional block
of logic. These blocks should generally be limited in size so that they
can be synthesized and simulated relatively quickly. Most FPGA
designs consist of multiple entities or logic blocks. Hierarchical designs
can be created using a structural VHDL description.

Consider the schematic of a full adder that consists of two half adders,
shown in Figure 2-5.

This design uses two separate instances of half adders, designated as
components “ha1” and “ha2.” Like any other schematic, the actual
signals connected to the component pins may have different names
than the individual entity’s port names. Without this capability, you
would not be able to use an entity more than once in a design.

The following is the entity and architecture description for the half
adder logic block:

entity halfadder is
port (x, y: in bit;

s, c: out bit);
end halfadder ;

architecture behavioral of halfadder is
begin

s <= x xor y;
c <= x and y;

end behavioral;

Figure 2-5. Full Adder Schematic

cin

a

b

ha2

ha1

c1

s1 x2

na

sum

cout

x

y

s

c

x s

y c
22

Creating Hierarchy
The architecture of the full adder, top-level logic block, is a structural
VHDL interconnection of the entity components and signals. The
architecture consists of two parts: the declaration and instantiation
sections.

Declaration Section
The declaration section includes Signal declarations for signals such as
“c1” that are internal to the full adder entity, component declarations
for the “parts” used, constant declarations, if needed, and configuration
declarations to bind all instances to the desired architecture
description.

Instantiation Section
The instantiation section includes Component Instances, such as “ha1,”
“ha2,” etc., with their specific signal connections defined in a port map
declaration.

The entity and architecture for a full adder are as follows:

architecture structural of fulladder is
signal c1, c2, s1: bit;

component halfadder
port (

x, y: in bit;
s, c: out bit);

end component ;

begin
ha1: halfadder port map (a, b, s1, c1);
ha2: halfadder port map (x=>cin, y=>s1, s=>sum, c=>c2);
cout <= c1 nand c2;

end structural;

Note: Notice that instance “ha1” was instantiated using positional
mapping, and instance “ha2” was instantiated using name
mapping.
23

Chapter 2: Using ACTmap VHDL
Inferring ACTgen Macros
Macros such as counters, multiplexers, adders and subtractors can be
described in your VHDL code and created using the ACTgen Macro
Builder. This section describes how to infer different types of ACTgen
macros.

Counters ACTmap recognizes counters from the VHDL specification and calls
ACTgen to generate an optimized counter for the final design. The
following guidelines apply to the previous example for inferring a
counter:

• The data_load and the data signals can be of type bit_vector,
std_logic_vector, or unsigned.

• The reset, sload, and updown signals are optional. However, when
used they must be a simple name comparison to ‘1’ or ‘0’.

• The data must be set to a constant value upon reset.

• The count may only increment or decrement by one.

• An ACTgen macro is not be inferred if the asynchronous load signals
exist.

• Counters that use both enable and synchronous load can not be
inferred.

Counters, including those requiring an asynchronous reset, a
synchronous load, count enable, and up-down count facilities, can be
inferred with the following general counter template:

library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_unsigned. all ;

entity gencount is
generic (msb : integer := 7);

port (
clk: in std_logic ;
reset: in std_logic ;
sload: in std_logic ;
updown: in std_logic;
load_data: in std_logic_vector (msb downto 0);
24

Inferring ACTgen Macros
data: inout std_logic_vector (msb downto 0));
end gencount;

architecture template of gencount is
signal data: std_logic_vector (msb downto 0);

begin
counter_1: process (clk, reset, sload)
begin

if (reset = '0') then
data <= "00000000";

elsif (clk'event and clk = '1') then
if (load = '0') then

data <= load_data;
elsif (updown = '1') then

data <= data + '1' ;
else

data <= data - '1';
end if ;

end if ;
end process counter_1;

end template;

The template can be more flexible. For example, the “reset” statement
can be:

“ if (reset1=’0’ and reset2=’1’)”

Multiplexers ACTmap recognizes multiplexers from the VHDL specification and
calls ACTgen to generate optimized macros for the final design. From 2
to 32 inputs may be multiplexed with busses of up to 24 bits for every
input in ACT 1 and 40MX, and busses up to 32 bits for every input in
all other device families. There are three templates that may be used to
infer multiplexers in VHDL and generate them with the ACTgen Macro
Builder.

The following guidelines apply to the examples for inferring a
multiplexer:

• If more than half of the data inputs are constant values, the macro
block is not inferred, because simplifications are possible in the
netlist due to this constant value.

• Although std_logic_vector is allowed in the template, the “-” (don’t
25

Chapter 2: Using ACTmap VHDL
care value) is not considered.

• When using “if” or “case” statements to infer a multiplexer, some
values of the selector may be unspecified (no “else” or no “when
others” statement).

Multiplexer Using an If Statement
In this example, a 6 to 1 multiplexer, illustrated in Figure 2-6, is
generated by ACTgen. Some logic is generated and connected to the
selection port of the multiplexer in order to select the correct inputs
according to the values of signals “a,” “b,” “c,” and “d.”

library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_unsigned. all ;

entity genmx1 is
port (

data0: in bit_vector(11 downto 0);
data1: in bit_vector(11 downto 0);
data2: in bit_vector(11 downto 0);
data3: in bit_vector(11 downto 0);
data4: in bit_vector(11 downto 0);
data5: in bit_vector(11 downto 0);

data0

data1

data2

data3

data4

data5

data_out

sel2 sel1 sel0

sel2 = !a0.(b1+b0).!c.!(a2.a1)
sel1 = !a0.(b1+b0).(c+a2.a1)
sel0 = !a0.(!b1.!b0+!c.(a2.a1+d))

Figure 2-6. Multiplexer Using an If Statement
26

Inferring ACTgen Macros
data_out: out bit_vector(11 downto 0);
a: in bit_vector(2 downto 0);
b: in bit_vector(1 downto 0);
c: in bit;
d: in bit);

end genmx1;

architecture template of genmx1 is
begin

mux: process
(a,b,c,d,data0,data1,data2,data3,data4,data5)

begin
if (a(0) = '0') then

data_out <= data0;
elsif (b = '0') then

data_out <= data1;
elsif (c = '1') then

data_out <= data2;
elsif (a(2 downto 1) = “11”) then

data_out <= data3;
elsif (d = '0') then

data_out <= data4;
else

data_out <= data5;
end if ;

end process mux;
end template;
27

Chapter 2: Using ACTmap VHDL
Multiplexer Using a With Statement
In this example, an 8 to 1 multiplexer, illustrated in Figure 2-7, is
generated by ACTgen. The “sel” signals are connected to the selection
ports directly.

library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_unsigned. all ;

entity genmx2 is
port (

data0: in bit_vector(11 downto 0);
data1: in bit_vector(11 downto 0);
data2: in bit_vector(11 downto 0);
data3: in bit_vector(11 downto 0);
data4: in bit_vector(11 downto 0);
data5: in bit_vector(11 downto 0);
data6: in bit_vector(11 downto 0);
data_out: out bit_vector(11 downto 0);
sel: in bit_vector(2 downto 0));

end genmx2;

architecture template of genmx2 is
begin

with sel select
data_out <= data6 when “110” | “111”,

data2 when “010”,

Figure 2-7. Multiplexer using a With or Case Statement

data5

data_out

sel2 sel1 sel0

data6

data5

data2

data1

data0

data3
28

Inferring ACTgen Macros
data1 when “001”,
data5 when “101”,
data0 when “000”,
data3 when “011”,
data4 when others ;

end template;

Multiplexer Using a Case Statement
In this example, an 8 to 1 multiplexer, illustrated in Figure 2-7, is
generated by ACTgen. The “sel” signals are connected to the selection
ports directly.

library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_unsigned. all ;

entity genmx3 is
port (

data0: in bit_vector(11 downto 0);
data1: in bit_vector(11 downto 0);
data2: in bit_vector(11 downto 0);
data3: in bit_vector(11 downto 0);
data4: in bit_vector(11 downto 0);
data5: in bit_vector(11 downto 0);
data6: in bit_vector(11 downto 0);
data_out: out bit_vector(11 downto 0);
sel: in bit_vector(2 downto 0));

end genmx3;

architecture template of genmx3 is
begin

mux: process (data0,data1,data2,data3,data4,data5,data6,sel)
begin

case sel is
when “110” | “111” =>

data_out <= data6;
when “010”=>

data_out <= data2;
when “001”=>

data_out <= data1;
when “101”=>

data_out <= data5;
when “000”=>

data_out <= data0;
when “011”=>

data_out <= data3;
29

Chapter 2: Using ACTmap VHDL
when others =>
data_out <= data4;

end case ;
end process ;
end template;

Adders and
Subtractors

ACTmap recognizes adders and subtractors from the VHDL
specification and calls ACTgen to generate optimized macros for the
final design. The following guidelines apply when inferring adders and
subtractors:

• The data_a, data_b, and data_out signals can be of type bit_vector,
std_logic_vector, or unsigned.

• The output data, “data_out,” must have a size equal to the input data
busses, “data_a” and “data_b.”

Adders and subtractors can be inferred by using the following
subtractor example (to infer an adder, change the “-” operator to “+”):

library ieee;
use ieee.std_logic_1164. all ;
use ieee.std_logic_unsigned. all ;

entity gensub is
generic (msb : integer := 7);

port (
data_a: in std_logic_vector (msb downto 0);
data_b: in std_logic_vector (msb downto 0);
data_out: out std_logic_vector (msb downto 0));

end gensub;

architecture template of gensub is
begin

data _out <= data_a - data_b;
end template;

Multipliers ACTmap recognizes multipliers from the VHDL specification and calls
ACTgen to generate optimized macros for the final design. The
following guidelines apply when inferring multipliers:

• Multiplier inferring is not supported for ACT1, and 40 MX devices.
30

Inferring ACTgen Macros
• the “A” and “B” signals can be of type bit_vector, std_logic_vector, or
unsigned.

• An ACTgen macro is inferred when “A * B” is found (if both “A” and
“B” are not a constant).

• An ACTgen macro is only inferred if the following constraints are
met; 2 <= WidthA <= 29, 2 <= WidthB <= 29, and WidthA + WidthB
<= 32.

• If WidthA < 2 or WidthB < 2, ACTmap does not work.

• If WidthA > 29, or WidthB > 29, or WidthA + WidthB > 32, which is
beyond the ACTgen limitation, ACTmap does not infer an ACTgen
macro. Library based synthesis is employed instead.

• Although in ACTgen WidthA must be greater than or equal to
WidthB, this limitation does not apply when inferring a multiplier.

Multipliers can be inferred by using the following example:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity testmultiplier is

port (a : in std_logic_vector (3 downto 0) ;
 b : in std_logic_vector (4 downto 0) ;
 product : out std_logic_vector (8 downto 0)) ;

end testmultiplier;

architecture template of testmultiplier is
begin

product <= a * b ;
end template;

Incrementers
and
Decrementers

ACTmap recognizes incrementers and decrementers from the VHDL
specification and calls ACTgen to generate optimized macros for the
final design. The following guidelines apply when inferring
incrementers and decrementers:

• Incrementer and Decrementer inferring is not supported in ACT1 and
40 MX devices.
31

Chapter 2: Using ACTmap VHDL
• The “a” and “p” signals can be of type bit_vector, std_logic_vector, or
unsigned.

• An ACTgen macro is inferred when p <= a + 1, p <= a - 1, a <= a +
1, and a <= a - 1, when the width of “a” and “p” is 1 < width <= 32.

• An ACTgen macro is inferred when “a + 1” or “a - 1” is found in a
top level VHDL specification, function, procedure, and hierarchy
model.

Incrementers and decrementers can be inferred by using the following
example:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity testinc is
port (s : in std_logic;

 a : in std_logic_vector(7 downto 0) ;
 p : out std_logic_vector(7 downto 0));

end testinc;

architecture template of testinc is
begin

proc: process (s, a)
begin

if (s = '1') then
p <= a + 1 ;

else
p <= a - 1 ;

end if ;
end process ;

end template;

Accumulator
Inferring

The following example infers an Accumulator with only asynchronous
clear, enable, and clock:

accum : process (clk, reset, enable)

begin
if (reset = ‘0’) then

data <= (others=>’0’);
elsif (clk’event and clk = ‘0’) then

if (enable = ‘0’) then
32

Inferring ACTgen Macros
 data <=data + load_data;
end if ;

end if ;
end process

• The width of the “data” and “load_data” is 2 <= Width <= 24 for act1
and 40 MX devices, and 2 <= Width <= 32 for other families.

• The condition can also be defined using logical parameters as
follows: “reset1 = ‘1’ and reset2 = ‘1’.” For example, even if the
process is defined as follows, an accumulator can still be inferred:

accum : process (clk, reset1, reset2)

begin
if (reset1 = ‘1’ and reset2 = ‘0’) then

data <= (others=>’0’);
elsif (clk’event and clk = ‘1’) then

if (clk (0) = ‘1’ or clt(1) = ‘0’) then
 data <=data + load_data;

end if ;
end if ;

end process

Comparator
Inferring

The following examples infer a comparator:

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity testcomp is
port (a : in std_logic_vector(8 downto 0) ;

b : in std_logic_vector(8 downto 0) ;
p : inout std_logic_vector(8 downto 0)) ;

end testcomp;
33

Chapter 2: Using ACTmap VHDL
architecture template of testcomp is
begin

processes (a,b)
begin

if (a > b) then
p <= p + ‘1’;

else
p <= p - ‘1’;

end if;
end process ;

end template;

or,

library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;

entity testcomp is
port (a : in std_logic_vector(8 downto 0) ;

b : in std_logic_vector(8 downto 0) ;
p : out std_logic);

end testcomp;

architecture template of testcomp is
begin

processes (a,b)
begin

if (a >= b) then
p <= ‘1’;

else
p <= ‘0’;

end if ;
end process ;

end template;

• All 6 compressions “>, >=,<, <=, =, /=” can be inferred
34

Processes
XOR Tree
Inferring

The following example infers an XOR tree with positive polarity:

XorP: Process (Data)
Variable t : Std_Logic;
Begin

t := ‘0’;
For i In (Data’Length-1)DownTo 0 Loop

t := t xor Data(i)
End Loop ;

Result <= t;
End Process XorP;

or
Result<=d(0) xor d(1) xord(2) xord(3)xor d(4) xor d(5)
xor d(6) xor d(7)

The following example infers an XOR tree with the negative polarity:

XorP: Process (Data)
Variable t : Std_Logic;
Begin

t := ‘1’;
For i In (Data’Length-1)DownTo 0 Loop

t := t xor Data(i);
End Loop ;

Result <= t;
End Process XorP;

or

Result<= not ((0)xor d(1) xor d(2) xor d(3) xor d(4) xor d(5)
xor d(6) xor d(7));

The following example infers an xor tree with the negative polarity:

• The width of the data is 4 <= width <= 64.

Processes
Processes are sections of sequentially executed statements. While in
the dataflow syntax, all statements are executed concurrently. In a
process, the order of the statements does not matter. Processes
35

Chapter 2: Using ACTmap VHDL
resemble the sequential coding style of high-level programming
languages.

A process can be called from the dataflow section of VHDL code. Each
process is a sequentially executed program, but all processes run
concurrently. Processes communicate with each other via signals that
are declared in the declaration section of the architecture. The signals
that the process waits for are included in the sensitivity list of the
process. During the normal flow of a VHDL simulation, the process
waits for a change to occur on one of the signals in the sensitivity list.
It executes the statements between the begin and the end of the
process.

Processes are labeled and use the following syntax:

label: process (sensitivity list)
begin
... lines of code describing the behavior of the process...
end process label;

The actions described in the process can be of two forms; a clocked
process that is synthesized into clocked or sequential logic, or an
unclocked process that produces combinatorial logic. Clocked
processes always include the clock signals in the sensitivity list.

There are two types of expressions that can be used to infer clocked
logic, a 'event attribute or a function call. For example:

(clk'event and clk='1') --rising edge 'event attribute
(clk'event and clk='0') --falling edge 'event attribute
rising_edge(clock) --rising edge function call
falling_edge(clock) --falling edge function call

A clock signal cannot use the rising edge procedure if it has been
defined as type bit. In order to use the rising edge procedure, the clock
must be defined as type std_logic. The following error message is
displayed in ACTmap if a rising edge is not properly defined:

ERROR: (VHP_0808). Line 17. rising_edge can not have such
operands in this context.
36

Processes
Inferring
Multiplexers

The following example, illustrated in Figure 2-8, infers a 2 to 1
multiplexer:

architecture behavioral of mx2 is
begin

mx2_1: process (a, b, select)
begin

if (select = '0') then
y <= a;

else
y <= b;

end if ;
end process mx2_1;

end behavioral;

Inferring Flip-
Flops

The following example, illustrated in Figure 2-9, infers a single bit D
flip-flop with an active low asynchronous clear:

architecture behavioral of flipflop is

Figure 2-8. 2 to 1 Multiplexer

a

b

select

y

Figure 2-9. Single Bit D Flip-Flop

data

clock

q

reset
37

Chapter 2: Using ACTmap VHDL
begin
dff_1: process (clock, reset)
begin

if (reset = '0') then
 q <= '0';

elsif (clock'event and clock = '1') then
 q <= data;

end if;
end process dff_1;

end behavioral;

Inferring
Latches

The following example, illustrated in Figure 2-10, infers a multi-bit D
latch with an active high enable and an active low asynchronous clear:

architecture behavioral of latches is
begin

dlc_1: process (enable, reset, d)
begin

if (reset = '0') then
y <= “0000”;

elsif (enable = '1') then
y <= d;

end if;
end process dlc_1;

end behavioral;

Incomplete
Sensitivity Lists

Incomplete sensitivity lists in a process may cause differences in the
pre and post synthesis behavior. The following example demonstrates
the incorrect way to synthesize a three-input AND gate, because the
signal “c” is not in the sensitivity list. Therefore, the variable “y” is not
re-evaluated when c changes.

Figure 2-10. Multi-bit D Latch

d

enable

y1 y2 y3 y4
38

Processes
architecture behavioral of tand3 is
begin

and3_1: process (a, b)
begin

if (reset = '0') then
y <= a and b and c;

end process and3_1;
end behavioral;

The correct method to synthesize a three-input and gate is as follows:

architecture behavioral of tand3 is
begin

and3_1: process (a, b, c)
begin

if (reset = '0') then
y <= a and b and c;

end process and3_1 ;
end behavioral ;

Note: ACTmap does not always correctly report missing signals in the
sensitivity list of a process. To avoid erroneous results during
simulation, make sure that all sensitivity lists do not have missing
signals.

Incomplete
Construct
Value
Specification

The if then else and case statements can infer latches instead of
multiplexers if all possible states or values are not specified. The
following example, illustrated in Figure 2-11, infers a 2 to 1
multiplexer:

Figure 2-11. 2 to 1 Multiplexer

a

b

select

y

39

Chapter 2: Using ACTmap VHDL
if (select = '0') then
y <=a;

else
y <= b;

end if;

If you do not specify the else statement, a latch, illustrated in Figure 2-
12, is inferred:

if (select) then
y <= a;

end if;

State Machine Design
A state machine is a sequencer that is organized as a finite set of states.
Each state represents one set of actions, such as enabling a counter to
increment or generating an acknowledge output. Almost all states also
contain a method of transferring control to another state based on
certain conditions. Any state that does not have a means of going to
another state would have to be the last state of the state machine, and
the system would remain in this state forever. Transferring between
states can be conditional (based on the values of other signals in the
system) or non-conditional.

There are many ways to describe a finite state machine (FSM) in
VHDL. The important point is that the synthesis tool should optimize
the corresponding logic in an efficient way for both speed and area.
This is done by applying optimized automatic state assignments. This
section describes three types of FSM, the single-process, the double
process, and a user defined FSM.

Figure 2-12. Latch Diagram

a

select

y

40

State Machine Design
Single Process
FSM

Figure 2-13 illustrates a single-process FSM that controls a traffic light.
The sensitivity list of the process contains only two signals: the clock
and the reset signals. To describe the transitions between states, a case
statement identifies which state is considered. In the case statement, all
state register values have to be enumerated in when statements. The
state registers may be assigned conditionally in an if statement or not.
The conditions are boolean expressions of the input ports.

library ieee;
use ieee.std_logic_1164.all;

entity light is
port (

clock: in std_logic;
reset: in std_logic;
car_on_farm_road: in std_logic;
set_green_on_highway: out std_logic);

end tlight;

architecture state_machine of light is
type state_type is (red, green);
signal next_state: state_type;

begin
sequencer: process (reset, clock)
begin

if (reset = '0') then
next_state <= green;
set_green_on_highway <= '1';

elsif (clock'event and clock = '1') then
case next_state is

when green =>
set_green_on_highway <= '1';
if (car_on_farm_road = '1') then

Figure 2-13.

RESET

GREEN

RED

Car-on-farm-road=0

Car-on-farm-road=1
41

Chapter 2: Using ACTmap VHDL
next_state <= red;
else

next_state <= green;
end if ;

when red =>
set_green_on_highway <= '0';
next_state <= green;

end case ;
end if ;

end process sequencer;
end state_machine;

Double Process
FSM

A common approach to describing an FSM uses two processes. One
process defines registers or synchronization. The other process
describes the combinatorial logic to define the next state and the
outputs.

The first process sets the current state and the registered outputs of the
FSM. This process is triggered by the clock and the reset signals.
Therefore, it is executed when either signal changes. The FSM must be
triggered on the clock edge. You can trigger on either a rising or falling
edge. It is not necessary to have a reset, but if a reset signal exists, it
must be asynchronous. It may be active high or active low. The
process should use the following template:

registers: process (clock, reset)
begin

if (reset = <'1','0'>) then
... reset the value of the state ...
... optionally reset the registered outputs ...

elsif (clock'event and clock = <'1','0'>) then
... Set the new FSM state ...
... Assign values to the registered outputs ...

end if ;
end process registers;

Another process updates the present state with the next state and takes
care of any combinatorial logic. The process is sensitive to all of the
input signals and the signal that maintains the current state. It must
also include all the internal signals that affect the output of the process.
A case statement typically calculates the next state and the outputs as
in the following template:
42

State Machine Design
transitions : process (clock, reset)
begin

... Assign default values to all unregistered outputs ...
case present_state is

when state_0 =>
output <= <value>;
next_state <= <value>;

when state_1 => ...;
.
.
.
when others => ...;

end case ;
end process registers;

Note: A value must be assigned to all unregistered outputs for each
state. If you do not assign output values, the FSM maintains the
previous values and creates unnecessary latches during synthesis.
To avoid this problem, assign a default value to all unregistered
outputs at the beginning of this process before the case
statement. Default assignments of an if statement within a case
statement must be declared explicitly.
43

Chapter 2: Using ACTmap VHDL
The following is an example of a simple Mealy FSM using two
processes. Figure 2-14 and Table 2-2 illustrate the example:

library ieee;
use ieee.std_logic_1164.all;

entity mealy is
port (

a: in std_logic;

Figure 2-14. Mealy FSM

reset

s0 0/0

s2 s1 0/1

0/0

1/0

1/0

1/1

Table 2-2. Mealy FSM State Table

Present
State

Next State Output

x=0 x=1 x=0 x=1

s0 s0 s1 0 0

s1 s1 s2 1 0

s2 s0 s1 0 1
44

State Machine Design
clock: in std_logic;
reset: in std_logic;
z: out std_logic);

end mealy;

architecture state_machine of mealy is
type state_type is (s0, s1, s2);
signal current_state, next_state: state_type;

begin
registers: process (reset, clock)
begin

if (reset = '0') then
current_state <= s0;

else
if (clock'event and clock = '1') then

current_state <= next_state;
end if ;

end if ;
end process registers;

combinatorial: process (current_state)
begin

case current_state is
when s0 =>

if (a = '0') then
z <= '0';
next_state <= s0;

else
z <= '0';
next_state <= s1;

end if ;
when s1 =>

if (a = '0') then
z <= '1';
next_state <= s1;

else
z <= '0';
next_state <= s2;

end if ;
when s2 =>

if (a = '0') then
z <= '0';
next_state <= s0;

else
z <= '1';
next_state <= s1;

end if ;
end case ;
45

Chapter 2: Using ACTmap VHDL
end process combinatorial;
end state_machine;

User Defined
FSM

An FSM can also be defined to your specification. Each state is defined
as a constant with a unique value. Below is an example of a counter
defined as an FSM using user-defined states:

entity count4c is
port (

reset: in bit;
clock: in bit;
s : out bit_vector(3 downto 0);
load_data : in bit_vector(3 downto 0);
load : in bit;
enable : in bit);

end count4c;

architecture state_machine of count4c is
signal state, next_state: bit_vector(3 downto 0);
-- usually this can be an integer
constant state0: bit_vector (3 downto 0) := "1111";
constant state1: bit_vector (3 downto 0) := "1110";
constant state2: bit_vector (3 downto 0) := "1101";
constant state3: bit_vector (3 downto 0) := "1100";
constant state4: bit_vector (3 downto 0) := "1011";
constant state5: bit_vector (3 downto 0) := "1010";
constant state6: bit_vector (3 downto 0) := "1001";
constant state7: bit_vector (3 downto 0) := "1000";
constant state8: bit_vector (3 downto 0) := "0111";
constant state9: bit_vector (3 downto 0) := "0110";
constant statea: bit_vector (3 downto 0) := "0101";
constant stateb: bit_vector (3 downto 0) := "0100";
constant statec: bit_vector (3 downto 0) := "0011";
constant stated: bit_vector (3 downto 0) := "0010";
constant statee: bit_vector (3 downto 0) := "0001";
constant statef: bit_vector (3 downto 0) := "0000";

begin
sequential: process (clock, reset)
begin

if (reset = '1') then
state <= state0;

elsif (clock'event and clock = '1') then
if (load = '1') then

state <= load_data;
elsif (enable = '1') then
46

State Machine Design
state <= next_state;
else

state <= state;
end if ;

end if ;
end process sequential;

combinatorial: process (state)
begin

case state is
when state0 =>

next_state <= state1;
s <= x"0";

when state1 =>
next_state <= state2;
s <= x"1";

when state2 =>
next_state <= state3;
s <= x"2";

when state3 =>
next_state <= state4;
s <= x"3";

when state4 =>
next_state <= state5;
s <= x"4";

when state5 =>
next_state <= state6;
s <= x"5";

when state6 =>
next_state <= state7;
s <= x"6";

when state7 =>
next_state <= state8;
s <= x"7";

when state8 =>
next_state <= state9;
s <= x"8";

when state9 =>
next_state <= statea;
s <= x"9";

when statea =>
next_state <= stateb;
s <= x"a";

when stateb =>
next_state <= statec;
s <= x"b";

when statec =>
next_state <= stated;
47

Chapter 2: Using ACTmap VHDL
s <= x"c";
when stated =>

next_state <= statee;
s <= x"d";

when statee =>
next_state <= statef;
s <= x"e";

when statef =>
next_state <= state0;
s <= x"f";

when others => null;
end case ;

end process combinatorial;
end state_machine;

Supported Packages
There are a number of operations in VHDL that occur regularly. An
example is translation of vectors to integers and back. For this reason,
ACTmap provides packages that define attributes, functions and
procedures that are often used. Using the functions and procedures
reduces the amount of initial circuitry that is generated, compared to
writing the behavior explicitly in a user-defined function or procedure.
This reduces the time for compilation and also could result in a smaller
circuit implementation due to improved optimization.

Actel
Component
Packages

Users instantiating Actel macros in their designs do not need to declare
the Actel components. ACTmap maintains a compiled version of the
component. The VHDL source for these packages is located in the
“<actel_install_directory>/lib/actel/vhdl/<act_fam>” directory. The
macro component declarations are included by using the following use
statement:

library <act_fam>;
use <act_fam>.components. all ;

Note: The component package for the Actel family being targeted
should be compiled before the VHDL code referencing the
components.
48

Using Procedures
IEEE Packages ACTmap supports the following IEEE packages:

• std_logic_1164

• std_logic_unsigned

• std_logic_arith

The textio package is not supported.

Using Procedures
This section lists guidelines to follow when using procedures in
ACTmap.

Intermediate
Signals

When using procedures, ACTmap requires the use of intermediate
signals.

The following example does not work:

user_procedure(conv_integer(aaa));

The procedure should be written as follows:

int_aaa <= conv_integer(aaa);
user_procedure(int_aaa);

Inout
Parameters Not
Supported

ACTmap does not support the use of inout parameters for procedures.
The parameters must be either in or out. ACTmap displays the
following error message if a procedure has an inout parameter:

ERROR: (VHDL_1768). Line 88. Inout parameter not yet
supported.
49

Chapter 2: Using ACTmap VHDL
Limitations
This section lists known limitations and unsupported features in
ACTmap VHDL

Bi-Directional
Buffers

When using bi-directional buffers, make sure the feedback signal
connects to internal logic. If the feedback signal is not connected to
internal logic, ACTmap changes the BIBUF to OUTBUF.

Preserving
Character
Case

The “AMP_EDIFUPPER” environment variable, which forces all
characters to upper case, is set to “YES” in ACTmap. If you want
ACTmap to preserve character case in your VHDL code, you must set
the “AMP_EDIFUPPER” environment variable to no.

Event Construct ACTmap does not support the event construct for a vector bit. The
following example produces an error:

architecture behavioral of bug is
signal vector : std_logic_vector(7 downto 0);
begin

process (vector)
begin

if (vector(0)'event) then
k <= jj;

else
k(6 downto 0) <= jj and vector(6 downto 0);
k(7) <= '1';

end if
end process ;

end behavioral;

The above example should be written as follows:

architecture behavioral of bug is
signal vector : std_logic_vector(7 downto 0);
signal e_vector: std_logic; -this line is added
begin
e_vector <= vector(0); -this line is added

process (e_vector, vector) -this line is changed
begin
50

Limitations
if (e_vector'event) then -this line is changed
k <= jj;

else
k(6 downto 0) <= jj and vector(6 downto 0);
k(7) <= '1';

end if
end process ;

end behavioral;

Multiple Clock
Events

Multiple clock events are not supported. The following examples do
not work:

if (rst'event and rst = '0') then
...

elsif (clk'event and clk = '1') then
...

end if ;

if ((rst'event and rst = '0') and (clk'event and clk = '1'))
then

...
end if ;

VHDL 92 and 93 The set of constructs added in the VHDL 92 and 93 specification were
intended to be used for simulation purposes and are not supported in
ACTmap.

Bus Width Errors ACTmap does not always correctly report bus width errors. Make sure
that all of your bus widths match in your VHDL code or ACTmap may
produce erroneous results.

Multi-
Dimensional
Buses

ACTmap does not support multi-dimensional buses.
51

Chapter 2: Using ACTmap VHDL
Unsupported
Data Types

The following data types are not supported: physical, floating point,
signed arrays, access, and file. User defined arrays are only supported
for a dimension not exceeding 2.

Wait For Time
Construct

The “wait for time” construct is not supported.

Loop
Statements

The “while...loop... end loop” and the “loop...end loop” statements are
not supported.
52

3
Advanced Optimization Techniques

This chapter describes optimization guidelines and features in
ACTmap. This includes ACTmap VHDL and general optimization
guidelines, information about optimizing state machines, and using
design constraints during optimization. Also included is information
about the ACTmap automatic global I/O insertion and sequential
remapping features, and information about using special cells in
3200DX and 42MX devices to improve performance. Finally,
information about gated macro usage and about where to find
radiation environment design techniques is given.

ACTmap VHDL Guidelines
The following are ACTmap VHDL guidelines to assist you in obtaining
the best synthesis results possible:

• For the ACT 3 FPGA family devices, Actel recommends that you
avoid describing reset and clear flips-flops and latches in your VHDL
descriptions. The ACT 3 preset and clear flip-flops cannot be
connected to the hardwired global clock networks driven by
HCLKBUF. For ACT 2 and ACT 3 family devices, use asynchronous
clear latches and flip-flops. The active low asynchronous clear flip-
flops and latches are ACTmap’s basic building blocks. Using them
may result in better optimization.

• Actel recommends that you avoid describing any flips flops and latch
configurations that do not have an asynchronous clear input. The JK
or toggle flip-flops, without any asynchronous clear or preset (with
sequential remapping) feature may not be simulated by your CAE
simulator tools.

General Optimization Guidelines
One of the most powerful features of the ACTmap program is its
optimization capability. The optimization and mapping technique used
in ACTmap is designed to improve the area or speed of most designs
targeted for Actel devices. However, this does not mean that the
algorithm can improve all designs. This section lists guidelines to keep
in mind when optimizing your design with ACTmap.
53

Chapter 3: Advanced Optimization Techniques
Logic Design
Type

The type of logic used in the design affects how much of the design
can be optimized. ACTmap’s algorithm produces excellent results
when optimizing random logic, but it does not work as well for
structured logic blocks such as adders, subtractors, comparators, and
accumulators. Many counters, adders, subtractors, decoders and
multiplexers can be inferred through VHDL descriptions or generated
using the ACTgen Macro Builder. Other logic blocks can also be
created by the ACTgen Macro Builder and added to a design. Refer to
“Inferring ACTgen Macros” on page 24” and “ACTgen Macros” on page
21 for information about integrating an ACTgen macro into your
design.

Design
Optimization
Level

You must consider whether to optimize the complete design, or only a
part of the design (generally, Actel recommends that you use smaller
blocks for better optimization). At times it is beneficial to optimize the
whole chip because chip optimization can break down the boundaries
between the functional blocks. This allows ACTmap to globally
consider the logic that is optimized, which often produces better
results.

Note: ACTmap may not produce improved results when optimizing
highly structured or optimized designs.

Limited
Optimization

If you are using an original design that has only structured or
optimized sections, you can instruct ACTmap to ignore the optimal
sections.

ACTmap ignores optimal sections when you add a donttouch attribute
to an instance by editing the EDIF, ADL, or VHDL netlist files. The
following example shows the “DONTTOUCH:TRUE” attribute used in
an ADL design file:

USE FLIP; I1I386; DONTTOUCH:TRUE.
USE ADLIB:OR3; DONTTOUCH:TRUE
54

General Optimization Guidelines
This example shows an EDIF design file with the “donttouch:true”
property added.

(instance (rename i1i235”)
(viewref Netlist (cellref or3 (libraryref act2)))
(property donttouch (string “true”))
)
instance (rename i1i386 “i1i386”)
(viewref netlist (cellref flip (libraryref this_design)))
(property donttouch (string “true”)
)

This example shows an ACTmap VHDL design description with the
“donttouch:true” property added:

architecture structural of example is
attribute donttouch : string;
attribute donttouch of u0 : label is “true”;

component inva
port (

a: i n bit;
y: out bit);

end component ;

begin
u0: inva port map (a, s1);

end structural;

Structural VHDL ACTmap does not optimize structural VHDL netlists. Structural netlists
are treated as though they have the “donttouch” attribute added to
them. VHDL netlists created by ACTgen are not optimized when they
are added as part of a project, they are merged into the project.

Design Size Memory requirements and ACTmap run time vary with design type. If
the ACTmap functions exceed hardware limitations, you may want to
optimize by functional block, rather than the whole design. Actel
recommends limiting VHDL blocks to less than 1500 logic modules and
netlists to less than 800 logic modules.
55

Chapter 3: Advanced Optimization Techniques
Memory Size ACTmap’s two primary goals are efficient memory usage and short
run-times. However, optimizing certain designs, such as designs with
adders, multipliers, and some counters, causes ACTmap to use large
amounts of memory. These designs contain highly structured logic
blocks. Use ACTgen to build these macros with donttouch attributes,
and instantiate them directly into your ACTmap design. You can also
use ACTmap to merge the top-level netlist with ACTgen macros after
optimization.

State Machine Optimization
ACTmap allows you to select between five state machine encoding
algorithms. ACTmap uses the following methods to generate state
machines from VHDL source files to netlists.

• One-Hot. The One-Hot algorithm reduces each bit in the state
machine to a single register for maximum speed.

• Compact. The Compact algorithm produces decoded states for
minimum area.

• Gray. The Gray Code algorithm identifies long paths without
branching. It applies successive Gray codes on path nodes.

• Johnson. Like the Gray Code, the Johnson algorithm identifies long
paths and applies successive Johnson codes on the path nodes.

• Sequential. Sequential encoding identifies the long paths and
applies successive radix 2 codes on the nodes of the paths. The radix
2 code helps in minimizing area because it can efficiently minimize
next-state equation complexity of paths.

• User Defined. The User Defined encoding is based on the states
defined in the VHDL.

When optimizing smaller designs, optimizing the design for area
frequently produces the greatest speed. Actel recommends that you
first optimize small designs for area and save the results. You can then
optimize the design for speed and compare the results.
56

Setting Design Constraints
Setting Design Constraints
During netlist optimization, preferential treatment can be assigned to a
given global design constraint (through the Set Constraint command in
the Options menu). The ACTmap Netlist Optimizer will optimize the
netlist so that the preferred global constraint receives the greatest
amount of optimization. You can only set global constraints through
the Netlist Optimizer window. It is not possible to set specific values
for global constraints.

The following Global Constraints can be specified:

• Clock Frequency. Synthesis is targeted toward the optimization of
the clock frequency.

• Inpad to Outpad. Synthesis is targeted toward the optimization of
paths, starting at an input port and ending at an output port.

• Inpad to Setup. Synthesis is targeted toward the optimization of
paths, starting at an input port and ending at the setup for latches and
flip-flops.

• Clock to Outpad. Synthesis is targeted toward the optimization of
paths, starting at the clock and ending at an output port.

• All to Setup. Synthesis is targeted toward the optimization of all
paths, ending at the setup for latches and flip-flops.

• All to Outpad. Synthesis is targeted toward the optimization of
paths, ending at an output port.

• Maximum Delay. Synthesis is targeted toward the minimization of
the maximum path delay for the design.

Automatic Global I/O Insertion
ACTmap automatically inserts global I/Os and buffers in all Actel
family devices. ACTmap inserts CLKBUF macros to drive the CLKA
global network in ACT 1 and 40MX devices, the CLKA and CLKB
global networks in ACT 2, 1200XL, 3200DX, and 42MX devices, and
the CLKA, CLKB, and HCLK global networks in ACT 3 and 54SX
devices.
57

Chapter 3: Advanced Optimization Techniques
During insertion, ACTmap inserts CLKBUF macros in all dangling clock
network input ports. It inserts INBUF macros in all other dangling
input ports, and OUTBUF macros in all dangling output ports.

You can set your I/O insertion commands, and set the automatic I/O
insertion commands at the command line or in your .ami file. Refer to
“I/O Macros” on page 70 for a description of the commands.

3200DX and 42MX
The 3200DX and 42MX device families have specialized cells and
clocks that can be used to improve performance. This section
describes how to utilize those specialized cells and clocks.

Wide Decoders
and RAM Cells

You can use the wide decoder modules and the RAM cells in ACTmap,
but they must be instantiated and their utilization must be monitored
by the user. They cannot be inferred. Actel recommends that logic
blocks using wide decoders and RAM cells are generated using
ACTgen and instantiated into the design.

Quad Clocks The quad clock modules may be utilized using ACTmap, but they must
be instantiated, and their utilization must be monitored by the user.
They cannot be inferred.

Sequential Remapping in Netlist Optimization
For almost all ACT 3 flip-flops and some ACT 2 flips-flops, ACTmap
performs pre-optimized, sequential remapping. The sequential
remapping feature enhances the optimizer performance to take
advantage of combinatorial and sequential combining features. It
divides sequential library elements into smaller and more basic
elements that may generate better results during optimization.
Sequential remapping applies to both VHDL synthesis and
optimization. This feature is available for the ACT2, 3200DX, 42MX,
and ACT 3 families.
58

Sequential Remapping in Netlist Optimization
The following are the sequential remapping options available.

• All - All sequential logic modules are remapped into basic ACT 2 and
ACT 3 flip-flops before they are optimized. These cells (DFC1B,
DFC1D, DF1B, DL1, DL1B, DLC and DLCA) are combinable
sequential elements. For example, DFE1C, a D-type flip-flop with
active enable and clock, remaps into MX2, a two-to-one multiplexer,
and DF1B, a D-type flip-flop with an active low clock. The two input
multiplexer can be combined with other combinatorial logic.

• No - No sequential remapping is performed.

The following figures demonstrate a sequential remapping process.
Figure 3-1 shows two library cells, DFC1E and DFM7A before
remapping. Figure 3-2 shows the library cells instantiated and
remapped to other sequential cells that are easier to route and
combine.

• Basic - All sequential logic modules are remapped to basic ACT 2
and ACT 3 flip-flops.

• .Complex - Complex flip-flops and latches are remapped to Actel
internal logic modules.

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD
CLOCK

Y

CLKBUF

Q

D QN

D1
D2
D3

S10
S11
S0
CLK
CLR

CLK
CLR

DFM7A

DFC1E

PADDOUTBUF

PADDOUTBUF

O1

O2

D0

D1

D2

D3

E1

E2

E3

CLRNOT

Figure 3-1. Library Cells DFC1E and DFM7A before Remapping
59

Chapter 3: Advanced Optimization Techniques
Gated Macros
Gated macros must be instantiated to be utilized because ACTmap
cannot synthesize to gated macros. Designs that must gate clocks on
the dedicated clock network should utilize the gated macros “gand2,”
“gmx4,” “gnand2,” “gnor2,” and “gxor2.”

Designing for Radiation Environments
ACTmap can compile and optimize Actel designs for radiation
environments. Refer to Enhanced Tools for Minimizing Single Event
Upset Effects on the Actel Web site (http://www.actel.com) and the
ACTmap On-line Help for additional information.

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD YINBUF

PAD Y

CLKBUF

Y

D Q

D1
D0

D2
D3

S00
S01
S10
S11

CLK
CLR

CM8

DFC1B

D0

D1

D2

D3

E3

E1

PAD YINBUF
E2

CLOCK

CLRNOT

PADDOUTBUF
O1

PADDOUTBUF
O2

D Q

CLK
CLR

DFC1B

YA
INV

Figure 3-2. Library Cells DFC1E and DFM7A after Remapping
60

A
Using ACTmap in Batch Mode

This appendix contains information and procedures for using ACTmap
in batch mode. This includes information about invoking ACTmap in
batch mode and a description of command line format. Also included
is batch file and configuration file creation information. Finally,
available batch mode options are listed and usage examples for the
options are given.

Invoking ACTmap in Batch Mode
This sections describes the procedures for invoking ACTmap in batch
mode.

UNIX Both ACTmap functions and option settings can be specified on the
command line or in the configuration file (ami file). Type the following
command at the prompt to invoke ACTmap in batch mode:

actmap

Microsoft
Windows

You can execute ACTmap functions and set options in the ACTmap
windows or define options in the configuration file (ami file). Use the
following procedure to invoke ACTmap in batch mode:

1. Create a batch file using a text editor. Refer to “Creating a Batch
File” on page 62 for and example batch file.

2. Choose the Run command from the Start menu. The Run
dialog box is displayed.

3. Invoke ACTmap with the complete path of a batch file. Type
the following command in the Run box:

actmapw.exe bfile:<batch_file_location>\<batch_file>.bat
61

Appendix A: Using ACTmap in Batch Mode
Command Line Format
The command line format for using ACTmap in batch mode is:

actmap [function:{vhdl,netopt,translate}] [<option-
name>:<option_value>] <design_name>

The function parameter invokes a specific ACTmap utility. When the
function parameter is set to “vhdl,” the ACTmap VHDL Compiler is
invoked. The default function parameter is “vhdl.” The <optionname>
variable is the name of one of the ACTmap options and the
<option_value> variable is a legal value for that option.

All options can be specified in the configuration file. By default,
ACTmap reads the <design_name>.ami file located in the project
directory, if it exists. To specify another configuration file name or
location, use the initfile option.

Creating a Batch File
You can use batch files with ACTmap in Windows. This allows you to
run ACTmap for several designs or for one design with different
options. The following is an example batch file:

actmap infile:\username\designs\decoder.v initfile:\user-
name\designs\decoder1.ami

actmap infile:\username\designs\decoder.vhdl initfile:\user-
name\designs\decoder2.ami

actmap infile:\username\designs\atm.vhdl

actmap infile:\username\designs\counter.vhdl informat:vhdl
state:onehot effort:lo fam:act2 outformat:edif mode:chip
cell:best mapstyle:speed maxfanout:10 counter

In the above example, “decoder.v,” “decoder.vhdl,” “atm.vhdl,” and
“counter.vhdl” are design file names and formats and “decoder1.ami”
and “decoder2.ami” are configuration files. Refer to “Specifying Input
and Output Files” on page 66 for information about input and output
files and “Creating a Configuration File” on page 63 for information
about configuration files.
62

Creating a Configuration File
Creating a Configuration File
All options for each ACTmap function can be specified in the
configuration file (ami file). The format for specifying options in the
ami file is:

fam:act3
mapstyle:area

The options in the configuration files are applied to given ACTmap
functions as follows:

1. All options specified after the function declaration statement and
before another function declaration statement are applied to the
given ACTmap function at runtime.

function:vhdl
infile:design.vhd
fam:act3
mapstyle:area
state:onehot

function:netopt
infile:design.edn
fam:act3
mapstyle:area
maxfanout:12

function:translate
infile:design.edo
fam:act3
outformat:verilog
merge:on

The options specified between the “function:vhdl” and the
“function:netopt” statements are read by the ACTmap VHDL
Compiler. The options specified between the “function:netopt” and
the “function:translate” statements are read by the ACTmap Netlist
Optimizer. The options specified after the “function:translate”
statement are read by the ACTmap Translator utility.

2. When the “informat” option is set in the configuration file, all other
options are applied to that ACTmap utility only. When the
“informat” option is set to “vhdl,” “edif,” or “adl” the other options
are applied to the VHDL Compiler, and the Netlist Optimizer
respectively.
63

Appendix A: Using ACTmap in Batch Mode
3. When neither the “informat” option nor a function declaration
statement has been specified in the configuration file, all options
are applied to the ACTmap VHDL Compiler only.

ACTmap Options
Table A-1 describes the available ACTmap batch mode options. The
default value for the option is shown in bold.

Table A-1. ACTmap Options

Option Name Option Values Applicable
Functions

Reference
Page

actgenmacro on, blackbox, off vhdl page 69

cell best, lm, lib vhdl, netopt page 68

clka
<port name of first
clkbuf>

vhdl, netopt page 70

clkb
<port name of sec-
ond clkbuf>

vhdl, netopt page 70

edninflavor
generic, wv,
mentor

netopt, trans-
late

page 67

fam
act1, act2, act3,
3200dx, 1200xl,
40mx, 42mx, 54sx

vhdl, netopt,
translate

page 67

flatten on, off vhdl page 69

globalconstraint

clock_freq,
inpad_to_outpad,
inpad_to_gated,
clock_to_outpad,
all_to_gated,
all_to_outpad,
max_delay

netopt page 69
64

ACTmap Options
hclk
<port name of
hclkbuf>

vhdl, netopt page 71

infile
<name of design
file to read>

vhdl, netopt,
translate

page 66

initfile
<name of configu-
ration file>

vhdl, netopt,
translate

page 66

logfile <log file name>
vhdl, netopt,
translate

page 66

mapstyle speed, area vhdl, netopt page 68

maxfanout 2 to 24 vhdl, netopt page 68

merge on, off translate page 72

mode block, chip vhdl, netopt page 68

outfile
<name of output
file>

vhdl, netopt,
translate

page 67

outformat
designer, vhdl,
edif, adl, verilog, vl

translate page 67

portinstname match, unique vhdl, netopt page 71

seqremap off, on vhdl, netopt page 68

state
compact, onehot,
gray, johnson,
sequential, user

vhdl page 69

ff_type

default, cc (ACT 2,
ACT 3, 3200DX,
42MX only), tmr
(ACT 1 and 40MX
are not supported)

vhdl, netopt page 72

Table A-1. ACTmap Options (Continued)

Option Name Option Values Applicable
Functions

Reference
Page
65

Appendix A: Using ACTmap in Batch Mode
Batch Mode Options Usage Examples
This section describes the batch mode options, and gives an example
usage of each.

Specifying the
Configuration
File

Use the “initfile” option to specify the name of the configuration file to
be read into ACTmap. Actel recommends using the “.ami” extension.
The default value is <design_name>.ami. For example:

initfile:config1.ami

Specifying the
Log File

Use the “logfile” option to specify the name of your log file to store
ACTmap output messages. Actel recommends using the “.aml”
extension. The default value is <design_name>.aml. For example:

logfile:run1.aml

Specifying
Input and
Output Files

The following options are used to specify input and output file names
and formats.

Specifying Input File Name
Use the “infile” option to specify the name of your input file. Actel
recommends using the following extensions:

• ACTmap VHDL - use “.vhd”

• ADL input file - use “.aal” or “.adl”

• EDIF input file - use “.edn”

For example:

infile:<filename>.vhd
infile:<filename>.aal or .adl
infile:<filename>.edn
66

Batch Mode Options Usage Examples
Specifying Output File Format
Use the “outformat” option to specify which output files to generate
during netlist translation. The default value is “designer.” For example:

outformat:vhdl

Specifying the EDIF Output Filename
Use the “outfile” option to specify the name of the EDIF file to be
written by the VHDL Compiler. Actel recommends using an “.edo”
extension for the optimized EDIF netlists written by the VHDL
Compiler. For example:

outfile:<filename>.edo

Specifying EDIF
Netlist Flavor

Use the “edninflavor” option to specify the flavor of the EDIF netlist to
be read. Use “viewlogic” for Viewlogic, “mgc” for Mentor Graphics and
“generic” for all other EDIF netlists. The default value is “generic.” For
example:

edninflavor:viewlogic

Specifying the
Target Family

This section describes how to specify the target device family.

Specifying the Target Family
Use the “fam” option to specify the target family of the netlist to be
retargeted. The default value is “42mx.” For example:

fam:act3

In this example, the retargeted netlist is created using the ACT 3 Family
architecture.
67

Appendix A: Using ACTmap in Batch Mode
Technology
Mapping

This section describes how to specify technology mapping options.

Specifying Mapping Approach
Use the “cell” option to specify the mapping. Use “lm” to map to the
Actel internal module. All logic is mapped to CM8 or CM8A. Use “lib”
to map to predefined Actel library cells. Since not all possible
combinations have predefined cells in the library, mapping to the CM8
or CM8A module can produce better results. To allow the Compiler to
choose the mapping, specify “best” for the “cell” option. The default
value is “best.” For example:

cell:lib

Specifying Optimization Type
Use the “mapstyle” option to specify the type of optimization. Use
“area” for area optimization and “speed” for speed optimization. The
default value is “speed.” For example:

mapstyle:speed

Specifying the Maximum Fanout
Use the “maxfanout” option to specify the maximum fanout limit
during netlist optimization. You can set a fanout range from 2 to 24.
The default value is “16” for the ACT 2, ACT 3, 3200DX, 42MX, and SX
families. The default value is “10” for the ACT 1 and 40 MX families.
For example:

maxfanout:8

Specifying the Remapping of Sequential Elements
Use the “seqremap” option to specify which sequential elements
should be remapped to basic Actel sequential elements before Netlist
optimization. Use “all” to remap all sequential elements, “basic” for
basic sequential elements, “complex” for complex sequential elements,
and “No” for no sequential remapping. The default value is “all” or
68

Batch Mode Options Usage Examples
“on.” Refer to “Sequential Remapping in Netlist Optimization” on page
58 for more information. For example:

seqremap:all

Specifying the Encoding Algorithm for State Machines
Use the “state” option to specify the encoding algorithm used to map
state machines by the VHDL Compiler. The following option values
may be specified: “onehot,” “compact,” “gray,” “johnson,” “sequential,”
and “user.” The default option is “compact.” For a description of these
options, refer to “State Machine Optimization” on page 56. For
example:

state:user

In this example, the user-defined encoding specified in the VHDL file
is used during optimization.

Specifying ACTgen Macro Usage
Use the “actgenmacro” option to specify when ACTgen macros are to
be generated for identified templates. Use “on” to let ACTgen generate
any macros it can identify, use “off” to force ACTmap to generate the
logic. The default value is “on.” For example:

actgenmacro:off

Preserving Hiearchy
Use the “flatten” option to specify when the design hierarchy will be
flattened during VHDL compilation. Use “off” to preserve the hierarchy
during VHDL compilation. Use “on” to let ACTmap flatten the design.
The default value is “off.” For example:

flatten:on

Specifying Global Optimization Constraints
Use the “globalconstraint” option to specify the optimization constraint.
For a description of these options, refer to “Setting Design Constraints”
on page 57. The default value is “clock_freq.” For example:
69

Appendix A: Using ACTmap in Batch Mode
globalconstraint:clock_freq

In this example, synthesis is targeted toward the optimization of the
clock frequency.

I/O Macros The following describes how to specify the options related to inserting
I/O macros. Refer to “Automatic Global I/O Insertion” on page 57 for
more information.

I/O Buffer Insertion
Use the “mode” option to specify when I/O macros are to be inserted.
Use “chip” to add I/O macros to top-level ports that do not have I/O
macros already added. Use “block” when no I/O insertion is desired.
The default value is “block.” For example:

mode:chip

Specifying the First Clock
Use the “clka” option to specify the first global routed clock port name.
A CLKBUF macro is added to the specified port when the “mode”
option is set to “chip.” For example:

clka:clock1

In this example, a CLKBUF macro is added to the clock1 port during
optimization.

Specifying the Second Clock
Use the “clkb” option to specify the second global routed clock port
name. A CLKBUF macro is added to the specified port when the
“mode” option is set to “chip.” For example:

clkb:clock2

In this example, a CLKBUF macro is added to the clock2 port during
optimization.
70

Batch Mode Options Usage Examples
Specifying the Hardwired Clock
Use the “hclk” option to specify the global hardwired clock port name.
An HCLKBUF macro is added to the specified port when the “mode”
option is set to “chip.” This option is only available for ACT 3 and SX
devices. For example:

hclk:hclock

In this example, an HCLKBUF macro will be added to the hclock port
during optimization.

Port and
Instance Name
Matching

Use the “portinstname” option to specify a unique port name and I/O
macro instance name. A number of CAE systems do not allow identical
names to be used for the port and the I/O macro instance names. Use
“unique” to specify that different names be used for the port name and
the I/O macro instance name. Use “match” to specify that identical
names be used. The default value is “unique.” For example:

portinstname:match
71

Appendix A: Using ACTmap in Batch Mode
Block Merging Use the “merge” option to set specify when external netlists are to be
merged. The default value is “on.” For example:

merge:on

In this example, all referenced ADL and EDIF netlists are merged into
the top-level design.

Sequential
Type

Use the “ff_type” to specify what implementation of sequential macros
to use if you are designing for radiation environments. The “cc” option
implements combinatorial macros only (54SX devices to not support
combinatorial macros). The “tmr” option implements triple voting
macros only. The default value is “default,” which uses standard
macros. For example:

ff_type:tmr

In this example, ACTmap will use triple voting macros only in the
design that is being compiled/optimized.
72

B
Product Support

Actel backs its products with various support services including
Customer Service, a Customer Applications Center, a Web and FTP site,
electronic mail, and worldwide sales offices. This appendix contains
information about using these services and contacting Actel for service
and support.

Actel U.S. Toll-Free Line
Use the Actel toll-free line to contact Actel for sales information,
technical support, requests for literature about Actel and Actel
products, Customer Service, investor information, and using the Action
Facts service.

The Actel Toll-Free Line is (888) 99-ACTEL.

Customer Service
Contact Customer Service for non-technical product support, such as
product pricing, product upgrades, update information, order status,
and authorization.

From Northeast and North Central U.S.A., call (408) 522-4480.
From Southeast and Southwest U.S.A., call (408) 522-4480.
From South Central U.S.A., call (408) 522-4434.
From Northwest U.S.A., call (408) 522-4434.
From Canada, call (408) 522-4480.
From Europe, call (408) 522-4252 or +44 (0) 1256 305600.
From Japan, call (408) 522-4743.
From the rest of the world, call (408) 522-4743.
Fax, from anywhere in the world (408) 522-8044.
73

Appendix : Product Support
Customer Applications Center
The Customer Applications Center is staffed by applications engineers
who can answer your hardware, software, and design questions.

All calls are answered by our Technical Message Center. The center
retrieves information, such as your name, company name, phone
number and your question, and then issues a case number. The Center
then forwards the information to a queue where the first available
application engineer receives the data and returns your call. The
phone hours are from 7:30 a.m. to 5 p.m., Pacific Standard Time,
Monday through Friday.

The Customer Applications Center number is (800) 262-1060.

European customers can call +44 (0) 1256 305600.

Guru Automated Technical Support
Guru is a Web based automated technical support system accessible
through the Actel home page (http://www.actel.com/guru/). Guru
provides answers to technical questions about Actel products. Many
answers include diagrams, illustrations and links to other resources on
the Actel Web site. Guru is available 24 hours a day, seven days a
week.

Web Site
Actel has a World Wide Web home page where you can browse a
variety of technical and non-technical information. Use a Net browser
(Netscape recommended) to access Actel’s home page.

The URL is http://www.actel.com. You are welcome to share the
resources we have provided on the net.

Be sure to visit the “Actel User Area” on our Web site, which contains
information regarding: products, technical services, current manuals,
and release notes.
74

FTP Site
FTP Site
Actel has an anonymous FTP site located at ftp://ftp.actel.com. You
can directly obtain library updates, software patches, design files, and
data sheets.

Electronic Mail
You can communicate your technical questions to our e-mail address
and receive answers back by e-mail, fax, or phone. Also, if you have
design problems, you can e-mail your design files to receive assistance.
The e-mail account is monitored several times per day.

The technical support e-mail address is tech@actel.com.
75

Appendix : Product Support
Worldwide Sales Offices

Headquarters
Actel Corporation
955 East Arques Avenue
Sunnyvale, California 94086
Toll Free: 888.99.ACTEL

Tel: 408.739.1010
Fax: 408.739.1540

US Sales
Offices

California

Bay Area
Tel: 408.328.2200
Fax: 408.328.2358

Irvine
Tel: 949.727.0470
Fax: 949.727.0476

San Diego
Tel: 619.938.9860
Fax: 619.938.9887

Thousand Oaks
Tel: 805.375.5769
Fax: 805.375.5749

Colorado

Tel: 303.420.4335
Fax: 303.420.4336

Florida

Tel: 407.677.6661
Fax: 407.677.1030

Georgia

Tel: 770.831.9090
Fax: 770.831.0055

Illinois

Tel: 847.259.1501
Fax: 847.259.1572

Maryland

Tel: 410.381.3289
Fax: 410.290.3291

Massachusetts

Tel: 978.244.3800
Fax: 978.244.3820

Minnesota

Tel: 612.854.8162
Fax: 612.854.8120

North Carolina

Tel: 919.376.5419
Fax: 919.376.5421

Pennsylvania

Tel: 215.830.1458
Fax: 215.706.0680

Texas

Tel: 972.235.8944
Fax: 972.235.965

International Sales
Offices

Canada
Suite 203
135 Michael Cowpland Dr.,
Kanata, Ontario K2M 2E9

Tel: 613.591.2074
Fax: 613.591.0348

France
361 Avenue General de Gaulle
92147 Clamart Cedex

Tel: +33 (0)1.40.83.11.00
Fax: +33 (0)1.40.94.11.04

Germany
Bahnhofstrasse 15
85375 Neufahrn

Tel: +49 (0)8165.9584.0
Fax: +49 (0)8165.9584.1

Hong Kong
Suite 2206,
Parkside Pacific Place,
88 Queensway

Tel: +011.852.2877.6226
Fax: +011.852.2918.9693

Italy
Via Giovanni da Udine No. 34
20156 Milano

Tel: +39 (0)2.3809.3259
Fax: +39 (0)2.3809.3260

Japan
EXOS Ebisu Building 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150

Tel: +81 (0)3.3445.7671
Fax: +81 (0)3.3445.7668

Korea
135-090, 18th Floor,
Kyoung AmBldg
157-27 Samsung-dong
Kangnam-ku, Seoul

Tel: +82 (0)2.555.7425
Fax: +82 (0)2.555.5779

Taiwan
4F-3, No. 75, Sec. 1,
Hsin-Tai-Wu Road,
Hsi-chih, Taipei, 221

Tel: +886 (0)2.698.2525
Fax: +886 (0)2.698.2548

United Kingdom
Daneshill House,
Lutyens Close
Basingstoke,
Hampshire RG24 8AG

Tel: +44 (0)1256.305600
Fax: +44 (0)1256.355420
76

Glossary

ACTgen Macro Builder Software A program developed by Actel to
generate custom macros for a specific Actel Family architecture.

architecture VHDL name used for the section of code that defines the
behavior or composition of a block.

attribute A VHDL property that can be attached to signals or
instances.

behavioral VHDL VHDL code written to describe the functionality of
a design without regard for a specific architecture.

binding statement VHDL declaration of entity/architecture pair.

bit Signal type having logic states 0 and 1.

case A VHDL statement used to synthesize a selected signal
assignment within a process.

clocked process A VHDL statement used to synthesize circuits with
flip flops, registers, latches, or any other type of clocked logic.

compact encoding When states are decoded for minimum area.

component declaration A VHDL statement that references the name
and I/O ports of an entity that will be used in a block.

component instantiation The occurrence of an entity in a VHDL
block, similar to the placement of a part on a schematic.

configuration file A text file used to assign values to ACTmap
options.

constant declaration A VHDL statement defining the type and value
of a constant.

dataflow method A style of VHDL code that represents a lower level
of abstraction than behavioral VHDL while still not resorting to a true
gate- level structure.

design file A text file used to describe the behavior of a design block.

entity A VHDL statement used to identify a functional piece of a
system and its I/O connections.
77

Glossary
enumerated types VHDL data types that are defined to have a fixed
number of unique states.

explicit mapping A VHDL port mapping style that maps the port
name to a signal, regardless of the port order. This is also referred to as
Named Port Mapping.

function A VHDL subprogram that has only one output. This is used
to simplify the coding of repetitive or commonly used circuit
operations.

Gray encoding States are defined so that only one bit changes at a
time.

implicit mapping A VHDL port-mapping style that maps the a given
signal to a given port, based on the port order.

initialization file A text file used to assign values to ACTmap options.
This is also referred to as a configuration file.

I/O insertion The automatic addition of I/O buffers to ports not
having I/O buffers.

Johnson encoding Like the Gray Code, the Johnson algorithm
identifies long paths and applies successive Johnson codes on the path
nodes.

keywords Words reserved by the VHDL language.

libraries A convenient mechanism for storing commonly used VHDL
functions and for defining data types.

one-hot encoding each bit in the state machine is mapped to a single
register for maximum speed.

operators A VHDL keyword or symbol that causes an operation to
occur between signals.

overloading A VHDL technique used to define operations between
the same and different types of data, thus making it possible to mix
integer, bit, and other data types.

package VHDL code that is generally used to define the names and
the inputs and outputs of the functions in the library.
78

Glossary
port map A list of the specific signals connected to the I/O ports of a
instance of an entity.

procedures A VHDL subprogram having multiple outputs used to
simplify the coding of repetitive or commonly used circuit operations.

processes A VHDL block of code that waits for some condition to
occur and, in response, causes some other action.

reserved words Words reserved by the VHDL language.

resource sharing A style of writing VHDL that takes advantage of
commonly shared functions such as adders, thus reducing the number
of gates needed to implement a function.

Register Transfer Level (RTL) VHDL VHDL code written to describe
the detail behavior of a design, but without regard for the gate-level
details.

sensitivity list A list of the signals that a process waits for.

sequential encoding Sequential encoding identifies the long paths
and applies successive radix 2 codes on the nodes of the paths. The
radix 2 code helps in minimizing area because it can efficiently
minimize next-state equation complexity of paths.

sequential remapping A pre-optimization technique that divides
sequential library elements into smaller and more basic elements.

slices A portion of a bus or register.

std_ulogic A nine state logic value system. Also referred to as MVL9,
for Multi-Valued Logic, 9 states. Actel does not recommend using this
state system in VHDL designs.

test bench A VHDL entity used to generate the input signals for the
design being tested and to monitor the results at the output ports or at
points internal to the entity.

VHDL VHSIC Hardware Description Language developed by the
United States Government during the 1980s to support the electronic
design communities.
79

Index
<act_fam> variable viii

A
Actel

Component Package 48
Device Families viii
FTP Site 75
Manuals ix
Web Based Technical Support 74
Web Site 74

ACTgen
Adder Template 30
Case Statement Multiplexer Template 29
Counter Template 24
Decrementer Template 32
If Statement Multiplexer Template 26
Incrementer Template 32
Inferring Adders 30
Inferring Counters 24
Inferring DecrementersDecrementers 31
Inferring Incrementers 31
Inferring Macros 24–30
Inferring Multiplexers 25–30
Inferring Multipliers 30
Inferring Subtractors 30
Instantiating Macros 21
Multiplier Template 31
Subtractor Template 30
With Statement Multiplexer Template 28

actgenmacro 69
ACTmap

Batch Mode 61–72
Batch Mode Options 64
Blocks 3
Design Flow 2
Invoking in Batch Mode 61
VHDL Guidelines 53
ACTmap Limitations

Bi-directional Buffers 50
Bus Width 51
Character Case 50
Event Constructs 50
Loop Statements 52
Multi-dimensional Busses 51
Multiple Clock Events 51
Unsupported Data Types 52
VHDL 92 51
VHDL 93 51
Wait For Time Construct 52

Adders 30
Adding Blocks to a schematic 3
All to Outpad Constraint 57
All to Setup Constraint 57
ami file 63
Architecture Description 7
Assumptions viii
Attributes 19

donttouch 19, 54, 55
Automatic I/O Insertion 57

B
Batch Mode 61–72

actgenmacro 69
cell 68
clka 70
clkb 70
Command Line Format 62
Configuration (ami) File 63
edninflavor 67
fam 67
flatten 69
globalconstraint 69
81

Index
hclk 71
infile 66
initfile 66
logfile 66
mapstyle 68
maxfanout 68
merge 72
mode 70
Options 64
outfile 67
outformat 67
portinstname 71
seqremap 68
state 69

Bi-directional Buffers 50
Bit Type 9
Block Statement 18
Blocks 3

Functional 55
Boolean Type 9
Bus

Multi-dimensional 51
Bus Width 51

C
Capturing a Design 2
Case Statement 17
cell 68
Cells

ACTgen Macros 21
Instantiating 20–21
Library Macros 20
RAM 58
Wide Decoder 58

Character Case 50
Circuit 6–8
82
Architecture Description 7
Entity Description 7

clka 70
clkb 70
Clock Frequency Constraint 57
Clock to Outpad Constraint 57
Compact Encoding 56
Comparator Inferring 33
Configuration (ami) File 63
Constant Type 13
Constraint 57

All to Outpad 57
All to Setup 57
Clock Frequency 57
Clock to Outpad 57
Global 57
Inpad to Outpad 57
Inpad to Setup 57
Maximum Delay 57

Construct 50
Wait For Time 52

Contacting Actel
Customer Service 73
Electronic Mail 75
Technical Support 74
Toll-Free ??–73
Web Based Technical Support 74

Conventions viii
<act_fam> variable viii
Naming, VHDL 5

Counters 24
Creating a Configuration (ami) File 63
Customer Service 73

D
Data Type 9–13

Index
Unsupported 52
Declaring a Circuit 6–8

Architecture Description 7
Entity Description 7

Declaring a Signal 9
Design Constraint 57

All to Outpad 57
All to Setup 57
Clock Frequency 57
Clock to Outpad 57
Global 57
Inpad to Outpad 57
Inpad to Setup 57
Maximum Delay 57
Setting Design Constraints 57

Design Creation/Verification 2
Behavioral Simulation 2
EDIF Netlist Generation 3
Structural Netlist Generation 3
Structural Simulation 3
Synthesis 2
VHDL Source Entry 2

Design Flow 2
Design Creation/Verification 2
Design Implementation 3
Schematic-Based 4

Design Implementation 3
Place and Route 3
Timing Analysis 4
Timing Simulation 4

Design Layout 3
Design Optimization 53–60

Automatic I/O Insertion 57
Design Constraints 57
Design Size 55
Gated Macros 60
General Guidelines 53
Limiting Optimization 54
Logic Design Type 54
Memory Requirements 56
Optimization Level 54
Optimizing Functional Blocks 55
Quad Clocks 58
RAM Cells 58
Sequential Remapping 58
State Machine 56
State Machine Algorithms 56
Structural VHDL 55
VHDL Guidelines 53
Wide Decoder Cells 58

Design Synthesis 2
Designer

DT Analyze Tool 4
Place and Route 3
Timing Analysis 4

Device
Families viii
Programming 4
Verification 4

Document Assumptions viii
Document Conventions viii
Document Organization vii
donttouch 19, 54, 55
Double Process Finite State Machine (FSM) 42
DT Analyze

Static Timing Analysis 4

E
EDIF Netlist Generation 3
edninflavor 67
Electronic Mail 75
Entity Description 7
83

Index
Enumerated Type 9
Event Constructs 50

F
fam 67
Finite State Machine (FSM) 40–48

Algorithms 56
Double Process 42
Mealy State Machine Code 44
Single Process 41
User Defined 46

flatten 69
Flip-Flops 37
For-Generate

Loop 18
Statement 18

G
Gated Macros 60
Gate-Level Netlist 2
Generating

EDIF Netlist 3
Gate-Level Netlist 2
Structural Netlist 3

globalconstraint 69
Gray Encoding 56

H
Half Adder 8
hclk 71
HDL

Design Flow 2
Hierarchy in VHDL 22

I
I/O Insertion 57
84
IEEE Packages 49
If Statement 15
If-Generate Statement 18
Incomplete Construct Value Specification 39
Incomplete Sensitivity Lists 38
Incrementers 31
Inferring ACTgen Macros 24–30

Adders 30
Counters 24
Decrementers 31
Incrementers 31
Multiplexers 25–30
Multipliers 30
Subtractors 30

Inferring Flip-Flops 37
Inferring Latches 38
Inferring Multiplexers 37
infile 66
initfile 66
Inout Parameters 49
Inpad to Outpad Constraint 57
Inpad to Setup Constraint 57
Instantiating Cells 20–21

ACTgen Macros 21
Library Macros 20

Integer Type 13
Intermediate Signals 49

J
Johnson Encoding 56

K
Keywords, VHDL 5

L
Latches 38

Index
Library Macros 20
Limitations 50

Bi-directional Buffers 50
Bus Width 51
Character Case 50
Event Constructs 50
Loop Statements 52
Multi-dimensional Buses 51
Multiple Clock Events 51
Unsupported Data Types 52
VHDL 92 51
VHDL 93 51
Wait For Time Construct 52

Limiting Optimization 54
logfile 66
Logic Condition 15–18

Case Statement 17
If Statement 15
Select Statement 17
When Statement 16

Loop Statements 52

M
Macro

Gated 60
Mapping 21
mapstyle 68
maxfanout 68
Maximum Delay Constraint 57
Mealy State Machine Code 44
Memory Requirements for Optimization 56
merge 72
mode 70
Multi-dimensional Busses 51
Multiple Clock Events 51
Multiplexers 25–30, 37
Multipliers 30

N
Naming Conventions, VHDL 5
Netlist Generation

EDIF 3
Gate-Level 2
Structural 3

O
One-Hot Encoding 56
On-Line Help xi
Operators 14–15
Optimization 53–60

Decreasing Time For 56
Functional Blocks 55
Level 54
Limiting 54
State Machine 56

outfile 67
outformat 67

P
Packages 48

Actel Component 48
IEEE 49

Place and Route 3
Port Mapping 21
portinstname 71
Positional Mapping 21
Preserving Character Case 50
Procedures 49

Inout Parameters 49
Intermediate Signals 49

Processes 35–40
Incomplete Construct Value Specification 39
85

Index
Incomplete Sensitivity Lists 38
Inferring Flip-Flops 37
Inferring Latches 38
Inferring Multiplexers 37

Product Support 73, 74, 75, 76
Customer Applications Center 74
Customer Service 73
Electronic Mail 75
FTP Site 75
Technical Support 74
Toll-Free Line 73–??
Web Site 74

Programming 4

Q
Quad Clocks 58

R
Radiation 60
RAM Cells 58
Related Manuals ix
Repetitive Operations 18–19

For-Generate Loop 18
For-Generate Statement 18
If-Generate Statement 18

S
Schematic-Based Design Flow 4

System Verification 4
Select Statement 17
seqremap 68
Sequential Encoding 56
Sequential Remapping 58
Signal Declaration 9
Simulation 2, 3, 4

Behavioral 2
86
Structural 3
Timing 4

Single Process Finite State Machine (FSM) 41
Slice 12
state 69
State Machine

Algorithms 56
Compact Encoding 56
Design 40–48
Double Process 42
Encoding Options 56
Gray Encoding 56
Johnson Encoding 56
Mealy State Machine Code 44
One-Hot Encoding 56
Optimization 56
Sequential Encoding 56
Single Process 41
User Defined 46
User Defined Encoding 56

Static Timing Analysis 4
Std_Logic Type 11
Structural Netlist Generation 3
Structural Simulation 3
Structural VHDL 22, 55
Subtractors 30
Supported Operators 14–15
Supported Packages 48

Actel Component 48
IEEE 49

Synthesis 2
System Verification 4

Silicon Explorer 4

T
Technical Support 74

Index
Timing Analysis 4
Timing Simulation 4
Toll-Free Line 73–??
Type 9–13, 52, 54

Bit 9
Boonlean 9
Choosing 54
Constant 13
Enumerated 9
Integer 13
Std_Logic 11
Unsupported 52
User Defined 10
Vector 11

U
Unit Delays 2
User Defined

Encoding 56
Finite State Machine (FSM) 46
Type 10

Using Procedures 49
Inout Parameters 49
Intermediate Signals 49

V
variable, <act_fam> viii
Vector

Slice 12
Type 11

VHDL
92 51
93 51
Character Case 50
Guidelines 53
Naming Conventions 5
Reserved Words 5
Source Entry 2
Structural 22, 55

W
Wait For Time Construct 52
Web Based Technical Support 74
When Statement 16
Wide Decoders Cells 58

X
XOR 35
XOR Tree Inferring 35
87

	Table of Contents
	List of Figures
	Introduction
	Document Organization
	Document Assumptions
	Document Conventions
	Actel Manuals
	On-Line Help

	ACTmap Design Flow
	Design Flow Illustrated
	Design Flow Overview

	Using ACTmap VHDL
	VHDL Naming Conventions and Keywords
	Declaring a Circuit
	Signals
	Operators
	Logic Conditions
	Repetitive Operations
	Attributes
	Instantiating Cells
	Creating Hierarchy
	Inferring ACTgen Macros
	Processes
	State Machine Design
	Supported Packages
	Using Procedures
	Limitations

	Advanced Optimization Techniques
	ACTmap VHDL Guidelines
	General Optimization Guidelines
	State Machine Optimization
	Setting Design Constraints
	Automatic Global I/O Insertion
	3200DX and 42MX
	Sequential Remapping in Netlist Optimization
	Gated Macros
	Designing for Radiation Environments

	Using ACTmap in Batch Mode
	Invoking ACTmap in Batch Mode
	Command Line Format
	Creating a Batch File
	Creating a Configuration File
	ACTmap Options
	Batch Mode Options Usage Examples

	Product Support
	Actel U.S. Toll-Free Line
	Customer Service
	Customer Applications Center
	Guru Automated Technical Support
	Web Site
	FTP Site
	Electronic Mail
	Worldwide Sales Offices

	Glossary
	Index

