Libero IDE v6.1 User’s Guide

Actel Corporation, Mountain View, CA 94043

© 2004 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5029120-10

Release: October 2004

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of merchantability or fitness for a
particular purpose. Information in this document is subject to change without notice. Actel assumes no responsibility for any errors

that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized person without prior
written consent of Actel Corporation.

Trademarks

Actel and the Actel logotype are registered trademarks of Actel Corporation.

Adobe and Acrobat Reader are registered trademarks of Adobe Systems, Inc.

Mentor Graphics, Precision RTL, Exemplar Spectrum, and Leonoardo Spectrum are registered trademarks of Mentor Graphics, Inc.
WaveFormerLite is a registered trademark of SynaptiCAD, Inc.

Synplify is a registered trademark of Synplicity, Inc.

Sun and Sun Workstation, SunOS, and Solaris are trademarks or registered trademarks of Sun Microsystems, Inc

Synopsys is a registered trademark of Synopsys, Inc.

Verilog is a registered trademark of Open Verilog International.

Viewlogic, ViewSim, ViewDraw and SpeedWave are trademarks or registered trademarks of Viewlogic Systems, Inc.

Windowsis a registered trademark and Windows NT is a trademark of

Microsoft Corporation in the U.S. and other countries.
UNIX is a registered trademark of X/Open Company Limited.

All other products or brand names mentioned are trademarks or registered trademarks of their respective holders.

Libero IDE v6.1 Users Guide

Table Of Contents

What's New in Libero IDE v6.1 ..., 1
Libero IDE Design FIoWccccoiiiiiiiiiiicic s 3
Creating a New Libero Project ..o 5
Opening Your Libero Project...........c.ccccoiiiiiiiiiiiii 5
Project Implementations in Libero IDE ..., 5
Saving a Project with a New Nameccocooiiiiiiiiiii s 6
Closing and EXIting.........ccccooiiiiiiiiiiii s 7
Project SOUICEScoiiiiiiiiiic 7
New Files ..o 7
Importing Files..........ccoooiiiiiiiiii s 8
Libero IDE File types........coooviiiiiiiiiecc s 8
SAVING FALES ..o 9
Deleting FIles ... 9
Finding Files. ... 10
Finding Modules ... 10
Reserved Actel KeywWords...........ccciiiiiiiiiiiiici s 11
Libero Project Optionsc.cciiiiiiiiiiiiiic 11
Libero Project Settings............cccuviiiiiiiiiiiiii i 11
Programming..........ccocooiiiiiiiiii 11
Setting Your Project Profile...........cccoooiiiiiiiiiii 12
VHDVL Package Files Organizationcccooviiiiiiiiiiiiiisss s 12
Verilog Header File Organizationc.coviiiiiiiiiiiic 12

Table Of Contents

Setting Preferences...........ccocooiiiiiiiiiiiii 12
UPAtes ... 13
Setting Your Proxy ..o 13
Sartup Tab ..o 13
Setting Your log Window Preferences............c.ccoooviiiiiiiiiiiiiie, 14
Text EdItor ... 14
Libero’s Project Manager............c.ccciiiiiiiiiiiiiic s 15
Design Hierarchyc.ccooiiiiiiiiii 15
File IMIANagercooviiiiiiii 16
Design FIow WIndowccoviiiiiiiiiiii 17
HDL Editor WINdowcccoiiiiiiiiieee e 18
Log WINAOW........oiiiiiicci s 18
Using the HDL Editor..........ccoooiiiiiiiii e 19
Creating New HDL Filescccooiiiiiiii s 19
Opening an HDL Source File ..o 20
Importing HDL Source Files............cccooooiiiiiiiiiicc e, 20
HDL Syntax ChecKer...........cocoiiiiiiiiir s 20
Commenting TeXt.......ccoouiiiiiiiiiiieee s 20
Using ACTZEN COTES.......cviiiiiiiiiiici et 20
ViewDraw AE ... 21
Importing SChematicsccoiiiiiiiiiii 21
Opening a Schematic Source Filecccoooiiiiiiiiiiiii 21
Using ACTZEn COores........ooviiiiiiiiiiciiise et 22

Libero IDE v6.1 Users Guide

Vi

Synthesis OVEIVIEWcocociiiiiiiiiiiiii s 22
Post-Synthesis Filesccccooiiiiiiiiiii 22
SYNPLEY ..o 23
Synthesizing Your Design with Synplifyc..cooiiiiiii, 23
Integrating Precision RTL..........cooiiiiiiiiic e 23
Starting Precision RTL ... 24
Integrating LeonardoSpectrumcccooiiiiiiiiiiiiiicc 24
Synthesizing Your Design with LeonardoSpectrum............cccooviiiiininiiiiiin 25
Integration ISSUESc.ccooviiiiiiiiiii 25
Activating and Deactivating PALACE for Physical Synthesis.............cccocconniiinininns 25
Physical Synthesis Files in Liberoccccooiiiiiiiiiiiccc s 26
Using the PALACE T00L ... 26
WaveFormer Lite ..o 29
Creating Your Testbench with WaveFormer Lite ... 29
ModelSim AE ... 30
Setting Your Simulation Options..........c.ccccoviiiiiiiiiiiiiii i 30
Selecting a Stimulus File for Simulation...........c.cocooiiiiiiiiiic 31
Selecting Additional Modules for Simulationccocoovvviiiiiiiiiic 31
Performing Functional Simulation.............cccociiiiiiiiiiii s 32
Performing Timing SImulationccccceiiiiiiiiiiniicec e 32
Welcome to Designer.........c..coovviiiiiiiiiiiii 34
Starting DesIgNercccooviiiiiiiii 35
Starting a New Designcccooviiiiiiiiiii 35

Table Of Contents

Opening an Existing DeSignoooerrrrrrooessssssssssssosimmoseeeseeeessssssssssssssoooooe 36
Opening Designs Created in Previous Versionsc.cooviiiiiiiiiiiiicn 36
Opening Locked Files...........cccoooiiiiiiiiiiiiii 37
Starting other applications from Designer (PC only)...........ccccocoviiiiiiiiiiiiicce 38
About Your Installation ..o 38
Directory Preferences...........ccoooiiiiiiiiiiiiiii 39
UPAALES ... 39
Proxy ..ociiiii 39
File Association (PC Only)coiiiiiiiiiiiiiicce e 39
Setting Your Log Window Preferences...........cccoccoviiiiiiiiiiiiiicc 40
PDF Reader (UNIX Only)cocoooiiiiiiiiiiiiecc e 40
Web Browser (UNIX Only).........cooioiiiiiiiiiic e 40
Device Selection Wizardcoiiiiiiiiiciiiiccc e 40
Setting Die, Package, Speed, and Voltage...............ccccooviviiiiiiii 41
Device VArIAtIONSc..oviiiiiiiiiiieicee e 41
Setting Operating Conditionsccocoviviiiiiiiiiii 41
Changing Design Name and family..............cccoooiiiiiii 42
Changing Device Information............ccccoeiiiiiiiiiiiii 43
Importing Source Files..........cccccooiiiiiiiiiiiii 43
AUditing FAlesccooiiiiiiiiii 45
Importing Auxiliary Files.........ccccoooiiiiiiiiiiiii i, 45
Keep Existing Timing Constraints in SDC Files..........cccoooiiiiiiiiciiiiccccn 46
Keep Existing Physical Constraintsccococooiiiiiiiiiiiiniss s 47

vii

Libero IDE v6.1 Users Guide

viii

Compiling Your Design.........ccccooiiiiiiiiiiiiiiic s 47
Setting Compile OPHONSccooiviiiiiiiiiiicc 47
MX, SX, SX-A, eX Compile OPtionsccceviiiiiciiiiiiiiii e, 48
Axcelerator Compile Optionscocciiiiiiiiiiiii 48
ProASIC and ProASICPLUS Compile Options...........ccccovviiiiiiiiiiiciiiccns 48
ProASIC3/E Compile Optionscccociiiiiiiiiiiiiiics s 49
About Design Constraintscoieiiiiiiiiiiiiii i 53
About Location and Region Assignments..........ccccooevviiiiniiiiiiisiesesee s 54
About Physical Constraints and Attributes............c.coovoiiiiiiiiiiiiiic s 54
Types of Physical Constraintscoviieiiirinieciinee e 55
Timing Constraints..........cccoviiiiiiiiii s 55
Running LAYOUL ..o e 56
Axcelerator Layout Options.............cooviiiiiiiiiiiiiiiiiiii s 56
ProASIC3/E, ProASICPLUS, and ProASIC Layout Optionsccccccovricrinnnnnnne. 57
ProASIC3/E, ProASICPLUS, and ProASIC Layout advanced Options 58
eX, SX, SX-A Layout OPtions...........ccoiriiiiiiriiiiisscse s 58
eX, SX, and SX-A Advanced Layout Optionsccccoeoiniiiiiiiiinici e 59
ACT, MX, and DX Layout Options............cccccouviiiiiiiiiiiiiiiiiiis s 59
ACT, MX, and DX Advanced Layout Options.............ccccooininiiiiiiiiiniiiiiiiis 60
Incremental Placement............cooooiiiiiiiiiiiiii s 60
Multiple Pass Layout............cccocviiiiiiiiiiiiii 60
Analyzing Timing in Your Designcccooiiiiiiiiiiiiiccec s 61
Analyzing Power Consumption in Your Design...........cccocoiiiiiiiiiniiiien, 61

Table Of Contents

Viewing Your Nethist..........cocoovviiiiiiiiiiiiic 62
Back-ANNotation............ccociiiiiiiiiiiiiiicc s 62
Available Report Typesccoviiviiiiiiiiiiiiiiiiiiii s 63
Status Reports ..o 64
Timing Reportsccccouiiiiiiiiiiiii s 64
Pin Reports ..o 64
FLip-Flop Reports........ccccoiiiiiiiiiiiiiiiicii 65
Power Reportscccoiiiiiiiiiiiiiii 65
Timing Violations RePOortsccccoiiiiiiiiiiiiiec e 66
I/0 Bank Reports.........ccocoiiiiiiiiiiiiiiici 66
EXporting Files ..o 68
Saving Your Design........cooiiiiiiiici s 70
Exiting DeSIgner...... ..o 70
Generating Programming Filesc..ccooiiiiiii 70
Starting Silicon Sculptor from Libero IDE ..., 71
Generate a Programming File...........c..cccocooii 71
SIHCON SIZNATUTE. ..o s 72
Programming Security SEttingsccocovviiiiiiiiiiiiii 73
Custom Security Levels..........ccccoiiiiiiiiiiii 74
Programming the FlashROMccocoiiiiiiiii s 77
Custom Serialization Data for FlashROM region...........cccccooviiiiiiiiiiiiie, 79
Custom Serialization Data File Formatccc.ccooiiiiiiiiii 80
Programming the FPGA Arraycccooiiiiiiiiiiii s 83

Libero IDE v6.1 Users Guide

Reprogramming a Secured Device............ccoviiiiiiiiiii 83
FIashLOCK ..o 84
Generating Bitstream and STAPL Filescccooiiiiiiiiiicec s 85
Generatinga Fuse File ..., 85
Generating Prototype Files...........c.ccoooviiiiiiiiiiii 86
About Tl Commands..........coviviiiiiiiiiii s 87
Tecl Documentation CONnVENTIONScovcveiiiirinieieiirne et 89
DaCKANNOTALE. ...t 91
CloSe_deSIZN ... oo 92
COMPILE.....oiiii s 93
o 4 10 OO RO 99
extended_run_shell............cccooiiiiiii s 99
get_defvar ... 101
get_design_filelName............cocociiiiiiiiiii s 101
get_design_info ... 102
R0 0103 o 11 GO 104
IMPOIt_SOUICE ..ot 105
is_design_loaded...........c.ccooiiiiiiiiiiii 108
is_design_modified............ccocoiiiiiiiiiiiii 109
is_design_state_complete..........ccocoiiiiiiiiiiiii 110
JAYOUL ..o 111
layout (Advanced Options for the SX family).........cccoviiiiiiiiiicie e, 112
layout (Advanced Options for ProASIC and ProASICPLUS)ccoooviiiiniicnnnen, 113

Table Of Contents

layout (Advanced Options for Axcelerator)...........coouiiiriiiiiiniiciciniieese e, 115
NEW_dESIZI ...t 117
OPEN_dESIZN....ocviiiiiiiii 118
PIN_ASSIZIL 1.viviiiiiiiiie s 119
PIN_COMIMT L..uiiviiiiiti ittt b bbb 122
PIN_fIX oo 123
PIN_BIX_All .o 124
PAIN_UNASSIZIN ...t s 124
Pin_unassign_all.........ccooiiiiiiii 125
PIN_UNEIX .o 126
0 0T) o OO O U OPOPER 127
SAVE_AESIZI ... 127
SEE_A@SIZIL ...t 128
SEE_AEVICEcuiiiiiiii 129
RS e L3 Az » TR 130
smartpower_add_pin_in_domain ... 131
SMATtPOWET_COMUIIT.euiitiitiiitiiti ettt bbb bbb 132
smartpower_create_domaincccocviviiiiiiii 133
smartpower_remove_domain..........ccocoeviiiiiiiiii 134
smartpower_remove_pin_frequency ... 135
smartpower_remove_pin_of_domain..........cccocoeiiiiiiiii 135
SINATTPOWEL_TESTOTEveiviiiiieiiesie ittt sb e bt sa bbb bbb d bbb bbb 136
smartpower_set_domain_freqUencycccoviiiiiiiiiiii i 137

xi

Libero IDE v6.1 Users Guide

Xii

smartpower_set_pin_freqUuency ... 138
timer_add_clock_exception............cccciiiiiiiiiiiiiii 139
timer_add_pass.........ccccciiiiiiiii 140
timer_add_stop.........ccciiiiiiiiii 140
L8 0TS & 03 047 4 ¥ X TR 141
timer_get_path ... 141
timer_get_clock_actuals............cccooiiiiiiiiiiiii 144
timer_get_clock_Constraints..........ccocooeiiiiiiiiiii 144
timer_get_maxdelayccooiiiiiiii 145
timer_get_path_Constraints............ccocooviiiiiiiiiiiii 146
timer_remove_clock_eXception...........c.cccuiiiiiiiiiiiiic 147
EIMNET_TEIMOVE_PASS ...eeiviiitiiiiisiiitie ittt sb et sb et b e be e e sbe s a s aaesbeeae s 147
tMET_TEMOVE_STOP....eiiiiiiiiiiiiiitiiie ettt 148
L0 0 01< D LY {0 1 R TP 149
timer_setenv_clock_freqccoiiiiiiiiiii 149
timer_setenv_clock_periodcccoiiiiiiiiiiii 150
timer_set_maxdelay............c.ccoooiiiiiiiii 151
timer_1remove_all CONSTIAINTS ...ooooeviiiiiiiiiiiieiieeeeeee ettt ettt ettt et ettt et e e e e et e e e e e e e e eeeeeerereeeeees 152
About Design Constraintscooviviiiiiiiiiii e 153
Designer Naming Conventionscc.cociviiiiiiiiiiii e 153
TAMING CONSIIAINES ... 154
Location and Region Assignment Constraintsc.ccooeeivniiiiiciiisicisees 154
I70 Assignment Constraintsccocooviiiiiiiiiiin s 154

Table Of Contents

AEEDULES ... e 155
Overview - Entering Constraints...........ccccocoovvviiiiiiiiiii i 155
Assigning I/0 Constraints..........ccooiiiiiiiiiiiiie s 155
Assigning Location and Region Constraints............ccococovviiiiiiiniiiiciicscscns 156
About Physical Design Constraint (PDC) Filescccocoviiiiiniiiiiiicice 156
Importing PDC Files (ProASIC3E, ProASIC3, and Axcelerator families only).......... 157
TYPes 0f CONSLIAINESecveiiiiiieicci e 158
ProASIC and ProASICPLUS Timing Constraints............cocoeeevrirnecninninseeennennens 159
GCEF to SDC Timing Constraints CONVErSion...........cccovreueiririnneeiininneeene e 159
GCF Syntax Conventionsccoeiiiiiiiiinisise s 159
Synopsys Design Constraints (SDC) Files............ccccccoooviiiiiiiiiicccccce, 161
ADOUt DCE FILEs........ooiiiiiicci s 161
DCF Syntax Rules...........cccooiiiiiiiiiicr e 162
About PIN FIles ... 164
Importing Auxiliary Files...........cooiiiiiiiiii s 165
I/0 Standards Compatibility Matrix...........cocooevviviiiiniiiiiiii 165
I/0 Standards and I/O Attributes Applicabilityc.ccoiiiiiiiiiiiiicc 166
GCF Constraint Quick Reference..............ccooviiiiiiiiiiiiiii e 166
About Global ReSource Constraintsccccoviviiiiiciiiiiisi s 167
Priority Order for Global Promotion..............cocoviiiiiiiiiiiie, 167
dont_fix_globalsccccooiiiiiii 167
FEAM L. 167
set_auto_global............ccoiiiiiiii 168

Xiii

Libero IDE v6.1 Users Guide

Xiv

set_auto_global_fanout..............ccccoiiiiiiii 168
set_global ... 168
set_noglobal............cccoiiiiiii 168
use_global ... 169
Netlist Optimization Constraints...........c.occovviiiiiiiini 170
Netlist Optimization Constraint Syntax...........ccccoceevviiiiiiiiiii 171
AONE_OPHIMIZE ..ot 171
16 103 s L 010 (s o VU TTRRRRR 171
OPLITUZE ...t 171
SEE_IMNAX. FATIOUL . ..eeee e e e oottt e e et e e ettt e e e e e e e ettt eee e e e e e e e eeeens 172
Placement Constraintsccoociiiiiiiiiiiii s 172
AV TS TSSO PR PR 172
Package Pin and Pad Location............cccccoviiiiiiiiiiiiiicc s 173
net_Critical_POrts...........coooiiiiiiiiiiiiii 174
set_critical. ... 174
SEt_CIItICAl_POIt.....cooiiiiiiiiiiiiiccc 174
SET_EIMPLY_ 101 uiitiiiitiiti et 175
Set_emPty_loCAtioN.......c.ccciiiiiiiiiiii 175
St _INIIAL 10 oo 175
set_INItial JOCAtION «.oooee e 176
ST 101ttt 176
SET_T10_TEIOM ...eiuiiiiiiiiii it 176
SEE LOCATION ..t e et e e e e ettt e e e et ettt e e e e et rae e e e r e —————— 176

Table Of Contents

SEt_MEMOTIY_TEZIOM ...cuiiiiiiiiiiiiitieie ettt b et b e b sbe b 177
SET_NET_TEZIOML ...uiuiiiiitiiiiiitiitee bbb 178
CrEate ClOCK ..o 178
generate_paths..........cccocoiiiiiiiii 178
set_false_path ... 179
set_input_to_register_delaycccoiiiiiiiiiiiii 179
set_max_path_delayccocooiiiiiiiiii 179
set_multicycle_path...........ccooiiiiiiiii 179
set_register_to_output_delay.............cooiiiiiiiiiiiii 180
About Physical Design Constraint (PDC) Filescccocooiiiiniiiiiiiicciiee 180
PDC Syntax Conventions...........ccccociviiiiiiniiinii s 181
PDC Naming COnventionscccucrueruririiisieniisise e 183
assign_global ClOCK ..o s 184
assign_10cal_clocK ... 185
E R g T Tl 1 T o LU 185
ASSIZN_TEGIOML ...oovviiiiiiiti it 186
define_region (rectangular region).........cccoiiiiiiiiiiiiiii 187
define_region (rectilinear reZion)..........ccceoviririeiiiiiiinisiec e 188
delete DUITEr tr@e....ccooo oo 189
dont_touch BUufer treeooooooiiiiiiii 190
880 (e o) s AT 191
reset_floorplan..........ccoeiiiiiiiiii 191
Do <1 A L PO 192

XV

Libero IDE v6.1 Users Guide

XVvi

DL Lo (o) 010 41 TR 193
reset_net_critical ... 194
ST 10 1.ttt ittt 194
St TODANK ..o 195
SEE _LOCALION ... 195
set_multitile_location (ProASIC3/E)ccoooiiiiiiiii et 196
S A s TLa ® & L (o) FRUTRTT ORI 199
SO VT .ot e ettt e e e ————raeen e —— 200
RS A 2o A o1 22101 (e R TP 201
unassign_global_clocK..........ccoiiiiiiiiiii 201
unassign_10cal_CloCK ... 202
UNAassign_macro_from_reZiON.........cocoiiiiriiiiiiiiirr s 203
OB BT e s T T D T (o B 204
undefine_region.........cocciiiiiiiiiiiii 204
Design Object Access Commands............ccoooiiiiiiiiiiiii s 205
ZEt_ClOCKS......oviiiiiiiiic 205
ZOT PAIIS ...t 206
BEE_POTES c.uiiiiiitiitiie e 206
AL INPULS o 206
Al OULPULS ... 207
create_clock (SDC clock CONStIAINL)cecivviiiiiiieie ittt 207
set_false_path (SDC false path Constraint)ccccoeeviirirnieiiinne s 208
set_load (SDC 1oad ConStraint)cceivveiririiiiiiie et sae st ae s sressree s 208

Table Of Contents

set_max_delay (SDC max path Constraint)ccccococeriiiiiiiciiiiicc e 209
set_multicycle_path (SDC multiple cycle path Constraint).............c.ccccoeoviiircioninnnne 210
SDC Command Limitationscccceiiiiiiiiiiiieieiec s 211
global_ClOCKS.......cciiiiiiii 211
max_delays/min_delays.............ccocoiiiiiiiiiii 212
1O ATTIVAL THIIES ..ottt e e e e et e e e et e e e et e e e et e e e e e e e e e e 213
ZLODAL_STOPS ... 214
PIN_10AAS. ... 214
I/70 Attributes by Familycccooooiiiiiiiiiiii 214
Bank NAMEcooiiiiiiii e 215
Hot SWappable ..o 215
Input Delay ..o 216
I/0 Standardoooiiiiii e 216
I/O Thresholdcc.cviuiiiiiiiie bbb 219
LLOCKEM ...ttt 220
IMEACTO CEIL ...ttt bbbt bbb 220
Output DIivecooiiiic 220
Output Load or Loading (pf)ccccoiiiiiiiiiiiiicccc s 221
Pin NUmMDETooviiii 222
POrt NAME ... 222
Power-Up State ... 222
Resistor Pull........cooiiiiiic e 223
SChMItt THIZEET ... 223

xvii

Libero IDE v6.1 Users Guide

xviii

SKEW ...ttt b bbbttt b et 224
SLEW ..t bbb b b e R bbb b bRt h bt n et be s 224
Use RegISter.......cociiiiiiiiiiii 225
Closing and EXIting.........ccocviiiiiiiiiiiiii s 227
Actel Headquarters...........c.cooviiiiiiiiiiiiiii s 229
Technical SUPPOLt ..o 230
CUSTOMET SEIVICE. ...ttt 230
UNIX Help Known ISSUesccccooiiiiiiiiiii 230
TOAEX s 231

What's New in Libero IDE v6.1

The following are highlights of new features for Libero IDE v6.1. For a more complete list, see the Libero IDE v6.1 release notes.
New help topics are highlighted by a red asterisk in the Table of Contents, as in the What's new in Libero IDE v6.1 topic.

Libero IDE v6.1 introduces software support for Actel's newest FPGA families, ProASIC3 and ProASIC3E. This release supports the
following devices and packages:

A3PEB00 600k Gate Enhanced Family Device:
208 PQFP
256 FBGA
484 FBGA
A3P250 250k Gate Device:
144 FBGA
208 PQFP
Software Features:
ACTgen support for
Clock Conditioning Capability (CCC) and PLL definitions via the Visual PLL Core Wizard
Dual-Port RAM and FIFO configurations
1kbit user Flash ROM (FROM)
FlashROM Simulation Flow
Synplify Synthesis AE provides optimized performance and utilization

Import of PDC (Physical Design Constraints) and SDC (Synopsys Design Constraints)

Multiple Compile options: combine registers with 1/Os, promote/demote global spines, automatic global promotion, local clock
maximum shared instances and lock clock buffer fan out selection
Enhanced Compile Report

MultiView Navigator, ChipPlanner, PinEditor, and Netlist Viewer enhancements; 1/0 Attribute Editor supports the wide range of
1/0 choices in ProASIC3/E, Quadrant region creation

Timing-Driven place-and-route results in optimized device performance in a push button manner; Incremental Place-and-Route
Timer supports SDC constraints and pre/post-timing analysis
Post layout power analysis
Timing Back-Annotation flow
Synapticad WaveFormer Lite
Reactive testbenches

VCD support

Libero IDE Design Flow

The Libero Design Flow consists of six steps:

Step One - Design Creation

Plan out your design and enter it as either HDL (VHDL or Verilog), structural schematic, or mixed-mode (schematic and RTL).

Step Two - Design Verification - Functional Simulation

After you have defined your design, you must verify that it functions the way you intended. After creating a testbench using
WaveFormer Lite, use the ModelSim VHDL or Verilog simulator to perform functional simulation on your schematic or HDL design.

Step Three - Synthesis/EDIF Generation

A design must be synthesized if the design was created using VHDL or Verilog. Use Synplify AE or Synplify Pro from Synplicity to
generate your EDIF netlist. You can re-verify your design "post-synthesis™ using the VHDL or Verilog ModelSim simulator used in
step two.

While all RTL code must be synthesized, pure schematic designs are automatically "netlisted" out via the Libero tools to create a
structural VHDL or structural Verilog netlist.

Step Four - Design Implementation

After you have functionally verified that your design works, the next step is to implement the design using the Actel Designer

software. The Designer software automatically places and routes the design and returns timing information. Use the tools that come
with Designer to further optimize your design. Use Timer to perform static timing analysis on your design, ChipEditor or ChipPlanner
to customize your I/O macro placement, PinEditor for 1/O customization, SmartPower for power analysis, and NetlistViewer to view
your netlist.

Step Five - Timing Simulation

After you are done with design implementation, you can verify that your design meets timing specifications. After creating a test
bench using WaveFormer Lite, use the ModelSim VHDL or Verilog simulator to perform timing simulation.

Step Six - Device Programming

Once you have completed your design, and you are satisfied with the timing simulation, create your programming file. Depending
upon your device family, you need to generate a Fuse or Bitstream programming file.

Libero IDE v6.1 Users Guide

Libero™ IDE Design Flow

ACTge.n — HDL Editor WaveFormer User
Macro Builder Lite™
Testbench
l Testbench

Stimulus Generation

Synthesis Synplify® Synthesis

Libraries

Functional Simulation

Model Sim®
Simulator

|
Design Synthesis and Optimization

ViewDraw®
Schematic Entry

Timing Simulation

MultiView Navigator
- - Compile Timer
L e oo o Static Timing Analysis and
1/0 Assignments Optimization and DRC Cloinas i 5 i
ChipPlanner or |_|
ChipEditor Layout SmartPower
Floorplanning . = pr—
1/0 Attribute Timing Driven Place-and-Route ower Anaysis
Editor [
Select 1/O Standards Back-Annotate —
. . . Back-Annotation Timing
NetlistViewer [— Fuse or Bitstream for Simulation

F S

Design Schematic Viewer

Cross-Probing

Silicon Sculptor
(Antifuse and Flash Families)

Silicon Explorer Il
(Antifuse Families)

FlashPro
(Flash Families)

FlashPro Lite
(ProASICPLUS Family)

BP Microsystems
Programmers

Tcl Scripting

Creating a New Libero Project

Use the New Project Wizard to create a new Libero project.

To create a new project:
1. From the File menu, select New Project. The New Project Wizard starts.
2. Follow the instructions in the Wizard and click Finish when done.

You must select a new family in order to complete the New Project Wizard and create a new project.
You may set the die and package now, or do it later in the design flow.

Opening Your Libero Project

Libero IDE opens your most recent project automatically. You can change your default startup preferences in the Startup tab.

To open a different project in Libero IDE:

1. From the File menu, select Close Project.

2. From the File menu, select Open Project or New Project. If you create a new project Libero IDE starts the New Project
Wizard.

Tip: The last five saved projects are available from the File menu. From the File menu, select Recent Projects, and then select the
project to open.

Tip: You can open an existing project by double-clicking the .prj file or dragging the .prj file over the Libero IDE desktop icon.

Project Implementations in Libero IDE

Implementations enable you to save different implementation files for individual projects. Use implementations to test different layout
runs for a particular project.

You can check your layout results for each implementation view; to do so, create as many implementations as you wish, and select
them from the Current implementation drop-down menu (available in the Implementation Toolbar) and run layout.
To create a new implementation:

Click the New Implementation button on the Implementation toolbar, or from the Implementations menu, select Add. The Add
Implementations dialog box appears, as shown in the figure below.

Libero IDE v6.1 Users Guide

X

Add Implementation View

Create a view to backup wour implementation files.

Enter the name of the new view: |Im|:u|3

Do pou want ba keep your current implementation files in the new view?

* ‘Yes
" Mo

] | Help Cancel

I I [Endl

You can use your new implementation view to backup your current implementation files. Enter the name of your new view, and
choose to keep your current implementation files or revert to the Libero defaults. Click OK to continue.

Your new implementation view appears in the list of Current Implementations on the Implementations toolbar.

Saving a Project with a New Name

Your project is saved when you close the project. To save the project with another name, use the Save Project As command.

To save the project with a new name:

1. From the File menu, select Save Project As. The Save Project As dialog box opens.

save Project As x|

Project Mame:

Froject Location:

IE: WhctelprWHDL_claszhSolutions Browse |

Family: HOL Tope:
IE‘K j Yerilog
& yHDL
)% | Cancel | Help

Save Project As Dialog Box

2. Enter a new project name.

3. Enter a new project location, or click Browse to specify a new location.

Tcl Scripting

4. Click OK.

Closing and Exiting

Your project is automatically saved when closed. To explicitly save your project, use File -> Save Project. To save it with another
name, use the Save Project As command.

To close a project, from the File menu, select Close Project.

To exit Libero IDE, from the File menu, select Exit.

Project Sources

Project sources are any design files that make up your design. These can include schematics, HDL files, simulation files, testbenches,
etc. Anything that describes your design or is needed to program the device is a project source.

Source files appear in the Design Flow window. The Design Hierarchy tab displays the structure of the design modules as they relate
to each other, while the File Manager tab displays all the files that make up the project.

The design description for a project is contained within the following types of sources:
Schematics
HDL Files (VHDL or Verilog)

One source file in the project is the top-level source for the design. The top-level source defines the inputs and outputs that will be
mapped into the devices, and references the logic descriptions contained in lower-level sources. The referencing of another source is
called an instantiation. Lower-level sources can also instatntiate sources to build as many levels of logic as necessary to describe your
design.

Some project sources can be imported.

Sources for your project can include:

Source File Extension

Schematic *1-9
Verilog Module A%
VHDL Entity .vhd
ACTgen Macro .gen
Testbench .vhd
Stimulus tim
Programming Files .afm, .prb
New Files

You can create new files from Libero. New file types include:
Schematic

ACTgen macro

Libero IDE v6.1 Users Guide

VHDL Entity
VHDL Package file
Stimulus
Stimulus HDL file
To create a new file:
1. From the File menu, select New.
2. Select the File type and type a hame.
3. Click OK. The appropriate application starts. The saved file is added to your Libero project.

Importing Files

Anything that describes your design, or is needed to program the device, is a project source. These may include schematics, HDL files,
simulation files, test benches, etc. Import these source files directly into your Libero project.

To import a file:

1. From the File menu, select Import Files.

2. InFiles of type, select the file type.

3. InLook in, navigate to the drive/folder where the file is located.
4. Select the file to import and click Open.

Note:

Keep and import your VHDL package and behavioral and structural VHDL source files separately. Do not place your VHDL
package into your source file.

You cannot import a Verilog File into a VHDL project and vice versa.

File Types for Import
File Type File Extension

ViewDraw Symbol *.1-9
ViewDraw Schematic *.1-9
Behavioral and Structural VHDL .vhd, .vhdl
VHDL Package .vhd, .vhdl
ACTgen Macro .gen

Verilog Include .h

Behavioral and Structural Verilog v

Stimulus .vhd, .vhdl, .v
EDIF Netlist .edn

Libero IDE File types

When you create a new project in the Libero IDE it automatically creates new directories and project files.

Tcl Scripting

Depending on your project preferences and the version of Libero IDE you installed, Libero IDE creates actgen, constraint,
designer,hdl, package, phy_synthesis, simulation, stimulus, synthesis, and viewdraw directories for your project.

The toplevel directory (<project_name>) contains your PRJ file; only one PRJ file is enabled for each Libero IDE project.
actgen directory - GEN files and LOG files from generated ACTgen cores
constraint directory - All your constraint files (SDC, PDC, GCF, DCF, etc.)

designer directory - ADB files (Actel Designer project files), -_ba.SDF, _ba.v(hd), STP, PRB (for Silicon Explorer), TCL (used to
run designer), impl.prj_des (local project file relative to revision), designer.log (logfile)

hdl directory - all hdl sources. *.vhd if VHDL, *.v and *.h if Verilog

package directory - VHD files

phy_synthesis directory - _palace.edn, _palace.gcf, palace_top.rpt (palace logfile) and other files generated by PALACE
simulation directory - meminit.dat, modelsim.ini files

stimulus directory - BTIM and VHD stimulus files

synthesis directory - *.edn, *_syn.prj (Synplify log file), *.psp (Precision project file), *.srr (Synplify logfile), precision.log
(Precision logfile), exemplar.log (Leonardo logfile), *.tcl (used to run synthesis) and many other files generated by the tools (not
managed by Libero IDE)

viewdraw directory - viewdraw.ini

Saving Files
Files and projects are saved when you close them.

To save an active file:

1. From the File menu, select Save, Save As, or Save All.

2. Click the Save H button in the toolbar.

Saving Files in Libero IDE

If you want to back up your Libero PRJ, Designer ADB, or other Libero IDE project files, create a new implementation of your
design. Do not use the Save As function in Designer. Instead, use Add Implementation in the Libero IDE.

Deleting Files

Files can be deleted from the current project or from the disk.

To delete a file from the project:
3. Select the File Manager tab in the Design Explorer window.

4. Right-click the file and select Delete from Project. The file remains on your disk.

To delete a file from your project and the disk:
5. Select the File Manager tab in the Design Explorer window.

6. Right-click the file and select Delete from Disk and Project. The file is deleted from your disk and is no longer part of any
project.

Libero IDE v6.1 Users Guide

Finding Files
Use the Find In Files dialog box to search for files.

To find a file:
1. From the Edit menu, select Find. The Find In Files dialog box appears.

Find in Files

Firnd what: | Find

Pl

=
|1 files/file types: I“.vhd; *yith j Cancel
j |:I Help

[~ Match whale waord anly [tatch case

Ir folder: IE:"-.&::teIpri

[T Regular expression
Find In Files

2. Select the properties for your search.
Find what: Type a word string in the Find what text field.
In files/file types: Select a file type.
In folder: Select a folder.
Match whole word only: Select to match the whole word only.
Regular expression: Select to recognize Microsoft Word-style expressions.

Match case: Select to search for case-sensitive occurrences of a word or phrase. This limits the search so it only locates text that
matches the upper- and lowercase characters you enter.

3. Click Find. The results appear in the Find In Files tab in the log window. Click the file name in the log window to open the file.

SGeaching for 'entity'...
CihAotelpribcount32hy simulation’ presynth’ cntaddy primary.vhd(3): entity cntadd is
1 occurence hawve been found.

H\. Crukput ,]'1. Errors }1. i arnirgs h Info }xFind In Files lflr

Found In Files Tab in Log Window

Finding Modules

You can search for modules in the Design Hierarchy with the Find Module feature.

To find a module in the Design Hierarchy:

10

Tcl Scripting

1. Click the Find Module icon or from the Edit menu, select Find Module.

2. Enter the name of the module you wish to find.
Libero IDE displays the module in the Design Hierarchy. If Libero does not display the module, you may have typed the module
name incorrectly, or the module you are looking for may have a different name.

Reserved Actel keywords

See the online help for a complete list of reserved keywords.

Libero Project Options

Use the Options dialog box to specify your project settings for the currently open project.

From the Options menu, select Project Settings to open the Options dialog box. View and edit the preferences and Click OK. To
revert to the default settings, click Default.

Options include:
Project Settings
Simulation

Programming

Libero Project Settings

Use the Project Settings tab in the Options window to change the die and package for your project.

To change the die and/or package:
1. From the Tools menu, select Options. The Options dialog box appears .

2. Select a die and package from the list and click OK.

Programming

If you did not install FlashPro as part of the Libero installation process, you can use the Programming tab in the Options dialog box to
integrate FlashPro with your project.

To integrate FlashPro with your project:

1. From the Options menu, select Project Settings.

2. Click the Programming tab.

3. Fillin the options:
Location: Specify the location of the FlashPro executable.
Additional Parameters: Additional parameters of the command line.
Jar file location: Specify the location of the FlashPro jar file.

4. Click OK.

11

Libero IDE v6.1 Users Guide

Setting Your Project Profile

Each Libero IDE project can have a different profile, enabling you to integrate different tools with different Libero projects.

To set or change your project profile:

1.

From the Options menu, select Profile.

To add a tool: Click Add and select which type of tool (synthesis, stimulus, or simulation). Fill out the tool profile and click
OK.

To change a tool profile: After selecting the tool, click to Edit to select another tool, change the tool name, or change the tool
location.

To remove a tool from the project: After selecting a tool, click Remove.
To restore the tool profiles shipped with Libero: Click Restore Defaults.

When you are done, click OK.

VHDL Package Files Organization

It is important to preserve the VHDL package file sequence if your VHDL package files are interdependent.

To specify the VHDL package file order:

1.

2
3.
4

From the Options menu, select Package File Organization. The VHDL Package Files dialog box appears.
Use the up and down arrows to specify the order, or drag the files into order.
Select Simulation or Synthesis if you want the file included when simulation or synthesis is run.

Click OK.

Verilog Header File Organization

It is important to preserve the Verilog header file sequence if your Verilog header files are interdependent.

To specify the Verilog header file order:

5.

6
7.
8

From the Options menu, select Header File Organization. The Verilog Header Files dialog box appears.
Use the up and down arrows to specify the order, or drag the files into order.
Select Simulation or Synthesis if you want the file included when simulation or synthesis is run.

Click OK.

Setting Preferences

Use the Preferences dialog to customize Libero to your needs.

To set your preferences:

1. From the File menu, select Preferences.
2. Specify your preferences on each of the tabs.
Updates Tab

12

Tcl Scripting

Proxy Tab

Startup Tab (File association)

Log Window
Text Editor

3. Click OK.

Note: These preferences are stored on a per-user basis. These preferences are not project specific.

Updates

Actel strongly recommends that you check at least once a week for fixes, updates, and enhancements for your Actel software.
Note: The version checking feature is not available for Linux.
The Updates tab in the Preferences dialog box allows you to set your automatic software update preferences.
To set your automatic software update preferences:
1. From the File menu, select Preferences and Updates.
2. Choose one of the following options:
Automatically check for updates at startup: Select to be notified of updates when you start Designer.

Remind me to check for updates at startup: Select to be asked if you want to check for a software update when you start
Designer.

Do not check for updates or remind me at startup: Select if you do not want to check for software updates at startup.
To manually check for software updates, from the Help menu, select Check for Software Updates.
3. Click OK.

Note: This feature requires an internet connection.

Setting Your Proxy

An FTP connection is used to update some data files. Use the Proxy tab in the Preferences dialog box to enter your proxy name if you
use a proxy server.

1. From the File menu, select Preferences.

2. Click the Proxy tab.

3. Ifyou use a Proxy server, select the check box and enter the name.
4

Click OK to dismiss the Preferences dialog box.

Startup Tab

Several programs, including Libero, create files with the .prj extension. If you want Libero to start whenever you double-click on a
PRJ file, you need to set up Libero as the default editor for PRJ files.

To make Libero the default editor for .prj files:

1. From the File menu, select Preferences.

13

Libero IDE v6.1 Users Guide

2. Click the Startup tab.

3. Select the check box to associate Libero with PRJ files.
To open the most recently used project at startup:

1. From the File menu, select Preferences.

2. Click the Startup tab.

3. Select the check box to open the most recently used project at startup.

Setting Your log Window Preferences

Errors, Warnings, and Informational messages are color-coded in the log window. You can change the default colors by using the log
Window tab in the Preferences dialog box.

To change colors in the log window:

1. From the File menu, select Preferences.

2. Click the Log Window tab in the Preferences Dialog Box.
3. Select your new default colors and click OK.

The default color settings for the log window are:

Message Type Colors

Errors Red
Warnings

Informational Black
Linked Dark Blue

Text Editor

You can use the Libero HDL text editor or another text editor.

To set your text editor preferences:
1. From the File menu, select Preferences.

2. Click Text Editor.

14

Tcl Scripting

Preferences EI

Internetl Prosy I File Aszzociation | Log 'window TEHtEditDFI

¥ Usze Libero text editor

— Libero text editor options

Replace tab with |4 Zpaces

¥ Open programming/debugging files as read-only

— zer defined text editar

Location: ¢ Inu:utepad. EHE j J

Additional parameters: I

k. | Cancel | Help I

Preferences: Text Editor

3. Set your options and click OK.
Libero text editor options

Use Libero text editor: Select to use the Libero HDL text editor.

Replace tab with spaces: Enter the number of spaces you want entered when using the tab key.

Open programming/debugging files as read-only: Select to specify read-only permission to .stp and .prb files.
User defined text editor

User defined text editor: Deselect use Libero text editor to activate this area. Enter the .exe location of the text editor.

Additional parameters: Use to specify other settings to pass to the text editor. Typically, it is not necessary to modify this field.

Libero’s Project Manager

Libero’s Project Manager workspace integrates the needed design tools, streamlines the design flow, manages all design and log files,
and passes necessary design data between tools.

The Design Explorer Window, located in the upper left, consists of the Design Hierarchy and File Manager windows. Below is the
Design Flow Window. The HDL Editor fills up the right side of the Project Manager, while the Log Window is found at the bottom.

Libero also includes toolbars and menus.

Design Hierarchy

The Design Hierarchy tab displays a hierarchical representation of the design based on the source files in the project. Libero IDE
continuously analyzes and updates source files and updates the hierarchy. The Design Hierarchy tab displays the structure of the

design modules as they relate to each other.

15

Libero IDE v6.1 Users Guide

The file name (the file that defines the block) appears next the to block name in parentheses.

aLlt Comfigur in
i -r;—l:';[counter |[counter_vhd]|

B rlirhf el ‘

Dezign Hierarchy [Fike Manager]

Block Mame File Name

Design Hierarchy - Block and File Names

More information about the block can be found by right-clicking it and selecting Properties. The Block Properties dialog box displays
block properties including, file path, created date, and last modified date.

Files that cannot be read by Libero are identified with red question marks.

=l Default Configuration
=l E=;“L mux8 [muxB.vhd]
E=;\|L mued [musd_behave. whd]
T s 1
=l Unknown Hierarchy
Eﬁ muxz_behave vhd

Design Hierarchy - Unknown Hierarchy
All integrated source editors are linked with Libero’s Project Manager. If a source is modified and the modification changes the
hierarchy of the design, the Design Hierarchy automatically updates to reflect the change.
If you want to update the design hierarchy,from the Edit menu, select Refresh .
To open a source:

Double-click a source in the Design Hierarchy to open it. Depending on the block type and design state, several possible options are
available from the right-click menus.

File Manager

The folders in the File Manager are like the ones in the Windows Explorer. These folders reside on your computer and support relative
paths - paths from the project folder to files in your folders. This folder structure makes it easier to organize your files.
The File Manager window displays all the files associated with your project. Files are grouped by type.

block symbol files

16

Tcl Scripting

schematic files

VHDL package

HDL

ACTgen cores

design implementation files
synthesis files

physical synthesis files
stimulus

Right-clicking a file in the File Manager provides a menu of available options specific to the file type. You can also delete files from
the project by selecting Delete from Project from the right-click menu.

Tip: You can drag files in the File Manager to re-order them.

Design Flow Window

The Design Flow window displays all available tools involved in the design process (see the figure below).

This window shows you the current state of your design by activating and highlighting tools at appropriate times in the design process,
while graying out tools that are not yet available. Green checks indicate successfully completed steps.

Click a tool to start it. Right-click a tool to access the right-click menu, which provides all the available processes you can start with
the tool.

17

Libero IDE v6.1 Users Guide

Design Entry Tools Root : echridget
= = =

& =
HOL Editor ALCTgen WiewDiraw

- Pre-Synthesis

FPost-Synthesis

| Configure Design Flow. .
Post-Physical Synthesis

+ Post-Layout
Source Files l
M Gynthesis % S . Simulation
) PDSt-EﬁIS;hBSIS ™ cimulation = ctimulus ® Stimulus
Synplify 4‘ ﬁ E
- Phy. Synth... ModelSim WaveFormer Lite | Stimulus Editor

FPost-Phyzical
Synthesiz Files

*
= placetRoute

Dezigner

Dezign Flow

Design Flow Window

HDL Editor Window

The HDL Editor targets the creation of HDL code. It supports VHDL and Verilog with color, highlighting keywords for both HDL
languages.

Note: To avoid conflicts between changes made in your HDL files, Actel recommends that you use one editor for all of your HDL
edits.

Log Window

Colors and Symbols

For ProASIC and ProASICP-YS families, the log window displays notes and warnings. For Antifuse families, the log window displays
Error, warning, and informational messages. Messages are represented by symbols and color-coded. The default colors are:

18

Tcl Scripting

Type Color ‘
Error Red
Warning Blue
Information Black

The colors can be changed by using the Preferences dialog box.

Output, Error, Warning, and Info Tabs

The Output tab displays all messages. Use the errors, warnings, or informational tabs to filter for just those messages. The views
within the error, warnings, and info displays are reset when a new command is executed or a new design is opened. To see a complete
history of your design session, click the output tab.

Linked Messages

Error and warning messages that are dark blue and underlined are linked to online help to provide you with more details or helpful
workarounds. Click them to open online help.

Using the HDL Editor

The HDL Editor is a text editor designed for editing HDL source files. In addition to regular editing features, the editor provides a
syntax checker.

You can have multiple files open at one time in the HDL Editor workspace. Click the tabs to move between files.
Editing

Editing functions are available in the Edit menu. Available functions include cut, copy, paste, find and replace. These features are also
available in the toolbar.

Saving

You must save your file to add it to your Libero project. Click Save in the File menu, or click the Save icon in the toolbar.
Printing

Print and Print Preview functions are available from the File menu and the toolbar.

Note

To avoid conflicts between changes made in your HDL files, Actel recommends that you use one editor for all of your HDL
edits.

Creating New HDL Files

To create an HDL file:
1. Open your project.
2. From the File menu, click New.

3. Click VHDL and type a file name in the Name field. Click OK. (Do not enter a file extension; Libero adds one for you.) The
HDL Editor workspace opens.

4. After creating your HDL file, save your file to the project by clicking Save from the File menu. Your HDL file is saved to your
project, appearing in the File Manager.

19

Libero IDE v6.1 Users Guide

Opening an HDL Source File

To open an HDL source file:

1. From the File menu, click New.

2. From Files of Type, select HDL File (*.vhd, *.vhdl).

3. InLook in, navigate to the drive/folder where the .hdl file is located.
4

Select your file and click Open. Libero opens your file in the HDL Editor

Importing HDL Source Files

Import your HDL file into your project just as you would any source file.
To import an HDL source file:

1. From the File menu, click Import Files.

2. InFiles of type, select the file type.

3. InLook in, navigate to the drive/folder where the file is located.

4.

Select the file to import and click Open.

HDL Syntax Checker

After you are done creating vour HDL file, use the HDL Syntax Checker to help validate an HDL file after editing the HDL code.

To run the syntax checker:
1. Inthe Libero File Manager, right-click an HDL file and click Check HDL File.

2. The syntax checker parses the selected HDL file and looks for typographical mistakes and syntactical errors. Warning and error
messages for the HDL file appear in the Libero Log Window.

Commenting Text

You can comment text as you type in the HDL Editor, or you can comment out blocks of text by selecting a group of text and applying
the Comment command.

To comment or uncomment out text:
1. Type your text.
2. Select the text.

3. From the Edit menu or right-click menu, click Comment Out or Uncomment.

Using ACTgen Cores

Use ACTgen to:
create high level modules, such as counters, multiplexers, multipliers, etc. that are optimized for Actel FPGAs.

create system level building blocks, such as filters, FIFOs and memories.

20

Tcl Scripting

These can be instantiated into your schematic, Verilog design, or HDL design.
To use ACTgen with your HDL design:
1. Addthe ACTgen core to your Libero project.
From the Libero File menu, click New.
In the New File dialog box, select ACTgen core, type a name, and click OK. ACTgen starts.

Select your core type from the left Macro list box. The appropriate options appear. Select a tab and fill in the fields. Click
Generate.

In the Save As dialog box, leave the default selections and click Save. The file is added to your Libero project, appearing in the
Design Hierarchy.

2. Instantiate the module in your HDL design.

ViewDraw AE

ViewDraw AE is a special version of ViewDraw. Use it for schematic entry with Libero IDE.

Note: The full online help system for ViewDraw AE can be accessed by opening ViewDraw AE and clicking the Help menu.

Importing Schematics

You can import any schematic created with ViewDraw AE.

To import a schematic file:

1. From the File menu, click Import Files.

2. In Files of type, select Schematics.

3. InLook in, navigate to the drive/folder where the file is located.
4.

Select the file to import and click Open. The schematic is imported into your project and appears in the File Manager, under
Schematic files.

To open the schematic, click ViewDraw AE in the Design Flow window, or right-click the file in the File Manager and select, Open
Schematic.

Opening a Schematic Source File

Use ViewDraw AE to edit your schematic files.

To open your schematic file:
1. Open your project in Libero IDE.
2. Double-click the schematic file in the File Manager or Design Hierarchy windows. ViewDraw AE opens with the file loaded.

3. From the File menu, click Save+Check to create the required files for netlist generation. When Save + Check is complete, the
Status Bar will say "Check complete, 0 errors and 0 warnings in project <name>." You must select Save +Check. Only selecting
Save will not generate the needed WIR file for that block.

4. From the File menu, click Exit. The schematic is saved to the project, appearing in both the File Manager and Design Hierarchy
tabs. Your schematic file is updated in Libero.

21

Libero IDE v6.1 Users Guide

Using ACTgen Cores

Use ACTgen to:
create high level modul es, such as counters, multiplexors, multipliers, etc. that are optimized for Actel FPGAs.
create system level building blocks, such as filters, FIFOs and memories.
These can be instantiated into your schematic, Verilog design, or HDL design.
To generate cores for your schematic:
1. Add the ACTgen core to your Libero project.
From the Libero File menu, click New.
In the New File dialog box, select ACTgen core, type a name, and click OK. ACTgen starts.

Select your core type from the left Macro list box. The appropriate options appear. Select a tab and fill in the fields. Click
Generate to create an HDL representation of the core.

In the Save As dialog box, leave the default selections and click Save. The file is added to your Libero project, appearing in the
Design Hierarchy.

2. Create the Symbol. In the Design Hierarchy, right-click the ACTgen module and choose Create Symbol. The symbol is
created, appearing in the File Manager, under Block Symbol files.

3. Use the Symbol.
Start ViewDraw.
From the Add menu, click Component.

Select the new symbol, then drag and drop it onto your schematic.

Synthesis Overview
Libero IDE works with the following synthesis tools:
Synplify from Synplicity
LeonardoSpectrum from Mentor Graphics

Precision RTL from Mentor Graphics

While LeonardoSpectrum and Precision RTL are not part of the Libero IDE package, they can be integrated to work with Libero IDE.
You can also integrate different versions of Synplify. To integrate tools, add them to your project profile.

Post-Synthesis Files

Post-synthesis files include your:

<top>.edn - EDIF netlist file; used for post-synthesis simulation in Libero, also used by Designer to generate back-annotated files
and complete layout

<top>.adb - Designer project file, automatically generated by Libero; if you activate PALACE for physical synthesis, the
<top>.adb file moves to Post-physical synthesis files.

<top>.vhd - simulation file, automatically generated by Libero

22

Tcl Scripting

To generate your EDIF netlist, use your Synthesis tool. You can also import your EDIF netlist named <top>.edn.

Icons:

Synplify

.
V (Green check) - Files are current; you can use the file for simulation or place-and-route.

i (YYellow exclamation) - Files are out-of-date;something has changed since you created your post-synthesis file (you may have
modified the source, family, default synthesis tool, package, etc.). Re-run synthesis to update the file. You may use the out-of-
date file for simulation or place-and-route if you wish.

Libero’s integrated synthesis tool, Synplify AE from Synplicity, takes your Verilog or VHDL Hardware Description Language source
as input and outputs an optimized EDIF and HDL netlist.

Note: See the Actel Attribute and Directive Summary in the Synplicity online help for a list of attributes related to Actel devices.

Synthesizing Your Design with Synplify

1.

In Libero, right-click the HDL file in the File Manager, or the top-level schematic for mixed schematic-HDL designs, in the
Design Hierarchy, and select Synthesize. Synplify starts and loads the appropriate design files, with a few pre-set default
values.

From Synplify’s Project menu, click Implementation Options.
Set your specifications and click OK.

Deactivate synthesis of the defparam statement. The defparam statement is only for simulation tools and is not intended for
synthesis. Embed the defparam statement in between translate_on and translate_off synthesis directives as follows :

/* synthesis translate_off */

defparam MO.MEMORYFILE = "meminit.dat"

/*synthesis translate_on */

// rest of the code for synthesis
Click the RUN button. Synplify compiles and synthesizes the design into an EDIF, *.edn, file. Your EDIF netlist is then

automatically translated by Libero into an HDL netlist. The resulting *edn and *.vhd files are visible in the File Manager, under
Implementation Files

Should any errors appear after you click the Run button, you can edit the file using the Synplify editor. Double-click the file name in
the Synplify window showing the loaded design files. Any changes you make are saved to your original design file in Libero.

6.

From the File menu, click Exit to close Synplify. A dialog box asks you if you would like to save any settings that you have
made while in Synplify. Click Yes.

Note: See the Actel Attribute and Directive Summary in the Synplicity online help for a list of attributes related to Actel devices.

To add a clock constraint in Synplicity, you must add "n:<net_name>" in your SDC file. If you puts the net_name only, it does not
work.

Integrating Precision RTL

Libero IDE supports Precision RTL from Mentor Graphics.

To integrate Precision RTL with your Libero IDE project:

23

Libero IDE v6.1 Users Guide

© N o a M W DN P

From the Options menu, click Profile. The Project Profile dialog box appears.
Click Add and select Synthesis. The Add Tool dialog box appears.

Enter a name. This is the name that appears in the Project Profile dialog box.
Select Precision RTL.

Enter the location of Precision RTL and any additional parameters.

Click OK.

Select Precision RTL in the Project Profile dialog box and click OK.

Click Precision RTL in the Libero Design Flow window to start Precision RTL.

Starting Precision RTL

Before you can start Precision RTL you must add it to your project profile.

To start Precision RTL to run synthesis:

1.

a M N

In Libero, right-click the HDL file in the File Manager or the top-level schematic for mixed schematic-HDL designs in the
Design Hierarchy, and click Synthesize. Precision starts.

(Optional) Click Setup Design to enter clock frequency, input delays and output delays.
(Optional) Click Constraint if you want to import a constraint file (*.sdf).
Click Compile, if you want to compile the design first.

If compile runs without error, click Synthesize to optimize the design for your target technology. To investigate errors in the log
window, click the red error icon next to the error. A HDL Text Editor opens and the part of the HDL text which is the source of
the error is automatically highlighted for you to modify. Click Save to save the changes you have made to the HDL text.
Rerun Synthesis to get a successful run.

Click Synthesize. Precision RTL runs compile and then synthesizes your design.
The synthesized netlist (EDIF format) and is visible under Implementation Files in the Libero File Manager tab.

From the File menu, click Exit to close Precision RTL. A dialog box asks you if you would like to save any settings that you
have made while in Precision. Click Yes to save the Precision project file (*.psp).

Integrating LeonardoSpectrum

Libero IDE supports LeonardoSpectrum from Mentor Graphics.

To integrate LeonardoSpectrum with your Libero IDE project:

N oo o > DRk

24

From the Options menu, click Profile. The Project Profile dialog box appears.
Click Add and select Synthesis. The Add Synthesis Tool dialog box appears.
Enter a name. This is the name that appears in the Project Profile dialog box.
Select LeonardoSpectrum.

Enter the location of LeonardoSpectrum and any additional parameters.

Click OK.

Select LeonardoSpectrum in the Project Profile dialog box and click OK.

8.

Tcl Scripting

Click LeonardoSpectrum in the Libero Design Flow window to start LeonardoSpectrum.

Synthesizing Your Design with LeonardoSpectrum

Before you can start Precision RTL you must add it to your project profile.

To synthesizing your design with LeonardoSpectrum:

1.

N o o &~ N

In Libero, right-click the HDL file in the File Manager, or the top-level schematic for mixed schematic-HDL designs, in the
Design Hierarchy, and select Synthesize. LeonardoSpectrum starts.

The Input Box is blank. Hit the Enter key on the keyboard and all the design files are loaded into the Input Box.
From Tools, click Options.

Deselect Automatically save and restore Current Work Directory option.

Enter the Clock Frequency if you want to constrain the design.

Use the slide bar to select the level of Optimize Effort.

Click Run Flow. Information about errors can be found by clicking the red error icon next to the error. The HDL Text Editor
opens and the part of the HDL text which is the source of the error is automatically highlighted for you to modify.

Click Save to save the changes you have made to the HDL text. Rerun Synthesis to get a successful run. The synthesized netlist
is in EDIF format and is visible under Implementation Files in the Libero File Manager tab.

From the File menu, click Exit to close LeonardoSpectrum. A dialog box asks you if you would like to save any settings that
you have made while in LeonardoSpectrum. Click Yes to save the LeonardoSpectrum project file (*.Isp).

Integration Issues

Some workarounds are required when using LeonardoSpectrum with Libero IDE.

LeonardoSpectrum starts with empty windows: When you first open LeonardoSpectrum from Libero, the Input window is
blank and the output file is not specified. Also, the wrong family appears in the Technology window. To fix this, simply place
your cursor in the transcript window and press Enter. All windows are updated.

LeonardoSpectrum log files are misplaced: From the Tools menu, click Options, and Session Settings. Deselect
Automatically save and restore current working directory. This box must be un-selected in order for your log files to be passed
back to Libero properly.

Activating and Deactivating PALACE for Physical Synthesis

PALACE is available only for ProASIC® devices.

When you click Configure Design Flow and select the Use PALACE checkbox, PALACE is activated. You can choose to turn
PALACE ON or OFF. You may turn PALACE ON only if you are using a ProASICE- device.

Activating PALACE creates a new implementation in the Libero IDE. Click the PALACE button in the Design Flow to set your

PALACE options. When you turn PALACE OFF, it is hidden from the Design Flow window.

PALACE is useful as a performance enhancement tool; Actel recommends that you run PALACE after the design has passed Designer
place-and-route. This enables you to compare your layout results with and without PALACE (using different implementations).

25

Libero IDE v6.1 Users Guide

Physical Synthesis Files in Libero

Post-physical synthesis files include your:

<top>_palace.edn - PALACE EDIF netlist file; used for post-physical synthesis simulation in Libero, also used by Designer to
generate back-annotated files and complete layout

<top>.adb - Designer project file, automatically generated by Libero

<top>_palace.vhd - simulation file, automatically generated by Libero

<top>_palace.gcf - PALACE generated GCF constraint file. Used as input for Designer.

<top>_palace.sdc - PALACE generated SDC constraint file. Used as input for Designer.
To generate your Post-Physical Synthesis files, use your PALACE tool.

Icons:

.
V (Green check) - Files are current; you can use the file for simulation or place-and-route.

i (Yellow exclamation) - Files are out-of-date;something has changed since you created your post-physical synthesis file (you may
have modified the source, synthesis file, package, etc.). Re-run PALACE to update the file. You may use the out-of-date file for
simulation or place-and-route if you wish.

Using the PALACE Tool

PALACE is useful as a performance enhancement tool; Actel recommends that you run PALACE after the design has passed Designer
place-and-route. This enables you to compare your layout results with and without PALACE.

Note: The current PALACE version only supports ProASICE-YS

To use PALACE with Libero:

1. Open a ProASICP project in the Libero IDE. If it is the first time you have opened your project in the latest version of the
Libero IDE the software performs a conversion that brings your project up to date, as shown in the figure below.

Configure Flow @

v Use PALACE [Phyzical Syunthesiz)

k. [-: | Cancel Drefault Help

Libero IDE opens new projects with a default implementation of 1 (impl1). If you have saved more than one implementation in your
project, they are available in the Design Implementation drop-down menu.

2. Click the Configure Design Flow button in Libero’s Design Flow window to add PALACE to your design flow.

The Configure Flow dialog box appears. Select the Use PALACE (Physical Synthesis) to enable the PALACE flow. Click OK to
continue. Libero displays a message explaining that it backs up your files and creates a new implementation of your design before it
runs PALACE, and asks if you want to proceed, as shown in the figure below.

26

Tcl Scripting

To optimize performance, PALACE will run Designer with a ness implementation of wour design,
Libero will back up wour existing implementation files, Do wou want to proceed?

Yes Mo Help

Create Implementation Message in Libero

3. Click Yes to continue (create a new implementation and complete physical synthesis with PALACE). If you click Yes, Libero
creates a new implementation and adds PALACE to your Design Flow window. Click No to cancel and return to the main
Libero IDE GUI.

4. Click PALACE in the Design Flow window to display the PALACE options dialog box, as shown in the figure below.

PALACE

Logic synthesis effort (4 = highest]: IE

Phyzical synthesiz effort [2 = highest]: IE

Delay relaxation percentage to reduce area: Ir
100

b axirum core cell utilization percentage;

Consztraints

IM. Gernerate pin constraints

Libero will export a GCF file with pin constraints from vour 408 file.
The file will be pazsed to PALACE as the first constraint file,

Organize Constraint Files. .. |

k. | Canicel Drefauilt ‘ Help

PALACE Options Dialog Box

Logic synthesis effort

0 - No optimization, no change in area

1 - Combinatorial / sequential optimization with area focus

2 - Combinatorial optimization mode

3 - Both combinatorial / sequential optimization performed, register balancing, replicating etc
4 - Extensive optimization, exhausting all possible algorithms to achieve timing closure

Physical synthesis effort
1 - Minimum effort for physical placement

27

Libero IDE v6.1 Users Guide

2 - Complete physical placement generated for design

Delay relaxation percentage to reduce area

0 - 100: Specifies the percent of delay relaxation on the best possible delay PALACE can achieve. Default is 0, where PALACE aims
for maximum optimization

Max core cell utilization percentage:

0 - 100: Specifies the maximum core cell utilization before PALACE promotes the design to next die size. Default is 100 and allows
full resource usage.

5. Setyour options and click OK to continue.

You must organize your constraint files to guide the PALACE optimization effort. Click Organize Constraint Files to open the
Select Constraints for PALACE dialog box (as shown in the figure below). The Select Constraints for PALACE dialog box enables
you to associate your project's SDC (timing) and GCF (physical) constraints with PALACE. The list at left shows all the constraint
files you have imported into your project. The list at right shows all the constraint files you wish to pass to PALACE (Constraint files
for PALACE).

Select Constraints for PALACE

IJzing the Add and Remove buttonz, list the files pou want bo azzociate in the Azsociated Files list.
IJze the Up and Down buttons to specify the order of the constraint files.

EARD
|

Conztraintz filez in the project: | Agzociated files:
designd. gcf
echridget. gof
biming. sdic

Add =

#+= Remove |

] | Cancel | Help

Select Constraints for PALACE Dialog Box

When you run PALACE, Libero passes all the constraint files associated with PALACE to the tool.

6. After you set all your options, click OK to run physical synthesis with PALACE.

PALACE completes physical synthesis and the PALACE box in the Design View window turns green.

7. Right-click the PALACE box and select Open Log File to view the PALACE log file.

8. Run place-and-route in Designer. Libero passes the PALACE-generated netlist and constraint files to Designer automatically.

9. Ifyou are not satisfied with your results, return to your previous implementation, or modify your PALACE options and re-run
physical synthesis.

28

Tcl Scripting

WaveFormer Lite

WaveFormer Lite is a special version of WaveFormer Pro that can generate VHDL and Verilog stimulus-based testbenches for Libero
IDE. WaveFormer Lite fits perfectly into Libero’s design environment, automatically extracting signal information from your HDL
design files and producing HDL test bench code that can be used for VHDL or Verilog simulation. WaveFormer Lite now supports

VCD files.

WaveFormer Lite generates VHDL and Verilog testbenches from drawn waveforms. WaveFormer Lite can generate the following:

Reactive testbenches
VHDL transport testbench (*.vhd) that uses assignment statements
VHDL wait testbench (*.vhd) that uses wait statements

Verilog (*.v) file with Verilog stimulus statements

Note: WaveFormer Lite comes with its own online help. After starting WaveFormer Lite, click the Help menu.

Creating Your Testbench with WaveFormer Lite

WaveFormer Lite generates VHDL and Verilog testbenches from drawn waveforms. Create your test bench after you are done

creating your design and wish to perform simulation.

There are five basic steps for creating testbenches using WaveFormer Lite and Libero IDE. These steps are described in detail in the
following sections.

To create a testbench using WaveFormer Lite:

1.

Click WaveFormer Lite in the Design Flow Window. WaveFormer Lite starts and your signal information is imported
automatically .

Using WaveFormer Lite, draw the waveforms to describe the testbench.
From the Export menu, click Export Timing Diagram and choose the save type as *.tim or *.btim. This saves the waveforms.

(Optional) Add VHDL Libraries and Use Clauses for VHDL export. These libraries or packages can be included using the VHDL
Libraries and Use Clauses dialog. From the Options menu, click the VHDL Libraries and Use Clauses menu item to open this
dialog.

From the Export menu, click Export Timing Diagram and choose the type of file to generate. You can generate a test bench
with a top-level module that automatically hooks up the model under test to the testbench, or you can generate just a testbench
model. Below is a detailed description of the two methods:

To generate a Top-Level Model and a Testbench model choose one of the "top-level" scripts from the save as type drop-down list
box. The top-level module instantiates the model under test and hook it up to the test bench. For this script to work the top-level
module needs to be defined in the project. For Wave-Former Lite customers, the Actel Software should automatically set this
option. Below is a list of top-level scripts:

VHDL Wait with Top Level Testbench (*.vhd)s
VHDL Transport with Top Level Testbench (*.vhd)s
Verilog with Top Level TestBench (*.v)s

To generate a plain testbench model (which does not instantiate your model under test) then choose one of the VHDL or Verilog
scripts. To simulate with the testbench model, you will need to write a top-level model that instantiates the testbench model and
the model under test. This is the method used by Wave-Former Pro customers. Below is a list of VHDL and Verilog testbench
generation scripts:

29

Libero IDE v6.1 Users Guide

VHDL Wait (*.vhd)s
VHDL Transport (*.vhd)s
Verilog

8. From the File menu, click Exit.

Note: If you added extra signals to the testbench and do not want to export those signals, then double click the signal’s names to
open the Signals Properties dialog and uncheck the Export check box.

Synplify always changes the data type to std_logic or std_logic_vector in the post_synthesis netlist. If your top-level entity port is not
std_logic or std_logic_vector and you need to run post-synthesis or post-layout simulation, you need to change the data type in WFL.

To create two testbenches:
1. Open the .tim file and select the special data type signal, right-click and choose Edit Selected Signal.
2. Choose std_logic or std_logic_vector under VHDL and click Save.

If you are running pre-synthesis simulation you do not need to change the data type in WFL.

ModelSim AE

ModelSim Actel Edition (AE) is a custom edition of ModelSim PE that is integrated into Libero's design environment. ModelSim for
Actel is an OEM edition of Model Technology Incorporated’s (MTI) tools. ModelSim for Actel supports VHDL or Verilog, but it can
only simulate one language at a time. It only works with Actel libraries and is supported by Actel.

Other editions of ModelSim are supported by Libero. To use other editions of ModelSim with Libero, simply do not install ModelSim
AE from the Libero CD.

Note: ModelSim for Actel comes with its own online help and documentation. After starting ModelSim, click the Help menu.

Setting Your Simulation Options

You can set a variety of simulation options for your project.

To set your simulation options:
1. From the Options menu, click Project Settings.
2. Click Simulation.
3. Select your options and click OK.
Use automatic do file: Select if you do not want Libero to initialize ModelSim.
User defined Do file: Enter the do file name or click the browse button.
Compile VHDL Package files: Select to compile VHDL package files using ModelSim AE.

Include Do file: Select to execute the wave.do or other specified Do file. Use the wave.do file to customize the ModelSim
Waveform window display settings.

Simulation Run Time: Specify how long the simulation should run in ns. If the value is 0, or if the field is empty, there won’t be
a run command included in the run.do file.

Testbench entity name: Specify the name of your testbench entity name. Default is “testbench,” the value used by WaveFormer
Lite.

30

Tcl Scripting

Top Level instance name in the testbench: Default is <top_0>", the value used by WaveFormer Lite. Libero replaces <top> by
the actual top level macro when ModelSim is run.

Vsim Command Type:Select Min, Typical (Typ), or Max

Resolution: The default is family specific, but you can customize it to fit your needs.

Default Resolution

ACT1, ACT2, ACT3 1ns
MX 1ns
DX 1ns
SX, SX-A 1ns
exX 1ns
Axcelerator 1ps
ProASIC 1ps
ProASIC BLUS 1ps
ProASIC3/E 1ps

Vsim additional options: Text entered in this field is added to the vsim command.

Default: Restores factory settings.

Selecting a Stimulus File for Simulation

Before running simulation, you must associate a testbench. If you attempt to run simulation without an associated testbench, Libero
IDE asks you to associate a testbench or open ModelSim without a testbench.

To associate a stimulus:

1. Runsimulation or right-click the top level module in the Design Hierarchy Menu and click Select a Stimulus File from the right-
click menu. The Select Stimulus dialog box appears.

2. Associate your testbench(es):

In the Select Stimulus dialog box, all the stimulus files in the current Libero project appear in the left Stimulus Files in the Project list
box. Files already associated with the block appear in the Associated Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of multiple
testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Files dialog box.

To add a testbench: Select the testbench you want to associate with the block in the Stimulus Files in the Project list box and click
Add to add it to the Associated Files list.

To remove a testbench: To remove or change the file(s) in the Associated Files list box, select the file(s) and click Remove.

To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled. The top level entity should
be in the bottom of the list.

3. When you are satisfied with the Associated File(s) list, click OK. A check mark appears next to WaveFormer Lite in the Design
Flow window to let you know that a testbench has been associated with the block.

Selecting Additional Modules for Simulation

Libero IDE passes all the source files related to the top-level module to simulation .

31

Libero IDE v6.1 Users Guide

If you need additional modules in simulation, right-click the module name in the Design Hierarchy and select Properties from the
shortcut menu. Click the Included for Simulation checkbox to pass the file to simulation.

You must repeat this for each additional module you wish to pass to simulation.

Performing Functional Simulation
1. Create your testbench.

2. Right-click the top level module in the Design Hierarchy window.
3. Click Select a Stimulus File from the right-click menu.

In the Select Stimulus dialog box, all the stimulus files in the current Libero project appear in the left Stimulus Files in the Project list
box. Files already associated with the block appear in the Associated Files list box.

In most cases you will only have one test bench associated with your block. However, if you want simultaneous association of
multiple test bench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Files dialog box.

To add a test bench: Select the test bench you want to associate with the block in the Stimulus Files in the Project list box and click
Add to add it to the Associated Files list.

To remove a testbench: To remove or change the file(s) in the Associated Files list box, select the file(s) and click Remove.
To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled.

4. When you are satisfied with the Associated File(s) list, click OK. A check mark appears next to WaveFormer Lite in the Design
Flow window to let you know that a testbench has been associated with the block.

5. Start ModelSim AE by doing one of the following:

6. Right-click the top level module in the Design Hierarchy window and select Run Pre-Synthesis Simulation or Run Post-
Synthesis Simulation.

7. Click ModelSim Simulation in the Design Flow Window.

ModelSim starts and compiles the appropriate source files. When the compilation completes, the simulator runs for 1 S and the Wave
window opens to display the simulation results.

8. Scroll in the Wave window to verify that the logic of your design functions as intended. Use the zoom buttons to zoom in and out
as necessary.

9. From the File menu, click Quit.

Performing Timing Simulation

The steps for performing functional and timing simulation are nearly identical. Functional simulation is performed before place-and-

route and simulates only the functionality of the logic in the design. Timing simulation is performed after the design has gone through
place-and-route and uses timing information based on the delays in the placed and routed designs.

Timing simulation includes much more detailed timing information for the targeted device. Timing simulation requires a testbench.
To perform timing simulation:

1. If you have not done so, back-annotate your design and create your testbench.

2. Right-click the top level module in the Design Hierarchy Menu.

3. Click Select a Stimulus File from the right-click menu.

32

Tcl Scripting

In the Select Stimulus dialog box, all the stimulus files in the current Libero project appear in the left Stimulus Files in the Project list
box. Files already associated with the block appear in the Associated Files list box.

In most cases you will only have one testbench associated with your block. However, if you want simultaneous association of multiple
testbench files for one simulation session, as in the case of PCI cores, add multiple files to the Associated Files dialog box.

To add a testbench: Select the testbench you want to associate with the block in the Stimulus Files in the Project list box and click
Add to add it to the Associated Files list.

To remove a testbench: To remove or change the file(s) in the Associated Files list box, select the file(s) and click Remove.
To order testbenches: Use the up and down arrows to define the order you want the testbenches compiled.

4. When you are satisfied with the Associated File(s) list, click OK. A check mark appears next to WaveFormer Lite in the Design
Flow window to let you know that a testbench has been associated with the block.

5. Click ModelSim Simulation in the Design Flow window. The ModelSim simulator starts and compiles the source files. When
the compilation completes, the simulator runs for 1 S and a Wave window opens to display the simulation results.

6. Scroll in the Wave window to verify the logic works as intended. Use the cursor and zoom buttons to zoom in and out and
measure timing delays. If you didn't’ create a testbench with WaveFormer Lite, you might get error messages with the vsim
command if the instance names of your testbench don’t follow the same conventions as WaveFormer Lite. Ignore the error
message and type and the correct vsim command.

7. When you are done, from the File menu, click Quit.

33

Libero IDE v6.1 Users Guide

Welcome to Designer

The Designer interface offers both automated and manual flows, with the push-button flow achieving the optimal solution in the
shortest cycle.

Actel's Designer software is integrated with Libero IDE. Use the Designer software to implement your design.

To implement your design:

1.

Start Designer. Right-click the top level module in the Design Hierarchy and select Run Designer, or click Designer in the
Design Flow window. Designer starts and loads your files from Libero.

Set up your device. From the Tools menu, click Device Selection. In the Device Selection Wizard, select the die, package, speed
grade, voltage, and operating conditions. Make your selections and click Next to complete the steps

Compile your design. In Designer, click Compile in the design flow window. The log window displays the utilization of the
selected device. When compile has completed, the Compile box in the Design Flow window turns green.

Designer's User Tools. Once you have successfully compiled your design, you can use Designer’s User's tool to optimize your
design. To start a tool, simply click it in the flow tree. The tools include:

Supported Families

PinEditor Package level floorplanner and 1/O attribute editor All
ChipPlanner Logic viewer, placement and floorplanning tool Axcelerator,ProASIC,
ProASICP-“S, ProASIC3,
ProASIC3E
ChipEditor Logic viewer and placement tool All
NetlistViewer Design schematic viewer All
SmartPower Power analysis tool Axcelerator, ProASIC,
ProASICP-YS, ProASIC3,
ProASIC3E
Timer Static timing analysis and constraints editor All
1/0 Attribute Editor Edit I/O attributes, layout Axcelerator, ProASIC,
ProASICP-YS, ProASIC3,
ProASIC3E
5. Layout. Click Layout in the Design Flow Window to place-and-route your design.
6. Back-Annotate your design. Click Back-Annotate in the Design Flow Window. Choose SDF as CAE type and appropriate
simulation language. Select Netlist in the Export Additional Files area and Click OK. If you are exporting files post-layout,
Designer exports <top>_ba.vhd and <top>_ba.sdf to your Libero project. The “_ba” is added by Libero to identify these for back-
annotation purposes. <top> is the top root name. Pre-layout exported files do not contain “_ba” and are exported simply as *.vhd
and *.sdf. The files are visible from the File Manager, under Implementation Files.
7. Generate a programming file. Click Fuse or Bitstream in the design flow tree if you wish to create a programming file for
your design. This step can be performed later after you are satisfied with the back-annotated timing simulation.
8. Save and Exit. From the File menu, click Exit. Select Yes to save the design before closing Designer. Designer saves all of the

34

design information in an *.adb file. The <project>.adb file is visible in Libero’s File Manger, in the Implementation Files folder.
To re-open this file at any time, simply double-click it.

Tcl Scripting

Starting Designer

To start Designer from Libero IDE:

In the Design Flow window, click Designer Place-and-Route.

Designer - i [4|

Flle Wiew Tools Options Help

0= 2| FlEl6] »=E-=sE]

|Click on any hutton to hegin|

Open
Existing
Design

=

ctel

L=Ix

4 I PI\Dutput f{ Errors)\ Wi arnings Info

Ready FAaM: UMSET |DIE: UMSET |PKG: UMSET Y

Starting a New Design

To begin a new design session, you must start a new design or open an existing design.

Starting a new design creates an Actel ADB file. ADB files are proprietary Actel project files.

To start a new design:

1. Click Start New Design in the Designer main window, or in the File menu, click New. This displays the Setup Design dialog
box.

2. Setup Design:
Enter a Design Name. The design name is used in reports and as the default name when saving or exporting files.
Select an Actel Family from the drop down menu list.
Specify a working directory. Click Browse to locate a directory.

3. Click OK. The Designer custom design flow window appears. All tools and commands are activated.

35

Libero IDE v6.1 Users Guide

Designer - [counter_4_6_0_21.adb*] |E|
B File Wiew Tools Options Help - 8 x
DE 2] 7lESl6 = 8Eon
Design Flow I

(D

Back-Annotate

{22~

Bitstream

MultiView Navigator

6z of" ofE = O [

NetlistViewer PinEditor ChipPlanner I OEAdmihutE Timer SmartPower
itot

Peading 24 components e
RPeading 18 nets

Reading 1 special net

@ | IFo: Reading terapld file...

Regions Consistency Checker completed.

IO Checker completed.

@ | wrFo: Reading swloc file : D:l\Actelpri‘\rz-02 ssmple fileshcounter 4 6 0 21.d
Opened an existing design D:%\Actelprihr2-02 sample filesicounter 4 6 | _21.ad§
< | >

. J "P;\.MI A Errors)\ Wharnings ?\ Info ,4'

Ready Fal: P& |DIE: AP&150 PKG: 144 FEGA

Ll

Designer:New Design

Opening an Existing Design
To open an existing design:
1. Click Open Existing Design or in the File menu, click Open. This displays the Open dialog box.
2. Select File. Type the full path name of the .adb file in the File Name box, or select the file from the list.

3. Click Open. Designer’s custom design flow window appears and all tools and commands are activated. When you open an
existing design, Designer checks to see if you have modified your netlist since the last time you imported the netlist into this
design. If you have, Designer prompts you to re-import your netlist.

Opening Designs Created in Previous Versions

Designer can directly open designs created with previous versions of the Designer software.
If your design was created in version 3.1 or earlier, contact Applications or go to http://www.actel.com/support for information on
converting your design.

All existing die, package, pin assignments, and place-and-route information is read and maintained. Designs created in previous
versions of software may need library conversions when loaded into the Designer environment. If your design requires this

36

Tcl Scripting

conversion, Designer prompts you to allow the software to update the design to the new library before you attempt to start any of the
Designer features.

Opening Locked Files

Designer notifies you if a lock has been established on your file. You might get a warning or an error message when opening a design
with a lock.

Warning

Designer warns you when opening a design that was not closed properly or may be open somewhere else. You can choose to recover

the unsaved edits.
warning x|

‘N & lock has been established an this design,
bl This lock may be due from a previous aborted session o
the design mat currentl: be inuse by another session,

Locked by: Jovnerkim:

Ciabe: Thu May 29 21:29:14 2003

Hostname: Wak-JoYMERKIM

ExecutablelD: Ci4 9 0_7_mainibintdesigner exe
Unsaved Edits: 7,

Wiatld waou like to recovet the unsaved edits during the operiing of the design?

Yes Mo | Cancel I

Warning: Locked File

Error

When opening a design, an error might notify you that the file can't be opened because the lock file is old. You can't recover any
unsaved edits.

fror x|

"Cihdesignsockestericckester, adb” could not be opened.
The lock file is old: "<adbSEM_Lock_File_Old_Yersion: AdbbDesign:Dpeniesign Faled: this application

"CH4.9 07 mainibinidesigner;exe’ cannok recover design _

data locked by application “C:4_8_0_14\binldesigner. exe’. To open this design you must manualy delete lock File
"CHdesignstcctestericctester. ok,

il

Error: Locked File

To open a design with an old lock file:
1. Go to the design directory.

2. Locate the design .adb file and corresponding .lok file.

37

Libero IDE v6.1 Users Guide

3. Delete the .lok file.

4. Return to Designer and open the design.

Mame Size | Twpe I rodified

@ adal1928.4 87 KB 4 File 21712003 10:24 PM
@ cctester,adb 87 KB Actel Designer Desi... 12/11/2001 10:39 AM
E ckester,lok 1 KE LK File 2/7/2003 10:24 PM

Starting other applications from Designer (PC only)

You can start any application from Designer that you have added to the Tools menu.

To add an application to the Tools menu:
1. From the Tools menu, click Customize.
2. Enter the application name in the Menu Text area. This text will appear in the Tools command menu.

3. Enter the command to execute, or click the Browse button to select an executable filename. If the location of the command to
execute is not in your path, you must include the absolute path when specifying the command.

In the Arguments text box, enter the command-line arguments that will be passed to the command when executing.
In the Initial Directory field, type the absolute path of the directory in which the application will initially be executed.

Click Add.

N oo g &

When you are finished adding tools, click OK. The application name you added appears in the Tools menu.

To remove an application from the Tools menu:
1. From the Tools menu, click Customize.
2. Select the application to remove and click Remove.

3. When you are finished removing applications, click OK.

To order applications in the Tools menu:
1. From the Tools menu, click Customize.
2. Reorder the tools by selecting one at a time and clicking the Move Up or Move Down buttons.

3. Click OK when you are finished. The tools will appear in the Tools menu in the same order as they do in the Menu Contents list
box.

About Your Installation

To display information about your license:

From the Start menu, click Programs, and then click the Actel software folder and select About Your Installation. The software
displays your complete license configuration, all Actel-installed software and versions, as well as your HostID and disk volume serial
number.

You can also select License Details from the Help menu in Designer to view your license information.

38

Tcl Scripting

Directory Preferences

When executing a command or function such as Open or Save, Designer uses the directory you specify as the start-up directory.

To specify your directory preferences:

1.

2
3.
4

Updates

From the File menu, click Preferences.

Click the Directory tab.

Specify your Startup directory.

Select your working directory options:

To design file's directory when opening design: Select to automatically change directories when opening a design.
To design file's directory when saving design: Select to automatically change directories when saving a design.

To script file's directory when executing script: Select to automatically change directories when executing a script.

Add design name to working directory when creating design: Select to enable a design name folder to be automatically
created in the working directory when creating a new design.

Click OK.

The Updates tab in the Preferences dialog box allows you to set your automatic software update preferences.

To set your automatic software update preferences:

1.
2.

From the File menu, click Preferences and Updates.
Choose one of the following options and click OK.
Automatically check for updates at startup: Select to be notified of updates when you start Designer.

Remind me to check for updates at startup: Select to be asked if you want to check for a software update when you start
Designer.

Do not check for updates or remind me at startup: Select if you do not want to check for software updates at startup.

To manually check for software updates, from the Help menu, click Check for Software Updates.

Note: This feature requires an internet connection.

Proxy

A Proxy improves access to the Actel server.

To enable the proxy:

1.
2.
3.

Select I use a proxy.
Type the proxy name in the text field.
Click OK.

File Association (PC Only)

Several programs, including Designer, create files with the .adb extension.

39

Libero IDE v6.1 Users Guide

Use the File Association tab in the Preferences dialog box to specify Designer as the default program for files with the .adb extension.
Doing so starts Designer whenever a file with the .adb extension is double clicked.

To associated .adb files with the Designer application:
1. From the File menu, click Preferences.

2. Select Check the default file association (.adb) at startup to Check the box to associate .adb files with the Designer application.
Un-check the box if you do not want Designer to start when clicking a file with the .adb extension.

3. Click OK.

Setting Your Log Window Preferences

Errors, Warnings, and Informational messages are color coded in the log window. You can change the default colors by using the log
Window tab in the Preferences dialog box.

To change colors in the log window:

1. From the File menu, choose Preferences.

2. Click the Log Window tab in the Preferences Dialog Box.
3. Select your new default colors and click OK.

The default color settings for the log window are:

Message Type Colors

Errors Red
Warnings

Informational Black
Linked Dark Blue

The default preference is to Clear log window automatically. This clears the Designer log window each time you close or open a new
design in Designer. Uncheck the box if you want Designer to leave the log information after you close a design.

PDF Reader (UNIX Only)

Use the PDF Reader tab to bring up the Designer online manuals. Enter the default reader’s name with the full path or click browse.

Web Browser (UNIX Only)

Specify the default web browser you wish to use on the UNIX platform. The web browser displays the online help for Designer.

Device Selection Wizard

After you import your source files, the Device Selection Wizard helps you specify the device, package, and other operating conditions.
You must complete these steps before your netlist can be compiled.

The wizard steps include:

Selecting die, package, speed, and voltage

Selecting variations (reserve pins and I/O attributes)

Setting operating conditions

40

Tcl Scripting

Setting Die, Package, Speed, and Voltage

The first screen in the Device Selection Wizard allows you to set die, package, speed, and voltage.

> w poe

In the Tools menu, click Device Selection to start the Device Selection Wizard.
Select Die and Package. Select a die from the Die list. Available packages are listed for each die.
Specify Speed.

Select Die Voltage. Select from the available settings in Die Voltage drop-down menu. Two numbers separated by a “/” are
shown if mixed voltages are supported. If two voltages are shown, the first number is the 1/0 voltage and the second number is
the core (array) voltage.

Click Next to set reserve pins and 1/0 Attributes.

Device Variations

The second screen in the Device Selection Wizard enables you to set reserve JTAG and probe pins and the default /O standard.

To select reserve pins and default 1/0 standard:

1.

Select your reserve pins:

Check the Reserve JTAG box to reserve the JTAG pins “TDI,” “TMS,” "TCK,” and “TDO” during layout.
Check the Reserve JTAG Reset box to reserve the JTAG reset Pin “TRST” during layout.

Check the Reserve Probe box to reserve the Probe pins “PRA,” “PRB,” “SDI,” and “DCLK?” during layout.

Reserve Pins are not selectable for the Axcelerator, ProASIC, and ProASIC Plus families.

2.

3.

Select an 1/0 attribute. The 1/O Attributes section notifies you if your device supports the programming of 1/0 attributes on a per-
pin basis. For the Axcelerator family, the 1/0 Attribute section allows you to set the default I/O standard for the 1/O banks.

Click Next to set operating conditions.

Setting Operating Conditions

Operating Conditions, step 3 of the Device Selection Wizard, enables you to define the voltage and temperature ranges a device

encounters in a working system. The operating condition range entered here is used by Timer, the timing report, and the back-
annotation function. These tools enable you to analyze worst, typical, and best case timing.

Junction Temperature

Select a junction temperature. Supported ranges include:

Commercial (COM)
Industrial (IND)
Military (MIL)
Automotive

Custom

Consult the Actel Data Sheet, available at http://www.actel.com/techdocs/ds/index.html to find out which temperature range you

should use.

41

Voltage

Libero IDE v6.1 Users Guide

If you select Custom, edit the Best, Typical, and Worst fields. Modify the range to the desired value (real) such that Best < Typical <
Worst.

You can calculate junction temperature from values in the Actel Data Sheet, available at
http://www.actel.com/techdocs/ds/index.html.

The temperature range represents the junction temperature of the device. For commercial and industrial devices, the junction
temperature is a function of ambient temperature, air flow, and power consumption.

For military devices, the junction temperature is a function of the case temperature, air flow, and power consumption. Because Actel
devices are CMOS, power consumption must be calculated for each design. For most low power applications (e.g. 250mW), the
default conditions should be adequate.

Performance decreases approximately 2.5% for every 10 degrees C that the temperature values increase. Refer to the SmartPower
online help for more information about power consumption.

Select a voltage:
Commercial (COM)
Industrial (IND)
Military (MIL)
Automotive
Custom

If you select Custom, you may choose from Best > Typical > Worst in the drop-down menu.

Radiation Derating

Conservative post radiation performance estimates are available for some radiation tolerant devices based upon the number of KRads
the device is expected to be subjected to. Radiation effects vary by device lot and may not be completely representative of the lot you
are using. Post radiation timing numbers are only meant to be a guide and are not a guarantee of performance. Customers must
consult the specific radiation performance report for the specific lot used. Post radiation exposure estimates currently only affect
timing numbers. The SmartPower power analysis tool is not affected by changing the radiation exposure value.

RTSX-S and RTAX-S ONLY - Radiation Derating

This option is only available for RTSX-S and RTAX-S devices. The valid range is integer values from 0 to 300, and the units are in
KRads. Modifying this selection impacts the timing derating in Timer and back-annotating SDF files, so when you modify this value,
you must extract a new SDF file from Designer and re-evaluate the timing of your design. It does not affect the device configuration.

Changing Design Name and family

Design name and family are set when you create a new design. However, you can change this information for existing designs. If you
change the family, you must re-import the netlist. Use the following procedure to change the name of a design and the targeted Actel
family for the design.

To change the design name or family:
1. Inthe Tools menu, click Setup Design. This displays the Setup Design dialog box.
2. Specify the design name and family.

42

Tcl Scripting

3. Click OK. Refer to the Actel datasheet for your device for family specifications.

You may wish to migrate your SX device to an SX-A device. The SX to SX-A compatible family change option is available in the
Device Selection wizard.

To migrate your SX design to SX-A:
1. Open your SX design.
2. From the Tools menu, select Device Selection.

3. Select "SXA" from the Change to drop down menu, and proceed in the Device Selection Wizard to complete the migration. You

must re-compile and layout your design to run the Designer User Tools.

Changing Device Information

Device and package information, device variations, and operating conditions are set when you import a netlist and compile a new
design. However, you can change this information for existing designs.

To change device information for existing designs:

1. Inthe Tools menu, click Device Selection. The Device Selection Wizard appears.

2. Select Die, Package, and Speed Grade and click Next. (You must select die and package to continue.)
3. Select Device Variations and click Next.

4. Select Operating Conditions and click Finish.

Refer to the Actel FPGA Data Book or call your local Actel Sales Representative for information about device, package, speed grade,
variations, and operating conditions.

Compatible Die Change

When you change the device, some design information can be preserved depending on the type of change.

Changing Die Revisions

If you change the die from one technology to another, all information except timing is preserved. An example is changing an A1020A
(2.2um) to an A1020B (1.0um) while keeping the package the same.

Device Change Only

Constraint and pin information is preserved, when possible. An example is changing an A1240A in a PL84 package to an A1280A ina
PL84 package.

Repackager Function (Non-Axcelerator families only)

When the package is changed (for the same device), the Repackager automatically attempts to preserve the existing pin and Layout
information by mapping external pin names based on the physical bonding diagrams. This always works when changing from a
smaller package to a larger package (or one of the same size). When changing to a smaller package, the Repackager determines if any
of the currently assigned 1/Os are mapped differently on the smaller package. If any of the 1/Os are mapped differently, then the layout
is invalidated and the unassigned pins identified.

Importing Source Files

Source files include your netlist and constraint files.

43

Libero IDE v6.1 Users Guide

Source files are files created by outside tools that will be tracked (audited) to better coordinate the design changes. If you wish, you
may import some files as auxiliary files. Auxiliary files are not audited, but you do not have to re-compile your design after you

import them.

EDIF *.ed*

Verilog *V

VHDL *.vhd

Actel ADL Netlist *.adl

Criticality *.crt

ProASIC Constraint File (ProASICELS, ProASIC) *.gcf

Physical Design Constraint File (ProASIC3/E, Axcelerator) *.pdc

SDC *.sdc

The choice of source files is family dependent. Only supported source files are displayed in the Import Source dialog box. If you are
working on a new design or if you have changed your netlist, then you must re-import your netlist into Designer.

To import a source file:

1. From the File menu, choose Import Source Files. This displays the Import Source Files dialog box, as shown in the figure

below.
Import Source Files E|
Mate: the relative arder of the zame tvpe of files is impartant.
YWhen importing multiple EDIF or WHOL filez, the top-level file must be lazt [at the bottam).
I1ze the Up and Down buttons to specify the relative order of the files.
[
Source Files b Type | ~ Add..
1 |E:Wsilex_designs'l.apaﬁmunter _pa.edn edn
2 b ocdify. ..
3
4 Delete
5
B
7 Ed
g
q w +
[Keep existing physical constraintz
-
Audit timestamp: |Weu:| Feb 07 14:14:40 200 Audit options. .. |
] 4 | Cancel | Help

Import Source Files Dialog Box

Tcl Scripting

Click Add. The Add Source Files dialog appears.
Select the file you want to import and click Import. The File is added to the Import Source Files dialog box.

Add more source files to the list. All files added to the Import Source Files dialog box are imported at the same time. To modify a
file, select the file and click Modify. To delete a file, select the file and click Delete.

Specifying a priority is useful if you are importing multiple netlist files, GCF files, or PDC, or SDC files. When importing
multiple EDIF or structural HDL files, the top-level file must appear last in the list (at the bottom). Drag your files to specify the
import order.

(Axcelerator, ProASIC, ProASIC PX%5, ProASIC3/E designs only) Select Keep existing physical constraints to preserve all

existing physical constraints that you have made using ChipPlanner, PinEditor, or the 1/0 Attribute Editor.
(SX-A, eX, Axcelerator, ProASICELS ProASIC3/E) Select Keep existing timing constraints to preserve all the existing timing

constraints already in your design, whether coming from the Timer tool or previously imported file. If you import an SDC file
and select this option, Designer merges the existing constraints and the constraints contained in the SDC file. In case of a conflict,
the new constraint has priority over the existing constraint.

To set the audit options for these source files, click Audit options and follow the directions in the Audit Options dialog box.

When you are done adding all your source files, click OK. Your source files are imported. Any errors appear in the Designer log
window.

Note: Designer may not import file names or paths with spaces. Rename the file or path to remove the spaces, and re-import.

Importing SDC and GCF Files Simultaneously

If you specify SDC and GCF files in the Import source file dialog, GCF files are imported before SDC files regardless of the order you
specify. This means that any timing constraints in GCF are converted before the SDC constraints are applied. For a cleaner flow,
Actel recommends that you do not use both SDC and GCF timing constraints. SDC is the recommended format.

Auditing Files

Designer audits your source files to ensure that your imported source files are current. All imported source files are date and time
stamped. Designer notifies you if the file is changed. When notified, select the appropriate action and click OK.

To change your audit settings:

1.

From the File menu, click Audit Settings. The Audit Settings dialog box appears. Audit Timestamp reflects the last time and day
that the import source or audit update was successfully done.

Select the audit check box next to the file to enable auditing.

Click Change Location to open the "Modify File Location" dialog. The Modify File Location dialog box enables you to specify
the correct path so that the design can find the source file(s)..

Click Reset to Current Date Time to associate the file with the current day and time.

Importing Auxiliary Files

Auxiliary files are not audited and are treated more as one-time data-entry or data-change events, similar to entering data using one of
the interactive editors (e.g. PinEditor or Timer).

45

Libero IDE v6.1 Users Guide

Some timing constraints (such as multi_cycle) are not supported in the Timer GUI and must be implemented by importing the SDC
file. If you import the SDC file as an auxiliary, you do not have to re-compile your design. However, auditing is disabled when you
import auxiliary files, and Designer cannot detect the changes to your SDC file(s) if you import them as auxiliary files.

Auxiliary Files File Type Extension

Criticality *.crt ACT1, ACT2, ACT3, MX, XL, DX

PIN *.pin ACT1, ACT2, ACT3, MX, XL, DX, SX,
SX-A, eX

SDC *.sdc ProASIC3/E, SX-A, eX, Axcelerator,
ProASIC Pt

Physical Design Constraint *.pdc ProASIC3/E and Axcelerator

Value Change Dump *.ved ProASIC3/E, Axcelerator, ProASIC,
ProASIC "L

Switching Activity Intermediate File/Format * saif ProASIC3/E, Axcelerator, ProASIC,
ProASIC Pt

Design Constraint File * dcf Axcelerator, ACT1, ACT2, ACT3, MX, XL,
DX, SX, SX-A, eX

To import an auxiliary file:
1. From the File menu, select Import Auxiliary Files. The Import Auxiliary Files dialog appears.
2. Click the Add button. The Add Auxiliary Files dialog box appears.

3. Select your file and click Import. The file is added to the Import Auxiliary Files dialog box. Continue to add more auxiliary files
to the list. Some formats (like DCF and SDC) are not allowed to be imported in multiple auxiliary files.

Modifying:If you need to modify a selection, select the file row and click Modify
Deleting:If you need to delete a file, select the file row and click Delete.

Ordering:Ordering your auxiliary files. Select and drag your files to specify the import order. Specifying a priority is useful if
you are importing multiple PDC files.

4. After you are done adding all your Auxiliary files, click OK. Your auxiliary files are imported. Any errors appear in Designer’s
Log Window.

Note:
.ved and .saif are used by SmartPower for power analysis.
.crt for backwards compatibility with existing designs only.

File names or paths with spaces may not import into Designer. Rename the file or path, removing the spaces, and re-import.

Keep Existing Timing Constraints in SDC Files

The Keep Existing Constraints check box is designed to support an additional “merge or replace” functionality when you import SDC
files.

Select Keep existing timing constraints to preserve all existing timing constraints that you have made using the Timer GUI or
previously imported file. If you import a SDC file and you have this box selected, Designer merges the existing constraints and the
constraints existing in the SDC file. In case of a conflict, the new constraint has priority over the existing constraint.

The Keep Existing Constraints option is On by default. With this option On, your timing constraints from the imported SDC files are
merged with the existing constraints. When this option is Off, all the existing timing constraints are replaced by the constraints in the
newly imported SDC files.

46

Tcl Scripting

Keep Existing Physical Constraints
The Keep Existing Physical Constraints option in the Import Source Files dialog box enables you to merge or replace existing
constraints when you import new or modified GCF or PDC files.

Select Keep existing physical constraints to preserve all existing physical constraints that you have entered either using one of the
MVN tools (ChipPlanner, PinEditor, or the I/O Attribute Editor) or a previous GCF or PDC file. The software will resolve any
conflicts between new and existing physical constraints and display the appropriate message.

The Keep Existing Constraints option is Off by default. When this option is Off, all the physical constraints in the newly imported
GCF or PDC files are used. All pre-existing constraints are lost. When this option is On, the physical constraints from the newly
imported GCF or PDC files are merged with the existing constraints.

Compiling Your Design

After you import your netlist files and select your device, you must compile your design. Compile contains a variety of functions that
perform legality checking and basic netlist optimization. Compile checks for netlist errors (bad connections and fan-out problems),
removes unused logic (gobbling), and combines functions to reduce logic count and improve performance. Compile also verifies that
the design fits into the selected device.

There are three ways to select the compile command:
In the Tools menu, select Compile.
Click the Compile button in the Design Flow.
Click the Compile icon in the toolbar.

If you have not already done so, Designer’s Device Selection Wizard prompts you to set the device and package.

During compile, the message window in the Main window displays information about your design, including warnings and errors.
Designer issues warnings when your design violates recommended Actel design rules. Actel recommends that you address all
warnings, if possible, by modifying your design before you continue.

If the design fails to compile due to errors in your input files (netlist, constraints, etc.), you must modify the design to remove the
errors. You must then re-import and re-compile the files.

After you compile the design, you can run Layout to place-and-route the design or use the User Tools (PinEditor, ChipEditor,
ChipPlanner, Timer, SmartPower, or NetlistViewer) to perform additional optimization prior to place-and-route.

Compile Options

Setting Compile Options
To set compile options
1. From the Options menu, click Compile. The Compile Options dialog box opens. The Options available are family specific.
2. Select your options, and click OK.

Note: ProASIC3/E Compile options appear by default each time you compile the design. If you have disabled this feature, you can
click the Options menu and choose Compile to review/change/reset your Compile options.

47

Libero IDE v6.1 Users Guide

Compile options vary according to family.
MX, SX, SX-A, eX

Axcelerator

ProASIC, ProASICPLUS

ProASIC3/E

MX, SX, SX-A, eX Compile Options

Netlist Pin Properties Overwrite Existing Properties

During the Compile process, Designer checks the netlist properties. If the netlist file specifies a pin assignment for a pin that was also
assigned in PinEditor session, there is a conflict. How this conflict is resolved is determined by your selection in this box.

If this option is off, or unchecked, then Designer uses the assignment made in PinEditor, and the assignment in the netlist file for the
conflicting pin is ignored. If this option is on, or checked, then Designer uses the assignment in the netlist file for that pin, and the
PinEditor assignment is ignored. If you edit pin assignments in PinEditor, this option is automatically set to "off."

Fanout messages

Use the control slider in the Messages area to control the warning level. Use the control slider to specify the fanout limit that the
Compile step checks against. Setting the control slider to ‘0" informs the system to use the system defaults. Any non-zero value
replaces the system default value for the fanout limit with the user-specified value. Typically, this value range is 1 to 24.

This does not adjust the fanout of the design and it has no effect on the netlist. This only adjusts the warning level, by controlling what
level of fanout checking you want to be warned about during Compile. Changing this fanout limit option does not invalidate the
Compile design state.

Axcelerator Compile Options

Combine registers into 1/0s where possible

The Axcelerator, ProASIC3, and ProASIC3E families includes an optional register on the input path, an optional register on the output
path, and an optional register on the 3-state control pin. Select the option Combine Registers into 1/Os where possible to take
advantage of these registers.

Abort on PDC error

Setting Abort on PDC Error aborts the PDC import when an error is encountered. When this box is checked, the PDC file is either
imported fully or the design is left untouched.

ProASIC and ProASICPLUS Compile Options
Include RAM and 1/0 in Spine and Net Regions

This option affects the behavior of the following:

The use_global constraint

48

Tcl Scripting

The set_net_region constraint
The creation of spines in the MultiView Navigator

Selecting "Include RAM and I/0 in Spine and Net Regions" enables you to assign memory and 1/0 to spine (LocalClock) and net
regions.

When this option is checked, Designer will apply the use_global and set_net_region constraints to core cells, memory, and 1/0. When
unchecked, Designer will apply the use_global and set_net_region constraints to core cells only. For new designs, this box is
automatically checked. For designs created with v5.1 or earlier, this option is unchecked by default. If you change this default setting,
you must recompile your design.

This option also determines whether memory and 1/O are included in a LocalClock region that you create with the ChipPlanner tool. If
checked, memory and 1/0 are included. If not checked, they are excluded.

ProASIC3/E Compile Options

This interface lets you do the following:

Verify Physical Design Constraints

Perform Globals Management
Netlist Optimization

Generate Compile report

Physical Design Constraints

This interface enables you to verify the Physical Design Constraints (PDC) file.

49

Libero IDE v6.1 Users Guide

X

Compile Options

=I- Compile I;Iptlnns : : Checking of the Physical Design Constraintz [PODC]
Physical Design Constraints

Globalz Management [w
Metlizt O ptimization

Abort Compile if errorz are found in the
phyzical dezign constraintz.

Display of Results Digplay object names that are no longer found after
netlist matching iz performed on the design.

Limit the numnber of displayed messages oo 10000

Festore Defaults

[v Show thiz dialog every time Compile iz mn.

Help ak. Cancel

Checking the Physical Design Constraint (PDC)

Abort Compile if errors are found in the physical design constraints: Changes the “Abort on PDC error” behavior. Select this
option to stop the flow if any error is reported in reading your PDC file. If you deselect this option, the tool skips errors in reading
your PDC file and just reports them as warnings. The default is ON.

Note: The flow always stops even if this option is deselected in the following two cases:
If there is a Tcl error (For example, the command does not exist or the syntax of the command is incorrect)

The assign_local_clock command for assigning nets to LocalClocks fails. This may happen if any floor planning DRC check
fails, such as, region resource check, fix macro check (one of the load on the net is outside the local clock region). If such an
error occurs, then the Compile command fails. Correct your PDC file to proceed.

Note: Every time you invoke this dialog box, this option is reset to its default value ON. This is to ensure that you have a correct
PDC file.

Display object names that are no longer found after netlist matching is performed on the design: Displays netlist objects in the
PDC that are not found in the imported netlist during the Compile ECO mode. Select this option to report netlist objects not found in
the current netlist when reading the internal ECO PDC constraints. The default is OFF.

Limit the number of displayed messages to: Defines the maximum number of errors/warnings to be displayed in the case of reading
ECO constraints. The default is 10000 messages.

Tcl Scripting

Globals Management

The interface provides a global control to the Compile component of the design flow.

X

Compile Options

Sl T U Automatic Demation/Pramation

Physical Design Constraints Demote global nets whose fanout iz
Globals Management less than:

M etlizt O ptimization

Display of Fesults Pramate regular netz whoze fanout iz

greater thar:

Local Clocks

Limit the rumnber of shared instances between 2
ary bwo non-overlapping local clock regions to:

YWhen inserting buffers to legalize thared 2
inztances between non-overlapping local clock,
regionz, limit the buffers' fanout to:

1T

Festore Defaulkz

v Show this dialog every time Compile is iun,

Help (] Cancel

Automatic Demotion/Promotion

Demote global nets whose fanout is less than: Enables the global clock demotion of global nets to regular nets.
By default, this option is OFF. The maximum fanout of a demoted net is 12.

Note: A global net is not automatically demoted (assuming the option is selected) if the resulting fanout of the demoted net is
greater than the max fanout value. Actel recommends that the automatic global demotion only act on small fanout nets. Actel
recommends that you drive high fanout nets with a clock network in the design to improve timing and routability.

Promote regular nets whose fanout is greater than: Enables global clock promotion of nets to global clock network. By default,
this option is OFF. The minimum fanout of a promoted net is 200.

But do not promote more than: Defines the maximum number of nets to be automatically promoted to global. The default value is 0.
This is not the total number as nets need to satisfy the minimum fanout constraint to be promoted. The promote_globals_max_limit
value does not include globals that may have come from either the netlist or PDC file (quadrant clock assignment or global promotion)

Note: Demotion of globals through PDC or Compile is done before automatic global promotion is done.

You may exceed the number of globals present in the device if you have nets already assigned to globals or quadrants from the netlist
or by using a PDC file. The automatic global promotion adds globals on what already exists in the design.

51

Libero IDE v6.1 Users Guide

Local clocks

Limit the number of shared instances between any two non-overlapping local clock regions to: Defines the maximum number of
shared instances allowed to perform the legalization. It is also for quadrant clocks.

The maximum number of instances allowed to be shared by 2 local clock nets assigned to disjoint regions to perform the legalization
(default is 12, range is 0-1000). If the number of shared instances is set to 0, no legalization is performed.

When inserting buffers to legalize shared instances between non-overlapping local clock regions, limit the buffers' fanout to:
Defines the maximum fanout value used during buffer insertion for clock legalization. Set the value to O to disable this option and
prevent legalization (default value is 12, range is 0-1000). If the value is set to 0, no buffer insertion is performed. If the value is set to
1, there will be one buffer inserted per pin.

Note: If you assign quadrant clock to nets using MultiView Navigator, no legalization is performed.

Netlist Optimization

This interface allows you to perform netlist optimization.

X

Compile Options

=~ Compile Options
Phyzical Design Constraints
Globals M anagement
I etlizt O pimization
Dizplay of Rezults

Combining

[Combine registers inta | /0s whenever possible.

Buffer/lnverter b anagement

u Delete buffers and inverter trees whosze

fanout iz lezs than:

Festore Defaulkz

v Show this dialog every time Compile is iun,

Help (] Cancel

Combining

Combine registers into 1/O wherever possible: Combines registers at the 1/0 into 1/0-Registers. Select this option for optimization
to take effect. By default, this option is OFF.

Tcl Scripting

Buffer/Inverter Management

Delete buffers and inverter trees whose fanout is less than: Enables buffer tree deletion on the global signals from the netlist. The
buffer and inverter are deleted. By default, this option is OFF. The maximum fanout of a net after buffer tree deletion is 12.

Note: A net does not automatically remove its buffer tree (assuming the option is on) if the resulting fanout of the net (if the buffer
tree was removed) is greater than the max fanout value. It is recommended that the automatic buffer tree deletion should

only act on small fanout nets. From a routability and timing point of view, it is not recommended to have high fanout nets
not driven by a clock network in the design.

Display of Results

This interface lets you generate a Compile report.

Compile Options f'5__<

= Compile Optionz

)) . Cornpile B epart
Physical Design Constraints P P

Globalz M anagement Lirnit the number of dizplayed high fanout nets to: 10
Metlzt O ptimization
Dizplay of Results

Restore Defaultz

[v Show thiz dialog every time Compile iz run.

Help ak. Cancel

Compile Report

Limit the number of displayed high fanout nets to: Enables flip-flop net sections in the compile report and defines the number of
nets to be displayed in the high fanout. The default value is10

About Design Constraints

Design constraints are specifications for placing, implementing, naming, and timing considerations of physical and logical

assignments. They are usually either restrictions or properties in your design. There are several types of constraints: routing, timing,
area, mapping, and placement constraints.

53

Libero IDE v6.1 Users Guide

Timing constraints
ocation and region assignment constraintsLocation and region assignment constraints (placing and routing)
1/0 assignment constraints (pin location and 1/O attributes)
Attributes
You use constraints to ensure that a design meets timing performance and required pin assignments.

Designer supports both physical and timing constraints. You can set constraints by either using Actel's interactive tools or by
importing constraint files directly into Designer.

About Location and Region Assignments

You can set constraints for locations and regions using the ChipPlanner or ChipEditor tool as well as via constraint files.
The tool you use depends on which product family you are designing for:

For ProASIC3E, ProASIC3, ProASIC P25 Axcelerator, and ProASIC devices, use ChipPlanner.

For other design families, use ChipEditor.

If you choose to use constraint files to set your location and region assignments, the exact constraint file you use depends on your
device family. See Types of physical constraints for more information.

When you open your design (.adb) file, Designer automatically presents you with the appropriate tools in the Design Flow window.

About Physical Constraints and Attributes

Physical Constraints

Physical constraints are the placement and routing constraints that apply to a specific architecture and device. You can either import a
constraint file or enter them in your design using one of several tools.

If you are designing for the ProASIC3E, ProASIC3, ProASIC P15 Axcelerator, and ProASIC families, you will use the tools
available from within the MultiView Navigator. These tools are:

ChipPlanner - Sets location and region assignments
PinEditor in MVN - Sets the pin location constraints
1/0 Attribute Editor - Sets 1/O attributes
For all other families, you will use the standalone versions of the following tools:
ChipEditor - Sets location and region assignments
PinEditor - Sets 1/O attributes and pin location constraints

Physical constraints may also be specified in three types of files. The supported file types depend on the family. See Types of physical
constraints for more information.

Attributes

Attributes are the characteristics of logic macros or nets in your design. They indicate placement, implementation, naming,
directionality, and other characteristics. This information is used by the design implementation software during placement and routing
of a design.

54

Tcl Scripting

Input and output attributes are described in the documentation for the 1/O Attribute Editor. Attributes applicable to a specific tool are
described in the documentation for that tool.

Types of Physical Constraints

Designer supports three types of physical constraints:
1/0 assignments
Location and region assignments

Clock assignments

I/0 Assignments

Use PinEditor to manually place and configure your 1/Os. Or, assign 1/O locations automatically by importing one of the following
constraint files into Designer:

GCF (ProASIC BXYS and ProASIC families)
PDC (ProASIC3E, ProASIC3, and Axcelerator families)
PIN (all families except ProASIC3E, ProASIC3, ProASIC EX%S| Axcelerator, and ProASIC)

Location and Region Assignments

Use ChipPlanner to view the placement and routing for ProASIC3E, ProASIC3, Axcelerator, ProASIC, and ProASICELS designs. Use
ChipEditor to view and manually change location assignments for other design families.

You can also assign location constraints and enter region constraints by importing one of the following constraint files into Designer:
GCF (ProASIC and ProASIC 28 families)
PDC (ProASIC3E, ProASIC3, and Axcelerator families)

Clock Assignments
Use ChipPlanner to assign nets to local clocks in ProASIC and ProASICP-YS,

You can also assign nets to local clocks and global clocks (with the exception noted below) by importing the following constraint files
into Designer:

GCF (ProASIC and ProASIC 2L families)
PDC (ProASIC3/E and Axcelerator families)

Note: You cannot assign global clocks for Axcelerator.

Timing Constraints

Timing constraints can be entered using the interactive Timer tool or by importing a constraint file.

Constraint File Type Supported Families

SDC Axcelerator, ProASICEYS, ProASIC3/E, SX-A, and eX
DCF SX, SX-A, MX, eX, ACT1, ACT2, and ACT3
GCF ProASIC ONLY

55

Libero IDE v6.1 Users Guide

To understand the complexity of a design and its performance, perform place-and-route with no constraints to see if routing can
complete without constraints. If routing completes successfully, you can open Timer to see if the physical design meets timing
requirements.

ProASIC only: If you are using a synthesis tool such as Synopsys Design Compiler, Actel recommends that you use it to generate a
forward SDF file containing path constraints only.

Over constraining a design may result in increased place-and-route run times, while not improving design performance.

Layout

Running Layout

Use Layout to place and route your design.

To run Layout:

1. Click the Layout button in the Design Flow Window.

—f=—
g [T
» HEC

Layout

2. Layout Options. Select your Layout options and Click OK. Layout options are family specific.

Layout options

Axcelerator Layout Options

When running Layout, use the Layout Options dialog box to set your Layout options.

Timing-driven
Select this option to run timing-driven Layout. The primary goal of timing-driven layout is to meet timing constraints, with a

secondary goal of producing high performance for the rest of the design. Timing-driven Layout is more precise and typically results
in higher performance.

Standard layout is selected when the Timing-driven checkbox is unchecked. Standard layout maximizes the average performance for
all paths. Each part of a design is treated equally for performance optimization. Standard layout uses net weighting (or criticality) to
influence the results. Delay constraints that have been set for a design during place-and-route are not considered, however a delay
report based on delay constraints entered in Timer can still be generated for the design. This is helpful to determine if timing-driven
Layout is required.

Run Place

Select this option to run the placer during Layout. If you have not run Layout before, Run Place is checked by default. If your design
has already been placed but not routed, this box is not checked. You can also select the following incremental placement options.

Incrementally: Select to use previous placement data as the initial placement for the next placement run.

Lock Existing Placement (fix): Select to use and lock previous placement data for the next incremental placement run.

56

Tcl Scripting

Effort Level

Use the Effort Level slider to increase the effort Layout uses to place and route your design. The range is 1 to 5 with a default of 3. A
higher level of effort generally improves the quality of results, but runs longer.

Run Route

Select to run the router during Layout. By default, it reflects the current Layout state. If you have not run Layout before, Run Route is
checked. Run Route is also checked if your previous Layout run completed with routing failures. If your design has been routed
successfully, this box is checked.

Incremental routing is available for Axcelerator devices. When activated, the option sets the previous routing information as the initial
starting point. To use the incremental routing option in the script mode, see the Advanced T¢cl Layout options for Axcelerator (in the

Tcl Scripting section).

Use Multiple Passes

Select to run layout multiple times with different placement seeds. Multiple Pass Layout attempts to improve layout quality by
selecting from a greater number of layout results. Click Configure to set your Multiple Pass Configuration.

Note: To run Multiple Passes, you must check both Run Place and Run Route.

ProASIC3/E, ProASICPLUS, and ProASIC Layout Options

When running layout, use the Layout Options dialog box to set your layout options.

Timing-driven
Select this option to run timing-driven Layout. The primary goal of timing-driven layout is to meet timing constraints, with a

secondary goal of producing high performance for the rest of the design. Timing-driven Layout is more precise and typically results in
higher performance.

When not checked, standard layout runs. Standard layout maximizes the average performance for all paths. Each part of a design is
treated equally for performance optimization. Standard layout uses net weighting (or criticality) to influence the results. Delay
constraints that have been set for a design during place-and-route are not considered, however a delay report based on delay
constraints entered in Timer can still be generated for the design. This is helpful to determine if timing-driven Layout is required.

Run Place

Select this option to run the placer during Layout. By default, it reflects the current Layout state. If you have not run Layout before,
Run Place is checked by default. If your design has already been placed but not routed, this box is not checked by default. You can
also select the following incremental placement options.

Incrementally: Select to use previous placement data as the initial placement for the next place run.

Lock Existing Placement (fix): Select to preserve previous placement data during the next incremental placement run.

Run Route

Select to run the router during Layout. By default, it reflects the current Layout state. If you have not run Layout before, Run Route is
checked. Run Route is also checked if your previous Layout run completed with routing failures. If your design has been routed
successfully, this box is checked.

Incrementally: Select to fully route a design when some nets failed to route during a previous run. You can also use it when the
incoming netlist has undergone an E.C.O. (Engineering Change Order). Incremental routing should only be used if a low number
of nets fail to route (less than 50 open nets or shorted segments). A high number of failures usually indicates a less than optimal
placement (if using manual placement through macros, for example) or a design that is highly connected and does not fit in the

57

Libero IDE v6.1 Users Guide

device. If a high number of nets fail, relax constraints, remove tight placement constraints, or select a bigger device and rerun
routing.
Use Multiple Passes

Select to run layout multiple times with different seeds. Multiple Pass Layout attempts to improve layout quality by selecting from a
greater number of layout results. Click Configure to set your Multiple Pass Configuration.

Click the Advanced button to set Timing-Driven options.

ProASIC3/E, ProASICPLUS, and ProASIC Layout advanced Options

To set these advanced options during Layout, click the Advanced button in the Layout dialog box.

Placer Timing Weight

Setting this option to values within a recommended range of 1-4 changes the weight of the timing objective function, thus influencing
the results of timing-driven place-and-route in favor of either routability or performance. This option is available only when timing
constraints have been defined.

Note: If you change the Timing Weight you must re-run the placer to complete routing. Changing the Timing weight has no effect
if you do not re-run the placer.

Restore Defaults

Click Restore Defaults to run the factory default settings for advanced options.

eX, SX, SX-A Layout Options

When running layout, use the Layout dialog box to set your layout options.

Timing-Driven
Select to run Timing-Driven Layout. The primary goal of Timing-Driven layout is to meet timing constraints, while still producing

high performance for the rest of the design. Timing-Driven Layout is more precise and typically results in higher performance. This
option is available only when timing constraints have been defined.

When not checked, standard layout runs. Standard layout maximizes the average performance for all paths. Each part of a design is
treated equally for performance optimization. Standard layout uses net weighting (or criticality) to influence the results. Delay
constraints that have been set for a design during place-and-route are not considered, however a delay report based on delay
constraints entered in Timer can still be generated for the design. This is helpful to determine if Timing-Driven Layout is required.

Place Incrementally
Select to use previous placement data as the initial placement for the next place run.
Lock Existing Placement: Select to preserve previous placement data during the next incremental placement run.

Use Multiple Passes (eX and SX-A only)

Select to run layout multiple times with different seeds. Multiple Pass Layout attempts to improve layout quality by selecting from a
greater number of layout results. Click Configure to set your Multiple Pass Configuration.

Advanced

Click the Advanced button to set Extended Run and Timing-Driven options.

58

Tcl Scripting

eX, SX, and SX-A Advanced Layout Options

To set these advanced options during Layout, click the Advanced button in the Layout dialog box.

Extended Run

Select this to run a greater number of iterations during optimization within a single layout pass. An extended run layout can take up to
5 times as long as a normal layout.

Effort Level

This setting specifies the duration of the timing-driven phase of optimization during timing-driven Layout. Its value specifies the
duration of this phase as a percentage of the default duration. This option is available only when timing constraints have been defined

The default value is 100 and the selectable range is within 25 - 500. Reducing the effort level also reduces the run time of timing-
driven place-and-route (TDPR). With an effort level of 25, TDPR is almost four times faster. With fewer iterations, however,
performance may suffer. Routability may or may not be affected. With an effort level of 200, TDPR is almost two times slower. This
variable does not have much effect on timing.

Timing Weight

Setting this option to values within a recommended range of 10-150 changes the weight of the timing objective function, thus
influencing the results of timing-driven place-and-route in favor of either routability or performance. This option is available only
when timing constraints have been defined

The timing weight value specifies this weight as a percentage of the default weight (i.e. a value of 100 has no effect). If you use a
value less than 100, more emphasis is placed on routability and less on performance. Such a setting would be appropriate for a design
that fails to route with TDPR. In case more emphasis on performance is desired, set this variable to a value higher than 100. In this
case, routing failure is more likely. A very high timing value weight could also distort the optimization process and degrade
performance. A value greater than 150 is not recommended.

Restore Defaults

Click Restore Defaults to run the factory default settings for advanced options.

ACT, MX, and DX Layout Options

Timing-driven
Select this option to run Timing-Driven Layout. The primary goal of timing-driven layout is to meet timing constraints, with a

secondary goal of producing high performance for the rest of the design. timing-driven Layout is more precise and typically results in
higher performance. This option is available only when timing constraints have been defined.

When not checked, standard layout runs. Standard layout maximizes the average performance for all paths. Each part of a design is
treated equally for performance optimization. Standard layout uses net weighting (or criticality) to influence the results. Delay
constraints that have been set for a design during place-and-route are not considered, however a delay report based on delay
constraints entered in Timer can still be generated for the design. This is helpful to determine if Timing-Drive Layout is required.

Place Incrementally
Select to use previous placement data as the initial placement for the next place run.

Lock Existing Placement:Select to preserve previous placement data during the next incremental placement run.

Advanced
Click Advanced to set Extended Run options.

59

Libero IDE v6.1 Users Guide

ACT, MX, and DX Advanced Layout Options

To set these advanced options during Layout, click the Advanced button in the Layout dialog box.

Extended Run

Select this to run a greater number of iterations during optimization. An extended run layout can take up to 5 times as long as a normal
layout.

Restore Default

Click Restore Defaults to run the factory default settings for advanced options.

Incremental Placement

In either standard or timing-driven mode, use incremental placement to preserve the timing of a design after a successful place-and-
route, even if you change part of the netlist. Incremental placement has no effect the first time you run layout. During design iteration,
incremental placement attempts to preserve the placement information for any unchanged macros in a modified netlist.

As a result, the timing relationships for unchanged macros approximate their initial values, decreasing the execution time to perform
Layout. By forcing Designer to retain the placement information for a portion of the design, some flexibility for optimal design layout
may be lost. Therefore, do not use incremental placement to place your design in pieces. You should only use it if you have
successfully run Layout and you have minor changes to your design.

Incremental placement requires prior completion of place. Do not use incremental placement if the previous Layout failed to meet
performance goals.

Locking Existing Placement (Fix)

When the Lock Existing Placement option is selected in the Layout dialog box, all unchanged macros are treated as locked (fixed)
placements during an incremental placement. This is the strongest level of control, but it may be too restrictive for the new placement
to successfully complete. The default ON setting treats unchanged macro locations as placement hints, but alters their locations as
needed to successfully complete placement. Refer to ChipEditor for details on locking macros.

ProASIC and ProASICPLUS Placement Constraint File (GCF)

For ProASIC and ProASICE-YS designs, you can export a GCF constraint file to get all of the constraint information. From the File
menu, choose Export>Constraint Files, type a file name and click Save, and then select All GCF constraints in the Export GCF
File dialog box. Blocks with locked placement constraints generate locked placement constraints, while the others generate initial
placement constraints. You can edit a GCF file to remove existing constraints or add new constraints. You must then import the
modified GCF file as well as the netlist back into Designer. See Importing Source Files for more information about importing files.

Multiple Pass Layout

Multiple Pass Layout attempts to improve layout quality by selecting from a greater number of Layout results. This is done by running
individual place and route multiple times with varying placement seeds and measuring the best results with a specified criteria.

Note:
Before running Multiple Pass Layout, you need to save your design.

Multiple Pass Layout is supported in the following families: ProASIC3/E, Axcelerator, ProASICEES, ProASIC, SX-A, and eX.

60

Tcl Scripting

Multiple Pass Layout saves your design file with the pass that has the best layout results. A corresponding timing report file for
the best result, named design-name_timing.rpt is also saved to disk. If you want to preserve your existing design state, you should
save your design file with a different name before proceeding. To do this, from the File menu, click Save As.

A timing report for each pass will be written out to the working directory to assist you in later analysis. The report files will be
named design-name_timing.rpt.pass-number. Look at the design-name _iteration_summary.rpt for details of the saved files.

To configure your multiple pass options:

1. When running Layout, se;ect Use Multiple Passes in the Layout Options dialog box.

2. Click Configure. The Multi-Pass Configuration dialog box appears.

3. Set the options and click OK.

Maximum Number of Passes: Set the number of passes (iterations) using the slider. 3 is the minimum and 25 is the maximum. The
recommended number of passes is 5.

Measurement: Select the measurement criteria you want Layout to meet. If Slowest Clock or Specific Clock is selected as your
criterion, then the Layout runs all passes. If Timing Violations is selected as your criterion, Layout stops once the timing constraints
are met. If the constraints are not met, then all of the Layout passes run.

Slowest Clock Select to use the slowest clock in the design in a given pass as the performance reference for
the layout pass.

Specific Clock Select to use a specific clock as the performance reference for all Layout passes.

Timing Violations Select to use the pass that best meets the slack or timing-violations constraints. NOTE: You

must enter your own timing constraints through the Timer or SDC.The ‘best’ case is
calculated by determining the total negative slack for all constraints.

Save Results from All Passes: Select to save the design file (.adb) for each pass. By default, only the best result is saved to your
design. With this option, for every pass, the individual .adb is stored as filename_pass-number.adb in the name. The ‘best’ pass
design will still also be written back to the original .adb filename. Saving all results does take more disk space, but allows you to later
analyze the result of each pass in more detail. Look at the design-name _iteration_summary.rpt for details of the saved files.

The extended run_shell Tcl script enables you to run the multiple pass layout in batch mode from a command line. See the

extended_run_shell script for more information.

Analyzing Timing in Your Design
Use the Timer tool to analyze the timing in your design. Using Timer, you can:
Determine your clock frequency (a common yardstick for measuring the timing of your design)
Calculate delays in paths
Analyze and modify critical paths
Set timing constraints to meet your timing requirements

Incorporate the ChipPlanner/ChipEditor tools

Analyzing Power Consumption in Your Design

Use the SmartPower tool to analyze your designs power consumption. Use the SmartPower tool to:

61

Libero IDE v6.1 Users Guide

Define clock domains

Specify individual pin frequencies

View detailed hierarchical analysis of your design
View global power consumption at the design level

If you wish, you may also view the equations that SmartPower uses to calculate your power consumption.

Viewing Your Netlist

The NetlistViewer tool displays the contents of the design as a schematic, making it easier for you to debug your design. With
NetlistViewer, you can view nets, ports, and instances in the schematic view. You can also isolate specific sections of your netlist to
simplify your analysis and cross probe with other tools.

There are two versions of the NetlistViewer tool: NetlistViewer in MultiView Navigator (MVN) and NetlistViewer Standalone.
Which version you use depends on which family you are designing for.

NetlistViewer in MultiView Navigator supports ProASIC3E, ProASIC3, ProASIC 2L Axcelerator, and ProASIC families.
NetlistViewer Standalone supports MX, SX-A, eX, RTSX, and RTSX-S families.

Used with PinEditor in MultiView Navigator, ChipPlanner, or Timer, NetlistViewer in MultiView Navigator assists you in meeting
area and timing goals by helping you with critical path identification. NetlistViewer Standalone can also be used alone or with
PinEditor Standalone, ChipEditor, or Timer.

When you open your design (.adb) file, Designer will automatically present you with the appropriate tools in the Design Flow
window. You must compile your design before you can open it in NetlistViewer.

Back-Annotation

The back-annotation functions are used to extract timing delays from your post layout data. These extracted delays are put into a file
to be used by your CAE package’s timing simulator. If you wish to perform pre-layout back-annotation, select Export and Timing
Files from the File menu.

The Back-Annotation command creates the files necessary for back-annotation to the CAE file output type that you chose. Refer to
Actel Interface Guides or the documentation included with your simulation tool for information about selecting the correct CAE
output format and using the back-annotation files.

To back-annotate your design:
1. From the Tools menu, click Back-Annotate, or click the Back-Annotate button in the Design Flow window.
2. Make your selections in the Back-Annotate dialog box and click OK.

Extracted Files Directory: The file directory is your default working directory. If you wish to save the file elsewhere, click Browse
and specify a different directory.

Extracted File Names: This name is used as the base-name of all files written out for back-annotation. Do not use directory names or
file extensions in this field. The file extensions will be assigned based on your selection of which file formats to export. The default
value of this field is <design>_ba.

Output Formats: Select the file format of the timing file. One of SDF or STF.
(STF is only supported for ACT1, ACT2, ACT3, DX, MX, SX).
Simulator Language: Select either Verilog or VHDL93.

62

Tcl Scripting

Export Additional Files: Check Netlist or Pin to export these files at the same time. For Axcelerator, ProASIC3, and ProASIC3E,
you must export and use the ‘flattened' netlist (AFL-style) with the back-annotated timing file (SDF) in timing simulation.

Note: For Axcelerator, ProASIC3, and ProASIC3E, you cannot select SDF format using File -> Export Files -> Timing.

You have no choice regarding exporting the netlist from the back-annotate command for Axcelerator, ProASIC3, and ProASIC3E.
This selection is hard-coded to be 'on'. For all other families, the export-netlist and back-annotate generates equivalent netlist files. So
the back-annotate command does not enforce the writing out of the netlist during back-annotate.

Available Report Types

Select from Report Type & Options on the dialog box when invoking a report.

Report Type Supported Families Report Contents

Status Report All Provides information about Designer, Device Data, and variable settings
for the design.

Timer Report All Displays summarized timing delays for paths.

Pin Report All Allows you to create a text list of the 1/O signal locations on a device. You
can generate a pin report sorted by 1/0O signal names or by package
number.

FlipFlop Report ~ All Creates a report that lists the number and type of flip-flops (sequential or

CC, which are flip-flops made of 2 combinatorial macros) used in a design.
The flip-flop report can be of two types: Summary or Extended. Both types
of reports include the Flip-Flop type, sequential (Seq) or combinatorial
(CC), the Library name, and the Total number of Seq and CC Flip-Flops in
the design. The Summary Report also includes the Number of instances of
each unique type. The Extended Report provides the Macro name. All
Reports are output to an editable window for viewing, modifying, saving,

and printing.
Power Report ProASICEYS, Axcelerator, Enables you to quickly determine if any power consumption problems
ProASIC and ProaSIC3/E exist in your design. The power report lists the following information:
- Global device information and SmartPower Preferences selection
information

- Design level static power summary

- Dynamic power summary

- Hierarchical detailed power report (including gates, blocks, and nets),
with a block by block, gate by gate, and net by net power summary
SmartPower results

Timing All Enables you to obtain constraint results sorted by slack. You can now view
Violations Max Delay violations as well as Min Delay violations in the report.
Report
1/0 Bank Axcelerator and ProASIC3/E Provides information on the 1/O functionality, I/O technologies, 1/0 banks
R and 1/0 voltages.

eport

63

Libero IDE v6.1 Users Guide

Status Reports

The status report enables you to create a report containing device and design information, such as die, package, percentage of the logic
and 1/0 modules used, etc.

To generate a status report:

1.
2.

In the Tools menu, choose Reports.

Select Status from the drop-down list in the Report Types dialog box. The status report opens in a separate window. You can
save or print the report.

Timing Reports

The timing report enables you to quickly determine if any timing problems exist in your design. The timing report lists the following
information about your design:

maximum delay from input 1/O to output I/O
maximum delay from input 1/O to internal registers
maximum delay from internal registers to output I/O
maximum delays for each clock network

maximum delays for interactions between clock networks

To generate a timing report:

1.
2.
3.

In the Tools menu, click Reports.
Choose Timing from the Report Type drop-down list. This displays the Timing Report dialog box.

Specify the Slack Threshold. If you select “Slack” as the sort method, you can limit the number of delays displayed based upon
a slack threshold. For example, if you only want to see delays that have a slack less than 5ns, enter 5 in the Slack Threshold box.

Setup-hold Timing Check. Selection of this box enables you to configure the timing report to calculate external setup and hold
information for device inputs in addition to the standard information.

Expand Failed Paths. If a path does not meet your timing specifications, and you would like to see the incremental delay of each
macro within that path, select the Expand Failed Paths box.

Options. Clicking Options brings up the Timing Preferences dialog box, where you can set additional display and report options.
Sort by Actual Delay

Sort by Slack Delay

Path Selection

Break Path at Register

Click OK. This displays a timing report based upon your timing and display preferences. The format and content of the report is
determined by the family

Pin Reports

The pin report allows you to create a text list of the 1/O signal locations on a device. You can generate a pin report sorted by 1/0 signal
names or by package number.

64

Tcl Scripting

To generate a pin report:
1. Inthe Tools menu, click Reports.
2. Choose Pin from the drop-down list in the Report Type dialog box. This displays the Pin Report dialog box.

3. Specify the type of report to generate. Select Number or Name from the List By pull-down menu, then click OK. This displays a
pin report.

Flip-Flop Reports
The flip-flop report enables you to create a report that lists the number and type of flip-flops (sequential or CC, which are flip-flops
made of 2 combinatorial macros) used in a design.
There are two types of reports you can generate, Summary or Extended:

A Summary report displays whether the flip-flop is a sequential, 1/0 sequential, or CC flip-flop, the macro implementation of the flip-
flop, and the number of times the implementation of the flip-flop is used in the design.

An Extended report individually lists the names of the macros in the design.

To generate a flip-flop report:
1. Inthe Tools menu, click Reports. This displays the Reports dialog box.
2. Select Flip-Flop from the drop-down menu. The Flip-Flop Report dialog box appears.

3. Specify the type of report to generate. Select Summary or Extended from the Type pull-down menu, then click OK. This displays
the report in a separate window.

Power Reports
The power report enables you to quickly determine if any power consumption problems exist in your design. The power report lists
the following information:
Global device information and SmartPower Preferences selection information
Design level static power summary
Dynamic power summary

Hierarchical detailed power report (including gates, blocks, and nets), with a block by block, gate by gate, and net by net power
summary SmartPower results

To create a power report:
1. Inthe Tools menu, click Reports. This displays the Reports dialog box.
2. Choose Power in the Report list and click OK. The Power Report dialog appears.
3. Choose from the following options:
Static Power: Returns static power information
Dynamic Power: Returns dynamic power information
Report Style: Specifies report style
Select analysis preferences:

Units: Sets units preferences for power and frequency

65

Libero IDE v6.1 Users Guide

Operating Conditions: Sets preferences for operating conditions

Block Expansion Control: Filters reported power values returned in the report. This box does not control which values are
included, rather it specifies which blocks are detailed/expanded. You may specify which blocks are expanded using a minimum
power value, a minimum power ratio (with regards to the total power of the design) and a maximum hierarchical depth; a filtered
value is not include in displayed lists, but still counted for upper hierarchical levels.

4. Once you are satisfied with your selections, click OK in the Preferences dialog box and then click OK in the Power Report
dialog box. SmartPower displays the report in a separate window.

Timing Violations Reports

For families that use the pin-to-pin timing model, the Violations report enables you to obtain constraint results sorted by slack. You
can now view Max Delay violations as well as Min Delay violations in the report.

To generate a timing violations report:

1. From Tools menu, click Reports.

2. Inthe Report Types dialog box, select Timing Violations.
3. Click OK.

I/O Bank Reports

The 1/0 Bank report provides information about the 1/0 functionality, 1/O technologies, /0 banks and /O voltages.

The following section shows an excerpt from the 1/0 Bank report:

66

Tcl Scripting

T/0 Function:

Type | wfo register | wf register | wf DDRE register
—————————————————————————————— e B [
Input I/0 | 20 | o | o
Output I/0 | 17 | O | o
Bidirectional I/0 | 1 | O | O
Differential Input I0 Pairs | O | O | O
Differential Qutput IS0 Pairs | O | O | O
I/0 Technology:
| Wvoltages | I/0s
———————————————————————————————— e e el Bl E e
I/0 Standard(s) | wee1 | Wref | Input | Output | Bidirectional
———————————————————————————————— e vy] B
LWTTL | 3.30w | NS8 | 20 | 17 | 1
I/0 Bank Resource Usage:
Yoltages Single I/ 0s iff I/0 Pairs Yret I/0s=
Yoo Vet Used Total Used Total Used Total Yref Pins
BankD | 3.30w | N/& 0 25) 12 T M M
Bankl | 3.30w | N/& 0 15 o 7 M M M
Bank2 | 3.30w | N/& 0 17) & M0 M M
Bank3 | 3.30w | N/& 0 16 o 7 M M M
Bankd | 3.30w | N/& 0 15) 7 M0 M M
BankS | 3.30w | N/& 0 22 o 10 M M M
Banks | 3.30w | N/& 0 19) g M0 M M
Bank? | 3.30w | N/& 0 18 o 7 M M M
I/0 voltage Usage:
Yoltages

I/0 Functionality

This section of the report indicates the total number of regular input, output, and bidirectional signals. This also shows the differential
input and output in the design. The 1/O categories are: regular 1/0s, registered 1/0s or DDR 1/Os in the current design.

1/0 Technologies

This section of the report specifies the VCCI and VREF voltage requirements for each 1/0 standard and the number of user 1/0s per
1/0 standards used in the current design.

Note: For voltage referenced 1/0 standards, input and bidirectional 1/Os require both a VCCI and a VREF power supply whereas
output 1/0s only require a VCCI power supply. This is why these two categories are shown separately in this section.

I/0 Banks

This section of the report specifies the following I/O bank characteristics:
VCCI and VREF voltages assigned for each bank.
Total number of single-ended 1/Os available and used for each bank.

Total number of differential 1/0 pairs available and used for each bank.

67

Libero IDE v6.1 Users Guide

Total number of VREF pins assigned for each bank. This information is only relevant if a bank has been assigned a VREF
voltage.

Total number of voltage referenced 1/Os available and used for each bank. Voltage referenced 1/Os are available only if VREF
pins have been assigned.

1/0 Voltages

This section of the report indicates the current design voltage requirements.

For each VCCI and VCCI/VREF user 1/0 demand in the current design, this table reports the total number of bonded 1/Os available on
the device that satisfy this demand.

Note:

For an 1/0 bank assignment (VCCI and VREF assignment) to be valid for the current design, the 1/O voltage table must show
no violation. Violations are indicated with an asterix ("*") when the number of user 1/Os that need a given VCCI or

To generate 10 bank report:

VCCI/VREF assignment is less than the total number of bonded 1/Os that can satisfy this demand.

1. Inthe Tools menu, choose Reports. This displays the Report Types dialog box.

2. Select I0Bank in the Report types and click OK. The 10Bank report opens in a separate window. You can save or print the
report.

Exporting Files

Designer supports different types of files to export.

Supported file types

How to export a file?

Export a GCF file

Export a PDC file

Supported file types

The following table shows a complete list of files that you can export along with the supported family.

Note: Designer does not support exporting VHDL 87 format.
Files File Extension Family
Actel Flattened Netlist afl All
Actel Internal Netlist .adl All
Standard Delay Format .sdf All
STAMP .mod, .data PSL)L(J;A eX, Axcelerator, ProASIC3/E, ProASIC, ProASIC
Tcl script file tel All
Verilog Netlist AV All
VHDL Netlist .vhd All
EDIF Netlist file .edn All
Log File log All

68

Tcl Scripting

STAPL .stp ProASIC3/E, ProASIC, ProASIC B-YS

Bitstream .bit ProASIC3/E, ProASIC, ProASIC PLUs

Programming file (legacy) fus ACT1, ACT2, ACT3, MX, XL, DX

Actel programming file .afm ACT1, ACT2, ACT3, MX, XL, DX, SX, SX-A, eX,
Axcelerator

Routing Segmentation file .seg ACT1, ACT2, ACT3, MX, XL, DX, SX, SX-A, eX

Silicon Explorer Probe file .prb ACT1, ACT2, ACT3, MX, XL, DX, SX, SX-A, eX,
Axcelerator

Placement Location file loc ProASIC3/E, ACT1, ACT2, ACT3, MX, XL, DX, SX, SX-
A, eX

ProASIC Constraints file .GCF ProASIC

ProASIC PLUS Constraints file .GCF ProASIC PLUS

There is no timing constraint information when you export a
GCF file in ProASIC P-Y3: constraints are moved to an SDC
file.

The SDC file is not automatically exported when the GCF is
exported; you must explicitly export the SDC file.

Combiner Info .cob ACT1, ACT2, ACT3, MX, XL, DX, SX, SX-A, eX,
Axcelerator, ProASIC3/E

BSDL file .bsd DX, 42MX, SX, SX-A, eX, Axcelerator, ProASIC3/E,
ProASIC, ProASIC PtYs

Criticality *.crt ACT1, ACT2, ACT3, MX, XL, DX

PIN *.pin ACT1, ACT2, ACT3, MX, XL, DX, SX, SX-A, eX

SDC *.sdc SX-A, eX, Axcelerator, ProASIC ®XYS ProASIC3/E

Physical Design Constraint *.pdc Axcelerator and ProASIC3/E

Value Change Dump *.ved Axcelerator, ProASIC3/E, ProASIC, ProASIC BLUS

Switching Activity Intermediate File/Format *saif Axcelerator, ProASIC3/E, ProASIC, ProASIC BLS

Design Constraint file *.dcf ACT1, ACT2, ACT3, MX, XL, DX, SX, SX-A, eX

How to export a file

To export a file:

1. From the File menu, select Export and then select the type of file you wish to export.

2. Specify file name and file type and click OK.

Note: You must compile your design before you export an SDC file.

To export a GCF file:

1. From the File menu, select Export > Constraint Files.

2. Enter the file name and click OK.

3. Choose the type of information you want to export:
Pin locations: Select to export the I/O placement and region constraints related to the 1/0s only.
Placement constraints: Select to export all placement constraints, including 1/0 and core constraints.

All GCF constraints: Select to export all constraint information.

69

Libero IDE v6.1 Users Guide

4. Click OK.

To export a PDC file:
1. From the File menu, select Export > Constraint Files.
2. Type a file name and choose a directory for it. Click Save. The Export Physical Design Constraints (PDC) dialog box appears.
3. Choose the type of information you want to export:
Pin locations and attributes: Select to export information about the pin locations and attributes only.
Placement constraints: Select to export all user-defined constraints.

Complete placement information: Select to export all the information about the 1/0 locations, 1/0 attributes, and logic
placement.

4. Click OK.
A message appears in the Log window telling you if the Export command succeeded.
Note: The content of the exported PDC file depends on the state of your design.

Pre-Compile: The exported PDC file will contain constraints that are stored in the database from the last valid compile state.
Export may fail if you did not run Compile at least once before running Export.

Post-Compile: The exported PDC file will contain constraints that are currently stored in the database.

Saving Your Design

Once you have imported a netlist and compiled a design, you can save the design as an ADB file.

To save your design as an ADB file:
1. Inthe File menu, click Save or click the save icon in the toolbar.

2. Enter the File name and click Save. The default file name is the name you previously entered in the setup dialog box. The default
format is adb. Make sure your save in the “.adb” format.

Once you have saved your compiled design as an ADB file, during any future Designer sessions, you can open the ADB file, skipping
the compile step, and perform optimization on the design, including updating netlist and auxiliary file information.

Exiting Designer

To end a Designer session, from the File menu, click Exit.

If the information has not been saved to disk, you are asked if your want to save the design before exiting. If you choose YES, the
"<design_name>.adb” file is updated with information entered the current session. If you choose NO, the information is not saved and
the “<design_name>.adb” file remains unchanged.

Generating Programming Files

Once you have completed your design, and you are satisfied with the back-annotated timing simulation, create your programming file.
Depending upon your device family, you need to generate a Fuse, Bitstream or STAPL programming file.

ProASIC3/E devices use the FlashPoint program file generator to create a programming file. The FlashPoint interface enables the
advanced security features in ProASIC3/E.

70

Tcl Scripting

Antifuse Programming File Flash Programming File

FlashPro N/A stp
Silicon Sculptor I .afm (Non-Axcelerator families) .bit
Silicon Sculptor |1 .afm .bit

.stp (Windows only)

Starting Silicon Sculptor from Libero IDE

Before starting Silicon Sculptor, generate your programming file.

To start the programming tool software:
3. Right-click the design root file in the Design Hierarchy window.

4. Click Run Silicon Sculptor. Refer to the Silicon Sculptor User’s Guide for information on using the programming tool.

Generate a Programming File

FlashPoint enables you to program security settings, FPGA Array, and FlashROM features for ProASIC3/E devices. You can program
these features separately using different programming files or you can combine them into one programming file. Each feature is listed
as a silicon feature in the GUI.

You can generate a programming file with one, two, or all of the silicon features from the Generate Programming File page.

To generate a programming file:

1. Enter the Output file name.
Click the Browse button if you need to find your file or select your directory, and then enter the file name to save your output
file.

2. Select the Silicon feature(s) you want to program.

Security settings

FPGA Array
FlashROM

71

Libero IDE v6.1 Users Guide

Generate Programming File - Step 1 of 3 @

Outped hlename:

|m Browse...

Slicon festuie]s) bo be progiammed

Iw Secunby settings
[w FPGA fnay
[¥ FlazhROM
FlashROM conhguiation hle:

|D:\ta:ata|aa‘.dwgn3‘.g3_hest'-.lm.utc Browse...

[Programming previauzly secwed device]s)
Shicon sgristure [max length iz 8 HEX chais]
[123

| Mest Firizh Cacel | Help |

3. Click the Programming previously secured device(s) check box if you are reprogramming a device that has been secured.

Because the ProASIC3/E family enables you to program the Security Settings separately from the FPGA Array and/or
FlashROM, you must indicate if the Security Settings were previously programmed into the target device. This requirement also
applies when you generate programming files for reprogramming.

4. Enter the silicon signature(0-8 HEX characters). See Silicon Signature for more information.

5. Click Next.

Silicon Signature

With Designer tools, you can use the silicon signature to identify and track Actel designs and devices. When you generate a
programming file, you can specify a unique silicon signature to program into the device. This signature is stored in the design database
and in the programming file, and programmed into the device during programming.

The silicon signature is accessible through the USERCODE JTAG instruction.

NOTE: If you set the security level to high, medium, or custom, you must program the silicon signature along with the Security
Setting. If you have already programmed the Security Setting into the target device, you cannot reprogram the silicon signature
without reprogramming the Security Setting.

Note: The previously programmed silicon signature will be erased if:

72

High

You have already programmed the silicon signature, and

Tcl Scripting

You are programming the security settings, but you do not have an entry in the silicon signature field

Programming Security Settings

FlashPoint allows you to set a security level of high, medium or none.

To program Security Settings on the device:

1. If you choose to program Security Settings on the device from the Generate Programming File page, the wizard takes you to

the Security Settings page (see figure below).
Security Settings - Step 2 of 2

Select securty level:

X

High

Pass Kay

Mimdium

Mons

Prosactwith 128-bit Advancad Encryplion Siandard [AES) key and

- Liga AES kay bowrta orvanfy the FRGA Amay.

« e ATS Kay owils e FlashHOM via he JTAG inbeiface,

Dedaui Laval |

Pass Kay (max langth is 33 HEX chars}

CEEGATBABAESAMOCETEMISITDDIFAL

AES Key (mae length ks 32 HEX chars):

;F EESBIS4F+AZBEF /S 22EBE266E3

Genarale random key |

Ganerate mndom key

Firi=h | Cance| | Help |

2. Move the sliding bar to select the security level for FPGA and FlashROM (see table for a description of the security levels).

Security Level Security Option

Protect with a 128-bit Advanced Access to the device is protected by an AES

Encryption Standard (AES) key anda Key and the Pass Key.

Pass Key

The Write and Verify operations of the FPGA
Array use a 128-bit AES encrypted bitstream.
From the JTAG interface, the Write and
Verify operations of the FlashROM use a 128-
bit AES encrypted bitstream. Read back of

73

Libero IDE v6.1 Users Guide

3. Enter the Pass Key and/ or the AES Key as appropriate. You can generate a random key by clicking the Generate random key
button.

The Pass Key protects all the Security Settings for the FPGA Array and/or FlashROM.

The AES Key decrypts FPGA Array and/or FlashROM programming file content. Use the AES Key if you intend to program the
device at an unsecured site or if you plan to update the design at a remote site in the future.

You can also customize the security levels by clicking the Custom Level button. For more information, see the Custom Security

Levels section.

Custom Security Levels

For advanced use, you can customize your security levels.

To set custom security levels:

1. Click the Custom Level button in the Setup Security page. The Custom Security dialog box appears (see figure below).

Tcl Scripting

Custom Security Level

Security of the FRGA Amray Security of the FlashRiok

i Lock for both wribing and werfying (" Lock for both reading and writing

(" Lock forwriting

(" Use AES key for both writing and verifying (" Use AES key for both writing and wenfying

™ Allow write and verify (" Allow reading, writing, and verbing

| Pemanenily lock the secunty sefings.

2. Select the FPGA Array Security and the FlashROM Security levels.

The FPGA Array and the FlashROM can have different Security Settings. See the tables below for a description of the custom
security option levels for FPGA Array and FlashROM.

FPGA Array
Lock for both writing and verifying Allows writing/erasing and verification of the FPGA Array via the
JTAG interface only with a valid Pass Key.
Lock for writing Allows the writing/erasing of the FPGA Array only with a valid Pass
Key. Verification is allowed without a valid Pass Key.
Use the AES Key for both writing and verifying Allows the writing/erasing and verification of the FPGA Array only

with a valid AES Key via the JTAG interface.
This configures the device to accept an encrypted bitstream for
reprogramming and verification of the FPGA Array.
Use this option if you intend to complete final programming at an
unsecured site or if you plan to update the design at a remote site in
the future. Accessing the device security settings requires a valid Pass
Key.

Allow write and verify Allows writing/erasing and verification of the FPGA Array with plain
text bitstream and without requiring a Pass Key or an AES Key. Use
this option when you develop your product in-house.

Note: The ProASIC3/E family FPGA Array is always read protected regardless of the Pass Key or the AES Key protection.

FlashROM
Security Option
Lock for both reading and writing Allows the writing/erasing and reading of the FlashROM via the

JTAG interface only with a valid Pass Key. Verification is allowed

75

Libero IDE v6.1 Users Guide

Lock for writing

without a valid Pass Key.

Allows the writing/erasing of the FlashROM via the JTAG interface
only with a valid Pass Key. Reading and verification is allowed
without a valid Pass Key.

Use the AES Key for both writing and verifying Allows the writing/erasing and verification of the FlashROM via the

JTAG interface only with a valid AES Key.
This configures the device to accept an encrypted bitstream for
reprogramming and verification of the FlashROM.

Use this option if you complete final programming at an unsecured
site or if

you plan to update the design at a remote site in the future.

The bitstream that is read back from the FlashROM is always
unencrypted (plain text).

Allow writing and verifying Allows writing/erasing, reading and verification of the FlashROM

content with a plain text bitstream and without requiring a valid Pass
Key or an AES Key.

Note: The FPGA Array can always read the FlashROM content regardless of these Security Settings.

Note: To make the Security Settings permanent, select the Permanently lock the security settings check box. This option

3.

prevents any future modifications of the Security Setting of the device. A Pass Key is not required if you use this option.

When you make the Security Settings permanent, you can never reprogram the Silicon Signature. If you Lock the

write operation for the FPGA Array or the FlashROM, you can never reprogram the FPGA Array or the FlashROM,
respectively. If you use an AES key, this key cannot be changed once you permanently lock the device.

To use the Permanent FlashLock™ feature, select Disable Write and Verify for FPGA Array and Disable Read, Write and
Verify for FlashROM and select the Permanently lock the security settings checkbox as shown in the figure below. This
will make your device one-time-programmable.

Custom Security Level

Security of the FFGA Arnang Security of the FlashFOk

- _JEkf_D;h':l'ﬂ'l uM".nq nndverlf\.-'lng ® Lock for both readeng and writing
Lack farwriling [Lock for wnling
Usa AES kenrfior both witing and werifiing Lige AES key for both wiiling and vertying
Adlcred Wit and varity (Ao raading, wiling. snd venbang

v Pammananily lock the sacunby setings

The folowing sibean beaturas will nol be reprogrammable
_'S - Secunty setings. AES ke, and siboon signatue
FROA Ay
- FlashROk

| QI Cancal [Hixlp |

Click the OK button.

The Security Settings page appears with the Custom security setting information as shown in the figure below.

76

Tcl Scripting

Security Settings - Step 2 of 2

Selecl secusity level

L Permaneny lock the securty setngs -

Securty safings for FRGA Aray
- Pemnenently lack he FPGA Array far both smling and verfying

Securtty setings for FlashROM.

- Permananily lack #ha FlashS 08 for both raading and wihng via tha
JTAG mbarface:

Custom Lavel I Drefault Leval |

Pass Key (mex length s 32 HEX chass)

AES Koy (max length 3 32 HEX chars)

< Back Fimish Lanced Help

Programming the FlashROM

You can program selected memory pages and specify the region values of the FlashROM.
To program FlashROM:
1. Select FlashROM from the Generate Programming File page.

2. Enter the location of the FlashROM configuration file.
The FlashROM Settings page appears (see figure below).

77

Libero IDE v6.1 Users Guide

10.

78

)

FlashROM Settings - Step 3 of 3

FlashFOM regions: |Flegion_7_8 =]
Frogram Propenties:
e Name Regon 78
L || Start page 7 .
Start word g |
= I TR |
r Cortert Ao Ine: !
Start valua [i] :
I ||EHEX) |
Stap value (HEXJ1 |
r || M value (HEXO| 1000 !
-
=
-
FlashROM pragramming file yps-
(¥ Single programming file for &l devices ™ Dne pragramming file per device
Hurmber of dewvicas ko progran 1 Tagel Programmer... I

¢ Back Newis | Firish] Cacel | Help

Select the FlashROM memory page that you want to program.

Enter the data value for the configured regions.
If you selected the region with a Read From File, specify the file location. See Custom Serialization Data for FlashROM
Region for more information.

If you selected the Auto Increment region, specify the Start and Max values.
Complete steps 8 and 9 if you have a Read from file and/or Auto Increment region in the FlashROM.
Select the type of FlashROM programming files you want to generate from the two options below:

Single programming file for all devices option: generates one programming file with all the generated increment values or with
values in the custom serialization file.

One programming file per device: generates one programming file for each generated increment value or for each value in the
custom serialization file.

Enter the number of devices you want to program.

Click the Target Programmer button.
The Select Programmer Type dialog box appears (see figure below).

Tcl Scripting

Select Programmer Type

i~ Programmer bypes

(" Generic STAPL player

i* Silicon Sculptor I, B Aubo Programmer or FlashPro3

| aE. I Cancel Help

11. Select your target Programmer type.

12. Click OK.
FlashPoint generates your programming file.

Note: You cannot change the FlashROM region configuration from FlashPoint. You can only change the configuration from the
ACTgen FlashROM core generator.

For more information, see ACTgen online help.

Custom Serialization Data for FlashROM region

FlashPoint enables you to specify a custom serialization file as a source to provide content for programming into a Read from file
FlashROM region. You can use this feature for serializing the target device with a custom serialization scheme.

To specify a FlashROM region:

1. From the Properties section in the FlashROM Settings page, select the file name of the custom serialization file (see figure
below). For more information on custom serialization files, see Custom Serialization Data File Format.

79

Libero IDE v6.1 Users Guide

FlashROM settings - Step 2 of 2

.Haaﬂ:aq.hl;-:l ma;m ; Aegion_7_1 _:_I
Fropeities:
Hame Feegion 7.1
Start page T
Start weord 1
Length
|File nome: dfrom_read bt
[Defedtfrpe [HEX

FlashROM pogramming e lype:
% Singde programmireg fle for 2l devicas " One programming file per device

Humbes of devices b program: 1 Target peogrammes.. i

cBack | fieds | Firish | Cancel | Help

2. Select the FlashROM programming file type you want to generate from the two options below:

- Single programming file for all devices option: generates one programming file with all the values in the custom serialization
file.

- One programming file per device: generates one programming file for each value in the custom serialization file.
Enter the number of devices you want to program.

Click the Target Programmer button.

Select your target Programmer type.

Click OK.

o o &~ w

Custom Serialization Data File Format

FlashPoint supports custom serialization data files specifying the data in binary, HEX, decimal, or ASCII text. The custom
serialization data files may contain multiple data with the Line Feed (LF) character as the delimiter.

Syntax
Custom serialization data file = <hex region data list> | <decimal region data list> |

<binary region data list> | <ascii text data list>

80

Tcl Scripting

Hex region data list = < hex data> <new line> { < hex data> <new line> }
Decimal region data list = <decimal data> <new line> {<decimal data><new line> }

Binary region data list = <binary data> <new line> { <binary data> <new line> }

ASCII text region data list = < ascii text data> <new line>

{ < ascii text data> <new line> }

hex data = <hex digit> {<hex digit>}

decimal data = < decimal digit> {< decimal digit>}

binary data = < binary digit> {< binary digit>}

ASCII text data = <ascii character> {< ascii character >}

new line = LF
binary digit = ‘0’ |1’
decimal digit = 0’/ |1’ [*2"|'3"|*4"|'5"| 6| 7| 8] 9’
hex digit = 107 17[127 37| 47| 57 67|77 8 |97 |'Ar "B/ [rc DY | E| e |
‘a’| ‘b’ | recr| *dr | ver| £’
ascii character = characters from SP(0x20) to‘'~’ (0xX7E)
Semantics

Each custom serialization file has only one type of data format (binary, decimal, hex or
ASCI|I text). If a file contains a mixed format, it is considered an invalid file.

The length of each data must be shorter or equal to the selected region length. If the data is shorter then the selected region length, the
most significant bits shall be padded with 0’s. If the specified region length is longer then the selected region length, it is considered
an invalid file.

The digit / character length is as follows:
-Binary digit: 1 bit.
-Decimal digit: 4 bits.

81

Libero IDE v6.1 Users Guide

-Hex digit: 4 bits.
-ASCII Character: 8 bits.

Hex serialization data file example

The following example is a Hex serialization data file for a 40-bit region:
123AEd210

AeB1l

2358edF1ll (This is an error: invalid hex digit)
0001242E

4300124EFE (This is an error: data out of range)

The following is an example of programming “AeB1" into Region_7_1 located on page 7, Word 5 to Word 1 in the FlashROM
settings page. See Custom serialization data for FlashROM region for more information.

| fwodis | fwod6]| words | Word4] Word3 | Wod2 | Word1i_ | Word0 |
00 00 00 AE Bl

Page 7

Binary serialization data file example

The following example is a binary serialization data file for a 16-bit region:
1100110011010001

100110011010011

11001100110101111 (This is an error: data out of range)
1001100110110111

1001100110110112 (This is an error: invalid binary digit)

Decimal serialization data file example

The following example is a decimal serialization data file for a 16-bit region:
65534

65535
65536 (This is an error: data out of range)

6553A (This is an error: invalid decimal digit)

Text serialization data file example

The following example is a text serialization data file for a 32-bit region:
AESB

A)e

ASE3 23 (This is an error: data out of range)

65A~

82

Tcl Scripting

1234

AEDF

Programming the FPGA Array

You can program the FPGA Array by selecting the silicon feature, FPGA Array in the Generate Programming File page and

clicking OK. See Generate a programming file for more information.

Reprogramming a Secured Device

You must know the previous Security Settings of the device before you can reprogram a device with Security Settings.

To program a secured device:

1.

2.
3.

In the Generate Programming File page, click the Programming previously secured devices(s) check box(see figure below).

Generate Programming File - Step 1 of 2 @

Outpas hlename:
[fipd.sto

Silican festuie(z] ba be progiammed
[Securty settings
[v FPGA Anay
[~ FlazshROM

Iv Programming prewiouzly zecwed devicelz)

"!l) Select Secunty seltings shove 1o progranm sibcon signabure

| Mext > Firish Cancel Help |

Specify the previously programmed security setting for the FlashROM and/or the FPGA Array.

If you programmed the device with a custom security level, click the Custom Level button to open the Custom security dialog

box, and select the Security Settings for the FPGA Array or the FlashROM that you programmed (see figure below).

83

Libero IDE v6.1 Users Guide

Security Settings - Step X of 2 E_]

Sl securiy [evel o the praviously pragrammead valus

Custom security settings [eac o senngs for FPGA Aray:
- Lack tha FPGA Snay for both wiitng and vanfying
- Uga the Pass Key lowile of vedily.

Sacurty setings for FlashROM
+ Lack the FlashFOM tar wnling via the JTAG inledace
-Lisa the Pass Kay o wiite

~CusomLevel | DetautLevel |

Pass Kay (max langth is 32 HEX chars}
CHESATEABAERAMOCETIEAISITDDOFAL 4 |

H‘IJ The Pass Key must mateh e one
previously programmad in tis davica,

AES Wy (mee length = 32 HEX chars):
I

«Back | : Firizh Canesl Help

4. Enter the previously programmed Pass Key and/or the AES Key.
5. Click Finish.
Note: Enter the AES Key only if you want to perform encrypted programming.

FlashLock

Actel’s ProASIC and ProASIC™-Y® devices contain FlashLock circuitry to lock the device by disabling the programming and readback
capabilities after programming. Care has been taken to make the locking circuitry very difficult to defeat through electronic or direct
physical attack.

FlashLock has three security options: No Lock, Permanent Lock, and Keyed Lock.

No Lock

Creates a programming file which does not secure your device.

Permanent Lock

The permanent lock makes your device one time programmable. It cannot be unlocked by you or anyone else.

Keyed Lock

Within each ProASIC and ProASICEXS device, there is a multi-bit security key user key. The number of bits depends on the size of
the device. The tables below show the key size of different ProASIC and ProASICES devices, respectively. Once secured, read
permission and write permission can only be enabled by providing the correct user key to first unlock the device. The maximum
security key for the device is shown in the dialog box.

84

Tcl Scripting

Key Size of ProASIC Devices Key Size of ProASICP= Devices
Device Key Size (bits) Key Size Device Key Size (bits) Key Size
(Hex) (Hex)

A500K050 51 Bits 13 APAQ075 79 Bits 20
A500K130 51 Bits 13 APA150 79 Bits 20
A500K180 51 Bits 13 APA300 79 Bits 20
AS500K270 51 Bits 13 APA450 119 Bits 30

APAG00 167 Bits 42

APA750 191 Bits 48

APA1000 263 Bits 66

Programming the Security Bit

Two device programmers, Silicon Sculptor and Flash Pro, are available for ProASIC and ProASIC™"YS devices. If the programming
file contains the security key, by default the Silicon Sculptor and Flash Pro programming software automatically enables the "secure”
option and programs the security key. You can turn this off, should you decide not to program using the security key.

Please refer to the application note “Implementation of Security in Actel's ProASIC and ProASICP'"S Flash-Based FPGAs” for more

details.

Generating Bitstream and STAPL Files

Bitstream allows you to generate a STAPL file for ProASIC, ProASICEYS and ProASIC3/E devices, or a bitstream file for ProASIC
and ProASICPS families. Please consult the Program Files table to find out which file type you should choose.

To generate a bitstream or STAPL file:

1.
2
3
4.
5
6.
7.

In the Tools menu, click Programming File or click the Programming File button in the Design Flow window.

Select Bitstream or STAPL from the File Type drop-down list box. Bitstream files are not available for ProASIC3/E devices.
FlashLock. Select one of the following options:

No Locking: Creates a programming file which does not secure your device.

Use Keyed Lock: Creates a programming file which secures your device with a FlashLock key. The maximum security key for
the device is shown in the dialog box. The maximum security key for the device is shown in the dialog box.

Use Permanent Lock: Creates a one-time programmable device.

Click OK. Designer validates the security key and alerts you to any concerns.

Note: The bitstream file header contains the security key.

Generating a Fuse File

Fuse allows you to generate a programming file for your Actel Antifuse devices. Fuse files work with Actel's Silicon Sculptor
programmers. (For Axcelerator families, you must use the Silicon Sculptor 1l programmer.)

To generate a fuse programming file:

85

Libero IDE v6.1 Users Guide

In the Tools menu, click Programming File or click the Programming File button in the Design Flow window.

File Type. Select the appropriate file type in the File Type pull-down menu. Select “AFM-APS2” if you are using Silicon
Sculptor programmer.

Silicon Signature (Optional): Enter a 5 digit hexadecimal value in the Silicon Signature box to identify the design. Valid
characters are “0” through “9,” and “a” through “f.”

Output filename: Designer automatically names the file based on the <design_name>.adb file. You can change the name by
entering it in the File Name box. Click Browse to change the directory. Do not add a file extension or suffix to the file name. The
Designer software automatically adds the extension to the programming file name when you specify the programming format.

Generate Probe File Also: This option automatically generates a PRB file for use with Silicon Explorer
Disable clamping diode for unused 1/O pins: (SX-A and eX families). Check box to disable clamping diode.

Use the JTAG Reset Pull-up Resistor: (Axcelerator family) Select to enable pull-up resistors on the TRSTB pin (JTAG Reset
pin which is active low). This is not part of the JTAG standard but can be useful if you want to make sure that the JTAG tap
controller is not reset by mistake if the TRSTB pin is not connected. The pull-up resistor guarantees that if the pin is not driven to
low (active), the pin is left in an inactive state (high).

Use the Global Set Fuse: (Axcelerator family) Select to set flip-flops to a known state after power-up. If not selected all flip-
flops are set to ‘0" at power up. If this option is used, all flip-flops are set to '1' at power up.

Click OK when finished to save the file.

Generating Prototype Files

When designing for RTAX-S, you can use the Axcelerator family of devices for prototyping. Please refer to the application note,
Prototyping RTAX-S Using Axcelerator Devices for more information.

To generate prototype files:

1.

86

From the Tools menu, click Generate Prototype. In the Generate Prototype Files dialog box, make the following selections:

Silicon Signature (Optional). Enter a 5 digit hexadecimal value in the Silicon Signature box to identify the design. Valid
characters are “0” through “9,” and “a” through “f.”

Output filename. Designer automatically names the file based on the <design_name>.adb file. You can change the name by
entering it in the File Name box. Click Browse to change the directory. Do not add a file extension or suffix to the file name. The
Designer software automatically adds the extension to the programming file name when you specify the programming format.

Generate Probe File Also. This option automatically generates a .prb file for use with Silicon Explorer

Use the JTAG Reset Pull-up Resistor: Select to enable pull-up resistors on the TRSTB pin (JTAG Reset pin which is active
low). This is not part of the JTAG standard but can be useful if you want to make sure that the JTAG tap controller is not reset by
mistake if the TRSTB pin is not connected. The pull-up resistor guarantees that if the pin is not driven to low (active), the pin is
left in an inactive state (high).

Use the Global Set Fuse: Select to set flip-flops to a known state after power-up. If not selected all flip-flops are set to '0" at
power up. If this option is used, all flip-flops are set to '1' at power up.

Click OK. The AFM file is generated.

About Tcl Commands

A Tcl (Tool Command Language) file contains scripts for simple or complex tasks. You can run scripts from either the Windows or
UNIX command line or store and run a series of Tcl commands in a “.tcl” batch file. You can also run scripts from within Designer.

Tcl Scripting

Designer supports the following Tcl scripting commands:

Command Action

backannotate

Extracts timing delays from your post layout data

close design

Closes the current design

compile Performs design rule check and optimizes the input netlist before translating the source code
into machine code
export Converts a file from its current format into the specified file format, usually for use in another

program

extended run shell

Runs multiple iterations of layout through Designer

get_defvar

Returns the value of the Designer internal variable you specify

get design filename

Returns the fully qualified path of the specified design file

get design info

Returns detailed information about your design, depending on which arguments you specify

import aux

Imports the specified file as an auxiliary file, which are not audited and do not require you to
re-compile the design

import source

Imports the specified file as a source file, which include your netlist and design constraints

is design loaded

Returns True if the design is loaded into Designer; otherwise, returns False

is design modified

Returns True if the design has been modified since it was last compiled; otherwise, returns
False

is design state complete

Returns True if the specified design state is complete (for example, you can inquire as to
whether a die and package has been selected for the design); otherwise, returns False

layout

Place-and-route your design

layout (advanced options for the SX family

Sets advanced place-and-route features for SX family designs

layout (advanced options for ProASIC)

Sets advanced place-and-route features for ProASIC family designs

new design Creates a new design (.adb) file in a specific location for a particular design family such as
Axcelerator or ProASIC3

open design Opens an existing design in the Designer software

pin_assign Assigns the named pin to the specified port but does not lock its assignment.

pin_commit Saves the pin assignments to the design (.adb) file.

in fix Locks the pin assignment for the specified port, so the pin cannot be moved during place-and-

route.

pin fix all Locks all the assigned pins on the device so they cannot be moved during place-and-route.

pin_unassign

Unassigns a specific pin from a specific port. The unassigned pin location is then available
for other ports.

pin unassign all

Unassigns all pins from a specific port.

pin unfix

Unlocks the specified pin from its port.

87

Libero IDE v6.1 Users Guide

I'C[ZOI‘t

Generates the type of report you specify: Status, Timing, Timer Violations, Flip-flop, Power,
Pin, or I/0 Bank

save design

Writes the design to the specified filename

set_defvar Sets the value of the Designer internal variable you specify
set design Specifies the design name, family and path in which Designer will process the design
set_device Specifies the type of device and its parameters

smartpower add pin in domain

Adds a pin to either a Clock or Set domain

smartpower commit

Saves the changes made in SmartPower to the design file (.adb) in Designer

smart[gower create_domain

Creates a new clock or set domain

smart[JOWEr rémove domain

Removes an existing domain

smartpower remove pin frequencv

Removes the frequency of an existing pin

smartpower remove pin of domain

Removes a clock pin or a data pin from a Clock or Set domain, respectively.

smartpower restore

Restores previously committed constraints

smartpower set domain frequency

Sets the frequency of a domain

smartpower set pin frequencv

Sets the frequency of an existing pin

timer add clock exception

Adds an exception to or from a pin with respect to a specified clock

timer add pass

Adds the pin to the list of pins for which the path must be shown passing through in the timer

timer add stop

Adds the specified pin to the list of pins through which the paths will not be displayed in the
timer

timer commit

Saves the changes made to constraints in Timer into the Designer database.

timer get path

Displays the Timer path information in the Log window

timer get clock actuals

Displays the actual clock frequency in the Log window

timer get clock constraints

Displays the clock constraints (period/frequency and dutycycle) in the Log window

timer get maxdelay

Displays the maximum delay constraint between two pins of a path in the Log window

timer get path constraints

Displays the path constraints set for maxdelay in the Timer in the Log window

timer remove clock exception

Removes the previously set clock constraint

timer remove pass

Removes the previously entered path pass constraint

88

Tcl Scripting

timer remove stop Removes the path stop constraint on the specified pin

timer restore Restores previously committed constraints

timer setenv_clock freq Sets a required clock frequency, in MHz, for the specified clock

timer setenv_clock period Sets the clock period constraint for the specified clock

timer set maxdelay Adds a maximum delay constraint for the path

timer remove all constraints Removes all the timing constraints previously entered in the Designer system

Note: Tcl commands are case sensitive. However, their arguments are not.

See Also

Tcl documentation conventions

Introduction to Tcl scripting

Basic syntax

Variables

Command substitution

Quotes and braces

Control structures

Lists and arrays

Print statement and Return values

Types of Tcl commands

Running Tcl scripts from the command line
Running Tcl scripts from within Designer
Exporting Tcl scripts

Sample Tcl scripts

Tcl Documentation Conventions

The following table shows the typographical conventions used for the Tcl command syntax.

Syntax Description
Notation
command -argument Commands and arguments appear in Courier New typeface.
variable Variables appear in blue, italic Courier New typeface. You must substitute an appropriate value

89

Libero IDE v6.1 Users Guide

for the variable.

[-argument value] Optional arguments begin and end with a square bracket with one exception: if the square bracket is
[variable]+ followed by a plus sign (+), then users must specify at least one argument. The plus sign (+)
indicates that items within the square brackets can be repeated. Do not enter the plus sign character.

Note: All Tcl commands are case sensitive. However, their arguments are not.

Examples

Syntax for the get_defvar command followed by a sample command:
get defvar variable

get_defvar “DESIGN”

Syntax for the backannotate command followed by a sample command:

backannotate [-dir directory name] -name filename -format format type -language
language [-netlist] [-pin]

backannotate -dir \

{..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \

-netlist

Wildcard Characters

You can use the following wildcard characters in names used in Tcl commands:

Wildcard What it does

\ Interprets the next character literally

? Matches any single character

* Matches any string

[Matches any single character among those listed between brackets (that is, [A-Z] matches any single character in the A-to-Z range)

Note: The matching function requires that you add a slash (\) before each slash in the port, instance, or net name when using
wildcards in a PDC command and when using wildcards in the Find feature of the MultiView Navigator. For example, if you
have an instance named “A/B12” in the netlist, and you enter that name as “A\WB*” in a PDC command, you will not be able
to find it. In this case, you must specify the name as A\WV/B*.

Special Characters ([1, { }, and)

Sometimes square brackets ([]) are part of the command syntax. In these cases, you must either enclose the open and closed square
brackets characters with curly brackets ({ }) or precede the open and closed square brackets ([]) characters with a backslash (V). If
you do not, you will get an error message.

For example:
pin_assign -port {LFSR_OUT[0]} -pin 15
or

pin_assign -port LFSR_OUT\[0\] -pin 180

Note: Tcl commands are case sensitive. However, their arguments are not.

90

Tcl Scripting

Entering Arguments on Separate Lines

To enter an argument on a separate line, you must enter a backslash (\) character at the end of the preceding line of the command as
shown in the following example:

backannotate -dir \
{..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \

-netlist
See Also
Introduction to Tcl scripting

Basic syntax

About Tcl commands

backannotate

The backannotate command is equivalent to executing the Back-Annotate command within the Tools menu. You can export an SDF
file, after layout, along with the corresponding netlist in the VHDL or Verilog format. These files are useful in backannotated timing
simulation.

Backannotate -name file name -format format type -language language -dir
directory name [-netlist] [-pin]

Arguments

-name file_name

Use a valid file name with this option. You can attach the file extension .sdf to the File_Name, otherwise the tool will append .sdf for
you.

-format format_type
Only SDF format is available for back annotation
-language language
The supported Language options are
VHDL93 - For VHDL-93 style naming in SDF
VERILOG - For Verilog style naming in SDF
-dir directory_name
Specify the directory in which all the files will be extracted.
-netlist
Forces a netlist to be written. The netlist will be either in Verilog or VHDL depending on the
-pin
Designer exports the pin file with this option. The .pin file extension is appended to the design name to create the pin file.
Supported Families
All

91

Libero IDE v6.1 Users Guide

Notes
We advise you to export both SDF and the corresponding VHDL/Verilog files. This will avoid name conflicts in the simulation tool.

Designer must have completed layout before this command can be invoked, otherwise the command will fail.

Exceptions
-pin is not supported forProASIC and ProASICPLUS families.

Examples
Example 1:
backannotate
Uses default arguments and exports SDF file for back annotation
Example 2:
backannotate -dir \
{..\my_design_dir} -name "fanouttest_ba.sdf" -format "SDF" -language \ "VHDL93" -netlist
This example uses some of the options for VHDL
Example 3:
backannotate -dir \
{..\design} -name "fanouttest_ba.sdf" -format "SDF" -language "VERILOG" \
-netlist
This example uses some of the options for Verilog
Example 4:
If { [catch { backannotate -name "fanouttest_ba" -format "SDF" } 1} {
Puts “Back annotation failed”
Handle Failure
} else {
Puts “Back annotation successful”
Proceed with other operations

}

You can catch exceptions and respond based on the success of backannotate operation

close_design
The close_design command closes the current design and brings Designer to a fresh state to work on a new design.

close_design

Arguments

None

Supported Families
All

92

Tcl Scripting

Notes

This is equivalent to selecting the Close command in the File menu.

Exceptions
None
Example
if { [catch { close_design }] {
Puts “Failed to close design”
Handle Failure
} else {
puts “Design closed successfully”
Proceed with processing a new design

}

See Also
open design, close design, new design

compile

The compile command performs design rule check on the input netlist. Compile also performs some optimizations on the design
through logic combining and buffer tree modifications. Compile options vary by family.

Supported Families
MX, SX, SX-A, and eX

Axcelerator

ProASIC, ProASICPIYS

ProASIC3/E

Compile Tcl arguments available for MX, SX, SX-A, and eX
compile -nl pins overwrite

Arguments

-nl_pins_overwrite

Overwrites the imported netlist with the changes made in PinEditor.
Notes

None

Exceptions

None

93

Libero IDE v6.1 Users Guide

Example

if { [catch { compile nl_pins_overwrite }] {
Puts Failed compile
Handle Failure
} else {
puts Compile successful
Proceed to Layout

}

Compile Tcl arguments available for Axcelerator
compile -combine register value

Arguments

-combine_register value
The value should be ON for this optimization to take effect.

The following table shows the acceptable values for this argument:

on Combines registers at the 1/0 into 1/0O-Registers.
off Does not combine registers at the 1/0O

Notes
None

Exceptions

None

Example

compile -combine_register ON
Compile Tcl arguments available for ProASIC and ProASICPLUS
compile -ram io region <ON|OFF>

Arguments

-ram_io_region value

The following table shows the acceptable values for this argument:

ON Includes RAM and 1/O in the use_global and set_net_region constraints and in spines (LocalClock regions) created with
the ChipPlanner tool in the MultiView Navigator
OFF Does not include RAM and 1/O in the use_global and set_net_region constraints and in spines (LocalClock regions)

94

Tcl Scripting

created with the ChipPlanner tool in the MultiView Navigator.

Default: ON for new designs; OFF for designs created with Designer v5.1 and earlier.

Notes

None

Exceptions

None

Examples

compile -ram_io_region OFF

compile -ram_io_region ON

Compile Tcl arguments available for ProASIC3/E
compile

-pdc_abort on error value
-pdc_eco _display unmatched objects value
-pdc_eco max warnings value
—-demote globals value
—-demote globals max fanout value
-promote globals value
-promote globals min fanout value
-promote globals max limit value
-localclock max shared instances value
—localclock buffer tree max fanout value
—-combine register value
—delete buffer tree value
-delete buffer tree max fanout value

-report high fanout nets limit value

Arguments

-pdc_abort_on_error value

Changes the “Abort on PDC error” behavior. The following table shows the acceptable values for this argument:

ON Stops the flow if any error is reported in reading your PDC file
OFF Skips errors in reading your PDC file and just report them as warnings.

95

Libero IDE v6.1 Users Guide

Default: ON

Note: The flow always stops in the following two cases (even if this option is OFF):
If there is a Tcl error (for example, the command does not exist or the syntax of the command is incorrect)

The assign_local_clock command for assigning nets to LocalClocks fails. This may happen if any floor planning DRC check
fails, such as, region resource check, fix macro check (one of the load on the net is outside the LocalClock region). If such an
error occurs, then the Compile command fails. Correct your PDC file to proceed.

-pdc_eco_display_unmatched_objects value

Displays netlist objects in PDC that are not found in the imported netlist during Compile ECO mode.The following table shows the
acceptable values for this argument:

ON Reports netlist objects not found in the current netlist when reading the internal ECO PDC constraints
OFF Specifies not to report netlist objects not found in the current netlist when reading the internal ECO PDC constraints
Default: OFF

-pdc_eco_max_warnings value

Defines the maximum number of errors/warnings in Compile ECO mode.

The value is the maximum number of error/warning messages to be displayed in the case of reading ECO constraints.
Default: 10000.

-demote_globals value

Enables/disables global clock demotion of global nets to regular nets. The following table shows the acceptable values for this
argument:

OFF Disables global demotion of global nets to regular nets
ON Enables global demotion of global nets to regular nets

Default: OFF

-demote_globals_max_fanout value

Defines the maximum fanout value of a demoted net;where value is the maximum value
Default: 12

Note: A global net is not automatically demoted (assuming the option is on) if the resulting fanout of the demoted net (if it was
demoted) is greater than the max fanout value. Actel recommends that the automatic global demotion only act on small
fanout nets. Actel recommends that you drive high fanout nets with a clock network in the design to improve routability and
timing.

-promote_globals value

Enables/disables global clock promotion. The following table shows the acceptable values for this argument:

96

Tcl Scripting

| Description

ON Enables global promotion of nets to global clock network

OFF Disables global promotion of nets to global clock network

Default: OFF

-promote_globals_min_fanout value

Defines the minimum fanout of a promoted net; where value is the minimum fanout of a promoted net.
Default:200

-promote_globals_max_limit value

Defines the maximum number of nets to be automatically promoted to global The default value is 0. This is not the total number as
nets need to satisfy the minimum fanout constraint to be promoted. The promote_globals_max_limit value does not include globals
that may have come from either the netlist or PDC file (quadrant clock assignment or global promotion).

Note: Demotion of globals through PDC or Compile is done before automatic global promotion is done.

Note: You may exceed the number of globals present in the device if you have nets already assigned to globals or quadrants from
the netlist or by using a PDC file. The automatic global promotion adds globals on what already exists in the design.

-localclock_max_shared_instances value

Defines the maximum number of shared instances allowed to perform the legalization. This option is also available for quadrant
clocks.

value is the maximum number of instances allowed to be shared by 2 LocalClock nets assigned to disjoint regions to perform the
legalization (default is 12, range is 0-1000). If the number of shared instances is set to 0, no legalization is performed.

Note: If you assign quadrant clocks to nets using MultiView Navigator, no legalization is performed.

-localclock_buffer_tree_max fanout value

Defines the maximum fanout value used during buffer insertion for clock legalization. This option is also available for quadrant
clocks.

Set value to 0 to disable this option and prevent legalization (default value is 12, range is 0-1000). If the value is set to 0, no buffer
insertion is performed. If the value is set to 1, there will be one buffer inserted per pin.

-combine_register value

Combines registers at the 1/0 into I/O-Registers. The following table shows the acceptable values for this argument:

ON Combines registers at the 1/0 into 1/0O-Registers
OFF Does not optimize and combine registers at the 1/0.

Default: OFF

-delete_buffer_tree value

Enables/disables buffer tree deletion on the global signals. The buffer and inverter are deleted. The following table shows the
acceptable values for this argument:

97

Libero IDE v6.1 Users Guide

ON
OFF

Enables buffer tree deletion from the netlist
Disables buffer tree deletion from the netlist

Default: OFF
-delete_buffer_tree_max fanout value
Defines the maximum fanout of a net after buffer tree deletion;

value is the maximum value; the default value is 12.

Note: A net does not automatically remove its buffer tree (assuming the option is on) if the resulting fanout of the net (if the buffer
tree was removed) is greater than the max fanout value. Actel recommends that the automatic buffer tree deletion only act on
small fanout nets. Actel recommends that you drive high fanout nets with a clock network in the design to improve
routability and timing.

-report_high_ fanout_nets_limit value
Enables flip-flop net sections in the compile report and defines the number of nets to be displayed in the high fanout.

Default: 10

Notes

None

Exceptions

None

Examples

compile \
-pdc_abort_on_error "ON" \
-pdc_eco_display_unmatched_objects "OFF" \
-pdc_eco_max_warnings 10000 \
-demote_globals "OFF" \
-demote_globals_max_fanout 12 \
-promote_globals "OFF" \
-promote_globals_min_fanout 200 \
-promote_globals_max_limit 0 \
-localclock_max_shared_instances 12 \
-localclock_buffer_tree_max_fanout 12 \
-combine_register "OFF" \
-delete_buffer_tree "OFF" \
-delete_buffer_tree_max_fanout 12 \

-report_high_fanout_nets_limit 10

98

Tcl Scripting

export

The syntax and arguments for the export command vary depending on which device you are designing. Click the appropriate
command in the following list to see the syntax, arguments, and other information:
export (ProASIC3/E)

export (ProASICLUS, Axcelerator, ProASIC, MX, eX, and SX/SX-A)

extended run_shell

This script runs multiple iterations of layout through Designer. Use this script from the tcl shell "acttclsh”. This is the script or
command-line equivalent to using the multiple-pass layout (in the GUI).

SACTDIR/bin/acttclsh SACTDIR/scripts/extended run shell.tcl
—adb adbFilename [-n numIterations] [-timing driven]
[-c clockname] [-compare script compareScript] [-save all]
[-stop_on success] [-continue from last seed]
[-place value] [-incremental place value]
[-incremental route value]

[-effort level n] [-timing weight n]

Arguments

$ACTDIR

Location of the installation directory for Libero/Designer.
[-adb adbFilename]

This is the design file to run mulitple iterations of layout.
-timing_driven

Set this switch to run timing driven layout.

-c clockname

Clock mode - the run with the minimum value of the maximum register to register delay for the specified clock is chosen as the best
result. Default mode chooses the run with the highest frequency of the slowest clock as the best result.

Note: if '-compare_script compareScript' is specified, then that script will be used to determine the best run.

-compare_script compareScript

Sets the script that is used to determine whether a run is better than previous iterations. If only the script name is given (no path), then
the script is assumed to be $ACTDIR/scripts/<compareScript>, otherwise the full path of the script must be given. The default is
iterate_reg2reg_compare.tcl if the "-c clockname" option is used, and iterate_minfreq_compare.tcl otherwise.

-save_all

Saves all intermediate designs in ${adbFilename}_${iteration}.adb. The best result is also stored in $adbFilename as well. The
default behavior does not save all results.

-stop_on_success

99

Libero IDE v6.1 Users Guide

Only perform iterations until the design is successful. When the iterate_violations_compare.tcl isLayoutBetter method is used,
Success is defined as there being no negative slack (no timing violations). When the other isLayoutBetter methods are used there is
no effect (all iterations are attempted).

-continue_from_ last_seed

Use the def variable MULTIPASS_LAYOUT_SEED_INDEX+1 as the starting seed.

-place value

Default is "on™.The following table shows the acceptable values for this argument:

Implements place
off Does not implement place

-incremental_place value

Sets incremental place. The following table shows the acceptable values for this argument:

on Activates incremental place.
off Deactivates incremental place

-incremental_route value

Default is "off".

The following table shows the acceptable values for this argument:

Activates incremental route
off Deactivates incremental route

[-effort_level n]

This is an advanced option. N should be an integer. This option is available only forProASICP-YS,
[-timing weight n]

This is an advanced option. N should be an integer. This option is available only forProASICELYS,

Return: A non-zero value will be returned on error.

Supported Families
All

Notes

This is not a Tcl command. It is a shell script that can be run from the command line.

Exceptions
N/A

100

Tcl Scripting

Example
N/A

See Also
N/A

get_defvar
The get_defvar command provides access to the internal variables within Designer and returns it’s value.

get defvar variable

Arguments

The variable is the Designer internal variable.

Supported Families

All

Notes

This command also prints the value of the Designer variable on the log window.
Exceptions

None

Example

Example 1: Prints the design name on the log window.
get_defvar “DESIGN”

set variableToGet "DESIGN"

set valueOfVariable [get_defvar $variableToGet]

puts "The value is $valueOfVariable"

See Also

set_defvar

get_design_fileName
The get_design_filename command can be used to retrieve the full qualified path of the design file.
get design filename
Arguments
None

Supported Families
All

101

Libero IDE v6.1 Users Guide

Notes
The result will be an empty string if the design has not been saved to disk.
This command is equivalent to the command “get_design_info DESIGN_PATH.” This command predates get_design_info and
is supported for backward-compatibility.

Exceptions
The command will return an error if a design is not loaded.

The command will return an error if arguments are passed.

Example

if { [is_design_loaded] } {

set design_location [get_design_filename]
if {$design_location != "" } {
puts “Design is at $design_location.”
} else {
puts “Design has not been saved to a file on disk.”
}
} else {
puts "No design is loaded."

}

See Also
get design info

is design loaded
is design modified

is design state complete

get_design_info
The get_design_info command can be used to retrieve some basic details of your design.

get design info value

Arguments
The argument must be one of the valid string values. The possible values are summarized in the table below:

name Design name. The result is set to the design name string.
family Silicon family. The result is set to the family name.

design_path Fully qualified path of the design file. The result is set to the location of the .adb file. If a design has not
been saved to disk, the result will be an empty string. This command replaces the command

102

design_folder
design_file
cwdir

die

Package

Speed

get_design_filename.

Directory (folder) portion of the design_path.

Filename portion of the design_path.

Current working directory. The result is set to the location of the current working directory

Die name. The result is set to the name of the selected die for the design. If no die is selected, this is an
empty string.

Package. The result is set to the name of the selected package for the design. If no package is selected, this
is an empty string.

Speed grade. The result is set to the speed grade for the design. If no speed grade is selected, this is an
empty string.

Supported Family

All

Notes

The result value of the command will be a string value.

Exceptions

The command will return an error if a design is not loaded.

The command will return an error if more than one argument is passed.

The command will return an error if the argument is not one of the valid values.

Example

The following example uses get_design_info to display the various values to the screen.

if { [is_design_loaded] } {

puts "Design is loaded."

set bDesignLoaded 1

} else {

puts "No design is loaded."

set bDesignLoaded 0

}

if { $bDesignLoaded != 0 } {

set var
puts "
set var
puts "
set var
puts "
set var
puts "
set var

puts "

[get_design_info NAME]

DESIGN NAME:\tSvar"

[get_design_info FAMILY]
FAMILY:\tS$var"

[get_design_info DESIGN_PATH]
DESIGN PATH:\tSvar"

[get_design_info DESIGN_FILE]
DESIGN FILE:\tSvar"

[get_design_info DESIGN_FOLDER]

DESIGN FOLDER:\t$var"

Tcl Scripting

103

Libero IDE v6.1 Users Guide

set var [get_design_info CWDIR]

puts " WORKING DIRECTORY: Svar"

set var [get_design_info DIE]

puts " DIE:\tSvar"

set var [get_design_info PACKAGE]

puts " PACKAGE:\t'S$var'"

set var [get_design_info SPEED]

puts " SPEED GRADE:\tS$var"

if { [is_design_modified] } {
puts "The design is modified."

} else {

puts "The design is unchanged"

}

puts "get_design.tcl done"

See Also

get design filename
is design loaded
is design modified

is design state complete

Import_aux
Imports the specified auxiliary file into the design. Equivalent to executing the Import Auxiliary Files command from the File menu.

import aux -format file type [-merge timing] filename

Arguments
-format file_type
Specifies the file format of the file to import. You can import one of the following types of files: pdc, sdc, pin, dcf, saif, vcd, or crt.

-merge_timing value

Specifies whether to preserve all existing timing constraints when you import an SDC file. Same as selecting or unselecting the "Keep
existing timing constraints™ check box in the Import Files dialog box. The following table shows the acceptable values for the this
option:

yes/true Designer merges the timing constraints from the imported SDC file with the existing constraints
saved in the constraint database.

no/false ~ The existing timing constraints are replaced by the constraints in the newly imported SDC file.

104

Tcl Scripting

filename

Specifies the name of the auxiliary file to import.

Supported Families
ProASIC3/E,ProASICEYS Axcelerator, ProASIC, MX, eX, SX/SX-A

Notes

Auxiliary files are not audited and are handled as one-time data-entry or data-change events, similar to entering data using one of the
interactive editors (for example, PinEditor or Timer).

Some timing constraints (such as multi_cycle) are not supported in the Timer GUI and must be implemented by importing the SDC
file. If you import the SDC file as an auxiliary file, you do not have to re-compile your design. However, auditing is disabled when
you import auxiliary files, and Designer cannot detect the changes to your SDC file(s) if you import them as auxiliary files.

Exceptions

For auxiliary SDC constraints in eX, SX-A, ProASICPLYS Axcelerator and ProASIC3/E:
import_aux -format sdc -merge_timing yes/no ...
import_aux -format sdc -merge_all yes/no ...

import_aux -format sdc -merge yes/no ...
All NGT families support SDC. The import_aux command does not support any merge options for physical constraints.

For these families, in import_source, the -merge_all and -merge options are mapped only to -merge_timing. When recorded, the
import-aux SDC always writes out -merge_timing.

Examples

import_aux -format sdc -merge_timing yes mydesign.sdc

import_aux -format pdc {C:/designs/mydesign.pdc}

See Also

import source
Importing auxiliary files
Importing source files

Importing files

Tcl documentation conventions

import_Source

Imports the specified source file into the design. Equivalent to executing the Import Source File command from the File menu.

import source [-merge timing value] [-merge physical value] [-merge all value] [-format
file type [-abort on error] [-top entity] [-flavor value] filename]+

Arguments

-merge_timing value

105

Libero IDE v6.1 Users Guide

Specifies whether to preserve all existing timing constraints when you import an SDC file. Same as selecting or unselecting the "Keep
existing timing constraints™ check box in the Import Files dialog box. The following table shows the acceptable values for this option:

yes

no

Designer merges the timing constraints from the imported SDC file with the existing constraints
saved in the constraint database. If there is a conflict, the new constraint has priority over the
existing constraint.

All existing timing constraints are replaced by the constraints in the newly imported SDC file.

-merge_physical value

Specifies whether to preserve all existing physical constraints when you import a PDC file. Same as selecting or unselecting the "Keep
existing physical constraints” check box in the Import Files dialog box. The following table shows the acceptable values for this
option:

yes

no

Designer preserves all existing physical constraints that you have entered either using one
of the MVN tools (ChipPlanner, PinEditor, or the /O Attribute Editor) or a previous GCF
or PDC file. The software resolves any conflicts between new and existing physical
constraints and displays the appropriate message.

All existing physical constraints are replaced by the constraints in the newly imported PDC
file.

-merge_all value

Specifies whether to preserve all existing physical and timing constraints when you import an SDC and/or a PDC file. Same as
selecting or unselecting the "Keep existing physical constraints” and "Keep existing timing constraints" check boxes in the Import
Files dialog box. The following table shows the acceptable values for this option:

yes

no

Designer preserves all existing physical constraints that you have entered either using one of the
MVN tools (ChipPlanner, PinEditor, or the I/O Attribute Editor) or a previous GCF or PDC file.
The software resolves any conflicts between new and existing physical constraints and displays an
appropriate message.

Any existing timing constraints from your ADB are merged with the new information from your
imported files. New constraints override any existing timing constraints whenever there is a
conflict

All the physical constraints in the newly imported GCF or PDC files are used. All pre-existing
physical constraints are lost.

Existing timing constraints from the ADB are replaced by the new timing constraints from your
imported file.

-format file_type

Specifies the file format of the file to import. You can import one of the following types of files: adl, edif, verilog, vhdl, gcf, pdc, sdc,
orcrt.

-abort_on_error

106

Tcl Scripting

Aborts a PDC file if it encounters an error during import.
-top_entity

Specifies the top entity to a VHDL file.

-flavor

Specifies the type of netlist. It can be edif, viewlogic, or mgc.
filename

Specifies the name of the source file to import.

Supported Families
ProASIC3/E,ProASICEYS Axcelerator, ProASIC, MX, eX, SX/SX-A

Notes

None.

Exceptions
Your script -merge options vary according to family as shown below:
For source SDC (no PDC/GCF) in eX and SX-A:

import_source -merge_timing yes/no

import_source -merge yes/no

import_source -merge_all yes/no

The eX and SX-A families do not support merging of physical constraints. For these families, in
import_source, the -merge_all and -merge options are mapped just to -merge_timing.

For constraints in ProASICELYS:
import_source -merge_physical yes/no
import_source -merge_all yes/no

import_source -merge yes/no

ProASICELY andProASIC support GCF, but the -merge option in the import_source only affects GCF in terms of the physical
constraints.

ProASIC does not support PreCompile import of the SDC files. The -merge_timing option has no effect on this import_source for
ProASIC. The -merge_all and -merge options map to -merge_physical for ProASIC in import_source.

For ProASICP-YS, Axcelerator and ProASIC3/E
import_source -merge_physical yes/no -merge_timing yes/no
import_source -merge_all yes/no

import_source -merge yes/no

The -merge_all and -merge options map to both -merge_physical and -merge_timing options for these families.

Examples

Consider the following sample scripts:
import_source \
-merge_physical "no" \

-merge_timing "yes"

107

Libero IDE v6.1 Users Guide

-format "EDIF" -edif_flavor "GENERIC" \
{.\designs\mydesign.edn} \
-format "sdc" \
{.\designs\mydesign.sdc} \
-format "pdc" -abort_on_error "no" \
{.\designs\mydesign.pdc} \
import_source \
-merge_physical "no" \
-merge_timing "yes" \
-format "verilog" \
{mydesign.v}
import_source \
-merge_physical "no" \
-merge_timing "no"
-format "vhdl" -top_entity "aclass" \
{C:/mynetlist.vhd}
import_source \
-merge_physical "no" \
-merge_timing "no"

-format "adl" {mydesign.adl

See Also

import source
Importing auxiliary files
Importing source files

Importing files

Tcl documentation conventions

is_design_loaded

The is_design_loaded returns a Boolean value (O for false, 1 for true) indicating if a design is loaded in the Designer software. True is
returned if a design is currently loaded.

is design loaded

Arguments

None

Supported Family
All

108

Tcl Scripting

Notes

Some Tcl commands are valid only if a design is currently loaded in Designer. Use the ‘is_design_loaded” command to prevent
runtime errors by checking for this before invoking the commands.

Exceptions

The command will return an error if arguments are passed.

Example
The following code will determine if a design has been loaded.
set bDesignLoaded [is_design_loaded]
if { $bDesignLoaded == 0 } {
puts “No design is loaded.”
}
See Also
get design filename

get design info
is design modified

is design state complete

is_design_modified

The is_design_modified returns a Boolean value (0 for false, 1 for true) indicating if a design has been modified in the Designer
software. True is returned if a design has been modified.

is design modified

Arguments

None

Supported Family
Family: All
Notes

Some Tcl commands are valid only if a design has been modified in Designer. Use the is_design_modified command to prevent
runtime errors by checking for this before invoking the commands.

Exceptions

The command will return an error if arguments are passed.

Example
The following code will determine if a design has been modified.
set bDesignModified [is_design_modified]

if { S$bDesignModified == 0 } {

109

Libero IDE v6.1 Users Guide

puts “Design has not been modified.”

}

See Also
get design filename

is design loaded

is design state complete

is_design_state_complete

The is_design_state_complete command returns a Boolean value (0 for false, 1 for true) indicating if a specific design state is valid.
True is returned if the specified design state is valid.

is design state complete value

Arguments

The single argument must be one of the valid string values. The possible values are summarized in the table below:

SETUP_DESIGN The design is loaded and the family has been specified for the design

DEVICE_SELECTION The design has completed device selection (die and package). This corresponds to having
successfully called the set_device command to set the die and package

NETLIST_IMPORT The design has imported a netlist

COMPILE The design has completed the compile command

LAYOUT The design has completed the layout command

BACKANNOTATE The design has exported a post-layout timing file (e.g. SDF)

PROGRAMMING_FILES The design has exported a programming file (e.g. AFM)

Supported Family
All

Notes
Certain commands can only be used after Compile or Layout has been completed.

The is_design_state_complete command allows a script to check the design state before calling one of these state-limited
commands.

Exceptions
The command will return an error if a design is not loaded.
The command will return an error if more than one argument is passed.

The command will return an error if the argument is not one of the valid values.

110

layout

Tcl Scripting

Example
The following code runs layout, but checks that the design state for layout is complete before calling backannotate.
layout -timing_ driven

set bLayoutDone [is_design_state_complete LAYOUT]

if { $bLayoutDone != 0 } {
backannotate -name {mydesign_ba} -format "SDF" -language "verilog"
}

}

See Also

compile

get design filename
get design info

is design loaded

is design modified
layout

set_design

set_device

Sets the layout mode and placer value; this command is identical to the layout command in the Designer GUI.

layout -value [-run placer value]

Arguments

layout -value

Sets layout mode to be timing driven or standard. If not given, default is standard or the mode used in the previous layout command.
Values are summarized in the table below:

- vawe] _____________ Decripn |

timing_driven Sets timing driven layout mode
standard Sets standard layout mode

-run_placer|-placer|-place value

Invokes or skips placement. If set to OFF, previous placement will be used. Possible values are
summarized in the table below. Note that all three of the commands (-run_placer, -placer, and -place)
execute the same action.

111

Libero IDE v6.1 Users Guide

ON Invokes placement
OFF Skips placement

Supported Families
All

Notes

Please refer to the Advanced Layout Options for your device family for more information.
Exceptions

None

Example

The following code runs layout and specifies the timing-driven option.

layout -timing_ driven

See Also

layout (advanced options for SX family)

layout (advanced options forProASIC)

layout (advanced options for Axcelerator)

layout (Advanced Options for the SX family)
This is equivalent to executing commands within the Advanced Layout Options dialog box for the SX, SX-A, and eX families.

layout [-timing driven] [-incremental value] [-extended run value] [-effort level
value] [-timing weight value]

Arguments

-timing_driven

Sets layout mode to timing driven. If not given, default is standard or the mode used in the previous layout command.

-incremental value

Invokes or skips incremental mode. Possible values are summarized in the table below.

ON Invokes incremental mode, and sets the previous routing information as the initial starting point
OFF Skips incremental mode, discards previous information

-extended_run value

Invokes or skips extended_run mode. Possible values are summarized in the table below.

112

Tcl Scripting

ON Invokes extended run mode
OFF Skips extended run mode

-effort_level value

Sets the effort level; number may range from 25 to 500.

-timing weight value

Sets the timing weight value; number may range from 10 to 150.

Supported Families
SX,8X-A, eX

Notes
None
Exceptions

None

Example

layout [-timing_driven] [-incremental OFF] [-extended_run OFF] [-effort_level 50] [-timing weight
100]

See Also

layout

layout (advanced options forProASIC)

layout (advanced options for Axcelerator)

layout (Advanced Options for ProASIC and ProASICPLUS)

This is equivalent to executing commands within the Advanced Layout Options dialog box. These commands perform the layout
(placement and/or routing) for the design

layout [-value]

[-run placer value]
[-place incremental value]
[-placer seed value]
[-show placer seed]
[-timing weight value]
[-run_router value]

[-route incremental value]

Arguments

layout -value

113

Libero IDE v6.1 Users Guide

Sets layout mode to be timing driven or standard. If not given, default is timing-driven. Values are summarized in the table below:

timing_driven Sets timing driven layout mode
standard Sets standard layout mode

-run_placer|-placer|-place value

Invokes or skips placement. If set to OFF, previous placement will be used. Possible values are
summarized in the table below. Note that all three of the commands (-run_placer, -placer, and -place)
execute the same action.

Invokes placement
OFF Skips placement

—place_incremental|—incremental value

Sets your incremental placement options for layout. VValues are summarized in the table below. Note that the -place_incremental and -
incremental commands are interchangeable.

ON Sets the previous placement as the initial starting point
OFF (default) Discards previous placement
FIX Sets the previously placed macros’ locations as “FIXED” and continues to place the remaining ones

-placer_seed value

An integer value that you can set to change the initial random seed number for the placement.
-show_placer_seed

Causes Layout to display the initial random seed number used for the placement.
-timing_weight value

The timing weight for the placement. VValues range from 1 to 4 in whole integers. The lower numbers give less weight to timing in the
placement. Timing weight 4 is the same as timing driven placement using the option —timing_driven.

-run_router|-router|-route value

Invokes (if placement is successful) or skips routing. Values are described below.

ON Invokes routing if placement is successful
OFF Skips routing

-route_incremental value

Invokes or skips incremental mode. Possible values are summarized in the table below.

114

Tcl Scripting

ON Invokes incremental mode, and sets the previous routing information as the initial starting point
OFF Skips incremental mode, discards previous information

Supported Families
ProASIC,ProASICELYS

Notes
Please refer to theProASIC_and ProASICPLUS Layout Options for more information.

Exceptions

None

Example

layout

layout -standard

layout -timing weight 3

layout -place_incremental FIX -route_incremental ON
layout —-placer_seed 120

See Also

layout (for SX, SX-A, and eX)

layout (for Axcelerator)

layout (Advanced Options for Axcelerator)

This is equivalent to executing commands within the Advanced Layout Options dialog box.

layout [-value]
[-run_placer value]
[-place incremental value]
[-placer seed value]
[-effort level value]
[-run_router value]

[-route incremental value]

Arguments

layout -value

Sets layout mode to be timing driven or standard. If not given, default is standard or the mode used in the previous layout command.
Values are summarized in the table below:

timing_driven Sets timing driven layout mode

115

Libero IDE v6.1 Users Guide

standard Sets standard layout mode

-run_placer|-placer|-place value

Invokes or skips placement. If set to OFF, previous placement will be used. Possible values are
summarized in the table below. Note that all three of the commands (-run_placer, -placer, and -place)
are interchangeable.

Invokes placement
OFF Skips placement

—place_incremental|—incremental value

Sets your incremental placement options for layout. VValues are summarized in the table below. Note that the -place_incremental and -
incremental commands are interchangeable.

ON Sets the previous placement as the initial starting point
OFF (default) Discards previous placement
FIX Sets the previously placed macros’ locations as “FIXED” and continues to place the remaining ones

-placer_seed value

An integer value that you can set to change the initial random seed number for the placement.

-effort_level value

The effort level for the placement. Values range from 1 to 5 in whole integers. The lower numbers tend to give a result more quickly,
but higher levels yield better performance in timing and routability.

-run_router|-router|-route value

Invokes (if placement is successful) or skips routing. VValues are described below.

Invokes routing if placement is successful
OFF Skips routing

-route_incremental value

Invokes or skips incremental mode. Possible values are described in the table below.

ON Invokes incremental mode, and sets the previous routing information as the initial starting point
OFF Skips incremental mode, discards previous information

116

Tcl Scripting

Supported Families

Axcelerator

Notes

Please refer to the Axcelerator Layout options for more information.

Exceptions

N/A

Example

layout

layout -timing driven -effort_level 4

layout -place_incremental FIX -route_incremental ON

layout -placer_seed 120
See Also

layout (for SX)

layout (forProASIC)

new_design
The new_design command creates a new design.

new design -name design name —-family family name -path pathname

Arguments

-name design_name

The name of the design. This is used as the base name for most of the files generated from Designer.
-family family name

The Actel device family for which the design is being targeted.

-path path_name

The physical path of the directory in which the design files will be created.

Supported Families

Family: All

Notes

You need all the 3 arguments for this command. This command will setup the Designer software for importing design source files.
Exceptions

None

Example

Example 1: Creates a new ACT3 design with the name “test” in the current folder.

new_design -name "test" -family "ACT3" -path {.}

117

Libero IDE v6.1 Users Guide

Example 2: These set of commands create a new design through variable substitution.
set desName “test

set famName “ACT3”

set path {d:/examples/test}

new_design -name S$desName -family S$famName -path S$path

Example 3: Design creation and catch failures
if { [catch { new_design -name $desName -family S$famName -path S$path }] {
Puts “Failed to create a new design”
Handle Failure
} else {
puts “New design creation successful”
Proceed to Import source files

}

See Also
close design

open design,
save design

set_design

open_design
The open_design command opens an existing design into the Designer software.

open design file name

Arguments
file_name
is the complete adb file path. The complete path is not provided then the directory is assumed to be the current working directory.

Supported Families
All

Notes

All previously open designs must be closed before opening a new design.

Exceptions

None

118

Tcl Scripting

Example
Example 1: Opens an existing design from the file “test.adb” in the current folder.

open_design {test.adb}

Example 2: Design creation and catch failures.

set designFile {d:/test/my_design.adb}

if { [catch { open_design S$designFile }] {
Puts “Failed to open design”
Handle Failure

} else {
puts “Design opened successfully”
Proceed to further processing

}

See Also
close design

new design

save design

pin_assign

Use to either assign the named pin to the specified port or assign attributes to the specified port. This command has two syntax
formats. The one you use depends on what you are trying to do. The first syntax format assigns the named pin to the specified port.
The second one assigns attributes to the specified port.

pin_assign [-nofix] -port portname -pin pin_number

pin_assign -port portname [-iostd value] [-iothresh value] [-outload value] [-slew
value] [-res_pull value]

Arguments

-nofix

Unlocks the pin assignment (by default, assignments are locked).
-port portname

Specifies the name of the port to which the pin is assigned.

-pin pin_number

Specifies the alphanumeric number of the pin to assign.

-iostd value

Sets the 1/O standard for this pin. Choosing a standard allows the software to set other attributes such as the slew rate and output
loading. If the voltage standard used with the 1/O is not compatible with other 1/Os in the 1/0 bank, then assigning an I/O standard to a
port will invalidate its location and automatically unassign the 1/0. The following table shows the acceptable values for the supported
devices:

119

Libero IDE v6.1 Users Guide

1/0 Standard ProASIC Axcelerator ProASIC RTSX- SX/ eX
PLUS S SX-
A
X

CMOS
CUSTOM X X X
GTLP25

GTLP33

GTL33

GTL25

HSTL1

HSTLII
LVCMOS33
LVCMOS25
LVCMOS25_50
LVCMOS18

X X X X X X X X X X X

LVCMOS15
LVDS

*

LVPECL
LVTTL
TTL

PCI
PCIX

X X X X
X
X
X

SSTL2I
SSTL2II

X X X X X X X X

SSTL3I

X X X X X X X X X X X X

SSTL3II X

*Supported only on dedicated LVVPECL 1/Os.

-iothresh value

Sets the compatible threshold level for inputs and outputs. This attribute is for SX-A and RTSX-S families only. The default I/O
threshold is based upon the 1/0 standard. You can set the 1/0 Threshold independently of the 1/O specification in the PinEditor tool by
selecting CUSTOM in the I/O Standard cell. The following table shows the acceptable values for the supported devices (SX-A,
RTSX-S, and eX):

CMOS RTSX-S devices only. An advanced integrated circuit (IC) manufacturing process technology for logic and memory,

120

Tcl Scripting

characterized by high integration, low cost, low power, and high performance. CMOS logic uses a combination of p-type
and n-type metal-oxide-semiconductor field effect transistors (MOSFETS) to implement logic gates and other digital
circuits found in computers, telecommunications, and signal processing equipment.

LVTTL (Low-Voltage TTL) A general purpose standard (EIA/JESDSA) for 3.3V applications. It uses an LVTTL input buffer and
a push-pull output buffer.

PCI A computer bus for attaching peripheral devices to a computer motherboard in a local bus. This standard supports both 33
MHz and 66 MHz PCI bus applications. It uses an LVTTL input buffer and a push-pull output buffer. With the aid of an
external resistor, this 1/0 standard can be 5V-compliant for most families, excluding ProASIC3/E families.

-slew value

Sets the output slew rate. Slew control affects only the falling edges. Rising edges are not affected. This attribute is only available for
LVTTL, PCI, and PCI outputs. For LVTTL, it can either be high or low. For PCI and PCIX, it can only be set to high. The following
table shows the acceptable values for the supported devices (ProASIC PLUS ' Axcelerator, ProASIC, SX-A, RTSX-S, and eX):

high Sets the 1/O slew to high
low Sets the 1/0 slew to low

-res_pull value

Allows you to include a weak resistor for either pull-up or pull-down of the input buffer. The following table shows the acceptable
values for the supported devices (ProASIC PLUS ' Axcelerator, ProASIC, SX-A/RTSX-S, and eX):

up Includes a weak resistor for pull-up of the input buffer
down Includes a weak resistor for pull-down of the input buffer
none Does not include a weak resistor

-out_load value

Indicates the output-capacitance value based on the 1/O standard selected. This option is not available in ACTgen. This attribute
determines what Timer will use as the loading on the output pin and applies only to outputs. You can enter a capacitive load as an
integral number of picofarads (pF). The default is 35pF. This attribute is available only for the following devices: ProASIC 248,
Axcelerator, ProASIC, SX-A/RTSX-S, and eX.

Supported Families
ProASIC P8 Axcelerator,ProASIC, SX, SX-A, RTSX-S, and eX
Notes
Youmustuse pin_commit after this command (see Examples below) to save the changes to your design.
The -iothresh argument is also referred to as "Loading" in some families.
You can use this command for designs created with PinEditor in MVN and PinEditor Standalone.
This command does not support MX and SX devices.

The following table provides a summary of all supported 1/O features for SX-A, RTSX-S, and eX devices:

121

Libero IDE v6.1 Users Guide

1/0O Standard Output Power- Hot- Loading (pf)
Slew-rate Up State Swap
Control Control
X X

2.5V Yes 35
LVCMOS
3.3V X X X X X Yes 35
LVTTL
5V TTL X X X X X Yes 35
3.3V PCI X X High X No 10
5V PCI X X High X Yes 50
5V CMOS X X X Yes 35
Exceptions
None
Examples

pin_assign -port uswO -pin A2

pin_assign -port usw0 -iostd LVTTL -slew Low -res_pull Down
See Also

pin_commit

in fix

pin_unassign

Tcl documentation conventions

pin_commit
Saves the pin assignments to the design (.adb) file.
pin_commit
Arguments
None

Supported Families
ProASIC PYS Axcelerator,ProASIC, SX, SX-A, RTSX-S, MX, and eX

Notes
To save your changes, you must add the pin_commit command to the end of the script.

You can use this command for designs created with PinEditor in MVN and PinEditor Standalone.

Exceptions

None

122

Tcl Scripting

Examples

pin_commit

See Also
pin_fix

pin_unfix
pin_assign
pin_unassign

Tcl documentation conventions

pin_fix
Locks the pin assignment for the specified port, so the pins cannot be moved during place-and-route.

pin_fix -port portname

Arguments

-port portname
Specifies the name of the port to which the pin must be locked at its assigned location.

Supported Families
ProASIC B Axcelerator,ProASIC, SX, SX-A, RTSX-S, MX, and eX

Notes
You cannot move locked pins during place-and-route.
You can assign only one pin to a port.
Youmustuse pin_commit after this command (see Examples below) to save the changes to your design.
You can use this command for designs created with PinEditor in MVN and PinEditor Standalone.
Exceptions
None
Examples
pin_fix -port clk
pin_commit
See Also
pin_commit
pin_unfix
pin_assign

pin_unassign

123

Libero IDE v6.1 Users Guide

Tcl documentation conventions

pin_fix_all
Locks all the assigned pins on the device so they cannot be moved during place-and-route.
pin_fix_all
Arguments
None

Supported Families
ProASIC BXYS Axcelerator,ProASIC, SX, SX-A, RTSX-S, MX, and eX

Notes
You cannot move locked pins during place-and-route.
You mustuse pin commit after this command (see Examples below) to save the changes to your design.

You can use this command for designs created with PinEditor in MVN and PinEditor Standalone.

Exceptions

None

Example
pin_fix_all

pin_commit
See Also
pin_commit
in fix
pin_unfix
pin_assign
pin_unassign

Tcl documentation conventions

pin_unassign

Unassigns the pin from the specified port. The unassigned pin location is then available for other ports. (Only one pin can be assigned
to a port.)

pin_unassign -port portname

Arguments

-port portname

124

Tcl Scripting

Specifies the name of the port for which the pin must be unassigned.

Supported Families
ProASIC BYYS Axcelerator,ProASIC, SX, SX-A, RTSX-S, MX, and eX

Notes

Youmustuse pin_commit after this command (see Examples below) to save the changes to your design.

You can use this command for designs created with PinEditor in MVN and PinEditor Standalone.

Exceptions

None

Examples
pin_unassign -port “clk”

pin_commit
See Also
pin_commit
in_fix

pin fix all
pin_unfix
pin_assign
pin_unassign

Tcl documentation conventions

pin_unassign_all
Unassigns all the pins from all the ports so that all pin locations are available for assignment.
pin_unassign_all
Arguments
None

Supported Families

ProASIC P25, Axcelerator, ProASIC, SX, SX-A, RTSX-S, MX, and eX

Notes
Youmustuse pin_commit after this command (see Example below) to save the changes to your design.
You can use this command for designs created with PinEditor in MVN and PinEditor Standalone.

Exceptions

None

125

Libero IDE v6.1 Users Guide

Examples
pin_unassign_all

pin_commit
See Also
pin_commit
in fix
pin_unfix
pin_assign
pin_unassign

Tcl documentation conventions

pin_unfix
Unlocks the pins assigned to the specified port, so the pins can be moved during place-and-route.

pin_unfix -port portname

Arguments

-port portname
Specifies the name of the port containing pins to unlock.

Supported Families
ProASIC BXYS Axcelerator,ProASIC, SX, SX-A, RTSX-S, MX, and eX

Notes
You can move locked pins during place-and-route.
Youmustusethe pin_commit command after this command (see Examples below) to save the changes to your design.
You can use this command for designs created with PinEditor in MVN and PinEditor Standalone.

Exceptions

None

Examples
pin_unfix -port rst

pin_commit
See Also
pin_commit
in fix
pin_assign

pin_unassign

126

Tcl documentation conventions

report

The report command provides you with frequently-used information in a convenient format.
You can generate the following types of reports using this command:

Status Report

Timing Report

Timing Violations Report

Flip-flop Report

Power Report

Pin Report

1/0 Bank Report

save_design
The save_design command saves the current design in Designer to a file.
save design filename
Arguments
The design is written to a file denoted by the variable filename as an ADB file.

Supported Families
All

Notes

If filename is not a complete path name, the ADB file is written into the current working directory.

Exceptions

None

Example
Example 1: Saves the design to a file “test.adb” in the current folder.
save_design {test.adb}
Example 2: Save design and check if it saved successfully.
set designFile {d:/test/my_design.adb}
if { [catch { save_design $designFile }] {
Puts “Failed to save design”
Handle Failure
} else {

puts “Design saved successfully”

Tcl Scripting

127

Libero IDE v6.1 Users Guide

Proceed to make further changes
}
See Also
close design,

new design

open design,

set_design

This set_design command specifies the design name, family and path in which Designer will process the design. This step is
absolutely required before importing the source files.

set design -name design name -family family name —path path name

Arguments

-name design_name

The name of the design. This is used as the base name for most of the files generated from Designer.
-family family_ name

The Actel device family for which the design is being targeted.

-path path_name

The physical path of the directory in which the design files will be created.

Supported Families
All

Notes

You need all 3 arguments for this command to setup your design.

Example
Example 1: Sets up the design and checks if there are any errors
set_design -name "test" -family "Axcelerator" -path {.}
set desName “test
set famName “ACT3”
set path {d:/examples/test}
if { [catch { set_design -name S$desName -family S$famName -path S$path }1 {
Puts “Failed setup design”
Handle Failure
} else {
puts “Design setup successful”

Proceed to Import source files

128

Tcl Scripting

See Also

new design,

set_device

set_device

The set_device command specifies the type of device and its parameters.
Syntax

set device -family family name -die die name -package package name -speed speed grade
-voltage voltage -voltrange volt range -temprange temp range —-iostd default io std -
pci value -jtag value -probe value -trst value

Arguments

-family family_ name

Specifies the name of the FPGA device family.
-die die_name

Specifies the part name.

-package package_name

Specifies the selected package for the device.
-speed speed_grade

Specifies the speed grade of the part.
-voltage voltage

Specifies the core voltage of the device.
-voltrange volt_range

Specifies the voltage range to be applied for the device. It is generally MIL, COM and IND denoting Military, Commercial and
Industrial respectively.

-temprange temp_range

Specifies the voltage range to be applied for the device. It is generally MIL, COM and IND denoting Military, Commercial and
Industrial respectively.

—-iostd default_io_std

Specifies the default I/O Standard of the part

-pci value

Specified if the device needs to configure the 10 for PCI specification. Values are summarized in the table below.

yes Device is configured for PCI specification
no Device is not configured for PCI specification

129

Libero IDE v6.1 Users Guide

-jtag value

Specifies if pins need to be reserved for JTAG. Values are summarized in the table below.

yes Pins are reserved for JTAG
no Pins are not reserved for JTAG

-probe value

Specifies if the pins need to be preserved for probing. Values are summarized in the table below.

yes Pins are preserved for probing
no Pins not preserved for probing

-trst value

Specifies if the pins need to be reserved for JTAG test reset. Values are summarized in the table below.

yes Pins are preserved for JTAG test reset
no Pins are not preserved for JTAG test reset

Supported Families
All

Notes

At least one option must be specified for this command. Some of the options may not apply for certain families that do not support the
features.

Example
Example 1: Setting up a PA design.

set_device -die "APAQ75" -package "208 PQFP" -speed "STD" -voltage "2.5" \

-jtag "yes" -trst "yes" -temprange "COM" -voltrange "COM"

See Also
new design,

set_design

set_defvar

The set_defvar command sets an internal variable in the Designer system.

set_defvar variable value

130

Tcl Scripting

Arguments

Variable must be a valid Designer internal variable and could be accompanied by an optional value. If the value is provided, the
variable is set the value. If the value is null the variable is reset.

Supported Families
All

Notes

Must have at least one argument.
Exceptions

None

Example

Example 1:

set_defvar “FORMAT” “VHDL”
Sets the FORMAT internal variable to VHDL.

Example 2:
set variableToSet "DESIGN"
set valueOfvariable “VHDL”

set_defvar $variableToSet $valueOfVariable
These commands set the FORMAT variable to VHDL, shows the use of variables for this command.

See Also
get defvar

smartpower_add_pin_in_domain
Adds a pin into a clock or set domain.

smartpower add pin in domain -pin name {pin name} -pin type {value} —-domain name
{domain name} -domain type {value}

Arguments

-pin_name {pin_name}

Specifies the name of the pin to add to the domain.

-pin_type {value}

Specifies the type of the pin to add. The following table shows the acceptable values for this argument:

clock The pin to add is a clock pin
data The pin to add is a data pin

131

Libero IDE v6.1 Users Guide

-domain_name {domain_name}
Specifies the name of the domain in which to add the specified pin.
-domain_type {value}

Specifies the type of domain in which to add the specified pin. The following table shows the acceptable values for this argument:

clock The domain is a clock domain
set The domain is a set domain

Supported Families
ProASIC3/E,ProASIC™YS| Axcelerator, and ProASIC

Notes
The domain_name must be a name of an existing domain.

The pin_name must be a name of a pin that exists in the design.

Exceptions

None

Examples

The following example adds a clock pin to an existing Clock domain:

smartpower_add_pin_in_domain -pin_name { XCMP3/U0/Ul:Y } -pin_type {clock} -domain_name {clkl} -
domain_type {clock}

The following example adds a data pin to an existing Set domain:

smartpower_add_pin_in_domain -pin_name {XCMP3/U0/Ul:Y} -pin_type {data} -domain_name {myset} -
domain_type {set}

See Also

smartpower remove pin_of domain

Tcl documentation conventions

smartpower_commit
Saves the changes made to the Designer database.
smartpower commit
Arguments
None

Supported Families
ProASIC3/E,ProASIC™YS| Axcelerator, and ProASIC

132

Tcl Scripting

Notes

None
Exceptions

None

Examples

smartpower_commit

See Also
smartpower restore

Tcl documentation conventions

smartpower_create_domain
Creates a new clock or set domain.

smartpower create domain -domain type {value} -domain name {domain name}

Arguments

-domain_type {value}

Specifies the type of domain to create. The following table shows the acceptable values for this argument:

clock The domain is a clock domain
set The domain is a set domain

-domain_name {domain_name}
Specifies the name of the new domain.

Supported Families
ProASIC3/E,ProASICPYS| Axcelerator, and ProASIC

Notes
The domain name cannot be the name of an existing domain.
The domain type must be either clock or set.

Exceptions

None

Examples

The following example creates a new clock domain named "clk2":

smartpower_create_domain -domain_type {clock} -domain_name {clk2}

The following example creates a new set domain named "myset™:

133

Libero IDE v6.1 Users Guide

smartpower_create_domain -domain_type {set} -domain_name {myset}
See Also
smartpower remove domain

Tcl documentation conventions

smartpower_remove_domain
Removes an existing clock or set domain.

smartpower remove domain -domain type {value} -domain name {domain name}

Arguments

-domain_type {value}

Specifies the type of domain to remove. The following table shows the acceptable values for this argument:

clock The domain is a clock domain
set The domain is a set domain

-domain_name {domain_name}

Specifies the name of the domain to remove.

Supported Families
ProASIC3/E,ProASICP-YS Axcelerator, and ProASIC

Notes
The domain name must be the name of an existing domain.

The domain type must be either clock or set.

Exceptions

None

Examples

The following example removes the clock domain named "clk2":
smartpower_remove_domain -domain_type {clock} -domain_name {clk2}
The following example removes the set domain named "myset":

smartpower_remove_domain -domain_type {set} -domain_name {myset}

See Also

smartpower create_domain

Tcl documentation conventions

134

Tcl Scripting

smartpower_remove_pin_frequency
Removes the frequency associated with a specific pin. This pin will have a default frequency based on its domain.

smartpower remove pin frequency -pin name {pin name}

Arguments

-pin_name {pin_name}

Specifies the name of the pin for which the frequency will be removed.

Supported Families
ProASIC3/E,ProASICEYS Axcelerator, and ProASIC

Notes

The pin_name must be the name of a pin that already exists in the design and already belongs to a domain.

Exceptions

None

Examples

The following example removes the frequency from the pin named “count8_clock™:

smartpower_remove_pin_frequency -pin_name {count8_clock}

See Also

smartpower_set pin frequency

Tcl documentation conventions

smartpower_remove_pin_of_domain
Removes a clock pin or a data pin from a Clock or Set domain, respectively.

smartpower remove pin of domain -pin name {pin name} -pin type {value} -domain name
{domain name} -domain type {value}

Arguments

-pin_name {pin_name}

Specifies the name of the pin to remove from the domain.

-pin_type {value}

Specifies the type of the pin to remove. The following table shows the acceptable values for this argument:

clock The pin to remove is a clock pin
data The pinto remove is a data pin

135

Libero IDE v6.1 Users Guide

-domain_name {domain_name}
Specifies the name of the domain from which to remove the pin.
-domain_type {value}

Specifies the type of domain from which the pin is being removed. The following table shows the acceptable values for this argument:

clock The domain is a clock domain
set The domain is a set domain

Supported Families
ProASIC3/E,ProASICP-YS Axcelerator, and ProASIC

Notes
The domain name must be the name of an existing domain.

The pin name must be the name of an existing pin.

Exceptions

None

Examples

The following example removes the clock pin named "XCMP3/UO/U1:Y" from the clock domain named "“clockh™:
smartpower_remove_pin_of_domain -pin_name {XCMP3/U0/Ul:Y}

-pin_type {clock} -domain_name {clockh} -domain_type {clock}

The following example removes the data pin named “count2_en" from the set domain named "InputSet":
smartpower_remove_pin_of_domain -pin_name {count2_en} -pin_type

{data} -domain_name {InputSet} -domain_type {set}

See Also

smartpower_add pin in domain

Tcl documentation conventions

smartpower_restore
Restores all power information previously committed in SmartPower.

smartpower restore

Arguments

None

Supported Families
ProASIC3/E,ProASIC™YS| Axcelerator, and ProASIC

136

Tcl Scripting

Notes

None

Exceptions

None

Examples
smartpower_restore
See Also

smartpower commit

Tcl documentation conventions

smartpower_set_domain_frequency
Sets the frequency of a domain in megahertz (MHz).

smartpower set domain frequency -domain type {value} -domain name {domain name} -
clock freq {value} -data freq {value} -pin freq {value}

Arguments

-domain_type {value}

Specifies the type of domain to set. The following table shows the acceptable values for this argument:

clock The domain is a clock domain
set The domain is a set domain

-domain_name {domain_name}
Specifies the name of the domain for which the frequency will be set.
-clock_freq {value}

Specifies the clock frequency in megahertz (MHz), which can be any positive decimal number. This argument is available only for a
clock domain.

-data_freq {value}

Specifies the data frequency in megahertz (MHz), which can be any positive decimal number. This argument is available only for a
clock domain.

-pin_freq {value}

Specifies the value of the pin frequency in megahertz (MHz), which can be any positive decimal number, which can be any positive
decimal number. This argument is available only for a set domain.

Supported Families
ProASIC3/E,ProASIC™YS| Axcelerator, and ProASIC

137

Libero IDE v6.1 Users Guide

Notes
The domain type must be either “clock” or “set.”
The domain name must be the name of an existing domain.

The clock frequency must be a positive decimal number. Specifying the unit as part of the frequency value is optional. You must
enter a space between the frequency value and the unit. You set the clock frequency only for clock domains.

The data frequency must be a positive decimal number. Specifying the unit as part of the data frequency value is optional. You
must enter a space between the data frequency value and the unit.

Exceptions

None
Examples

The following example sets the clock and data frequency of a clock domain:

smartpower_set_domain_frequency —-domain_type {clock} -domain_name {clkl} -clock_freq {32} or {30 MHZ}
—data_freq {3} or {3 Mhz}

The following example sets the data frequency of a set domain:

smartpower_set_domain_frequency —-domain_type {set} -domain_name {setl} -data_freq {10}
See Also

smartpower create domain

smartpower remove domain

Tcl documentation conventions

smartpower_set_pin_frequency

Sets the frequency of a pin in megahertz (MHz). If you do not use this command, each pin will have default frequency based on its
domain.

smartpower set pin frequency -pin name {pin name} -pin freq {value}

Arguments

-pin_name {pin_name}

Specifies the name of the pin for which the frequency will be set.

-pin_freq {value}

Specifies the value of the frequency in MHz, which can be any positive decimal number.
Supported Families

ProASIC3/E,ProASICP-YS Axcelerator, and ProASIC

Notes
The pin_name must be the name of a pin that already exists in the design and already belongs to a domain.

When specifying the unit, a space must be between the frequency value and the unit.

138

Tcl Scripting

Exceptions

None

Examples
This example sets the frequency of the pin named "count8_clock™ to 100 MHz:

smartpower_set_pin_frequency -pin_name {count8_clock} -pin_freqg {100}

See Also

smartpower remove pin frequencv

Tcl documentation conventions

timer_add_clock_exception
Adds an exception to or from a pin with respect to a specified clock.

timer add clock exception -clock clock name -pin pin name -dir from value to value

Arguments

-clock clock_name

Specifies the name of the clock.

-pin pin_name

Specifies the exception on the pin in a synchronous network that should be excluded from the specified clock period.

-dir {from_value to_value}

Specifies direction. The from_value refers to paths starting at that particular pin and to_value refers to paths ending at that particular
pin.

Supported Families
ProASIC3/E,ProASICPYYS, Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

None

Exceptions

None

Examples

The following example adds a clock exception from the pin reg_g_a 10 _/U0:CLK with respect to the clock clk.
timer_add_clock_exception -clock {clk} -pin {reg_qg a_ 10_/UO0:CLK} -dir {from}

The following example adds a clock exception to the pin reg_q_a_10_/UO:E with respect to the clock clk.

timer_add_clock_exception -clock {clk} -pin {reg_ g a_10_/U0:E} -dir {to}

See Also

timer remove clock exception

Tcl documentation conventions

139

Libero IDE v6.1 Users Guide

timer_add_pass
Adds a pin to the list of pins for which the path must be shown passing through, in the Timer.
timer add pass -pin pin name
Arguments
-pin pin_name
Specifies the name of the pin to be included for displaying the timing path through it.

Supported Families
ProASIC3/E, ProASICPYYS Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

Setting a pass on a module pin enables you to see a path through individual pins.

Exceptions

None

Examples
This example adds a pass through the pin named "reg_g_a 0_:CLK" in the design:

timer_add_pass -pin {reg_g a_0_:CLK}

This example adds a pass through a clear pin named "reg_g_a_0_:CLR" in the design

timer_add_pass -pin {reg_g a_0_:CLR}

See Also
timer add stop

Tcl documentation conventions

timer_add_stop
Adds the specified pin to the list of pins through which the paths will not be displayed in the Timer.
timer add stop -pin pin name

Arguments

-pin pin_name
Specifies the name of the pin to be excluded from displaying the path.

Supported Families
ProASIC3/E, ProASICPYYS Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

Without stop points, you see all the paths from pad to pad in the design. If you do not want to see the paths going through registers
clock pins, you could specify these as stop points. The path going through those pins would not be displayed.

140

Exceptions

None

Examples

The following example adds a stop to the pin named "a<2>" in the design:

timer_add_stop -pin {a<2>}

The following example adds a stop to a clock and a clear pin named "reg_g_a_0_:CLR" in the design:

timer_add_stop -pin {reg_g a_0_:CLK}

timer_add_stop -pin {reg_g a_0_:CLR}

See Also
timer add pass

Tcl documentation conventions

timer_commit
Saves the changes made to constraints into the Designer database.
timer commit
Arguments
None

Supported Families
ProASIC3/E,ProASICPLYS Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

None

Exceptions

None

Examples

timer_commit

See Also

timer restore

Tcl documentation conventions

timer_get_path
Displays the path between the specified pins in the Log window.

timer get path -from source pin -to destination pin \

[-exp value] \

Tcl Scripting

141

Libero IDE v6.1 Users Guide

[-sort value] \

[-order value] \

[-case value] \

[-maxpath maximum paths] \
[-maxexpath maximum paths to expand] \
[-mindelay minimum delay] \

[-maxdelay maximum delay] \
[-breakatclk value] \

[-breakatclr value]

Arguments

-from source_pin

Specifies the name of the source pin for the path.

-to destination_pin

Specifies the name of the destination pin for the path.

-exp value

Specifies whether to expand the path. The following table shows the acceptable values for this argument:

yes Expands the path
no Does not expand the path

-sort value

Specifies whether to sort the path by either the actual delay or slack value. The following table shows the acceptable values for this
argument:

actual Sorts the path by the actual delay value
slack Sorts the path by the slack value

-order value

Specifies whether the maximum list size is based on the longest or shortest paths. The following table shows the acceptable values for
this argument:

long Base the maximum list size on the longest path in the design
short Base the maximum list size on the shortest path in the design

142

Tcl Scripting

-case value

Specifies whether the report will include timing values for the worst, typical, or best cases. The following table shows the acceptable
values for this argument:

worst Includes timing values for the worst cases
typ Includes timing values for typical cases
best Includes timing values for the best cases

-maxpath maximum_paths

Specifies the maximum number of paths to display.

-maxexpath maximum_paths_to_expand
Specifies the maximum number of paths to expand.

-breakatclk value

Specifies whether to break the paths at the register clock pins. The following table shows the acceptable values for this argument:

yes Breaks the paths at the register clock pins
no Does not break the paths at the register clock pins

-breakatclr value

Specifies whether to break the paths at the register clear pins. The following table shows the acceptable values for this argument:

yes Breaks the paths at the register clear pins
no Does not break the paths at the register clear pins

Supported Families
ProASIC3/E,ProASICPYS| Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

None

Exceptions

None

Examples

The following example returns the paths from input port headdr_dat<31> to the input pin of register
u0_headdr_datal reg/data_out_t_31 in typical conditions.

timer_get_path -from "headdr_dat<31>" \

-to "uO_headdr_datal_reg/data_out_t_31/U0:D" \

143

Libero IDE v6.1 Users Guide

-case typ \
—exp "yes" \
-maxpath "100" \
-maxexpapth "10"

The following example returns the paths from clock pin of register gearbox_inst/bits64_out_reg<55> to
the output port pma_tx_data_64bit[55]

timer_get_path -from "gearbox_inst/bits64_out_reg<55>/U0:CLK" \
-to {pma_tx_data_64bit[55]} \
-exp "yes"

See Also

Tcl documentation conventions

timer_get_clock_actuals
Displays the actual clock frequency in the Log window, when Timer is initiated.

timer get clock actuals -clock clock name

Arguments

-clock clock_name

Specifies the name of the clock with the frequency (or period) to display.
Supported Families

ProASIC3/E, ProASICP-YS, Axcelerator,ProASIC, MX, eX, and SX/SX-A
Notes

None

Exceptions

None

Examples
This example displays the actual clock frequency of clock "clk1" in the Log window:

timer_get_clock_actuals -clock clkl

See Also

timer get clock constraints

Tcl documentation conventions

timer_get_clock_Constraints
Returns the constraints (period, frequency, and duty cycle) on the specified clock.

timer get clock constraints -clock clock name

144

Tcl Scripting

Arguments

-clock clock_name

Specifies the name of the clock with the constraint to display.

Supported Families
ProASIC3/E,ProASICPLYS | Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

None

Exceptions

None

Examples

The following example displays the clock constraints on the clock named "clk" in the Log window:
timer_get_clock_constraints -clock clk

See Also

timer get clock actuals

Tcl documentation conventions

timer_get_maxdelay

Displays the maximum delay constraint between two pins in a path in the Log window.

timer_get_maxdelay -from source pin -to destination_pin

Arguments

-from source_pin
Specifies the name of the source pin in the path.
-to destination_pin

Specifies the name of the destination pin in the path.

Supported Families
ProASIC3/E,ProASICPLYS | Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes
You can use the following macros in this command:
$in()
to specify all input pins
$out ()
to specify all output pins
Sreg (clock_name)

to specify all registers related to clock_name

145

Libero IDE v6.1 Users Guide

Exceptions

None

Examples
The following example displays the maximum delay constraint from all registers of clk166 to all output pins in the Log window:

timer_get_maxdelay -from {Sreg(clkl66)[*]} -to {Sout()[*]}

The following example displays the maximum delay constraint from the pin clk166 to the pin reg_g_a_9 /U0:CLK in the Log
window:

timer_get_maxdelay -from {clkl66} -to {reg_g a_9_/U0:CLK}

The following example displays, in the Log window, the maximum delay constraint from all input pins to all registers of clock166 and
also checks for errors in the command:

if [catch {timer_get_maxdelay -from {$in()I[*]} -to {Sreg(clk)[*1}} 1 {
puts "Error getting max_delay information"

} else {
puts "Successfully obtained max_delay information"

}

See Also

timer set maxdelay

Tcl documentation conventions

timer_get_path_Constraints
Displays the path constraints that were set as the maximum delay constraint in the Timer.

timer_get_path_constraints

Arguments

None

Supported Families
ProASIC3/E,ProASICP-YS Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

If no maximum delay constraints are set, this command will not report any delay values. The information is displayed in the Log
window.

Exceptions

None

Examples

The following example displays the paths set in the Timer as the maximum delay constraint in the Log window:

timer_get_maxdelay -from {Sreg(clkl66)[*]} -to {Sout()[*]}

146

Tcl Scripting

See Also
timer set maxdelay

Tcl documentation conventions

timer_remove_clock_exception

Removes the previously set clock constraint.

timer remove clock exception -clock clock name -pin pin name -dir {value}

Arguments

-clock clock_name

Specifies the name of the clock from which to remove the constraint.
-pin pin_name

Specifies the name of the pin to remove.

-dir {from_value to_value}

Specifies direction. The from_value refers to the paths that start at that pin and to_value refers to the paths that end at that pin.

Supported Families
ProASIC3/E,ProASICPLYS | Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

None

Exceptions

None

Examples

This example removes a clock exception from the pin reg_g_a_10_/U0:CLK with respect to the clock clk:

timer_remove_clock_exception -clock {clk} -pin {reg_g a_10_/U0:CLK} -dir {from}
This example removes a clock exception to the pin reg_g_a_10_/UO:E with respect to the clock clk:

timer_remove_clock_exception -clock {clk} -pin {reg_g a_10_/UO:E} -dir {to}

See Also

time add clock exception

Tcl documentation conventions

timer_re Mmove_pass
Removes the path pass constraint that was previously entered.

timer_remove_pass -pin pin_name

147

Libero IDE v6.1 Users Guide

Arguments

-pin pin_name
Specifies the name of the pin from which to remove the path pass constraint.

Supported Families
ProASIC3/E,ProASICEYS | Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes
None
Exceptions

None

Examples
The following example removes the pass constraint from the clock pin reg_gq_a_0_:CLK:

timer_remove_pass -pin {reg_g a_0_:CLK}

See Also
timer add pass

Tcl documentation conventions

timer_remove_stop
Removes the path stop constraint on the specified pin that was previously entered.
timer remove stop —-pin pin name
Arguments
-pin pin_name
Specifies the name of the pin from which to remove the path stop constraint.

Supported Families

ProASIC3/E,ProASICP-YS Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

Export of script writes the constraint wrong with timer_remove_pass instead of timer_remove_stop.
Exceptions

None

Examples

The following example removes the path stop constraint on the clear pinreg_q_a 0_:CLR:
timer_remove_stop -pin {reg_g a_0_:CLR}

See Also

timer add stop

148

Tcl Scripting

Tcl documentation conventions

timer_restore
Restores constraints previously committed in Timer.

timer restore

Arguments

None

Supported Families

ProASIC3/E,ProASICPYYS Axcelerator, ProASIC, MX, eX, and SX/SX-A
Notes

None

Exceptions

None

Examples

timer_restore

See Also

timer commit

Tcl documentation conventions

timer_setenv_clock_freq
Sets a required clock frequency for the specified clock in megahertz (MHz).

timer setenv clock freq -clock clock name -freq value [-dutycycle dutycycle]

Arguments

-clock clock_name

Specifies the name of the clock for which to set the required frequency.

-freq value

Specifies the frequency in MHz.

—-dutycycle dutycycle

Specifies the duty cycle for the clock constraint.

Notes

None

Exceptions

None

149

Libero IDE v6.1 Users Guide

Examples
The following example sets a clock frequency of 100MHz on the clock clk1:

timer_setenv_clock_freq -clock {clkl} -freqg 100.00

See Also

timer setenv clock period

Tcl documentation conventions

timer_setenv_clock_period
Sets the clock period constraint on the specified clock.

timer_setenv_clock_period -clock clock name [-unit {value}] -period period value [-
dutycycle dutycycle]

Arguments

-clock clock_name

Specifies the name of the clock for which to set the period.

-unit {value}

Specifies the unit for the clock period constraint. The default is ns. The following table shows the acceptable values for this argument:

ns nanoseconds
ps picoseconds

-period period_value

Specifies the period in the specified unit.

—-dutycycle dutycycle
Specifies the duty cycle for the clock constraint.

Notes

None
Exceptions

None

Examples

The following example sets a clock period of 2.40ns on the clock named clk1:
timer_setenv_clock _period -clock {clkl} -unit {ns} -period 2.40
See Also

Tcl documentation timer setenv clock freq

conventions

150

Tcl Scripting

timer_set_maxdelay
Adds a maximum delay constraint to the specified path.

timer_set_maxdelay -from source pin -to destination_pin [-unit {value} -delay
delay value

Arguments

-from source_pin

Specifies the name of the source pin in the path.
-to destination_pin

Specifies the name of the destination pin in the path.

-unit {value}

specifies whether the delay unit is in nanoseconds or picoseconds. The following table shows the acceptable values for this argument:

ns Sets the delay in nanoseconds
ps Sets the delay in picoseconds

-delay delay_value

Specifies the actual delay value for the path.

Supported Families
ProASIC3/E,ProASICPYS Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

You can use the following macros in this command:
$in()

to specify all input pins

sout ()

to specify all output pins

Sreg (clock_name)

to specify all registers related to clock_name
Exceptions
None

Examples

The following example sets a maximum delay of 20 nanoseconds from all registers of clk166 to all output pins:

timer_set_maxdelay -from {Sreg(clkl66)[*]} -to {Sout()[*]} -unit {ns} -delay 20.00

The following example sets a maximum delay of 30 nanoseconds from all input pins to all output pins:

timer_set_maxdelay -from {$in()[*]} -to {Sout()[*]} -unit {ns} -delay 30.00

151

Libero IDE v6.1 Users Guide

See Also
timer get maxdelay

Tcl documentation conventions

timer_remove_all_Constraints
Removes all the timing constraints in the current design.

timer remove all constraints

Arguments

None

Supported Families

ProASIC3/E,ProASICPY, Axcelerator, ProASIC, MX, eX, and SX/SX-A

Notes

None

Exceptions

None

Examples

The following example removes all of the constraints from the design and then commits the changes:

timer_remove_all_constraints

timer_commit

See Also

timer commit

Tcl documentation conventions

152

About Design Constraints

Design constraints are specifications for placing, implementing, naming, and timing considerations of physical and logical
assignments. They are usually either restrictions or properties in your design. There are several types of constraints: routing, timing,
area, mapping, and placement constraints.

Timing constraints
ocation and region assignment constraintsLocation and region assignment constraints (placing and routing)
1/0 assignment constraints (pin location and 1/O attributes)
Attributes
You use constraints to ensure that a design meets timing performance and required pin assignments.

Designer supports both physical and timing constraints. You can set constraints by either using Actel's interactive tools or by
importing constraint files directly into Designer.

Designer Naming Conventions

The names of ports, instances, and nets in an imported netlist are sometimes referred to as their original names. Port names appear
exactly as they are defined in a netlist. For example, a port named A/B appears as A/B in ChipPlanner, PinEditor, and 1/0 Attribute
Editor in MultiView Navigator. Instances and nets display the original names plus an escape character (\) before each backslash (/)
and each slash (\) that is not a hierarchy separator. For example, the instance named A/ \B is displayed as A\ / \ \B.

The names of ports, instances, and nets that you use in PDC commands depends on the device for which you are writing the PDC
command. Following are Designer's naming conventions by device.

ProASIC3/E

The following components use a netlist's original names:

PDC reader/writer

SDC reader/writer

Compile report

SDF/Netlist writer for back annotation

MultiView Navigator tools: PinEditor, ChipPlanner, and I/O Attribute Editor (NetlistViewer uses compile names instead)
The following components use a netlist's compile names:

NetlistViewer in MultiView Navigator

Timer

Smart power

Axcelerator

Use the compiled names for all components.

ProASIC and ProASIC PLUS

For ports, instances, and nets, use their original names in GCF files.

153

Libero IDE v6.1 Users Guide

See Also
PDC Naming Conventions

SDC Command Limitations

Timing Constraints

Timing constraints can be entered using the interactive Timer tool or by importing a constraint file.

Constraint File Type Supported Families

SDC Axcelerator, ProASICEYS, ProASIC3/E, SX-A, and eX
DCF SX, SX-A, MX, eX, ACT1, ACT2, and ACT3
GCF ProASIC ONLY

To understand the complexity of a design and its performance, perform place-and-route with no constraints to see if routing can
complete without constraints. If routing completes successfully, you can open Timer to see if the physical design meets timing

requirements.

ProASIC only: If you are using a synthesis tool such as Synopsys Design Compiler, Actel recommends that you use it to generate a
forward SDF file containing path constraints only.

Over constraining a design may result in increased place-and-route run times, while not improving design performance.

Location and Region Assignment Constraints

Location and region assignment constraints are physical constraints for setting location and region assignments for a specific
architecture and device.

You can create and edit regions on your chip and assign logic to those regions using the ChipPlanner tool or by importing constraint
files. ChipPlanner works with ProASIC3E, ProASIC3, ProASIC BLUS ' axcelerator, and ProASIC devices.

Alternatively, you can import constraint files to set or change your location and region assignments. The type of constraint file you use
depends on your device family. See Types of physical constraints for more information.

I/0 Assignment Constraints

1/0 assignment constraints are physical constraints for setting the pin location and I/O attributes for a specific architecture and device.

You can configure and assign input and output macros and their attributes to pins using the PinEditor tool or by importing constraint
files. There are two different versions of PinEditor. The version you use depends on which product family you are designing for:

For ProASIC3E, ProASIC3, ProASIC L% Axcelerator, and ProASIC devices, use PinEditor in MultiView Navigator. To
edit I/O attributes, use the 1/0 Attribute Editor tool.

For all other families, use the standalone version of PinEditor which has a built-in 1/O attribute editor.
When you open your design (.adb) file, Designer automatically presents you with the appropriate tools in the Design Flow window.

You can also choose to import constraint files to set or change your location and region assignments. The type of constraint file you
use depends on your device family. See Types of physical constraints for more information.

154

Design Constraints Guide

Attributes

In an FPGA schematic, attributes are the instructions assigned to symbols or nets. These instructions can indicate the placement,
routing, naming, and other characteristics of the symbols or nets. Designer uses this information during the place-and-route of a
design. Some constraints are also referred to as attributes.

See "1/O Attribute Editor" in the MultiView Navigator User's Guide for more detailed information about input and output attributes.
For details about specific attributes, see the Designer User's Guide.

Overview - Entering Constraints

You can enter design constraints in two ways:

Using a constraint editor tool. Designer's constraint editors are graphical user interface (GUI) tools for creating and modifying
physical, logical, and timing constraints. Using these tools enables you to enter constraints without having to understand GCF,
PDC, or other file syntax. Which constraint editor you use depends on which type of device you are designing.

For ProASIC3E, ProASIC3, ProASIC BLYS Axcelerator, and ProASIC devices, use the tools within the MultiView Navigator:
- ChipPlanner - Sets location and region assignments

- PinEditor in MVN - Sets the pin location constraints

- /O Attribute Editor - Sets 1/O attributes

For all other families, you will use the following tools:

- ChipEditor - Sets location and region assignments

- PinEditor Standalone - Sets /O attributes and pin location constraints

Importing a constraint file: GCF, PDC, SDC, DCF, and PIN. The type of file you use depends on which type of device you are
designing.

- GCF (ProASIC and ProASICP families)

- PDC (Axcelerator, ProASIC3E, and ProASIC3 families)

- SDC (Axcelerator, ProASIC3E, ProASIC3, ProASICEES eX, and SX-A families)
- DCF (earlier Antifuse families such as eX, SX-A, and SX)

- PIN (only valid for earlier Antifuse families such as eX, SX-A, and SX)

Using Constraint Editors

Assigning I/O Constraints

1/0 assignment constraints are physical constraints for setting the pin location and I/O attributes for a specific architecture and device.

To assign 1/O constraints for ProASIC3E, ProASIC3, ProASIC BLUS ' axcelerator, and ProASIC families, use PinEditor and 1/0
Attribute Editor in MultiView Navigator.

PinEditor in MVN - Sets the pin location constraints.
1/0 Attribute Editor - Sets 1/O attributes.

For all other families, use PinEditor Standalone to set the 1/0O attributes and pin location constraints.

155

Libero IDE v6.1 Users Guide

PinEditor is the package layout tool for assigning 1/O ports to package pins. You can use the I/0 Attribute Editor tool for viewing,
sorting, and editing 1/O attributes. Additionally, you can use this tool to lock and unlock pins in your design. PinEditor Standalone has
a built-in 1/0O attribute editor.

You can also assign 1/O constraints in PDC or GCF files and then import them into your design.

See the MultiView Navigator User's Guide for more information on how to assign and modify 1/0 constraints. See the Design
Constraints chapter of the Designer User's Guide for more information about constraints.

Assigning Location and Region Constraints
You can set constraints for locations and regions using the ChipPlanner or ChipEditor tool as well as via constraint files. You can use
constraints to view routing information and influence the place and route of your design for more optimal results
The tool you use depends on which product family you are designing for:

For ProASIC3E, ProASIC3, ProASIC ELYS Axcelerator, and ProASIC devices, use ChipPlannerChipPlanner. ChipPlanner is
the floorplanning tool you use to create and edit regions on your chip and assign logic to these regions.

For other design families, use ChipEditorChipEditor. ChipEditor is a graphical application for viewing and assigning 1/0 and
logic macros.

If you choose to use constraint files to set your location and region assignments, the exact constraint file you use depends on your
device family. See Types of physical constraintsTypes of physical constraints for more information.

When you open your design (.adb) file, Designer automatically presents you with the appropriate tools in the Design Flow window.
You can also assign location and region constraints in PDC or GCF files and then import them into your design.

See the MultiView Navigator User's Guide for more information on how to assign and modify location and region constraints. See the
Design Constraints chapter of the Designer User's Guide for more information about constraints.

About Physical Design Constraint (PDC) Files
A PDC file is a Tcl script file specifying physical constraints. This file can be imported and exported from Designer. Any constraint
that you can enter using the PinEditor in MVN or ChipPlanner tool, you can also use in a PDC file.
Note: Only ProASIC3/E, and Axcelerator devices support PDC files.

Designer supports the following PDC commands.

Command Action

assign global clock Assigns user-defined nets to global clock networks by promoting the net using a CLKINT
macro

assign local clock Assigns user-defined nets to local clock routing (
Axcelerator) or to either LocalClock or QuadrantClock regions (ProASIC3/E)

assign net macros Assigns the macros connected to a net to a specified defined region

assign region Assigns macros to a pre-specified region

define region Defines a rectilinear region

define region Defines a rectangular region

delete buffer tree Removes all buffers and inverters from a given net for ProASIC3 and ProASIC3E devices

dont touch buffer tree Restores all buffers and inverters that were removed from a given net with the
delete_buffer_tree command

156

move region

Design Constraints Guide

Moves a region to new coordinates

reset floorplan

Deletes all defined regions. Placed macros are not affected

reset io

Resets all attributes on a macro to the default values

reset_iobank

Resets an 1/0 banks technology to the default technology

reset net critical

Resets net criticality to default level

set_io

Sets the attributes of an 1/0

set iobank

Specifies the 1/0 bank’s technology

set location

Places a given logic instance at a particular location

set_multitile location

Assigns specified two-tile and four-tile macros to specified locations on the chip

set net critical

Sets net criticality, which is issued to influence placement and routing in favor of
performance

set vref

Specifies which pins are VREF pins

set vref defaults

Sets the default VREF pins for specified banks

unassign global clock

Assigns clock nets to regular nets

unassign local clock

Unassigns the specified user-defined net from a LocalClock or QuadrantClock region

unassign macro from region

Unassigns macros from a specified region, if they are assigned to that region

unassign net macro

Unassigns macros connected to a specified net from a defined region

undefine region

Removes the specified region

Note: PDC commands are case sensitive. However, their arguments are not.

See Also

About design constraints

Exporting files

Importing PDC files

Importing auxiliary files

PDC syntax conventions

PDC naming conventions

Imix;rting PDC Files (ProASIC3E, ProASIC3, and Axcelerator families
only

You can import a PDC file as either a source, or as an auxiliary file.

Importing PDC file as a Source file

When importing a PDC file as a source file, the netlist must also be imported along with the PDC commands. Furthermore, when
importing the PDC file as a source file, you have the option of keeping the existing physical constraints. The Keep Existing Physical

157

Libero IDE v6.1 Users Guide

Constraints option in the Import Source Files dialog box enables you to merge or replace existing constraints when you re-import new
or modified PDC file.

Select the Keep Existing Physical Constraints option to preserve all existing physical constraints that you have entered either using
one of the MVN tools (ChipPlanner, PinEditor, or the I/O Attribute Editor) or a previous PDC file. The software will resolve any
conflicts between new and existing physical constraints and display the appropriate message. The Keep Existing Constraints option is
Off by default. When this option is Off, all the physical constraints in the newly imported PDC files are used. All pre-existing
constraints are lost. When this option is On, the physical constraints from the newly imported PDC files are merged with the existing
constraints.

Importing PDC file as an Auxiliary file

When importing a PDC file as an auxiliary file, the new or modified PDC constraints are merged with the existing constraints. The
software resolves any conflicts between new and existing physical constraints and displays the appropriate message. The following
PDC commands are not supported when the PDC file is imported as an auxiliary file:

set_io - register Yes | No

assign_local_clock

unassign_local_clock

assign_global_clock (not for Axcelerator)

unassign_global_clock (not for Axcelerator)

delete_buffer_tree (not for Axcelerator)

dont_touch_buffer_tree (not for Axcelerator)
Note: See the help topic for each command in your PDC file to make sure it is supported in an auxiliary file.
You can specify the following types of constraints in a Physical Design Constraint (PDC) file:

1/0 standards and attributes

VCCI and VREF for all or some of the banks

Pin assignments

Placement locations

Net criticality (Axcelerator only)

Region creation and assignment

LocalClock creation and deletion

Global clock assignments and un-assignments

Note: File names or paths with spaces may not import into Designer. Rename the file or path, removing the spaces, and then re-
import the file.

Types of Constraints

Constraints are used to ensure that a design meets timing performance and required pin assignments. For ProASIC and ProASI
families, the types of constraints that can be defined in a GCF constraint file include:

PLUS
Ci

Timing constraints

Global resource constraints

158

Design Constraints Guide

Netlist optimization constraints

Placement constraints

ProASIC and ProASICPLUS Timing Constraints

Timing constraints are used to ensure that a design meets the required timing performance.

ProASIC Timing Constraints

Constraints can be entered using a ProASIC constraints file (.gcf) or using an SDF path constraints file. These forward SDF files are
generated by synthesis tools. The two formats cannot be combined in one file. However, SDF files and ProASIC (.gcf) constraint files
can be used for the same design. Place-and-Route considers timing constraints and attempts to meet them. After routing, Designer
displays a message that indicates if your timing constraints were met.

ProASICPLUS Timing Constraints

ProASICELYS sypports only SDC timing constraint files. (GCF timing constraints are no longer supported.) If you open a
ProASICE design with GCF timing constraints in Designer it converts your GCF timing constraints to SDC constraints
automatically. After your GCF timing constraints are converted Designer creates an SDC file with your new constraint information.
You do NOT have to re-import your SDC file to get your constraints, it happens internally. See the related topics below for more
information on GCF to SDC timing constraint conversion.

Place-and-route considers your timing constraints and attempts to meet them. After routing, Designer displays a message that indicates
if your timing constraints were met.

GCF to SDC Timing Constraints Conversion

Each GCF timing constraint maps to a specific SDC timing constraint. Use the list below to evaluate the corresponding constraints.

Note: GCF to SDC conversion is only supported for ProASICEXS devices.

GCF Timing Constraint SDC Timing Constraint
create clock create clock
set false path set false path
set_input to register delay set max delay
set_multicycle path set_multicycle path
set register to output delay set max delay
set max path delay set max delay

GCF Syntax Conventions

A ProASIC constraint consists of a statement and an argument, terminated by a semicolon. Statements are not case sensitive.
However, cell instance, net, and port names used as arguments may be quoted and are case sensitive. Except for white spaces, all
ASCII characters can be used. Comments are allowed in constraints files and must be preceded by two forward slashes (//). Time

159

Libero IDE v6.1 Users Guide

values are given in nanoseconds. When constraints are duplicated, the last one specified for a specific item overwrites any previous
similar constraints already specified for the considered item.

This section describes syntax conventions for notation, user data variables, and comments. Comments begin with double slashes (//)
and are terminated by a newline character.

Syntax Conventions for Notation

Notation Description ‘

item Represents a syntax item

item ::= definition item is defined as definition

item ::= definitionl item is defined as either definitionl or definition2

||= definition2 (Multiple alternative syntax definitions are allowed)

[item] Item is optional

{ item } Item is a list of required items. At least one item must appear.

KEYWORD Keywords appear in uppercase characters in bold type for easy identification,
but are not case sensitive.

VARIABLE Repr(_es_ent_f, a variable and appears in uppercase characters for easy
identification

Syntax Conventions for User Data Variables

Variable Description

FILEIDENTIFIER Represents a hierarchical filename.

Represents the name of a design object. Can be a block, cell instance, net, or port.
IDENTIFIERS can use any ASCII character except the white space and the slash (/),

IDENTIFIER which is the hierarchical divider character (see QPATH below). IDENTIFIERS are case
sensitive
POSFLOAT Represents a positive real number; for example, 4.3, 1.15, 2.35

160

Design Constraints Guide

Represents a positive integer; for example, 1, 12, 140, 64. When representing time,

POSNUMBER POSNUMBER is expressed in nanoseconds (ns)

Represents a hierarchical IDENTIFIER. The levels of the hierarchy are represented by
QPATH IDENTIFIERS divided by a slash (/). The QPATH hierarchical IDENTIFIER may or
may not be quoted

Synopsys Design Constraints (SDC) Files

Designer accepts an SDC constraint file generated by a third-party tool. This file is used to communicate design intent between tools
and provide clock and delay constraints. The Synopsys Design Compiler and Prime Time can generate SDC descriptions, or you can
generate the SDC file manually.

Command Action

create clock (SDC clock constraint) Determines the maximum register-to-register delay in the design

set false path (SDC false path constraint) Identifies paths in the design that are to be marked as false, so that they are not considered
during timing analysis

set max delay (SDC max path constraint) Sets the path delay of the specified ports to a restricted value

set_multicycle path (SDC multiple cycle path Defines the multicycle path

constraint)
set_load (SDC load constraint) Sets the capacitance to a specified value on a specified port

Generated SDC files

There can be slight differences between a user-generated SDC file and SDC files generated by other tools. For example, suppose you
write the following constraint:

create_clock -period 100 clk

The SDC file from Design Compiler generates the same constraint in a different format:
create_clock -period 100 -waveform {0 50}

[get_ports {clk}]

The SDC file from Prime Time generates this constraint in yet another format:
create_clock -period 100.000000 -waveform

{0.000000\ 50.000000} [get_ports {clk}]

As long as constraint syntax and arguments conform to the syntax rules described in Designer online help, the SDC files are accepted
by Timer.

About DCF Files

Delay constraint information can be described in a *.dcf file and imported into Designer. The DCF language was developed to interact
directly with the Timer tool and is therefore not a recommended method.

161

Libero IDE v6.1 Users Guide

Note: DCF files are only valid with earlier Antifuse families such as eX, SX-A, and SX. Although they are supported in eX and
SX-A, Actel recommends that you use SDC files for all your constraints.

DCEF files are platform dependent. If you transfer from PC to UNIX or vice-versa, you must manually translate carriage-returns
(unix2dos, dos2unix, or via ftp). PC text files have an extra character for carriage returns compared to UNIX text files.

Supported command categories

Categories Action

global clocks Describes the clock waveforms from the global clock distribution network; local clocks, such as gated
clocks, are not directly supported

max delays/min delays Describes max/min delays

io_arrival times Defines the arrival time to an input port

global stops Defines pins in don't care or false path

pin loads Defines the capacitance loading on package pins

DCF Syntax Rules

The syntax rules for DCF are listed below. Note that these rules cannot be used as a parsing grammar. Terminal symbols are in upper
case. Non-terminal symbols, which are enclosed with <>, are in lower case. Symbols enclosed with [] are optional. The symbol |
separates alternatives.

<DCF> =

<sec_def_name>

<sec_1lo_arr>

<sec_min_del>

<sec_max_del>

<sec_clk>

<sec_global_stop>
<sec_def_name> =

SECTION TOP_LEVEL_DEF_NAME <stop>
<variable>.

END <stop>

<sec_io_arr> =

SECTION IO_ARRIVAL_TIMES <stop>
[<io_arr_clauses>]

END <stop>

<io_arr_clauses> = <io_arr_clause> | <io_arr_clause> <io_arr_clauses>
<io_arr_clause> = [<number>:] <number> <timeunit> <io_list>.
<io_list> = <io> | <io> <io_list>

<io> = INPAD | OUTPAD| <variable>

<sec_max_del> =

162

SECTION MAX DELAYS <stop>

<delay_clauses>

END <stop>

<sec_min_del> =

SECTION MIN_DELAYS <stop>

<delay_clauses>

END <stop>

<delay_clauses> = <delay_clause> | <delay_clause> <delay_clauses>
<delay_clause> =

DELAY <time>; SOURCE <source_list>; SINK <sink_ list>;
[STOP <stop_list>]; [PASS <pass_list>].
<source_list> = {<sources>} [EXCEPT {<sources>}]
<sources> = INPAD | CLOCKED | <name_list>
<name_list> = <variable> | <variable> <name_list>
<sink_list> = {<sinks>} [EXCEPT {<sinks>}]

<sinks> = OUTPAD | GATED | <name_list>
<stop_list> = {<name_list>} [EXCEPT {<sinks>}]
<pass_list> = {<name_list>} [EXCEPT {<sinks>}]
<sec_clk> =

SECTION GLOBAL_CLOCKS <stop>

[<waveform_clauses>]

[<relational_clauses>]

END <stop>

<waveform_clauses> = <waveform_clause> | <waveform_clause> <waveform_clauses>

<waveform_clause> = WAVEFORM <variable> RISE <time>
FALL<time> PERIOD <time> [EXCEPT SOURCE {macrolist}]

[EXCEPT SINK {macrolist}].

<relational_clauses> = <check_clause> | <check_clause> <check _clauses>

<check_clause> =

MULTICYCLE <variable> SOURCE CYCLE<value> [EXCEPT <name_list>]
[; DESTINATION <clkname> CYCLE<value> <clkname> CYCLE<value>
[EXCEPT<name_list>]1].

<clkname> = <clockMacro>

<time> = <number> <unit>
<number> = <int>
<stop> =. | /* NULL */

<unit> = NS | MS | PS

<variable> = same as variable in C language.

Design Constraints Guide

163

Libero IDE v6.1 Users Guide

<int> = same as int in C language.

sec_global_stops> =

Section GLOBAL_STOPS.

{<pinNameList>}.

End.

<sec_pin_loads> =

Section PIN_LOADS.

<pinLoadClauses>

End.

<pinLoadClauses> = <pinLoadClause> | <pinLoadCause>l<pinLoadClauses>]
<pinLoadClause> = <number> <capUnit> [TTL | CMOS] <pinNameList>.

<capUnit> = PF | NF | UF | MF

About PIN Files

Pin location information may be described in a *.pin file and imported into Designer.

Note: PIN files are only valid with earlier Antifuse families such as eX, SX-A, and SX. Although pin files are supported in
Axcelerator, Actel recommends that you use PDC files for all your constraints.

Supported syntax

Keywords Action

DEF Define top-level design entity
PIN Define 1/0 location
DEF

Syntax: DEF <design_name>.
Example: DEF TARG32_WRP.
This example defines top-level structure as TARG32_WRP.

PIN

Syntax:

PIN <pin_name>;
PIN:<package_pin_number>.

Example:

PIN RST;
PIN:156.

This example assigns signal RST to package pin 156.

164

Design Constraints Guide

Importing Auxiliary Files

Auxiliary files are not audited and are treated more as one-time data-entry or data-change events, similar to entering data using one of
the interactive editors (e.g. PinEditor or Timer).

Some timing constraints (such as multi_cycle) are not supported in the Timer GUI and must be implemented by importing the SDC
file. If you import the SDC file as an auxiliary, you do not have to re-compile your design. However, auditing is disabled when you
import auxiliary files, and Designer cannot detect the changes to your SDC file(s) if you import them as auxiliary files.

Auxiliary Files File Type Extension

Criticality *.crt ACT1, ACT2, ACT3, MX, XL, DX

PIN *.pin ACT1, ACT2, ACT3, MX, XL, DX, SX,
SX-A, eX

SDC *sdc ProASIC3/E, SX-A, eX, Axcelerator,
ProASIC Pt

Physical Design Constraint *.pdc ProASIC3/E and Axcelerator

Value Change Dump *.ved ProASIC3/E, Axcelerator, ProASIC,
ProASIC Pt

Switching Activity Intermediate File/Format * saif ProASIC3/E, Axcelerator, ProASIC,
ProASIC PLY8

Design Constraint File * dcf Axcelerator, ACT1, ACT2, ACT3, MX, XL,
DX, SX, SX-A, eX

To import an auxiliary file:
1. From the File menu, select Import Auxiliary Files. The Import Auxiliary Files dialog appears,
2. Click the Add button. The Add Auxiliary Files dialog box appears.

3. Select your file and click Import. The file is added to the Import Auxiliary Files dialog box. Continue to add more auxiliary files
to the list. Some formats (like DCF and SDC) are not allowed to be imported in multiple auxiliary files.

Modifying:If you need to modify a selection, select the file row and click Modify
Deleting:If you need to delete a file, select the file row and click Delete.

Ordering:Ordering your auxiliary files. Select and drag your files to specify the import order. Specifying a priority is useful if
you are importing multiple PDC files.

4. After you are done adding all your Auxiliary files, click OK. Your auxiliary files are imported. Any errors appear in Designer’s
Log Window.

Note:
.vcd and .saif are used by SmartPower for power analysis.
.crt for backwards compatibility with existing designs only.

File names or paths with spaces may not import into Designer. Rename the file or path, removing the spaces, and re-import.

I/0 Standards Compatibility Matrix

Not all I/O standards are compatible with each other in the same device. Click the device name in the following list to see which 1/0
standards are compatible for your device:
ProASIC3E

ProASIC3

165

Libero IDE v6.1 Users Guide

Axcelerator

I/0 Standards and I/O Attributes Applicability

Not all I/O attributes are applicable to all I/O standards. Click the device name in the following list to see the 1/O attributes that you
can modify per 1/O standard for your device:

ProASIC3E
ProASIC3

Axcelerator

GCF Constraint Quick Reference

create clock

dont fix_globals
dont optimize
dont touch
generate paths
net critical ports
optimize

set auto global
set critical

set critical port
set_empty location
set_empty io
set_global
set_initial io
set_initial location
set_io

set_input to register delay

set location
set_max fanout

set max path delay

set net region

166

Design Constraints Guide

use_global

About Global ReSource Constraints
Each ProASIC and ProASICYS device includes four global networks that have access to every tile. These four global networks
provide high speed, low skew routing resources to signals such as clocks and global resets.

Once the netlist is imported, Designer sets global resource parameters and promotes the highest fanout nets to the remaining global
resources unless the dont_fix_globals statement has been specified in a constraint file.

Note: When using the dont_fix_globals statement, global assignments made in the constraint files and design netlist will be
honored (the constraint file entries will take precedence).

These global resource parameters can be supplemented by including global resource constraints in a constraint file. Global resource
constraints can define which signals are assigned to global resources and which signals cannot be promoted to global resources.
Global resource constraints can also override the default action that selects high fanout nets for use by the global resources.

Priority Order for Global Promotion

While assigning signals to global resources, Designer considers this information in the given priority:
1. set_global and set_io statements (instances of those global cells, which cannot be demoted)

2. Nets with the highest potential fanout above 32 (after removal of all buffers and inverters)

3. Global cell instantiation in a netlist (global cells which can be demoted)

Note: By default, a net with a fanout of less than 32 will not be promoted to global automatically unless the set_global or set_io
constraint statements is used for this net. You can override this threshold of 32 by using the set_auto_global_fanout
constraint statement.

dont_fix_globals

Use this statement to turn off the default action that automatically corrects the choice of global assignment to use only the highest
fanout nets.

dont_fix_globals;

read

Use this statement to specify the name of a constraint file. A constraint file can contain multiple read statements. For example, you can
put pin assignments in one file, optimization constraints in another, placement constraints in yet another, and read them all in through
a master constraint file. The syntax is:

read [-eco] [-initial] file ;
where

—-eco specifies that the constraint file is to be read in eco mode (engineering change order). In this mode, no errors will be reported
when certain nets or instances are not found in the design. Instead a warning is generated.

-initial specifies that the constraint file is to be read in initial mode. In this mode, all fixed location statements will be interpreted
as initial locations instead.

file (required) is the name of the constraint file, surrounded by double quotes.

167

Libero IDE v6.1 Users Guide

The following example statements instruct the Designer to use constraints from the GCF files pinmap.gcf and decoder.gcf. A full path
specification is given for pinmap.gcf. The file decoder.gcf has no path specification and is assumed to be in the design working
directory.

read "/net/aries/designs/pinmap.gcf";

read "decoder.gcf";

set_auto_global

Use this statement to specify the maximum number of global resources to be used. The tool assigns global resources to high-fanout
signals automatically.

If the user specifies a number that exceeds the actual number of global resources available in the device, Designer ignores the
statement. If the user specifies 0, no automatic assignment to global resources will take place.

set_auto_global number ;

For example, the following statement specifies that of the possible four global nets available, the tool can automatically promote only
two high-fanout nets:

set_auto_global 2;

set_auto_global_fanout

Use this statement to set the minimum fanout a net must have to be considered for automatic promotion to a global. By default this is
set to 32.

set_auto_global_fanout number ;

For example, the following statement determines that a net must have at least a fanout of 12 before Designer considers it for automatic
promotion to a global resource.

set_auto_global_fanout 12;

set_global

Use this statement to classify nets as global nets.

set_global hier_net_name [, hier_net_name..];

For example:

set_global ul/u3/net_clk, u3/ul/net_7;

set_noglobal

Use this statement for classifying nets to avoid automatic promotion to global nets.

set_noglobal hier net_name [, hier_net_name ..];

For example:

set_noglobal u2/u8/net_14;

If the net was previously assigned to a global resource, this statement will demote it from the global resource.

168

use_global

Design Constraints Guide

This statement allows you to specify a single spine (LocalClock) or a rectangle of spine region which may encompass more than one

spine region.

use_global T2 <net_name>;

use_global Bl, T3 <net_name>;

For example, if you give the spine rectangle as B1, T3, the driven instances of the given net get a region constraint which encloses the
rectangle, including the spine rectangle B1, T1, B2, T2, B2, T3.

The constraint tries to place the driver as close to center of the rectangle as possible.

The RAMs and 1/Os are assigned to the LocalClock region unless the Compile option “Include RAM and 1/0 in Spine and Net
Regions” is cleared. For designs created with v5.1 or earlier, this option is cleared by default. See "Compile Options" in the online

help for more information.

You can specify the following type of rectangles:

Bn, Bm : n<=m will mean Bn, Bn+1, ... Bm

Tn, Tm : n<=m will mean Tn, Tn+1, ... Tm

Bn, Tm : n<=m will mean Bn, Tn, Bn+1,Tn+1 ... Bm, Tm

Tn, Bm : n<=m will mean Bn, Tn, Bn+1,Tn+1 ... Bm, Tm

See table for a summary of available spines.

Global Spine Usage

Device Spine
T1to T3
A500K050
B1to B3
T1to T5
A500K130
B1to B5
T1to T6
A500K180
B1to B6
Tlto T7
A500K270
B1to B7

169

Libero IDE v6.1 Users Guide

T1to T3
APAQ075

B1to B3

Tlto T4
APA150

B1to B4

Tlto T4
APA300

Bl to B4

T1toT6
APA450

B1to B4

T1lto T7
APA600

B1to B7

T1to T8
APA750

B1to B8

T1ltoT11
APA1000

B1to B11

Note that T1 and B1 are the leftmost top and bottom global spines, respectively.

Netlist Optimization Constraints

Netlist optimization attempts to remove all cells from a netlist that have no effect on the functional behavior of the circuit. This
reduces the overall size of a design and produces faster place-and-route times. This optimization is based on the propagation of
constants and inverter pushing and takes advantage of inverted inputs of the basic logic elements. Refer to the ProASIC 500K Family
and ProASIC P datasheet for detailed information.

Netlist optimization can be controlled by including netlist optimization constraints in constraint files submitted to Designer.

By default, all optimizations will be performed on the netlist. To control the amount of optimization that takes place, netlist
optimization constraints can be used. Netlist optimization constraints can turn off all optimizations or disable the default action that

170

Design Constraints Guide

allows all optimizations to limit the type of optimizations performed. The constraints can also define a maximum fanout to be allowed
after optimizations are performed and isolate particular instances and hierarchical blocks from the effect of optimization.

After completion of netlist optimization, the design is a functionally identical representation of the design produced internally for use
by Designer. View the design’s layout after successful placement and routing. After optimization, a number of instances that do not
contribute to the functionality of the design may have been removed.

To keep the SDF file consistent with the original input netlist, deleted cells are written with zero delay so that back-annotation is
performed transparently.

Netlist Optimization Constraint Syntax

The following netlist optimization options are available for all netlist optimization constraints.
buffer - removes all buffers in the design, provided that the maximum fanout is not exceeded.

const - replaces all logical elements with one or more inputs connected to a constant (logical “1” or “0”) by the appropriate logic
function. If the replacement logic function is identified as an inverter or buffer, that element is removed.

dangling - recursively removes all cells driving unconnected nets.

inverter - removes all inverters in the design provided that the maximum fanout is not exceeded.

dont_optimize
This statement does not optimize your buffers or inverters; instead, it removes them. When followed by one or more of the netlist
optimization options, this statement turns off the named option (and preserves it).

If you have buffers or inverters that are connected to global nets, promoted global nets, or spine nets, this command is ignored and
buffers and inverters are still removed. To avoid removing them, use the dont touch option.

dont_optimize [{ <option> }];

Where <option> is one or more of the following:

buffer, inverter, const, dangling

dont_touch

This statement enables you to selectively disable optimization of named hierarchical instances. You can use the wildcard character (*)
to isolate all sub-blocks under the named block. If you use this constraint, any instances (including buffers and inverters that are
connected to global nets, promoted global nets, and spine nets) stay intact.

dont touch hier instance name [, hier instance name ..];

optimize

This statement turns on all netlist optimizations (the default mode). When followed by one or more of the netlist optimization types,
this statement enables only the named optimization(s).

optimize [{ inverter buffer const dangling}];

For example:

optimize buffer inverter;

171

Libero IDE v6.1 Users Guide

set_max_fanout

Use this statement to specify the maxFanout limit on the specified nets. Use when optimizing the buffers and inverters. The buffers
and inverters are not removed if the fanout for the given net exceeds the given limit. 1f no net name is given, then the command is
applied to all the nets in the design. The net name can be a simple net or a name having wildcard characters.

The set_max_fanout constraint is optimized to accept individual net names. If you specify a net name, the set_max_fanout constraint
applies only to the named net or nets and not to the entire design.

set_max_fanout NUMBER <net_name_wildcard>;

Placement Constraints

It is possible to use placement constraints to specify block-instance and macro placement. You can specify initial, fixed, region, and
macro placements. Also, placement obstructions (locations that are not to be used and thus to be kept empty during placement
instances) can be specified.

For example, a constraint that places two connected blocks close together usually improves the timing performance for those blocks.
Similarly, a constraint that assigns an 1/O pin to a particular net forces the router to make the connection between the driving or
receiving cell and the 1/0O itself.

Like all constraints, placement constraints limit Designer’s freedom when processing the design. For instance, assigning a fixed
location makes that location unavailable during placement optimization. Such removal usually limits the program’s ability to produce
a chip-wide solution.

Command Action

net critical ports

Specifies a specific subset of critical ports on a net

set critical

Specifies critical nets and their relative criticality over other critical nets

set_critical port

Identifies design 1/0 ports that have above-normal criticality. The criticality number scales is the same
for the set_critical statement

set empgy 10

Specifies a location in which no 1/0 pin should be placed; the location can be specified by side and
offset or by name

set_empty location

Specifies a location in which no cell should be placed

set_initial io

Assigns package pins to | /O ports or locates | /O ports at a specified side of a device

set_initial location

Locates a cell instance at specified x, y coordinates

set io

Assigns package pins to 1/0 ports or locates /O ports at a specified side or location of a device; this
constraint is a hard constraint and cannot be overruled by the placer

set location

Locates a cell instance at specified x,y coordinates

set net region

Enables you to put all the connected instances, driver, and all the driven instances for the net(s) into the
target rectangle specified in the constraint

Macro

macro name (x1, vyl x2, y2) {
macro_statements
}

Where name is the macro name identifier, x1, y1 is the lower left coordinates of the macro, and x2, y2 is the upper right coordinates of
the macro. The macro constraint must precede the corresponding set_location that places the macro in the GCF file(s).

172

Design Constraints Guide

For example:
macro mult (1,1 6,6) {
set_location...

}

Now you can use the“set_location”or set_initial_location statements to place or initially place a sub-design instance by calling its
macro and then applying a translation and rotation. .

set_initial_location (x, y) hier_subdesign_inst_name
macro_name [transformations];
For example:

set_location (3,3) a/b mult flip 1r;

Where hier_subdesign_inst_name is the hierarchical name of the instance of the sub-design, X, y is the final location of the lower left
corner of the macro after all transformations have been completed, macro_name - is the name of previously defined macro, and
transformations are optional, and any of the following in any order:

flip Ir - flip cell from left to right
flip ud - flip cell from up to down
rotate 90 cw - rotate 90° clockwise
rotate 270 cw - rotate 270° clockwise
rotate 90 ccw - rotate 90° counter-clockwise
rotate 180 ccw - rotate 180° counter-clockwise
rotate 270 ccw - rotate 270° counter-clockwise
The transformations are processed in the order in which they are defined in the statement.

For example:

set_initial_location (3,3) a/b mult flip 1lr;

Package Pin and Pad Location

Generally, you are concerned with the mapping of signals (ports) to the pins of the selected package. However, you may want to
control the allocation of signals to particular pads. This is accomplished by assigning ports to the pad location rather than to the
package pin. Because all pads are pre-bonded to package pins, the effect is to assign ports to package pins, with the emphasis on pad
location rather than package pin.

Pad location is described by the letters N (North), S (South), E (East) or W (West) followed by a space and a number. This location
code determines the direction and offset of the pad with respect to the die.

The top edge of the viewer contains the North pads and the right edge contains the East pads. The number refers to the pad position
along its edge. For example, N 48 corresponds to the 48th pad along the North edge of the die. The figure below shows the numbering
system used for pad location.

173

Libero IDE v6.1 Users Guide

[North

Wt East

O0——0oOm
=

Bl

net_critical_ports

Use this statement to specify a specific subset of critical ports on a net.

For example, the following statement identifies two inputs of the net /ul/u2/netl that are more critical than all other connections on
that net. All other connections on the net will be buffered with a BUF cell that will be placed in a tile to reduce fanout delay on the
specified inputs:

net_critical_ports /ul/u2/netl nandbkl.A sigproc.C;

set_critical

Use this statement to specify critical nets and their relative criticality over other critical nets.
set_critical criticality_number hier_net_name

[,hier_net_name ..];

Where criticality_number is from 1 to 5 (1 being the default criticality for every net and 5 the highest). hier net name is the full
hierarchical net name.

For example, the statements below set the timing of ul/u2/ netl more critical than ul/u2/net5 and ul/u2/net3:
set_critical 5 /ul/u2/netl;

set_critical 2 /ul/u2/netb5, ul/u2/net3;

set_critical_port

Use this statement to identify design I/O ports that have above-normal criticality. The criticality number scale is the same for the
set_critical statement.

set_critical_port criticality_ number signal_name
[,signal_name ..];
Where signal name is the name of a user-defined signal associated with a specific I/O pin on the part.

For example, the following statement sets all nets associated with device ports I0Bus[3] and IOBus[5] to have criticality 3:

set_critical_port 3 IOBus[3], IOBusl[5];

174

Design Constraints Guide

set_empty_io

Use this statement to specify a location in which no 1/O pin should be placed. The location can be specified by side and offset or by
name.

set_empty_io { package pin | pad_location};

For example, the following statement forces pin B5 and the pin associated with the fourth tile on the North side to be empty:

set_empty_io B5, (N,4);

set_empty_location

Use this statement to specify a location in which no cell should be placed.
set_empty_location (x ,Vy);

set_empty_location (xbl ,ybl xtr ,ytr);

Where x , y (required) are the (X, y) tile coordinates that specify the empty cell location and x bl , y bl x tr , y tr (required) are the x, y
tile coordinates for the bottom left and top right corner of the region.

Note: Only white spaces are allowed between the coordinates.
For example, the following statement informs the placement program that location (3, 7) is unavailable for cell placement:
set_empty_location(3 ,7);

set_empty_location(113 ,1 60 ,80);

set_initial_io

Use this statement to initially assign package pins to 1/0 ports or locate 1/0 ports at a specified side of a device. The placer can
reassign or relocate the cells during place-and-route.

set_initial_io { package_pin | pad_location} io_port_name

[, io_port_name , .. 1;

Where package_pin is a package pin number for a specified 1/0 cell.

If you use package_pin, only one io_port_name argument is allowed (required if no pin location is given). pad_location is one of N, S,
E, or W, followed by a pad location number on the chip. It constrains the pin location of a specified 1/O cell to a specific pad location
on the chip. Only one io_port_name argument is allowed. io_port_name (required) is the name of an 1/O port to be assigned to a
package pin or located at a specified edge of a package.

The following example statement initially places the 1/0 associated with net in3 to package pin Al11:
set_initial_io All in3;

The following example statement initially places the 1/0 associated with net in4 on the fourth tile on the
North side:

set_initial_io (N,4) in4;

set_initial_io to a side is missing.

For example,

set_initial_io S inb; // assigns in5 to the South side

Multiple comma-separated ports can be specified when they are assigned to a side.

175

Libero IDE v6.1 Users Guide

set_initial_location

set _io

Use this statement to initially locate a cell instance at specified x, y coordinates. The placer can relocate the cell instance during place-
and-route.

set_initial_location (x, y) hier inst_name ;

Where x , y (required) are the x, y tile coordinates for the location of a specified cell instance and hier_inst_name (required) is the
hierarchical path to a cell instance.

For example:

set_initial_location (43,105) bk3/fp5/nand3_4;

Use this statement to either assign package pins to 1/0 ports or locate 1/0 ports at a specified side or location of a device. This
constraint is a hard constraint and can not be overruled by the placer. This may have an impact on the timing results of a design. If a
hard constraint is not suitable, use the set_initial_io constraint.

set_io {..]|..} netName/portName;
For example:

set_io A9 inl;

set_io (S,22) in2;

set_io N 1in3; // assigns in3 to the North side

Multiple comma-separated ports can be specified when they are assigned to a side.

set_io_region

This constraint enables you to place specific I/0O instances into a target rectangular region. The global 1/0s are excluded from this
constraint.

The syntax is:

set_io_region (x1, y1 x2, v2) pl [, p2, P3, , pnl ;"

where

x1, y1 x2, y2 arethe lower left and upper right corners of the rectangle that define the region
pl, ... , pnisalistof one or more I/O instance names or ports.

If multiple instances or ports are listed, they must be separated by commas. For example:

set_io_region (0,41 0,48) "accl[3]", "accl[4]l";

set_location

Use this statement to locate a cell instance at specified x,y coordinates. The placer cannot relocate the cell instance during place-and-
route.

set_location (X,y) hier_inst_name ;

set_location (x bl ,y bl x tr ,y tr) hier_inst_name/*;

176

Design Constraints Guide

Where x , y (required) are the (X, y) tile coordinates that specify the empty cell location and x bl , y bl x tr , y tr (required) are the x, y
tile coordinates for the bottom left and top right corner of the region.

For example:
set_location (1,15) u4/u3/nand3_4;

set_location (1,1 32,32) datapath/*;

This statement has been extended to allow you to place a sub-design instance by calling its macro and then applying a translation and
rotation. The syntax is:

set_location (x, y) hier_subdesign_inst_name macro_name
[transformations];

where

hier_subdesign_inst_name is the hierarchical name of the instance of the sub-design; (x, v) is the final location of the
lower left corner of the macro after all transformations have been completed; macro_name is the name of the previously defined
macro; transformations are optional, and any of the following in any order:

flip 1r - flip cell from left to right

flip ud - flip cell from up to down

rotate 90 cw - rotate 90 ° clockwise

rotate 180 cw - rotate 180 ° clockwise
rotate 270 cw - rotate 270 ° clockwise
rotate 90 ccw - rotate 90 ° counter-clockwise

rotate 180 ccw - rotate 180 ° counter-clockwise

set_memory_region
Use this statement to create a region and assign memory to it. You can only assign names of memory macros to the region. Do not
specify names of individual tiles.

For cascaded memory, the set_memory_region constraint applies to the whole cascaded block, even if your statement mentions only
one macro out of the whole cascaded block.

Syntax

set_memory_region (x1,yl x2,y2) memoryl_name [,...,memoryn_name];

Arguments
(x1,y1 x2,y2)

Where x1, y1 specifies the bottom-left corner and x2,y2 specifies the top-right corner of the rectangle that defines the region in which
the memory macros will be assigned. The macros are constrained to this region.

memoryl_name, ...
Specifies the memory macro(s) to assign to the region. Macro names are hierarchical names in the user netlist.

You can use wildcards in macro names. The wildcard character (*) matches any string.

Examples
set_memory_region (1,101 32,101) M1/U0;

177

Libero IDE v6.1 Users Guide

set_memory_region (1,101 48,101) M1/U0,M1/U1l;
set_memory_region (1,101 128,101) M1/U*;
Note: You can also use set_net_region and use_global to assign memory to regions.

Additionally, you can use the MultiView Navigator (MVN) to create regions that include memory. MVN regions can span core, 1/O,
and/or memory.

set_net_region

This GCF constraint enables you to put all the connected instances, driver, and all the driven instances for the net(s) into the target
rectangle specified in the constraint. It puts the region constraint on all the connected instances, which will be processed by the placer.
You can use wildcards in the net name.

The RAMs and 1/Os are assigned to the LocalClock region unless the Compile option “Include RAM and 1/O in Spine and Net
Regions” is cleared. For designs created with v5.1 or earlier, this option is cleared by default. See "Compile Options" in the online
help for more information.

set_net_region (x1,y2 x2,y2) <net_name_wildcard>;

Note: Only white spaces are allowed between the coordinates.

create_clock

Use this statement to define clocks for the design. Multiple clocks can be specified for a given design.

create_clock -period <period_value> {netname|portname}

Where period_value is the clock period in nanoseconds and netname|portname is the name of the net through which the clocks gets
propagated or name of the external port.

For example, the following statement creates a clock on external port clk with a period of 25.0 nanoseconds.

create_clock -period 25.0 clk;

generate_paths

Use this statement to modify the way Designer generates internal path constraints for the placer to do timing-driven placement.
generate_paths [-cover_design] [-max_paths <maxpaths>

[-top <percentage>];

Where -cover_design indicates to Designer to use the cover design algorithm instead of the default worst paths algorithm, -max_paths
is the maximum number of paths that will be generated (default is 20% of the number of nets with minimum of 1000 or if
cover_design is specified, twice the number of nets with a minimum of 1000), -top indicates the top percentage of worst paths that will
be generated (default is 20%).

The cover design algorithm ensures that the generated set of paths span the entire design; every pin of every instance participates in at
least one path.

After the timing analysis is done, the worst paths algorithm starts recording the signal paths starting from the worst slack. It stops after
some number of paths is generated; as a result, only some part of the design may be covered by the paths.

For example, the following statement generates 4,000 maximum paths using the -cover_design algorithm.

generate_paths -cover_design -max_paths 4000;

178

Design Constraints Guide

set_false_path

Use this statement to define false paths in the design. These paths are not considered in the timing driven place-and-route system.

set_false_path [-from from_port] [-through any_port] [-to to_port];

Where from_port must be an input port of the design or a register or memory instance output pin, to_port must be an output port of the
design or a register or memory instance input pin, any_port must be any instance pin. Wildcards are permitted.

For example, the following statement sets all paths starting from resetd which are going through instance const2 as false paths.

set_false_path -from resetd -through const2/*;

set_input_to_register_delay

Use this statement to define the timing budget for incoming signals to reach a register.
set_input_to_register_delay <delay> [-from inp_port];
Where delay is the timing budget for this input path, inp_port is a register or memory instance output pin. Wildcards are permitted.

For example, the following statement specifies that the timing budget is 22 nanoseconds to the register from all inputs who’s names
start with the letter “I”.

set_input_to_register_delay 22 -from I*;

set_max_path_delay

Use this statement to constrain the maximum delay on paths. The calculate timing task will report a note in the timing report file if this
delay is not met.

set_max_path_delay delay_value
hier_inst_name_.inst_port_name

[,hier _inst_name .inst_port_name , ..];

Where delay_value is a floating integer for delay in nanoseconds, hier_inst_name is the hierarchical path to a cell instance, and
inst_port_name is a port name of a cell instance.

For example:
set_max_path_delay 12.5 "multd/mult/nand2_2".Y, "multd/mult/

nand3_1".A, "multd4d/mult/nand3_1".Y, "multd/mult/nor2_2".A;

set_multicycle_path

Use this constraint to define how many clock cycles a signal has to travel through these paths. The budget of these paths will be a
multiple of the period of the clock controlling the from port.

set_multicycle_path <num_cycles> -from reg_port [-through_any_port] [-to_port];

Where num_cycles is the number of clock cycles in which the signal needs to propagate through the path, reg_port is a register of
memory instance, to_port must be an output port of the design or a register or memory instance input pin, any_port must be any
instance pin. Wildcards are permitted.

For example, the following statement specifies it takes two clock cycles to reach signals from instance pins /us/ul/dff*.q to instance
pins /u4/ mem1/*.D.

set_multicycle_path 2 -from /us/ul/dff*.q -to /ud/meml/*.D;

179

Libero IDE v6.1 Users Guide

set_register_to_output_delay

Use this statement to define the timing budget for outgoing signals to be clocked out.
set_register_to_output_delay <delay> -to out_port;
Where delay is the timing budget for this output path, out_port must be an output port of the design. Wildcards are permitted.

For example, the following statement specifies the timing budget for clocking out signals on output ports starting with “O” is 22
nanoseconds.

set_register_to_output_delay 22 -to O*;

About Physical Design Constraint (PDC) Files

A PDC file is a Tcl script file specifying physical constraints. This file can be imported and exported from Designer. Any constraint
that you can enter using the PinEditor in MVN or ChipPlanner tool, you can also use in a PDC file.

Note: Only ProASIC3/E, and Axcelerator devices support PDC files.

Designer supports the following PDC commands.

Command Action

assign global clock Assigns user-defined nets to global clock networks by promoting the net using a CLKINT
macro

assign local clock Assigns user-defined nets to local clock routing (
Axcelerator) or to either LocalClock or QuadrantClock regions (ProASIC3/E)

assign net macros Assigns the macros connected to a net to a specified defined region

assign region Assigns macros to a pre-specified region

define region Defines a rectilinear region

define region Defines a rectangular region

delete buffer tree Removes all buffers and inverters from a given net for ProASIC3 and ProASIC3E devices

dont touch buffer tree Restores all buffers and inverters that were removed from a given net with the
delete_buffer_tree command

move region Moves a region to new coordinates

reset floorplan Deletes all defined regions. Placed macros are not affected

reset _io Resets all attributes on a macro to the default values

reset_iobank Resets an 1/0 banks technology to the default technology

reset net critical Resets net criticality to default level

set io Sets the attributes of an 1/0

set_iobank Specifies the 1/0 bank’s technology

set location Places a given logic instance at a particular location

set_multitile location Assigns specified two-tile and four-tile macros to specified locations on the chip

set net critical Sets net criticality, which is issued to influence placement and routing in favor of
performance

set_vref Specifies which pins are VREF pins

set_vref defaults Sets the default VREF pins for specified banks

180

Design Constraints Guide

unassign global clock Assigns clock nets to regular nets

unassign local clock Unassigns the specified user-defined net from a LocalClock or QuadrantClock region
unassign macro from region Unassigns macros from a specified region, if they are assigned to that region
unassign net macro Unassigns macros connected to a specified net from a defined region

undefine region Removes the specified region

Note: PDC commands are case sensitive. However, their arguments are not.

See Also

About design constraints
Exporting files
Importing PDC files

Importing auxiliary files

PDC syntax conventions

PDC naming conventions

PDC Syntax Conventions

The following table shows the typographical conventions that are used for the PDC command syntax.

Syntax Description
Notation
command -argument Commands and arguments appear in Courier New typeface.
variable Variables appear in blue, italic Courier New typeface. You must substitute an appropriate value
for the variable.
[-argument value] Optional arguments begin and end with a square bracket with one exception: if the square bracket is
[variable]+ followed by a plus sign (+), then users must specify at least one argument. The plus sign (+)
indicates that items within the square brackets can be repeated. Do not enter the plus sign character.

Note: PDC commands are case sensitive. However, their arguments are not.

Examples

Syntax for the assign_local_clock (Axcelerator) command followed by a sample command:
assign local clock -type value -net netname [LocalClock region]+

assign_local_clock -type hclk -net reset_n tilela tile2a

Syntax for the set_io (Axcelerator) command followed by a sample command:

set io portname [-iostd value] [-register value] [-out drive value] [-slew value] [-
res pull value] [-out load value] [-pinname value] [-fixed value] [-in delay value]

set_io ADDOUT2 \

-iostd PCI \

181

Libero IDE v6.1 Users Guide

-register yes \
-out_drive 16 \
-slew high \
-out_load 10 \
-pinname T21 \

-fixed yes

Wildcard Characters

You can use the following wildcard characters in names used in PDC commands:

Wildcard What it does

\ Interprets the next character literally

? Matches any single character

* Matches any string

[Matches any single character among those listed between brackets (that is, [A-Z] matches any single character in the A-to-Z range)

Note: The matching function requires that you add a slash (\) before each slash in the port, instance, or net name when using
wildcards in a PDC command and when using wildcards in the Find feature of the MultiView Navigator. For example, if you
have an instance named “A/B12” in the netlist, and you enter that name as “A\WB*” in a PDC command, you will not be able
to find it. In this case, you must specify the name as A\WB*.

Special Characters ([], { }, and)

Sometimes square brackets ([]) are part of the command syntax. In these cases, you must either enclose the open and closed square
brackets characters with curly brackets ({ }) or precede the open and closed square brackets ([]) characters with a backslash (V). If
you do not, you will get an error message.

For example:
set_iobank {mem_data_in[57]} -fixed no 7 2
or

set_iobank mem_data_in\[57\] -fixed no 7 2

Entering Arguments on Separate Lines

To enter an argument on a separate line, you must enter a backslash (\) character at the end of the preceding line of the command as
shown in the following example:

set_io ADDOUT2 \
-iostd PCI \
-register Yes \
-out_drive 16 \
-slew High \
-out_load 10 \
-pinname T21 \

-fixed Yes

182

Design Constraints Guide

See Also
About PDC files

PDC naming conventions

PDC Naming Conventions

Note: The names of ports, instances, and nets in an imported netlist are sometimes referred to as their original names.

Rules for displaying original names

Port names appear exactly as they are defined in a netlist. For example, a port named A/B appears as A/B in ChipPlanner, PinEditor,
and 1/0 Attribute Editor in MultiView Navigator.

Instances and nets display the original names plus an escape character (\) before each backslash (/) and each slash (\) that is not a
hierarchy separator. For example, the instance named A/ \B is displayed as 2\ / \ \B.

Which name do | use in PDC commands?

The names of ports, instances, and nets in a netlist displayed in MultiView Navigator (MVVN) for ProASIC3/E devices are names taken
directly from the imported netlist. However, the names displayed in MVN for Axcelerator devices are the compiled names. Compiled
names remove special characters such as slash (\) and backslash (/) characters and replace them with the underscore character.

Using PDC Commands for Axcelerator

When importing PDC commands for Axcelerator devices, always use the post-compiled names of ports, instances, and nets. You can
see the post-compiled names in MultiView Navigator or the compile report.

Using PDC Commands for ProASIC3/E

When writing PDC commands for ProASIC3/E devices, follow these rules:
Always use the macro name as it appears in the netlist. (See "Merged elements™ in this topic for exceptions.)

Names from a netlist: For port names, use the names exactly as they appear in the netlist. For instance and net names, add an
escape character (\) before each backslash (\) and each slash (/) that is not a hierarchy separator.

Names from MVN and compile report: Use names as they appear in MultiView Navigator or the compile report.
For wildcard names, always add an extra backslash (\) before each backslash.
Always apply the PDC syntax conventions to any name in a PDC command.

The following table provides examples of hames as they appear in an imported netlist and the names as they should appear in a PDC

file:

Port name in netlist A/l:B1 A/:B1

Port name in MVN A/l:B1 A/:B1

Instance name in a netlist A/l:B1 A\:B1
A$(1) A$(1)

Instance name in the netlist but using a A/l:B1 A\:B*

wildcard character in a PDC file

Instance name in MV N or a compile report AV:B1 A\V:B1

183

Libero IDE v6.1 Users Guide

Net name in a netlist Netl/:netl Net1\V:netl
Net name in MVN or a compile report Net1V:netl Net1\V:netl

When exporting PDC commands, the software always exports names using the PDC rules described in this topic.

Case sensitivity when importing PDC files (ProASIC3/E only)

The following table shows the case sensitivity in the PDC file based on the source netlist.

File type

Verilog Names in the netlist are case sensitive.
Edif Names in the netlist are always case sensitive because we use the Rename clause, which is case sensitive.
Vhdl Names in the netlist are not case sensitive unless those names appear between slashes (\).

For example, in VHDL, capital "A" and lowercase "a" are the same name, but \A\ and \a\ are two different names. However, in a
Verilog netlist, an instance named "A10" will fail if spelled as "a10" in the set_location command:

set_location A10 (This command will succeed.)

set_location al0 (This command will fail.)

Which name to use in the case of merged elements (ProASIC3/E only)

The following table indicates which name to use in a PDC command when performing the specified operation:

Operation Name to use

1/0 connected to PLL with a hardwired connection PLL instance name

1/0 combined with FF or DDR 1/0 instance name

Global promotion <Driver instance of the net>_CLKINT
See Also
About PDC files

PDC syntax conventions

assign_global_clock
Assigns user-defined nets to global clock networks by promoting the net using a CLKINT macro.

assign global clock -net netname

Arguments

-net netname

Specifies the name of the net to promote to a global clock network. The net is promoted using a CLKINT macro, which you can place
on a chip-wide clock location.

Supported Families
ProASIC3/E

184

Design Constraints Guide

Notes
The assign_global_clock command is not supported in auxiliary PDC files.

Exceptions

None

Examples
assign_global_clock -net globalReset

See Also

assign_local_clock (Axcelerator)

assign_local_clock (ProASIC3/E)
unassign global clock

PDC syntax conventions

PDC naming conventions

assign_local_clock

The syntax and arguments for the assign_local_clock command vary depending on which device you are designing. Click the device
name in the following list to see the syntax, arguments, and other information for the assign_local_clock command for that particular
device:

assign_local_clock (ProASIC3/E)

assign_local_clock (Axcelerator)

assign_net_macros

Assigns to a user-defined region all the macros that are connected to a net.

assign net macros region name [netl]+

Arguments
region_name
Specifies the name of the region to which you are assigning macros. The region must exist before you use this command. See

define_region (rectangular) or define_region (rectilinear). Because the define_region command returns a region object, you can write a
simple command such as assign_net_macros [define_region]+ [net]+

netl
You must specify at least one net name. Net names are AFL-level (Actel flattened netlist) names. These names match your netlist

names most of the time. When they do not, you must export AFL and use the AFL names. Net names are case insensitive. Hierarchical
net names from ADL are not allowed. You can use the following wildcard characters in net names:

Wildcard What it does

\

Interprets the next character as a non-special character

?

Matches any single character

*

Matches any string

185

I

Libero IDE v6.1 Users Guide

Matches any single character among those listed between brackets (that is, [A-Z] matches any single character in the A-
to-Z range)

Supported Families
ProASIC3/E and Axcelerator

Notes
Placed macros (not connected to the net) that are inside the area occupied by the net region are automatically unplaced.

Net region constraints are internally converted into constraints on macros. PDC export results as a series of assign_region
<region_name> macrol statements for all the connected macros.

Net region constraints may result in a single macro being assigned to multiple regions. These net region constraints result in
constraining the macro to the intersection of all the regions affected by the constraint.

Exceptions

If the region does not have enough space for all of the macros, or if the region constraint is impossible, the constraint is rejected
and a warning message appears in the Log window.

For overlapping regions, the intersection must be at least as big as the overlapping macro count.
If a macro on the net cannot legally be placed in the region, it is not placed and a warning message appears in the Log window.
Example
assign_net_macros cluster_regionl keyinlintZ0Z_62
See Also
unassign net macro

PDC syntax conventions

PDC naming conventions

assign_region

Constrains a set of macros to a specified region.

assign region region [macro name]+

Arguments
region
Specifies the region to which the macros are assigned. The macros are constrained to this region. Because the define_region

command returns a region object, you can write a simpler command such as assign_region [define_region]+
[macro_name] +

macro_name

Specifies the macro(s) to assign to the region. You must specify at least one macro name. You can use the following wildcard
characters in macro names:

Wildcard What it does

\

Interprets the next character as a non-special character

186

Design Constraints Guide

Matches any single character

* Matches any string

[Matches any single character among those listed between brackets (that is, [A-Z] matches any single character in the A-
to-Z range)

Supported Families
ProASIC3/E and Axcelerator

Notes

The region must be created before you can assign macros to it.

Exceptions

You can assign only hard macros or their instances to a region. You cannot assign a group name. A hard macro is a logic cell
consisting of one or more silicon modules with locked relative placement.

Examples

In the following example, two macros are assigned to a region:

assign_region cluster_regionl des01/G_2722_0_and2 des0l/datal_53/U0

See Also

unassign macro from region

PDC syntax conventions

PDC naming conventions

define_region (rectangular region)

Defines either a rectangular region or a rectilinear region.
define region [-name region name] -type region type [x1 yl x2 y2]+

Arguments

—name region_name

Specifies the region name. The name must be unique. Do not use reserved names such as “bank0” and “bank<N>" for region names.
If the region cannot be created, the name is empty. A default name is generated if a name is not specified in this argument.

-type region_type

Specifies the region type. The default is inclusive.

Region Constraint Conditions

Empty No macros can be assigned to an empty region
Exclusive Only contains macros assigned to the region
Inclusive Can contain macros both assigned and unassigned to the region

x1 vyl x2 y2

187

Libero IDE v6.1 Users Guide

Specifies the series of coordinate pairs that constitute the region. These rectangles may or may not overlap. They are given as x1 y1 x2
y2 (where x1, y1 is the lower left and x2 y2 is the upper right corner in row/column coordinates). You must specify at least one set of
coordinates.

Supported Families
ProASIC3/E and Axcelerator

Notes
Unlocked macros in empty or exclusive regions are unassigned from that region.
You cannot create empty or exclusive regions in areas that contain locked macros.

Use inclusive or exclusive region constraints if you intend to assign logic to a region. An inclusive region constraint with no
macros assigned to it has no effect. An exclusive region constraint with no macros assigned to it is equivalent to an empty region.

Exceptions

If macros assigned to a region exceed the area’s capacity, an error message appears in the Log window.

Examples
The following example defines an empty rectangular region.

define_region -name cluster_regionl -type empty 100 46 102 46

See Also
define region (rectilinear region

PDC syntax conventions

PDC naming conventions

define_region (rectilinear region)
Defines either a rectilinear region or a rectangular region.
define region [-name region name] -type region type [x1 yl x2 y2]+
Arguments

-name region_name

Specifies the region name. The name must be unique. Do not use reserved names such as “bank0” and “bank<N>" for region names.
If the region cannot be created, the name is empty. A default name is generated if a name is not specified in this argument.

-type region_type

Specifies the region type. The default is inclusive.

Region Constraint Conditions

Empty No macros can be assigned to an empty region
Exclusive Only contains macros assigned to the region
Inclusive Can contain macros both assigned and unassigned to the region

188

Design Constraints Guide

x1 vyl x2 y2

Specifies the series of coordinate pairs that constitute the region. These rectangles may or may not overlap. They are given as x1 y1 x2
y2 (where x1, y1 is the lower left and x2 y2 is the upper right corner in row/column coordinates). You must specify at least one set of
coordinates.

Supported Families

ProASIC3/E and Axcelerator

Notes
Unlocked macros in empty or exclusive regions are unassigned from that region.
You cannot create empty or exclusive regions in areas that contain locked macros.

Use inclusive or exclusive region constraints if you intend to assign logic to a region. An inclusive region constraint with no
macros assigned to it has no effect. An exclusive region constraint with no macros assigned to it is equivalent to an empty region.

You can define a rectilinear region only in a PDC file; you cannot define a rectilinear region using the MultiView Navigator tool.

Exceptions

If macros assigned to a region exceed the area’s capacity, an error message appears in the log window.

Examples
The following example defines a region with the name RecRegion. This region contains two rectangular areas.

define_region -name RecRegion -type Exclusive 0 40 3 42 0 77 7 79

See Also
define region (rectangular region

PDC syntax conventions

PDC naming conventions

delete buffer tree

Instructs the Compile command to remove all buffers and inverters from a given net.

delete buffer tree -net [netname]+

Arguments

-net netname

Specifies the names of the nets from which to remove buffer or inverter trees. This command takes a list of names. You must specify
at least one net name. You can use the following wildcard characters in net names:

Wildcard What it does

\

Interprets the next character as a non-special character

?

Matches any single character

*

Matches any string

I

Matches any single character among those listed between brackets (that is, [A-Z] matches any single character in the A-
to-Z range)

189

Libero IDE v6.1 Users Guide

Supported Families
ProASIC3/E

Notes

In the ProASIC3E and ProASIC3 architectures, inverters are considered buffers because all tile inputs can be inverted. This rule is
also true for all Flash architectures but not for Antifuse architectures.

Exceptions

The delete_buffer_tree command is not supported in auxiliary PDC files.

Examples

delete_buffer_tree netl

delete_buffer tree netDatal\[*\]

See Also

don't touch buffer tree

PDC syntax conventions

PDC naming conventions

dont_touch_buffer_tree
Undoes the delete_buffer_tree command. That is, it restores all buffers and inverters that were removed from a given net.

dont touch buffer tree -net netname

Arguments

-net netname
Specifies the name of the net with the buffers and inverters to restore.

Supported Families
ProASIC3/E

Notes
The dont_touch_buffer_tree command is not supported in auxiliary PDC files.
Exceptions

None

Examples
This example prevents the software from removing buffer trees on the reset_n net:

dont_touch_buffer tree -net reset_n

See Also

delete buffer tree

PDC syntax conventions

190

Design Constraints Guide

PDC naming conventions

move_region
Moves the named region to the coordinates specified.

move region region name [x1 yl x2 y2]+

Arguments

region_name
Specifies the name of the region to move. This hame must be unique.
x1 vyl x2 y2

Specifies the series of coordinate pairs representing the location in which to move the named region. These rectangles can overlap.
They are given as x1 y1 x2 y2, where x1, y1 represents the lower-left corner of the rectangle and x2 y2 represents the upper-right
corner. You must specify at least one set of coordinates.

Supported Families
ProASIC3/E and Axcelerator

Notes

None

Exceptions

None

Examples

This example moves the region named RecRegion to a new region which is made up of two rectangular areas:

move_region RecRegion 0 40 3 42 0 77 7 79

See Also

PDC syntax conventions

PDC naming conventions

reset_floorplan
Deletes all regions.

reset floorplan

Arguments

None

Supported Families

Axcelerator

191

Libero IDE v6.1 Users Guide

Notes
None

Exceptions

None

Examples

reset_floorplan

See Also

PDC syntax conventions

PDC naming conventions

reset_io
Restores all attributes of an 1/0 macro to its default values. Also, if the port is assigned, it will become unassigned.

reset io portname -attributes value

Arguments

portname

Specifies the port name of the I/O macro to be reset. You can use the following wildcard characters in port names:

Wildcard What it does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

[Matches any single character among those listed between brackets (that is, [A-Z] matches any single character in the A-
to-Z range)

-attributes value

Preserve or not preserve the 1/O attributes during incremental flow. The following table shows the acceptable values for this argument:

yes Unassigns all of the 1/O attributes and resets them to their default values.
no Unassigns only the port.

Supported Families

ProASIC3/E and Axcelerator

Notes

None

Exceptions

None

192

Design Constraints Guide

Examples

reset_io a

Resets the I/0O macro “a” to the default I/O attributes and unassigns it.

reset_io b_*

Resets all 1/0 macros beginning with "b_" to the default 1/O attributes and unassigns them.
reset_io b -attributes no

Only unassigns port b from its location.

See Also

set io

PDC syntax conventions

PDC naming conventions

reset_iobank

Resets an 1/0O bank’s technology to the default technology, which is specified using the Designer software in the Device Selection
Wizard.

reset iobank bankname

Arguments

bankname

Specifies the 1/0 bank to be reset to the default technology. For example, for ProASIC3E and Axcelerator devices, 1/0 banks are
numbered 0-7 (bank0, bankl,.. bank7).

Supported Families
ProASIC3/E and Axcelerator
Notes

Any pins that are assigned to the specified I/O bank but are incompatible with the default technology are unassigned.
Exceptions

None

Examples
The following example resets 1/0 bank 4 to the default technology:

reset_iobank bank4

See Also

set_iobank

PDC syntax conventions

PDC naming conventions

193

Libero IDE v6.1 Users Guide

reset _net_ critical

Resets the critical value to its default. ©Net criticality can vary from 1 to 10, with 1 being the
least critical and 10 being the most. The default is 5. Criticality numbers are used in timing driven
place-and-route.

Increasing a net’s criticality forces place-and-route to keep instances connected to the net as close as possible, at the cost of other (less
critical) nets.

reset net critical [netname]+

Arguments

netname

Specifies the name of the net to be reset to the default critical value. You must specify at least one net name. You can use the
following wildcard characters in net names:

Wildcard What it does

\

Interprets the next character as a non-special character

?

Matches any single character

*

Matches any string

I

Matches any single character among those listed between brackets (that is, [A-Z] matches any single character in the A-
to-Z range)

set_io

Supported Families
Axcelerator
Notes

None

Exceptions

None

Examples
This example resets the net preset_a to the default ciricality of 5:

reset_net_critical preset_A

See Also

set_net critical

PDC syntax conventions

PDC naming conventions

The syntax and arguments for the set_io command vary depending on which device you are designing. Click the command next to the
device name in the following list to see the syntax, arguments, and other information for the set_io command for that particular
device:

set_io (ProASIC3E)

194

Design Constraints Guide

set_io (ProASIC3)

set_io (Axcelerator)

set_iobank

The syntax and arguments for the set_iobank command vary depending on which device you are designing. Click the command next
to the device name in the following list to see the syntax, arguments, and other information for the set_io command for that particular
device:

set_iobank (ProASIC3E)
set_iobank (ProASIC3)

set_iobank (Axcelerator)

set_location
Assigns the specified macro to a particular location on the chip.

set location macro name -fixed value x y

Arguments

macro_name

Specifies the name of the macro in the netlist to assign to a particular location on the chip.

-fixed value

Sets whether the location of this instance is fixed (that is, locked). Locked instances are not moved during layout. The default is yes.
The following table shows the acceptable values for this argument:

yes The location of this instance is locked.
no The location of this instance is unlocked.

XYy

The x and y coordinates specify where to place the macro on the chip. Use the ChipPlanner tool to determine the x and y coordinates
of the location.

Supported Families

ProASIC3/E and Axcelerator

Notes

Use the post-compiled macro name when specifying the macro name.

Exceptions

None

195

Libero IDE v6.1 Users Guide

Examples
This example assigns and locks the macro with the name "mem_data_in\[57\]" at the location x=7, y=2:

set_iobank mem_data_in\[57\] -fixed no 7 2

See Also

set_multitile location

PDC syntax conventions

PDC naming conventions

set_multitile location (ProASIC3/E)

Assigns specified two-tile and four-tile macros to specified locations on the chip. Use this command only for multi-tile, flip-flop
macros and, in some cases, enable flip-flop macros).
set multitile location macro name [-fixed value]\
-location {x y} \
-tile {namel relative x1 relative yl} \
-tile {name2 relative x2 relative y2} \
[-tile {name3 relative x3 relative y3} \]

[-tile {name4 relative x4 relative y4} \]

Arguments
macro_name
Specifies the hierarchical name of the macro in the netlist to assign to a particular location on the chip.

-fixed value

Sets whether the location of this set of macros is fixed (that is, locked). Locked macros are not moved during layout. The default is
yes. The following table shows the acceptable values for this argument:

yes The location of this instance is locked.
no The location of this instance is unlocked.

-location {x y}

The x and y coordinates specify the absolute placement of the macro on the chip. You can use the ChipPlanner tool to determine the x
and y coordinates of the location.

-tile {namel relative_xl1 relative_yl}

Specifies the hierarchical name and location, relative to the macro specified as the macro_name, of the first tile in a two- or four-tile
macro. The relative placement of macro namel inside the macro cannot be offset by more than one. (See Notes below for placement

rules.) If the macro uses four-tile macros, then you must define all four tiles. Likewise, if the macro uses two-tile macros, you must
define both tiles.

196

Design Constraints Guide

You can place the following two-tile and four-tile macros with the set_multitile_location command:

DFNIPIC1 DFITPICI DFNOPIC1 DFIOPIC1
DLNIPIC1 DLIIPIC1I DLNOPIC1 DLIOPICL

Due to the ProASIC3/E architecture, if the CLR and PRE pins are NOT driven by a clock net (global, quadrant or local clock net), the
enable flip-flop macros (shown below) are mapped to two-tile flip-flop macros. When CLR and PRE pins are not driven by a clock
net, you must use the set_multitile_location command instead of the set_location command.

DFN1E1CO DFNOE1CO DFN1EOCO DFNOEOCO DFN1E1C1

DFNOE1C1

DEN1EOP1 DFN1EOC1 DFNOEOC1 DFN1E1P1 DFNOE1P1

DFNOEQOPO DFNOEOP1 DFN1E1PO DFNOE1PO DFN1EOPO

DFI1E1CO

DEIOELPL DFI1E1C1 DFIOE1C1 DFI1EOC1 DFIOEOC1

DFI1EOPO DFIOELCO DFI1E0CO DFIOEQCO DFI1E1P1
DFI1EOP1 DFIOEOP1 DFI1E1PO DFIOE1PO
DFIOEOPO

During compile, Designer maps the specified enable flip-flop macro to a two-tiled macro.

If the CLR and PRE pins are driven by a clock net, Designer maps these macros to one tile during compile. In this case, you cannot
use the set_multitile_location command to place them. Instead, you must use the set_location command.

Supported Families
ProASIC3/E
Notes

For two-tile flip-flop macros, the software appends UO and U1 to the macro name. For four-tile flip-flop macros, the software
appends U0, U1, U2 and U3 to the macro name.

The macros specified in the -tile option cannot be offset by more than one.

To ensure efficiency, you must use local connections between certain tiles in the macros. The distance between U0 and U1, Ul
and U2, and U2 and U3 must not be more than one in either direction (X or Y). The required local connection between tiles is
denoted by the dashes below:

Four-tile macros: UOQ --- U1 --- U2 --- U3
Two-tile macros: U0 --- Ul

Examples of possible placement configurations:

197

Libero IDE v6.1 Users Guide

o U o " uz Uz o ua
nz 3 Ui Ui
u3 uz i
uz uz
o
2 3 Ha
U3 U3
i g i uz 3
Exceptions
None
Examples

This example assigns and locks the macro with instance name “multi_tileff/UQ “ at the location X=10, Y=10 by specifying the relative
positions of all the macros.

set_multitile_location multi_tileff -location {10 10} \
-tile { multi_tileff/u0 0 0 } \
-tile { multi_tileff/Ul 0 1 } \
-tile { multi_tileff/u2 0 2 } \

-tile { multi_tileff/U3 0 3 } -fixed yes

As a result of this command, the four-tile macro placement looks like this:

13

10,13

Lz

10,12

I

10,11

LG

10,10

The second example shows you how to configure a two-tile macro:

set_multitile_location multi_tileff -location {10 10} \

198

As a result of this command, the two-tile macro placement looks like this:

L Lr
10,40 11 1
See Also

set_location

PDC syntax conventions

PDC naming conventions

set_net_critical

set net critical criticality number [hier net name]+

Sets the net criticality, which influences place-and-route in favor of performance.

Arguments

criticality_number

-tile { multi_tileff/U0 0 0 } \

-tile { multi_tileff/Ul 1 0 }

Design Constraints Guide

Sets the criticality level from 1 to 10, with 1 being the least critical and 10 being the most critical. The default is 5. Criticality numbers
are used in timing-driven place and route.

hier_net_name

Specifies the net name, which can be an AFL (Actel Flattened Netlist) net name or a net regular expression using wildcard characters.

You must specify at least one net name. You can use the following wildcard characters in names:

Wildcard What it does

\

Interprets the next character as a non-special character

?

Matches any single character

*

Matches any string

I

Matches any single character among those listed between brackets (that is, [A-Z] matches any single character in the A-
to-Z range)

Supported Families

Axcelerator

Notes

The command must have at least two parameters.

The net names are AFL names, which means they must be visible in Timer and ChipPlanner.

Increasing a net’s criticality forces place-and-route to keep instances connected to the specified net as close as possible at the cost

of other (less critical) nets.

199

Libero IDE v6.1 Users Guide

Exceptions
None

Examples

This example sets the criticality level to 9 for all addr nets:

set_net_critical 9 addr*

See Also

reset net critical

PDC syntax conventions

PDC naming conventions

set_vref

Assigns a VREF pin to a bank. The ProASIC3E and Axcelerator families support VREF pins; however, the ProASIC3 family does
not.

set vref -bank [bankname] [pinnum]+

Arguments

-bank bankname

Specifies the name of the bank in which the VREF pin is located. For example, for ProASIC3E and Axcelerator devices, 1/0 banks are
numbered 0-7. Therefore, their bank names are bankO, bank1, bank2, etc.

pinnum

Specifies the alphanumeric pin name of the VREF pin(s). You must specify at least one pin number.
Supported Families

ProASIC3E and Axcelerator

Notes

While the bank name is optional, you must not specify pin names that do not belong to the bank. Pins that do not belong to a bank
that require a VREF are ignored.

Some 1/0 technologies need VREF settings. Some technologies may also need a minimum number of VREF pins for every
certain number of input pins. These details are device dependent. Refer to the databook for your device for details. Designer can
assign default VREF pins. However, the number of VREF pins Designer assigns may be too conservative, and you may not need
as many VREF pins as the default assignment.

Exceptions

None

Examples
The following example assigns pins Al and B10 from 1/O bank1 as VREF pins:

set_vref -bank bankl Al B10

200

Design Constraints Guide

See Also
set_vref defaults

PDC syntax conventions

PDC naming conventions

set_vref_defaults
Sets the default VREF pins for the specified bank. This command is ignored if the bank does not need a VREF pin.

set vref defaults bankname

Arguments

bankname

Specifies the name of the bank in which the default VREF pin is located. For ProASIC3E and Axcelerator devices, banks are
numbered from 0-7. Therefore, their bank names are bank0, bank1, bank2, etc.

Supported Families
ProASIC3E and Axcelerator
Notes
The ProASIC3 family does not support VREF pins.

Some 1/0 technologies need VREF settings. Some technologies may also need a minimum number of VREEF pins for every
certain number of input pins. These details are device dependent. Refer to the databook for your device for details. Designer can
assign default VREF pins. However, the number of VREF pins Designer assigns may be too conservative, and you may not need
as many VREF pins as the default assignment.

Exceptions

None

Examples
This example sets the default VREF pins for Bank 1:

set_vref_defaults bankl

See Also

set_vref

PDC syntax conventions

PDC naming conventions

unassign_global_clock
Demotes clock nets to regular nets.

unassign global clock -net netname

201

Libero IDE v6.1 Users Guide

Arguments

-net netname
Specifies the name of the clock net to demote to a regular net.

Supported Families
ProASIC3/E

Notes
The unassign_global_clock command is not supported in auxiliary PDC files.

Exceptions

You cannot assign “essential” clock nets to regular nets. Clock nets that are driven by the following macros are “essential” global nets:
CLKDLY, PLL, and CLKBIBUF.

Examples

unassign_global_clock -net globalReset

See Also
assign global clock

PDC syntax conventions

PDC naming conventions

unassign_local_clock
Unassigns the specified user-defined net from a LocalClock or QuadrantClock region.

unassign local clock -net netname

Arguments

-net netname

Specifies the name of the user-defined net to unassign.

Supported Families

ProASIC3/E and Axcelerator

Notes
You can create QuadrantClocks only for ProASIC3E and ProASIC3 devices.

The unassign_local_clock command is not supported in auxiliary PDC files.

Exceptions

None

Examples

unassign_local_clock -net reset_n

202

Design Constraints Guide

See Also

assign_local_clock (Axcelerator)
assign_local_clock (ProASIC3/E)

PDC syntax conventions

PDC naming conventions

unassign_macro_from_region
Specifies the name of the macro to be unassigned.

unassign _macro_from_region [region name] macro name

Arguments

region_name
Specifies the region where the macro or macros are to be removed.

macro_name

Specifies the macro to be unassigned from the region. Macro names are case sensitive. You cannot use hierarchical net names from
ADL. However, you can use the following wildcard characters in macro names:

Wildcard What it does

\ Interprets the next character as a non-special character

? Matches any single character

* Matches any string

[Matches any single character among those listed between brackets (that is, [A-Z] matches any single character in the A-
to-Z range)

Supported Families

ProASIC3/E and Axcelerator

Notes

None

Exceptions

If the macro was not previously assigned, an error message is generated.

Examples

unassign_macro_from_region macro2l

See Also

PDC syntax conventions

PDC naming conventions

203

Libero IDE v6.1 Users Guide

unassign_net_macro
Unassigns macros connected to a specified net.

unassign_net_macro region name [netl]+

Arguments

region_name

Specifies the name of the region containing the macros in the net(s) to unassign.

netl

Specifies the name of the net(s) that contain the macros to unassign from the specified region. You must specify at least one net name.
Optionally, you can specify additional nets to unassign.

Supported Families

ProASIC3/E and Axcelerator
Notes

None

Exceptions

If the region is currently not assigned, an error message appears in the Log window if you try to unassign it.

Examples

unassign_net_macro cluster_regionl keyinlintZ0Z_62

See Also
assign net macros

PDC syntax conventions

PDC naming conventions

undefine_region
Removes the specified region.
undefine_region region name

Arguments

region_name
Specifies the region to be removed.

Supported Families

ProASIC3/E and Axcelerator

Notes

All macros assigned to the region are unassigned.

204

Design Constraints Guide

Exceptions

To use this command, the region must have been previously defined.

Examples

undefine_region cluster_regionl

See Also
define region (rectangular region

define region (rectilinear region

PDC syntax conventions

PDC naming conventions

Design Object Access Commands

Design object access commands are SDC commands. Most constraint commands require a command argument. Designer supports the
SDC access commands shown below:

Design Object Access Command
Clock get_clocks
Port get_ports
Input ports all inputs
Output ports all outputs
Pin get pins

get_clocks

Returns the named clock specified by an argument.

Syntax

get_clocks <pattern>

Argument

pattern

Specifies the pattern to match to the Timer potential clock names (port or pin names in the design).

205

Libero IDE v6.1 Users Guide

If this command is used as a —from argument in max delay (set_max path delay), false path (set false path), and multicycle

constraints (set multicycle path), the clock pins of all the registers related to this clock are used as path start points.

If this command is used as a —to argument in max delay (set max path delay), false path (set false path), and multicycle constraints

(set_multicycle path), the synchronous pins of all the registers related to this clock are used as path endpoints.

Example

set_max_delay -from [get_ports datal] -to \

[get_clocks ckl]

get_pins
Returns the named pins specified by an argument.

Syntax

get_pins <pattern>

Argument

pattern

Specifies the pattern to match the pins.

Example
create_clock -period 10 [get_pins clock_gen/reg2:Q]

get_ports

Returns the named ports specified by an argument.

Syntax

get_ports <pattern>

Argument

pattern

Specifies the pattern to match the ports. This is equivalent to the macros $in()[<pattern>] when used as —from argument and
$out()[<pattern>] when used as —to argument or $ports()[<pattern>] when used as a —through argument.

Example
create_clock -period 10 [get_ports CK1]

all_inputs

Returns all the input or inout ports of the design.

Syntax

all_inputs

Argument

None.

206

Design Constraints Guide

Example

set_max_delay -from [all_inputs] -to [get_clocks ckl]

all_outputs

Returns all the output or inout ports of the design.

Syntax
all_outputs
Argument
None.

Example

set_max_delay -from [all_inputs] -to [all_outputs]

create_clock (SDC clock Constraint)

The create_clock constraint is associated with a specific clock in a sequential design and determines the maximum register-to-
register delay in the design.

Supported Families
SX-A, eX, RTAX-S, Axcelerator, RTAX-S, ProASICPYYS and ProASIC3/E

Syntax

create clock -period period value [-waveform edge list] source

Arguments

period_value
Mandatory argument specified in ns. No clock is created if the period is not supplied.
edge_list

This is optional and is supported as a duty cycle in the current version of Designer. If supplied, it must contain exactly two edges. The
duty cycle info will then be added to the clock constraint.

source
Mandatory argument that specifies the source of the clock:

a single design port name; for instance clk

a single pin name; for instance reg1:CLK. This name can be hierarchical (for instance toplevel/block1/reg2:CLK)

a list of one name in curly brackets (either port or pin); for instance: {A} or {toplevel/pll:clk1}

an object accessor that will refer to one pin/port name for instance: [get_ports {clk}] or [get_pins reg:CLK]
Notes: No wildcard is accepted. The pin or port must exist in the design.

Valid Command Examples

create_clock -period 5 CK1

create_clock -period 4 -waveform {0 2} CK1

207

Libero IDE v6.1 Users Guide

create_clock -period 6 [get_ports {CK1l}]

Invalid Command Examples

create_clock -period 10

This command is invalid because there is no name supplied.

create_clock -period 3 [get_ports {CKl CK2}]

This command is invalid because more than one name is used for the source.

create_clock -period 11 -waveform {0 2 5 7} CK1

This command is invalid because the supplied waveform has more than two edges.

create_clock CLK1l -period 20 -waveform 3 13

This command is invalid because this syntax of waveform is invalid.

set_false_path (SDC false path Constraint)

The set _false path constraint identifies paths in the design that are to be marked as false, so that they are not considered during
timing analysis.

Supported Families
SX-A, eX, RTSX-S, Axcelerator, RTAX-S, ProASICPYS and ProASIC3/E
Syntax

set false path -through through point

Arguments

through_point
Specifies a pin or port through which the disabled paths muss pass.
a single design port name or pin name; for instance clk or toplevel/blockl/inst1:A
a list of one name in curly brackets (either port or pin); for instance: {A} or {U0:D}

an object accessor that will refer to one name; for instance: [get_ports {d}] or [get_pins S:Y]

Valid Command Examples
set_false_path -through U0/Ul:Y

set_false_path -through {Data2}

set_false_path -through [get_pins {Ul/S:Y}]

Invalid Command Examples
set_false_path

This is invalid because there is no argument supplied.

set_load (SDC load Constraint)

Sets the capacitance to a specified value on a specified port.

208

Design Constraints Guide

Supported Families
SX-A, eX, RTSX-S, Axcelerator, RTAX-S, ProASIC3, and ProASIC3E

Syntax

set load load value port

Arguments

Note: All arguments are mandatory.

load_value
Specifies the capacitance value. The load_value is an integer. There is no default value.
port
Specifies the port in the design on which the capacitance is to be set.

a single design output port name; for instance ol

a list of one output port name in curly brackets; for instance: {Out}

an object accessor that will refer to one output port name for instance: [get_ports{ex}]
Note: Wildcards are not allowed.

Valid Command Examples
set_load 35 out_p

set_load 40 {01}

set_load 25 [get_ports out]

Invalid Command Examples
set_load 30

This is invalid because there is no port supplied.

set_max_delay (SDC max path Constraint)

The set_max_delay constraint sets the path delay between the specified ports to a restricted value.
Supported Families

SX-A, eX, RTSX-S, ProASICLUS (APA), Axcelerator, RTAX-S, and ProASIC3/E

Syntax

set max delay delay value -from from list -to to list

Arguments

delay_value

Mandatory argument. The unit is ns. There is no default value. A negative or null value is not allowed.

from_list

Mandatory collection of start point names: primary input or inout port, clock pins of registers:

a single pin/port name; for instance reg1l:CLK

209

Libero IDE v6.1 Users Guide

a list of pins/ports enclosed in curly brackets; for instance {A} or {toplevel/pll:clkl toplevel/pll:clk2}
an object accessor: for instance [get_ports {A B}] or [get_pins reg:CLK]
Note: Wildcards are accepted.
to_list
Mandatory collection of end point names: primary output or inout port, synchronous pins of registers:
a single pin/port name; for instance reg2:D
a list of pins/ports enclosed in curly brackets; for instance {O*} or {outl out2}
an object accessor: for instance [get_ports {ex}] or [get_pins reg*:D]
Note: Wildcards are accepted.
Valid Command Examples
set_max_delay 9 -from [get_pins regl:CLK] -to [get_ports {outl out2}]
set_max_delay 7.5 -from {reg2:CLK} -to [all_outputs]
set_max_delay 3.0 -from [get_ports {Data}] -to out
set_max_delay 2.7 -from {A B} -to [get_pins {reg2*}]
set_max_delay 0.5 -from [get_ports {C*}] -to [get_clocks {clkl clk2}]
Invalid Command Example
set_max_delay -from [get_ports {IN10 IN11}]

This is invalid because the to_list and delay_value are not supplied.

set_multicycle_path (SDC multiple cycle path Constraint)

Defines a path that takes multiple clock cycles.

Supported Families
ProASICPYYS Axcelerator, RTAX-S, and ProASIC3/E

Syntax

set multicycle path path multiplier [-from from list] [-to to list]

Arguments

path_multiplier

Mandatory integer that specifies the number of cycles the data path must have for setup and hold, relative to the startpoint clock before
data is required at the endpoint.

from_list

Specifies a list of timing path startpoint names: primary input or inout port, clock pins of registers:
a single pin/port name; for instance reg1l:CLK
a list of pins/ports enclosed in curly brackets; for instance {A} or {toplevel/pll:clkl toplevel/pll:clk2}
an object accessor: for instance [get_ports {A B}] or [get_pins reg:CLK]

Note: Wildcards are accepted.

210

to_list

Specifies a list of timing path endpoint names: primary output or inout port, synchronous pins of registers:

a single pin/port name; for instance reg2:D
a list of pins/ports enclosed in curly brackets; for instance {O*} or {outl out2}
an object accessor: for instance [get_ports {ex}] or [get_pins reg*:D]
Note: Wildcards are accepted.
Valid Command Examples
set_multicycle_path 2 -from [get_ports {regl*}] \
-to {reg2:D}
set_multicycle_path 2 -from {reg:CLK}
set_multicycle_path 2 -to [get_ports {ol 02}]
set_multicycle_path 3 -from datal -to [get_pins {regl*}]
set_multicycle_path 2 -from {regl:CLK} -to [get_clocks {clk}]
Invalid Command Examples

set_multicycle_path -from [get_ports {INO IN1}]

This is invalid because the path multiplier is not supplied.

SDC Command Limitations

Design Constraints Guide

Not all object and design constraint commands are supported in Designer. There are limitations on SDC support. Refer to the latest
Designer series Release Notes for the latest supported Object Access, Design Constraints, and Supported Features.

Naming Conventions

You can use * in the object names except for the clocks (create clock (SDC clock constraint)) and load (set load (SDC load

constraint)).

For ProASICPYS and ProASIC3/E families: Some special characters are not allowed in the Actel internal netlists. In case the user
netlist contains object names with such characters and constraints are set on these, the tool does a mapping between user and internal
object names. The Timer GUI displays the internal netlist object names, although these could be different from the object names in the

SDC file. Timer applies the correct constraints on these object names.

Multiple Files

When you import SDC as a source file, you can specify multiple SDC files in the File > Import Source Files dialog box.

When you import SDC as auxiliary file, you can specify only one file in the File > Import Auxiliary Files dialog box.

global_clocks

The GLOBAL_CLOCKS section is used to describe the clock waveforms from the global clock distribution networks. Local clocks,
such as gated clocks, are not directly supported. The clock waveforms are used to generate automatically the timing constraints of the
paths between two sequential elements. To allow more user control when clocks interact, there are provisions to specify the clock

211

Libero IDE v6.1 Users Guide

period transitions, which should be considered. By default, the closest transitions are used when two clocks interact. The clock
waveform specification has the following format:

WAVEFORM clkname RISE value FALL value PERIOD value [EXCEPT SOURCE {sequential list }| EXCEPT
SINK{sequential list}].

clkname is the name of the macro driving the clock network.

RISE/FALL/PERIOD can be specified as either an integer or a floating point number followed by an unit selected from {NS, US,
PS}. The default time unit is 0.1ns.

EXCEPT {SOURCE|SINK} {list of sequential elements} is the list of sequential elements which should not be
included as endpoints in the automaticallygenerated paths involving sequential elements.

The MULTICLOCK specification is used to specify which clock periods should be considered during the generation of the path
constraints involving sequential elements. The default specification is to consider only the closest clock periods of the SOURCE and
DESTINATION clocks. This specification has the following syntax:

MULTICYCLE SOURCE clkA CYCLE value EXCEPT {seqglist}; DESTINATION clkB CYCLE value EXCEPT {seqglist}.
MULTICYCLE SOURCE clkA CYCLE value EXCEPT {seqglist}.
clkA/clkB is the name of the macro driving the clock network.

EXCEPT {seqlist}: By default all sequential elements clocked by the clock driver are included. The EXCEPT seqlist is a list of all the
sequential elements or specific pins to be excluded.

CYCLE value. Be default, the closest transitions are considered. CYCLE provides the ability to use transitions from one or more clock
periods past the closest transition. CYCLE zero indicates the closest transitions. CYCLE one skips the closest set of transitions and
uses the next set of transitions. The term cycle is used to avoid confusion with the term period in the clock waveform specification.
This allows you to specify a cycling-stealing clocking regime.

max_delays/min_delays

The sections MAX_DELAYS and MIN_DELAYS use the following format:

DELAY value timeunit; SOURCE {source_name_list} [EXCEPT {source_name_list}]; SINK {sink_name_list}
[EXCEPT {sink_name_list}]; [STOP {stop_name_list}]; [PASS {bypass_name_list}].

value can be specified as an integer.

timeunit allows {PS, NS, US}.

source_name_list is a list of signal sources. It can be one of the following: a macro output pin, macro name, or primary input.
sink_name_1list isa list of signal destinations. It can be a name of a macro or a primary output.

EXCEPT allows you to exclude certain sources or sinks from consideration.

stop_name_1list is the list of pin names through which further propagation of signals will not be considered. This allows you to
eliminate certain paths from consideration.

bypass_name_1list is the list of latches which are allowed to be intermediate path points. By default, latches are considered to be
sinks or path terminals.

INPAD/OUTPAD/GATED are valid values for any of the lists, such as source_name_list or stop_name_list.

Normally there is no need to specify any timing requirements from any source to any sink clocked by an external global clock. This
timing requirement can be generated automatically from the GLOBAL_CLOCK specifications and the sequential elements setup and
hold times. For example, the timing constraint from a primary input to a sequential element can be derived from the sequential
elements clocking waveform and the signal arrival time of the primary input.

212

Design Constraints Guide

A problem exists when two different internally-generated clock signals interact. This is due to the unpredictable and unknown skew
between the two clock networks because of the routing delays from:

PAD >> internalMacro >> CLKINT

where CLKINT is the input pin of the global clock distribution network. The automatically generated path constraints will not
incorporate the skew between the two clocks. In such cases, the path constraints should be expressed explicitly using the
MAX/MIN_DELAYS section.

NOTE: The most stringent timing constraint dominates. Hence, all general constraints should be looser than the specific constraints.
For example, in the following example, the 26.0ns constraint dominates the 42.0ns constraint:

DELAY 42.0 ns SOURCE INPAD SINK OUTPAD.

DELAY 26.0 ns SOURCE {$1I23:Q $1I24:Q} SINK {ack_0}.

If the general constraint is tighter than the specific constraint, the specific constraint will effectively become a no-operation. In the
following example, the looser constraint of 42.0ns has no effect since the general constraint of 26.0ns dominates.

DELAY 26.0 ns SOURCE INPAD SINK OUTPAD.

DELAY 42.0 ns SOURCE {$1I23:Q $1I124:Q} SINK {ack_0}.

This implies that a specific path or paths which has (have) looser timing constraints must be explicitly excluded using the EXCEPT
syntax. This is especially important for the path constraints generated automatically from the global clock specification. For example,
the ENABLE signal for a flip-flop is sometimes allowed to be much slower than the DATA signal. The constraint associated with the

DATA signal can be inferred from the global clocking specification; however, in order for a looser constraint to be associated with the
ENABLE signal, the ENABLE input pin must appear in the appropriate EXCEPT list in the GLOBAL_CLOCK section.

The section MAX_DELAYS can be empty if there are no purely combinatorial paths from external sources to external sinks, and if
every sequential element in the design is clocked by an external global clock. In this case, the timing constraints are generated
automatically using the information in the GLOBAL_CLOCK section. Likewise, the MIN_DELAYS section can be empty.

One final word about external/internal sinks and sources with regard to the flip-flops and/or latches in the 10s: these flip-flops act as
internal, not external, sources/sinks.

io_arrival_Times

The section I0_ARRIVAL_TIMES uses the following format:

[early_arrival_time:] late_arrival_time timeunit {source_io_list} EXCEPT {source_io_list}.
{early, late}_arrival_time is signal arrival time relative to the reference time.

source_io_1list isan INPAD or primary input pin.

Note that the section 10_ARRIVAL_TIMES can be empty. For example,

SECTION IO_ARRIVAL_TIMES.

END.

is entirely equivalent to

SECTION IO_ARRIVAL_TIMES.

0 0 {INPAD}.

END

213

Libero IDE v6.1 Users Guide

global_stops

The GLOBAL_STOPS section is used to disable dont care/false paths by preventing the specified pins from being used in ANY
timingcritical paths. Any path involving pins that appear in this section should be removed from consideration.

pin_loads

The PIN_LOADS section is used to specify the capacitance loading and logic (TTL/CMOS) at a package pin. The default logic family
is TTL. The format is:

capValue capUnit [TTL/CMOS]{[macList|pinList]} [EXCEPT {}].

I/0 Attributes Reference (alphabetical order)

I/O Attributes by Family

Other than the four common attributes supported by all device families, the following table includes the attributes that each Actel
device family supports.

Attribute Family

ProASIC3E ProASIC3 ProASIC| Axcelerator ProASIC SX- SX eX MX
PLUS A
X X X

/O X X X X X X X X X

Standard

/0 X X X X
Threshold

Output X X X

Drive

214

Design Constraints Guide

Output X X X X X X X X X
Load

Use X X X

Register

Hot X X X X
Swappable

Refer to the appropriate datasheet for information about 1/O standards for different families.

Bank Name

Purpose: Displays the name of the bank to which the I/0O macro has been assigned. You cannot change the bank name.

ProASIC3E Yes

ProASIC3 Yes
ProASIC S No
Axcelerator Yes
ProASIC No
SX-A No
SX No
eX No
MX No

Hot Swappable

The 1/0 standard specified and the selected voltage determine this read-only attribute.

Purpose: Indicates whether the 1/0 pin is hot swappable.

ProASIC3E Yes

ProASIC3 No
ProASIC LS No
Axcelerator Yes
ProASIC No
SX-A Yes
SX No
eX Yes
MX No
Values:

If checked or ON (all standards except PCI and PCIX), a clamp diode is NOT included to allow proper hot-swap behavior. If not
checked or OFF (PCI and PCIX only), the clamp diode is included as required by those specifications, but the 1/0 is NOT hot
swappable.

215

Libero IDE v6.1 Users Guide

Input Delay

Purpose: Indicates whether the input path delay elements are to be programmed. If they will be programmed, this option adds the
specified input delay to the input path.

ProASIC3E Yes

ProASIC3 No
ProASICES No
Axcelerator Yes
ProASIC No
SX-A No
SX No
eX No
MX No

Values: Use this attribute to turn the input delay on or off.
Default value: The default value is off.
For ProASIC3E devices, you specify the input delay per pin. You will see the actual delay only in Timer or in the SDF file.

Note: The actual input delay is a function of the operating conditions and is automatically computed by the delay extractor when a
timing report is generated.

For Axcelerator devices, you specify the input delay per bank. You then set its input delay with the slider in the Other 1/0 Bank
AttributesOther 1/0 Bank Attributes dialog box. Possible values are 0 to 31.

PDC command for setting this attribute: -set_io in_delay (See the set_io command for Axcelerator and for ProASIC3E in
the PDC Command Reference section of the Designer User's Guide.)

I/0 Standard

Purpose: Use the 1/O standard attribute to assign an 1/O standard to an 1/O macro.

ProASIC3E Yes

ProASIC3 Yes
ProASIC 28 yes
Axcelerator Yes
ProASIC Yes
SX-A Yes
SX No
eX No
MX No

Note: Voltage referenced 1/0 inputs require an input referenced voltage (VREF). You must assign VREF pins to Axcelerator and
ProASIC3E devices before running Layout.

216

CUSTOM
GTL+

GTL 3.3V
GTL 2.5V
HSTL Class I
HSTL Class 11
LVCMOS
3.3V

LVCMOS
2.5V

LVCMOS
2.5V/5.0V.

LVCMOS
1.8V

LVCMOS
1.5V

LVDS
LVPECL
LVTTL/TTL
PCI

PCI-X 3.3V

SSTL.2 Class I
and IT
SSTL.3 Class I
and IT

Design Constraints Guide

The ProASIC3E, ProASIC3, and Axcelerator devices support multiple 1/0 standards (with different 1/0 voltages) in a single die. You
can use 1/0O Attribute Editor to set 1/0 standards and attributes, or alternatively you can export and import this information using a
PDC file.

Not all devices support all 1/0O standards. The following table shows you which I/O standards are supported by each device.

1/0 Standard | ProAsiC3e | ProAsica | Proasic ProASIC
PLUS
CMOS X

X
X X
X X

X X

X X

X X

X

X X

X X X X

X X

X X X

X X X X X

X X X

X X X X

X X X

X X X

X X X

X X

X X

*Supported only on dedicated LVPECL 1/Os.

Note: For a list of 1/O standards for all other families, refer to the datasheet for your specific device.

Descriptions

Following are brief descriptions of the /O standard attributes in the table above:

CMOS (Complementary Metal-Oxide-Semiconductor)

217

Libero IDE v6.1 Users Guide

An advanced integrated circuit (IC) manufacturing process technology for logic and memory, characterized by high integration, low
cost, low power, and high performance. CMOS logic uses a combination of p-type and n-type metal-oxide-semiconductor field effect
transistors (MOSFETS) to implement logic gates and other digital circuits found in computers, telecommunications, and signal
processing equipment.

CUSTOM

An option in the 1/0 Attribute Editor that enables you to customize individual 1/0 settings such as the 1/O threshold, output slew rates,
and capacitive loadings on an individual 1/0 basis. For example, PCI mode output can be set to low-slew rate. For more information,
go to the Actel web site and check the datasheet for your device.

GTL 2.5V (Gunning Transceiver Logic 2.5 Volts)

A low-power standard (JESD 8.3) for electrical signals used in CMOS circuits that allows for low electromagnetic interference at high
speeds of transfer. It has a voltage swing between 0.4 volts and 1.2 volts, and typically operates at speeds of between 20 and 40MHz.
The VCCI must be connected to 2.5 volts.

GTL 3.3V (Gunning Transceiver Logic 3.3 Volts)
Same as GTL 2.5V above, except the VCCI must be connected to 3.3 volts.
GTL+ (Gunning Transceiver Logic Plus)

An enhanced version of GTL that has defined slew rates and higher voltage levels. It requires a differential amplifier input buffer and
an open-drain output buffer. Even though output is open-drain, the VCCI must be connected to either 2.5 volts or 3.3 volts for
Axcelerator, ProASIC3, and ProASIC3E device support.

HSTL Class I and 11 (High-Speed Transceiver Logic)

A general-purpose, high-speed 1.5V bus standard (EIA/JESD 8-6) for signalling between integrated circuits. The signalling range is 0
V to 1.5V, and signals can be either single-ended or differential. HSTL requires a differential amplifier input buffer and a push-pull
output buffer. It has four classes, of which Actel supports Class | and Il. These classes are defined by standard EIA/JESD 8-6 from the
Electronic Industries Alliance (EIA):

Class I (unterminated or symmetrically parallel terminated)

Class Il (series terminated)

Class Il (asymmetrically parallel terminated)

Class IV (asymmetrically double parallel terminated
LVCMOS 3.3V (Low-Voltage CMOS for 3.3 Volts)
An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 3.3V applications.
LVCMOS 2.5V (Low-Voltage CMOS for 2.5 Volts)
An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 2.5V applications.
LVCMOS 2.5V/5.5V (Low-Voltage CMOS for 2.5 and 5.0 Volts)
An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 2.5V and 5.0V applications.
LVCMOS 1.8V (Low-Voltage CMOS for 1.8 Volts)

An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 1.8V applications. It uses a 3.3V-tolerant CMOS input
buffer and a push-pull output buffer.

LVCMOS 1.5V (Low-Voltage CMOS for 1.5 volts)

An extension of the LVCMOS standard (JESD 8-5) used for general-purpose 1.5V applications. It uses a 3.3V-tolerant CMOS input
buffer and a push-pull output buffer.

218

Design Constraints Guide

LVDS (Low-Voltage Differential Signal)

A moderate-speed differential signalling system, in which the transmitter generates two different voltages which are compared at the
receiver. It requires that one data bit be carried through two signal lines; therefore, you need two pins per input or output. It also
requires an external resistor termination. The voltage swing between these two signal lines is approximately 350mV (millivolts).
Axcelerator devices contain dedicated circuitry supporting a high-speed LVDS standard that has its own user specification.

LVPECL (Low-Voltage Positive Emitter Coupled Logic)

PECL is another differential 1/0 standard. It requires that one data bit is carried through two signal lines; therefore, two pins are
needed per input or output. It also requires an external resistor termination. The voltage swing between these two signal lines is
approximately 850mV. When the power supply is +3.3V, it is commonly referred to as low-voltage PECL (LVPECL).

LVTTL/TTL (Low-Voltage Transitor-Transistor Level)
A general purpose standard (EIA/JESDSA) for 3.3V applications. It uses an LVTTL input buffer and a push-pull output buffer.
PCI (Peripheral Component Interface)

A computer bus for attaching peripheral devices to a computer motherboard in a local bus. This standard supports both 33 MHz and
66 MHz PCI bus applications. It uses an LVTTL input buffer and a push-pull output buffer. With the aid of an external resistor, this
1/0 standard can be 5V-compliant for most families, excluding ProASIC3/E families.

PCI-X (Peripheral Component Interface Extended)

An enhanced version of the PCI specification that can support higher average bandwidth; it increases the speed that data can move
within a computer from 66 MHz to 133 MHz. PCI-X is backward-compatible, which means that devices can operate at conventional
PCI frequencies (33 MHz and 66 MHz). PCI-X is also more fault-tolerant than PCI.

SSTL2 Class | and 11 (Stub Series Terminated Logic 2.5V)

A general-purpose 2.5V memory bus standard (JESD 8-9) for driving transmission lines. This standard was designed specifically for
driving the DDR (double-data-rate) SDRAM modules used in computer memory. It requires a differential amplifier input buffer and a
push-pull output buffer. It has two classes, of which Actel supports both.

SSTL3 Class | and Il (Stub Series Terminated Logic for 3.3V)
A general-purpose 3.3V memory bus standard (JESD 8-8) for driving transmission lines.

PDC command for setting this attribute: -set_io (See the set_io command for ProASIC3E, ProASIC3, or Axcelerator in the
PDC Command Reference section of the Designer User's Guide.)

I/0 Threshold

Purpose: Indicates the compatible threshold level for inputs and outputs.

ProASIC3E
ProASIC3
ProASIC PLUs
Axcelerator
ProASIC
SX-A

SX

eX

MX

No
No
No
No
No
Yes
Yes
Yes
Yes

219

Libero IDE v6.1 Users Guide

Values: Use this attribute to set the compatible threshold level for inputs and outputs. Your options are CMOS, LVTTL, or PCI.

Default value: The default 1/O threshold displayed is based upon the I/O standard. If you want to set the 1/0 threshold independently
of the 1/0 specification, you must select CUSTOM in the 1/O standard cell.

Locked
Purpose: Indicates whether you can change the current pin assignment during layout.

Supported

ProASIC3E Yes

ProASIC3 Yes
ProASIC Pl yeg
Axcelerator Yes
ProASIC Yes
SX-A Yes
SX Yes
eX Yes
MX Yes

Values: Use this attribute to lock or unlock the pin assignment. Selecting the check box locks the pin assignment. Clearing the check
box unlocks the pin assignment. If locked, you cannot change the pin assignment. If not locked, you can.

PDC command for setting this attribute: -set_io -fixed (See the set_io command for ProASIC3E, ProASIC3, or Axcelerator in
the PDC Command Reference section of the Designer User's Guide.)

Macro cell

Purpose: Indicates the type of 1/0 macro. This value is read only and is applicable only to the 1/O Attribute Editor (that is, you cannot
use it in GCF or PDC files).

ProASIC3E Yes

ProASIC3 Yes
ProASIC 28 yes
Axcelerator Yes
ProASIC Yes
SX-A Yes
SX Yes
eX Yes
MX Yes

Output Drive

Purpose: Every 1/O standard has an output drive preset; however, for some 1/O standards, you can choose which one to use. The
higher the drive, the faster the 1/0. The faster the 1/0, the more power consumed by the 1/0.

220

ProASIC3E
ProASIC3
ProASIC 2Lus
Axcelerator
ProASIC
SX-A

SX

eX

MX

Design Constraints Guide

Yes
Yes
No
Yes
No
No
No
No
No

Values: Use this attribute to set the strength of the output buffer to between 2 and 24 mA, weakest to strongest, depending on your
device family. The LVTTL output buffer has four programmable settings of its drive strength. Other I/O standards have full strength.

The list of 1/0 standards for which you can change the output drive and the list of values you can assign for each 1/O standard is
family-specific. Refer to the datasheet for your device for more information.

PDC command for setting this attribute: -set_io -out_drive (See the set_io command for ProASIC3E, ProASIC3, or
Axcelerator in the PDC Command Reference section of the Designer User's Guide.)

Output Load or Loading (pf)

Note: In MVN tools, the column heading for this attribute is "Output load." In non-MVN tools, the column heading for this
attribute is "Loading (pf)."

Purpose: Indicates the output-capacitance value based on the 1/0 standard selected in the 1/0O Standard cell. This option is not
available in ACTgen.

ProASIC3E
ProASIC3
ProASIC BLUs
Axcelerator
ProASIC
SX-A

SX

eX

MX

Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes
Yes

Values: You can enter a capacitative load as an integral number of picofarads. 35pF is the default.

Default value: The default value is based upon the 1/0O specification set in the 1/0 Standard cell. If necessary, you can change the
output capacitance default setting to improve timing definition and analysis. Both the capacitive loading on the board and the Vil/Vih
trip points of driven devices affect output-propagation delay.

Timer, Timing-Driven Layout, Timing Report, and Back-Annotation automatically uses the modified delay model for delay
calculations.

PDC command for setting this attribute: -set_io -out_load (See the set_io command for ProASIC3E, ProASIC3, or
Axcelerator in the PDC Command Reference section of the Designer User's Guide.)

221

Libero IDE v6.1 Users Guide

Pin Number

Purpose: Use this attribute to change a pin assignment by choosing one of the legal values from the drop-down list. If the pin has been
assigned, the pin number appears in this column. If it hasn't been assigned, "Unassigned" appears in this column.

ProASIC3E Yes

ProASIC3 Yes
ProASIC Bl yeg
Axcelerator Yes
ProASIC Yes
SX-A Yes
SX Yes
eX Yes
MX Yes

PDC command for setting this attribute: -set_io -pinname (See the set_io command for ProASIC3E, ProASIC3, or Axcelerator
in the PDC Command Reference section of the Designer User's Guide.)

Port Name

Purpose: Indicates the port name of the 1/0O macro. This value is read only.

ProASIC3E Yes

ProASIC3 Yes
ProASIC LS yeg
Axcelerator Yes
ProASIC Yes
SX-A Yes
SX Yes
eX Yes
MX Yes

Power-Up State

Purpose: Indicates the power-up state of the pin.

ProASIC3E No

ProASIC3 No
ProASICES No
Axcelerator No
ProASIC No
SX-A Yes
SX Yes

222

eX
MX

Design Constraints Guide

Yes
Yes

Values: Use this attribute to set the power-up state. Your choices are None, High, and Low.

Default value: The default value is None.

Resistor Pull

Purpose: Allows inclusion of a weak resistor for either pull-up or pull-down of the input buffer.

ProASIC3E
ProASIC3
ProASIC PLUs
Axcelerator
ProASIC
SX-A

SX

eX

MX

Yes
Yes
No
Yes
No
Yes
No
No
No

Values: Use this attribute to set the resistor pull. Your choices are None, Up (pull-up), or Down (pull-down).

Default value: The default value is None except when an 1/O exists in the netlist as a port, is not connected to the core, and is
configured as an output buffer. In that case, the default setting is for a weak pull-down.

PDC command for setting this attribute: -set_io -res_pull (See the set_io command for ProASIC3E, ProASIC3, or
Axcelerator in the PDC Command Reference section of the Designer User's Guide.)

Schmitt Trigger

Purpose: A schmitt trigger is a buffer used to convert a slow or noisy input signal into a clean one before passing it to the FPGA. This
is a simple, low-cost solution for a user working with low slew-rate signals. Using schmitt-trigger buffers guarantees a fast, noise-free,
input signal to the FPGA.

Actel recommends that you use a schmitt trigger to buffer a signal if input slew rates fall below the values outlined in the specification
for SX-A and RTSX-S devices. Depending on the application, different schmitt-trigger buffers can be used to fulfill the requirements.

Schmitt-trigger buffers are categorized in three configurations:
Fixed threshold voltages with non-inverted outputs
Fixed threshold voltages and inverted outputs
Variable threshold voltages with non-inverted outputs

With the aid of schmitt-trigger buffers, low slew-rate applications can also be handled with ease. Implementation of these buffers is
simple, not expensive, and flexible in that different configurations are possible depending on the application. The characteristics of
schmitt-trigger buffers (e.g. threshold voltage) can be fixed or user-adjustable if required.

ProASIC3E

Yes

223

ProASIC3
ProASIC PLUs
Axcelerator
ProASIC
SX-A

SX

eX

MX

Skew

Libero IDE v6.1 Users Guide

No
Yes*
No
No
No
No
No
No

*Although ProASIC PX¥8 supports the schmitt-trigger attribute,you cannot edit this attribute with the MultiView Navigator tools.
Instead, it has to be instantiated in the schematic or the netlist.

Values: A schmitt trigger has two possible states: on or off. The trigger for this circuit to change states is the input voltage level. That
is, the output state depends on the input level, and will change only as the input crosses a pre-defined threshold.

Default value: The default value is On.
For more information, please see the "Using Schmitt Triggers for Low Slew-Rate Input" Application Note on the Actel web site.

PDC command for setting this attribute: -set_io -schmitt_trigger (See the set_io command for ProASIC3E inthe PDC
Command Reference section of the Designer User's Guide.)

Purpose: Indicates whether there is a fixed additional delay between the enable/disable time for a tristatable 1/0. (A tristatable 1/O is
an 1/0 with three output states: high, low, and high impedance.) 2 ns delay on rising edge, 0 ns delay on falling edge.

Supported

ProASIC3E
ProASIC3
ProASIC 2Lus
Axcelerator
ProASIC
SX-A

SX

eX

MX

Slew

Yes
Yes
No
No
No
No
No
No
No
Values: You can set the skew for a clock to either on or off.

Default value: The default skew displayed in the 1/0 Attribute Editor is off.

Note: A Tri State or "tristatable” logic gate has three output states: high, low, and high impedance. In a high impedance state, the
output acts like a resistor with infinite resistance, which means the output is disconnected from the rest of the circuit.

PDC command for setting this attribute: -set_io -skew (See the set_io command for ProASIC3E or ProASIC3 in the PDC
Command Reference section of the Designer User's Guide.)

The slew rate is the amount of rise or fall time an input signal takes to get from logic low to logic high or vice versa. It is commonly
defined to be the propagation delay between 10% and 90% of the signal's voltage swing.

224

Design Constraints Guide

Purpose: Indicates the slew rate for output buffers. Generally, available slew rates are high and low.

ProASIC3E
ProASIC3
ProASIC BLUs
Axcelerator
ProASIC
SX-A

SX

eX

MX

Yes
Yes
No

Yes
No

Yes
Yes
Yes
Yes

Values: You can set the slew rate for the output buffer to either high or low. The output buffer has a programmable slew rate for both
high-to-low and low-to-high transitions. The low slew rate is incompatible with 3.3V PCI requirements.

For ProASIC3E and ProASIC3 families, you can edit the slew for designs using LVTTL, all LVCMOS, or PCIX 1/O standards. The
other 1/O standards have a preset slew value.

For the Axcelerator family, you can edit the slew only for designs using the LVTTL 1/O standard. For those devices that support
additional slew values, Actel recommends that you use the high and low values and let the software map to the appropriate absolute
slew value.

Default value: The default slew displayed in the I/O Attribute Editor is based on the selected 1/0 standard. For example, PCI mode
sets the default output slew rate to High.

Note: One way to eliminate problems with low slew rate is with external schmitt triggers.

In some applications, you may require a very fast (i.e. high slew rate) signal, which approaches an ideal switching transition. You can
accomplish this by either reducing the track resistance and/or capacitance on the board or increasing the drive capability of the input
signal. Both of these options are generally time consuming and costly. Furthermore, the closer the input signal approaches an ideal
one, the greater the likelihood of unwanted effects such as increased peak current, capacitive coupling, and ground bounce. In many
cases, you may want to incorporate a finite amount of slew rate into your signal to reduce these effects. On the other hand, if an input
signal becomes too slow (i.e. low slew rate), then noise around the FPGA's input voltage threshold can cause multiple state changes.
During the transition time, both input buffer transistors could potentially turn on at the same time, which could result in the output of
the buffer to oscillate unpredictably. In this situation, the input buffer could still pass signals. However, these short, unpredictable
oscillations would likely cause the device to malfunction. Actel has performed reliability tests on RTSX-S devices and the reliability
of the device is guaranteed for signals with slew rates up to 500ps. This test has not been performed on the SX-A family. For more
information, see the RTSX-S TR/TF Experiment report on the Actel web site.

PDC command for setting this attribute: -set_io -slew (See the set_io command for ProASIC3E, ProASIC3, or Axcelerator in
the PDC Command Reference section of the Designer User's Guide.)

Use Register

Purpose: The input and output registers for each individual 1/0O can be activated by selecting the check box associated with an 1/0.
The 1/0O registers are NOT selected by default.

ProASIC3E
ProASIC3
ProASIC BLUS

Yes
Yes
No

225

Axcelerator
ProASIC
SX-A

SX

eX

MX

Libero IDE v6.1 Users Guide

Yes
No
No
No
No
No

PDC command for setting this attribute: -set_io -register (See the set_io command for ProASIC3E, ProASIC3, or
Axcelerator in the PDC Command Reference section of the Designer User's Guide.)

<Jerome, for "ProASIC3E Restrictions" below - what does this mean? Can you explain it so the user can understand?>

ProASIC3E Restrictions: New DRC must be developed for 1/O register combining. The following architecture rules must be enforced:
1. DDR_REG and DDR_OUT macro must be combinable. There are no resources in the core tiles to implement the 1/O DDR macros.
a. 1/0 to DDR_REG fanout =1.

b. DDR_OUT to I/O fanout =1.

c. If DDR_REG and DDR_OUT are combined on the same 1/O, they must share the same clear signal.

d. Flip-flops will not be combined in an 1/O in the presence of DDR combining on the same 1/0.

ProASICa3 restrictions: The default 1/0 register combining behavior is controlled by a user global variable set in Compile.

226

Closing and Exiting

Your project is automatically saved when closed. To explicitly save your project, use File -> Save Project. To save it with another
name, use the Save Project As command.

To close a project, from the File menu, select Close Project.

To exit Libero IDE, from the File menu, select Exit.

227

Actel Headquarters

Actel Corporation is a supplier of innovative programmable logic solutions, including field-programmable gate arrays (FPGAS) based
on Antifuse and Flash technologies, high-performance intellectual property (IP) cores, software development tools, and design
services targeted for the high-speed communications, application-specific integrated circuit (ASIC) replacement, and radiation-tolerant
markets.

Address: Actel Corporation
2061 Stierlin Court
Mountain View
CA 94043-4655
USA

Phone: (650) 318-4200
(650) 318-4600

229

Libero IDE v6.1 Users Guide

Technical Support

Highly skilled engineers staff the Technical Support Center from 7:00 AM to 6:00 PM Pacific Time, Monday through Friday.

Visit Tech Support Online

For 24-hour support resources, visit Actel Technical Support at http://www.actel.com/custsup/search.html.

Contacting Technical Support

Contact us with your technical questions via e-mail or by phone. When sending your request to us, please be sure to include your full
name, company name, email address, and telephone number.

E-mail (Worldwide): tech@actel.com
Telephone (In U.S.): (650) 318-4460

(800) 262-1060
Telephone (Outside the US): Contact a local sales office

Customer Service

Contact Customer Service for order status, order expedites, return material authorizations (RMA), and first article processing. For
technical issues, contact Technical Support.

Northeast and North Central U.S.A. (650) 318-4480
Southeast and Southwest U.S.A. (650) 318-4480
South Central U.S.A. (650) 318-4434
Northwest U.S.A. (650) 318-4434
Canada (650) 318-4480
Europe (650) 318-4252 or +44 (0) 1276 401500
Japan (650) 318-4743
From the rest of the world (650) 318-4743

UNIX Help Known Issues

Related Topics Links Appear Broken

UNIX (Linux and SOL) do not support links in Related Topics buttons that point to different directories. This has to do with the way
the help is built for UNIX systems.

230

Index
JOK File EXTENSION ..o 37
A
Actel NeadQUANTErSoveeeeeeee et 229
ACTgen

in Libero IDE 20
ADB file association
Adding appliCationS.........c.coveiiiiieiireeee e 38
ADL FIle o 68
AFL file68
AFM FIlE o 68
ANAIYZING POWET ..o 61
ANALYZING TIMING...cteiiieieie e 61
Applications, starting from DeSigner..........cccoceovreireienienneienees 38
assign_global_ClOCK ..o 184
ASSIGN_NEL_MACTOS. ... ettt seeie ettt e neane 185
E Sy T | T =T o] FO RSO POTRPRSRSN 186
assigning 1/0 CONSLIAINEScccorireniiirieere e 155
Associate stimulus
attributes

GEfiNEA... oo 155

1/O ALEIDULES ... 214

1/0 standard
AUt SEINGS. ...t
Auxiliary files

IMPOITING . 104
AUXITHANY FIlES ... 45
AUXTTANY FIlES ..o 165
AX1QYOUL OPLIONS....eiviieiiicieeieese s 56
AXCEIErator [aYOULcooveviiriiiiee e 56
B
Backannotate, Tcl COmMMAaNd...........ccceeeveieiiiiiieiiiee e 91
Back-Annotation
DANK NAME. ...
BIT Fil oo
Bitstream fileoovieiiiii e
BSDL file
buffer

Index

SCAMILE IFIGOET ... 223
C
COB fIlB ..t 68
Command limitations, SDCcocovveiieeieeeceee ettt 211
Compile, Tcl COMMANGcoiiiiiie e 93
Constraints

ASSIGNING 1O ..

assigning location and region

ALTTDULES ... e

EFINEA ..o

ENEEIING 1.ttt

GCF CONSLIAINES ...t

1/0 @SSIGNMENT ... e

location and region assignMment............ocoevereieiinieneneneienens 154

PDC CONSLTAINTSvveieiciiie et s e e 156, 180

Physical CONSLIAINES........ccoeriiiirieircee e 55

SDC CONSLIAINES ...ttt 161

Timing CONSLIAINTSccvereiiiriee e 55, 154, 161

Y BS ettt 53, 153
CONSTFAINTS ...t 55
CONSTFAINTS ...ttt ene 154
Converting GCF to SDC CONSIaINtScccevviiieneieieeie e 159
create_clock, SDC CONStraintcccovvevieiivineiecice e 207
(O I 1) SRR 68
D
DCF il oo 55, 68, 154
DCF files, ADOULcocviiiiiiii e 161
DCF SYyNtaX RUIES........ccveiiiiiiieie e 162
defiNe_regioNocveiiieicece e 187, 188
delete DUFFEr tree ..ovoiiiiei e 189
design constraints

Y BS e eteeeeeeeeeeeeeeaes 53, 153
DeSIGN FIOW ... 3
Design FIOW in LIDEIO........coiiiieeie e e 3
Design Flow window
Device Selection Wizard..........cccooveiiienieiiinese e 40
[[11 S 68
(D] =To1 0] YRS 39

231

Libero IDE v6.1 Users Guide

dont_fix_globals Tcl command ..o 167
dont_optimize Tcl commandccocooeveiiiiiiieiecce e 171
dont_touch Tcl commandcccovvieeiiiiicie e 171
E
Edit

FING oo
EDN file
EFfOrtIEVEL....c.oceeece e
Exporting

EDN FileS....oiiiiiiiici e 68

TCIFIES oo 68
VECD fIlES .. 68
VHD FIlES .o 68
extended run laYOULccooviiiiiii s 60
extended_run_shell...........oooi e 99
extended-run laYOUL..........ccouriireiicec e 60
F
Files

Creating a new project

Creating HDL sources

Creating your teSthench.........ccoviiiiii e, 29
Deleting flleS ..o e 9
Design Hierarchy .15
File @SSOCIAtION........covvireiricice s 13
File MANAQET ... 16
Generating a Bitstream file.........ccccoovveiiiiiieiiiee e 85
Generating a FUSe fileccooeiiiiii e 85
Generating programming files..........ccccooiiiiniiiiiierecee, 70
IMPOFTING....cuieiieiieiiere e 8
IMPOrting aUXiliarycccooeiiiineiie e 104
IMPOITING SOUICE.....otiieiieiisie ittt 105
OPENING @ PIOJECEevviieiieieeiieieeie et 5
Opening a schematic source file..........coceoiiiiniiiiine 21
PrOXY SELHINGSveiveeeeeieieeie st 13

FINAING FIlES. .. 10
FIASh LaYOULceeieiieiieiecic e 57
FIASNLOCKovivei ittt 84, 85

232

FIashPOINT.........cooriiciecieceee e 71,72,73,74,77,83
FIASNPIO ...ttt ettt e s e e sbaeeeaans 11, 70
FIIp-FIOP FEPOTITveiciiee e 65
FUS i@ oo e 68
FUSE fIlB.c. ettt e e e e 70, 85
G
GCF constraints
GCF File.eiiiiiieecet it
GCF placement CONSEIAINTSccoverveerieesene e 172
GCF SYNEAX .vivieiiitieiiereeee e 159
GCF timing constraints, converting to SDC..........cccccceovivienniinnne 159
910DAI_CIOCKS ..ot 211
GI0DAI_SLOPS ...t e 214
H
HDL Editor
Creating HDL source filescccooeieiieiiieiiieeeeec e 19
HDL €0ITOT ..o s 18
Using the HDL editOr........ccocviiiiiiieisese s 19
HDL FIlES..co et 7
NOE SWAP ...t 215
I
1/0 assignment CONSEIAINTSoceieieiieiri e 154
1/0 attributes
DANK NAME ... 215
DY FamMily ..o 214
hot swap
1O StaNdardcoovveiiiiie 216
IO Thresholdc.oviveiiie e 219
INPUE AEIAY ..o 216
10AING .o 221
TOCKEA. ... 220
MACIO CEIL...o.viiiicice s 220
OULPUL AFIVE ..o 220

output load
pin number

POITNAME ...
POWET=UPD SEALE.......eouiiiiiiieiee et 222
FESISTOr PUIT . 223

SIBW s 224
USE TEUISTEL ..viviieieietce ettt sttt erennen 225
11O AtFIDULES ... 166
1/O AHFIDULES ... 214
1/0 constraints
ASSIGNING <.ttt 155
170 SLANAAI ... s 216
1/0 standards
COMPALIDIIILY c.eovecic 165
1/0 standards
1/0 threshold
IMPIEMENTALIONS ... 5
(1] o] 4 - U OSSR 104
import_source
Importing
auxiliary files......ocoooiiii 45, 157, 165
PDC FIlES ..t s 157
IMPOTEING ..t 8,43
IMporting GCF filesoeiiiei e 43
IMpOorting SDC fileSovoieieicicee e 43
INPUL EIAY ..o s 216
INEEINEL ... e 39
K
keep existing
KEYEA TOCK. ...t
L
Layout
Axcelerator (advanced options in TCI)ccoevvrviricienicrnn 115
ProASICPLUS (advanced options in TCl)........ccoceovininiencnne 113
SX (advanced options iN TCl) ...cccooveieiiiiiieeeceee e 112
Layout options eX/SX/SX-A, advanced..........cccceeererereienienenennens 59
Layout options, X, SX,; SX-A ..o 58
Layout Options, ProASIC and ProASICPLUS...........cccocvoiiiiiiennee 58
LeonardOSPECLIUMccoiiriiieieieie sttt 25
Libero
Design FIOW WINAOWccoiiiiiiiecieeeceie e 17
LOG WINAOW ...t 18
Log Window preferences .14
PrEfEIENCES ...ttt 12
Project IMaNAGETcvoverieieieiceie sttt 15
TEXE RAITON ..o 14

Index

10AAING. .. 221
LOC B 1ottt 68
location and region assignment

CONSEFAINTS ...ttt 154
location and region constraints

ASSIGNING 1vveveieie e 156
LOG e .ttt 68
LOG WINAOW ...ttt

Log WiIndow PreferenCesocoveeireeneeninieesee e

Log Window, Preferences in Designer

M
macro cell
ALTDULE ... 220
MENU ... 5, 8,9, 13, 15, 16, 19, 21, 32, 85
ModelSim, selecting stimulus fileccccooriiiniiiiiiiies 31
Modules, fINAINGcooriiii s 10
MUItE PASS 1AYOUL ... 60
MUILIPASS TAYOUL ...t 60
MUItI-PASS [AYOULcceiiiiiiiici e 60
N
Netlist optimization constraint syntax
NEW PIOJECT ...ttt
NEW T00IS ...
New version, software Updateccccoveoerereneneneeccee e 39
o
Opening existing designs
OUEPUL AFIVE .ot
OUEPUL 10D, ...t
P
Package file order, Verilog.........cccooveieneiiiiiiieseee e 12
Package file order, VHDLccocoiiiiiiiiic e 12
PDC commands
assign_global_ClOCK.........ccccovriiiiiieic e 184
ASSIGN_NEL_MACTOS ...c.veiiiiienieieeiceie st 185
Ee ST | =T o] o SRS 186
define_region
delete_ bUFfer treeccvveiiiieiecc e 189
dont_touch_buffer_tree........cocoooveoiiiiiene e 190
MOVE_FEJION 1.ttt sttt st enis 191

233

Libero IDE v6.1 Users Guide

reset_floorplan.........ocoooiiiiii 191

(=TT T OSSOSO 192

1eSEt_T0DANKocviiicc e 193

reset_net_critical

=] A o SO SR P U S RRPR

SEL H0DANK ..ecvveiicc e

SEL 1OCATION ..o

Set_Net_Criticalcooveiiiiicee e

SEE VIET o

set_vref_defaults

syntax conventions

unassign_global_ClocK ... 201

unassign_macro_from_regioncccoceeeerenciencneneieeeenas 203

unassign_net_macros

UNAEINE_TBGION. ...c..iiiiieiiiiiie et
PDC constraint file ..o
PDC file

importing PDC fileSccccoovvvriiiniieiriereee 156, 157, 180
PDC files

SYNLAX CONVENTIONSeoviiiiiiiieie et 181
PDF Il oo 40
Permanent 10CKccocvrviiiieirceee e 84
physical CONSIFAINTSccooveririiieeee e 154, 156, 180
physical design CONSIraiNtSccccoeeririeireierseeeereee e 156, 180
pin

aSSIGNING T0 @ PO ...evieiiieee e 119

committing

locking assignment t0 @ POrt.........cocoeeieeieeneieneieeeeeee 123,124

UNASSIGNMING ...ttt ettt sbe e eneenens 124

UNASSIGNING @l1....oiiiiie s 125

unlocking from @ Port.........ocoeeiiieieee e 126
PIN Fil8 o 68
Pin Files, ADOUL.........c.cocuiiiii it 164
PN NUMDEE ...
PIN_ASSTON ¢ttt sttt sb et reane
pin_commit...

234

Placement constraintS/GCFccoooeiiiiiiiie e 172
POWET ANAIYSIS.....ciiiiiiiieieieiee e 61
POWET-UP SEALE ...ttt 222
PRB FIlB.. .o 68
PreciSion RTL ..ottt 24
Preferences, DESIGNET ..ot 39, 40
Preferences, setting in LiDero..........cccooeiiiiiiie e 12
ProASIC timing CONSIIAINTS........cccorverieiiieesese e 159
ProASICPLUS timing CONSraiNtS.........ccovverinierieinincnese e 159

Programming
Project implementations

ProjECt IMANAGETeviteiiieiei ettt
PrOJECT OPLIONS.viii et
Project profile in Libero
PrOJECT SEIHINGS ...ttt
PrOJECT SOUICESvvieveieeieete ettt ettt st
PrOJECES ..vi et
PrOTOLYPE ..
PIOXY ¢ttt
R
Reports

DESIGNET TEPOIS......cveeiiitiiiete e 63

FIIP-FIOP FEPOITS ...t 65

Pin reports

SEALUS FEPOITS ..t 64
RESEIVEd KEYWOITS ..ot 11
reset_floorplan.........coooiiiiii 191
(== A [USRS 192
FESEL_TODANK ... 193
reSet_NEt_CrItICAlcoveveieici et 194
TESISTON PUIL....oiiiiie e 223
RTAX-S PrototyPing....cc.coveeeireieieeieieeeee e 86
)
SAIF il 68
Save

DeSIgN dIFECLONYcuieiieiicieite et 39
SAVE PrOJECE AS ...ttt 6
Schematic

Opening a schematic source fileccocoviiiiniiiiciiicee 21
SCREMALIC ...ttt 21
SCMILE EFIGOET .. 223

SDC constraints

Command lIMitationsccccoverieririeiriieree e 211
Constraints, converting from GCFccocooveiinieniiincnns 159
Create_ClOCKoiieiieiicecc s 207
Design object access COMmMaNdsccooveeverererceenesieseenenns 205
Importing Auxiliary files..........ccoorviiiiiiie 45, 165
SDC file SUMMANYoiiiiiii e
set_false _Path........ccoooiiiiiiiii
Set_ MaX_delay ..o
set_multicycle_path
SDC ilB.uiiiiieiicee s
SDF Fl@ e
SBCUNILY ...ttt ettt e et ettt ne e enea
Security Key85
SEG Il et 68
set_auto_global..........coooii 168
set_auto_global_fanout...........cocveieiiiiniiee 168
set_false_path, SDC CONSLIaiNt..........ccovreeririreieerceee e 208
SEL H0DANK......eiiiieccc e 195
SEL 1OCATION. ... 195
set_max_delay, SDC CONSITAINT.........ccccoeireirereereceee e 209
set_multicycle_path, SDC CONStraint...........cccceverererrrieneieseenneas 210
set_net_critical
SEE VIET e ————

set_vref defaultS.......ccooviiiiiiic 201
Silicon Sculptor
Generating a fuse file

Generating programming files..........ccccooioiieniieiiineeee, 70

Starting Silicon SCUIPLOrcoccvvviiieiiieisee e 71
Simulation

MOAEISIM ...t s 30

(@] 011 To] 4 OSSPSR 30
SKEBW ...ttt 224
SIBW .o 224
SOFtWAIE UPAALE ... s 39
Source files

IMPOITING ... e 105
SOUFCE FIlES .o 43
STAPL FIlE ..o 70
Starting applications from Designer38
ST I8 68

Stimulus file SEIECIONcvvecviceececece e 31

Index

syntax
PDC FIlBS..uuiiiiiieieiee e s 181
Syntax RUIES, DCFcoviiiieiirieiese e 162
Synthesis
Mentor Graphics LeonardoSpectrumc.oecvvveerieninrerennenenns 25
Mentor Graphics Precision RTLcccovvvrienineicnieneeesieees 24
Starting SYNtESISccviiiiiieeeer e 22
Synplicity SYNPlfy ..o 23
T
TCL ettt 68, 87, 89, 102, 108, 109, 110, 133
Tcl commands
IMPOIT_AUX .ttt ettt 104
IMPOIT_SOUICE ...ttt e 105
PIN_BSSTON «.tttiiieiee ettt 119
PIN_COMMIT ...ttt 122
PIN_FIX et 123
PIN_FIX @l 124
PIN_UNSSIGN 1.ttt 124,125
PIN_UNTIX et 126
TCHFIIES e 87
tcl script files
PDC COMMANGSovviiiiiiieiiiice et 156, 180
Technical SUPPOIToviii s 230
Testbench
TEXE RAITON ...t 14
Timing Analysis, OVEIVIEWccccoeieiiiiniieie e 61
Timing driven layOUL..........cocoiiiiineieece e 57
TiMING SIMUIALION ..o 32
TOOIS MENU...ieii e e 38
TroubleSNOOtINGcveveiieiieiceee s 230
u
unassign_global_CloCK ... 201
unassign_macro_from_regionccccoueereneneencienc e 203
UNASSIGN_NEE_MACKOSveviiiieeieienieesteeiesie e e et seesbeseeeeseaseas 204
undefine_region
UNDX oottt
UPAAEES ...ttt enea

use register

v
VCD filE oo 68

235

Libero IDE v6.1 Users Guide

Verilog package file order ...
Version Checkingcooveeiiieiiicise e 13,
VHDL package file Order ..o

236

Actel Corporation
2061 Stierlin Court
Mountain View, CA
94043-4655 USA
Phone 650.318.4200
Fax 650.318.4600

Index

Actel and the Actel logo are registered trademarks of Actel Corporation.

All other trademarks are the property of their owners.

JActel

http://www.actel.com

Actel Europe Ltd.

Dunlop House, Riverside Way
Camberley, Surrey GU15 3YL
United Kingdom

Phone +44 (0)1276 401 450
Fax +44 (0)1276 401 490

Actel Japan

EXOS Ebisu Bldg. 4F
1-24-14 Ebisu Shibuya-ku
Tokyo 150 Japan

Phone +81.03.3445.7671
Fax +81.03.3445.7668

Actel Hong Kong

39th Floor, One Pacific Place
88 Queensway, Admiralty
Hong Kong

Phone +852.227.35712
Fax +852.227.35999

237

	What's New in Libero IDE v6.1
	Libero IDE Design Flow
	Creating a New Libero Project
	Opening Your Libero Project
	Project Implementations in Libero IDE
	Saving a Project with a New Name
	Closing and Exiting
	Project Sources
	New Files
	Importing Files
	Libero IDE File types
	Saving Files
	Deleting Files
	Finding Files
	Finding Modules
	Reserved Actel keywords
	Libero Project Options
	Libero Project Settings
	Programming
	Setting Your Project Profile
	VHDL Package Files Organization
	Verilog Header File Organization
	Setting Preferences
	Updates
	Setting Your Proxy
	Startup Tab
	Setting Your log Window Preferences
	Text Editor
	Libero’s Project Manager
	Design Hierarchy
	File Manager
	Design Flow Window
	HDL Editor Window
	Log Window
	Using the HDL Editor
	Creating New HDL Files
	Opening an HDL Source File
	Importing HDL Source Files
	HDL Syntax Checker
	Commenting Text
	Using ACTgen Cores
	ViewDraw AE
	Importing Schematics
	Opening a Schematic Source File
	Using ACTgen Cores
	Synthesis Overview
	Post-Synthesis Files
	Synplify
	Synthesizing Your Design with Synplify
	Integrating Precision RTL
	Starting Precision RTL
	Integrating LeonardoSpectrum
	Synthesizing Your Design with LeonardoSpectrum
	Integration Issues
	Activating and Deactivating PALACE for Physical Synthesis
	Physical Synthesis Files in Libero
	Using the PALACE Tool
	WaveFormer Lite
	Creating Your Testbench with WaveFormer Lite
	ModelSim AE
	Setting Your Simulation Options
	Selecting a Stimulus File for Simulation
	Selecting Additional Modules for Simulation
	Performing Functional Simulation
	Performing Timing Simulation
	Welcome to Designer
	Starting Designer
	Starting a New Design
	Opening an Existing Design
	Opening Designs Created in Previous Versions
	Opening Locked Files
	Starting other applications from Designer (PC only)
	About Your Installation
	Directory Preferences
	Updates
	Proxy
	File Association (PC Only)
	Setting Your Log Window Preferences
	PDF Reader (UNIX Only)
	Web Browser (UNIX Only)
	Device Selection Wizard
	Setting Die, Package, Speed, and Voltage
	Device Variations
	Setting Operating Conditions
	Changing Design Name and family
	Changing Device Information
	Importing Source Files
	Auditing Files
	Importing Auxiliary Files
	Keep Existing Timing Constraints in SDC Files
	Keep Existing Physical Constraints
	Compiling Your Design
	Setting Compile Options
	MX, SX, SX-A, eX Compile Options
	Axcelerator Compile Options
	ProASIC and ProASICPLUS Compile Options
	ProASIC3/E Compile Options
	About Design Constraints
	About Location and Region Assignments
	About Physical Constraints and Attributes
	Types of Physical Constraints
	Timing Constraints
	Running Layout
	Axcelerator Layout Options
	ProASIC3/E, ProASICPLUS, and ProASIC Layout Options
	ProASIC3/E, ProASICPLUS, and ProASIC Layout advanced Options
	eX, SX, SX-A Layout Options
	eX, SX, and SX-A Advanced Layout Options
	ACT, MX, and DX Layout Options
	ACT, MX, and DX Advanced Layout Options
	Incremental Placement
	Multiple Pass Layout
	Analyzing Timing in Your Design
	Analyzing Power Consumption in Your Design
	Viewing Your Netlist
	Back-Annotation
	Available Report Types
	Status Reports
	Timing Reports
	Pin Reports
	Flip-Flop Reports
	Power Reports
	Timing Violations Reports
	I/O Bank Reports
	Exporting Files
	Saving Your Design
	Exiting Designer
	Generating Programming Files
	Starting Silicon Sculptor from Libero IDE
	Generate a Programming File
	Silicon Signature
	Programming Security Settings
	Custom Security Levels
	Programming the FlashROM
	Custom Serialization Data for FlashROM region
	Custom Serialization Data File Format
	Programming the FPGA Array
	Reprogramming a Secured Device
	FlashLock
	Generating Bitstream and STAPL Files
	Generating a Fuse File
	Generating Prototype Files
	About Tcl Commands
	Tcl Documentation Conventions
	backannotate
	close_design
	compile
	export
	extended_run_shell
	get_defvar
	get_design_fileName
	get_design_info
	import_aux
	import_Source
	is_design_loaded
	is_design_modified
	is_design_state_complete
	layout
	layout (Advanced Options for the SX family)
	layout (Advanced Options for ProASIC and ProASICPLUS)
	layout (Advanced Options for Axcelerator)
	new_design
	open_design
	pin_assign
	pin_commit
	pin_fix
	pin_fix_all
	pin_unassign
	pin_unassign_all
	pin_unfix
	report
	save_design
	set_design
	set_device
	set_defvar
	smartpower_add_pin_in_domain
	smartpower_commit
	smartpower_create_domain
	smartpower_remove_domain
	smartpower_remove_pin_frequency
	smartpower_remove_pin_of_domain
	smartpower_restore
	smartpower_set_domain_frequency
	smartpower_set_pin_frequency
	timer_add_clock_exception
	timer_add_pass
	timer_add_stop
	timer_commit
	timer_get_path
	timer_get_clock_actuals
	timer_get_clock_Constraints
	timer_get_maxdelay
	timer_get_path_Constraints
	timer_remove_clock_exception
	timer_remove_pass
	timer_remove_stop
	timer_restore
	timer_setenv_clock_freq
	timer_setenv_clock_period
	timer_set_maxdelay
	timer_remove_all_Constraints
	About Design Constraints
	Designer Naming Conventions
	Timing Constraints
	Location and Region Assignment Constraints
	I/O Assignment Constraints
	Attributes
	Overview - Entering Constraints
	Assigning I/O Constraints
	Assigning Location and Region Constraints
	About Physical Design Constraint (PDC) Files
	Importing PDC Files (ProASIC3E, ProASIC3, and Axcelerator fa
	Types of Constraints
	ProASIC and ProASICPLUS Timing Constraints
	GCF to SDC Timing Constraints Conversion
	GCF Syntax Conventions
	Synopsys Design Constraints (SDC) Files
	About DCF Files
	DCF Syntax Rules
	About PIN Files
	Importing Auxiliary Files
	I/O Standards Compatibility Matrix
	I/O Standards and I/O Attributes Applicability
	GCF Constraint Quick Reference
	About Global ReSource Constraints
	Priority Order for Global Promotion
	dont_fix_globals
	read
	set_auto_global
	set_auto_global_fanout
	set_global
	set_noglobal
	use_global
	Netlist Optimization Constraints
	Netlist Optimization Constraint Syntax
	dont_optimize
	dont_touch
	optimize
	set_max_fanout
	Placement Constraints
	Macro
	Package Pin and Pad Location
	net_critical_ports
	set_critical
	set_critical_port
	set_empty_io
	set_empty_location
	set_initial_io
	set_initial_location
	set_io
	set_io_region
	set_location
	set_memory_region
	set_net_region
	create_clock
	generate_paths
	set_false_path
	set_input_to_register_delay
	set_max_path_delay
	set_multicycle_path
	set_register_to_output_delay
	About Physical Design Constraint (PDC) Files
	PDC Syntax Conventions
	PDC Naming Conventions
	assign_global_clock
	assign_local_clock
	assign_net_macros
	assign_region
	define_region (rectangular region)
	define_region (rectilinear region)
	delete_buffer_tree
	dont_touch_buffer_tree
	move_region
	reset_floorplan
	reset_io
	reset_iobank
	reset_net_critical
	set_io
	set_iobank
	set_location
	set_multitile_location (ProASIC3/E)
	set_net_critical
	set_vref
	set_vref_defaults
	unassign_global_clock
	unassign_local_clock
	unassign_macro_from_region
	unassign_net_macro
	undefine_region
	Design Object Access Commands
	get_clocks
	get_pins
	get_ports
	all_inputs
	all_outputs
	create_clock (SDC clock Constraint)
	set_false_path (SDC false path Constraint)
	set_load (SDC load Constraint)
	set_max_delay (SDC max path Constraint)
	set_multicycle_path (SDC multiple cycle path Constraint)
	SDC Command Limitations
	global_clocks
	max_delays/min_delays
	io_arrival_Times
	global_stops
	pin_loads
	I/O Attributes by Family
	Bank Name
	Hot Swappable
	Input Delay
	I/O Standard
	I/O Threshold
	Locked
	Macro cell
	Output Drive
	Output Load or Loading (pf)
	Pin Number
	Port Name
	Power-Up State
	Resistor Pull
	Schmitt Trigger
	Skew
	Slew
	Use Register
	Closing and Exiting
	Actel Headquarters
	Technical Support
	Customer Service
	UNIX Help Known Issues
	Index

