ProASIC and ProASIC^{PLUS}

Macro Library Guide

Table of Contents

Actel Corporation, Mountain View, CA 94043

© 2004 Actel Corporation. All rights reserved.

Printed in the United States of America

Part Number: 5579016-4

Release: July 2004

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Actel.

Actel makes no warranties with respect to this documentation and disclaims any implied warranties of merchantability or fitness for a particular purpose. Information in this document is subject to change without notice. Actel assumes no responsibility for any errors that may appear in this document.

This document contains confidential proprietary information that is not to be disclosed to any unauthorized person without prior written consent of Actel Corporation.

Trademarks Actel is a trademark of Actel Corporation.

All other products or brand names mentioned are trademarks or registered trademarks of their respective holders.

5579016-3

Table of Contents

Combinational Cells

Naming Conventions for Combinational Cells	. 7
Truth Table Symbol Descriptions.	. 7
Macros	
AND2	0
ANDZ ANDZ ANDZ ANDZ ANDZ ANDZ ANDZ ANDZ	
AND3	
AND3FFT	
AND3FTT	
AO21	
AO21FTF	
AO21FTT	
AO21TTF	
AOI21	
AOI21FTT	
AOI211TTF	
BFR	
BUBBLE	
GND	. 16
INV	
MUX2H	
MUX2L	
NAND2	
NAND2FT	
NAND3. NAND3FFT	
NAND3FTT	
NOR2	
NOR2FT.	
NOR3	
NOR3FFT	. 22
NOR3FTT	
NUBBLE	
OA21.	
OA21FTF	
OA21FTT	
OA21TTF	
OAI21	
OAI21FTT	
OAI21TTF	
OR2	
OR2FT	. 28
OR3	29
OR3FFT	
OR3FTT	
PWR	
XNOR2 VNOP2ET	
XNOR2FT	
XOR2	
/101001 1	56

2 Storage Cells

Naming Conventions for Flip-Flops	3
Naming Conventions for Latches	3
Truth Table Symbol Descriptions	ŀ
Macros	
DFF	-
DFFB	-
DFFBI	
DFFCI	
DFFI	
DFFL 33	
DFFLB	
DFFLBI)
DFFLC	
DFFLCI	
DFFLI	
DFFLS 4	
DFFLSI	-
DFFS 44	
DFFSI	
LD	
LDBI	-
LDC	-
LDI.	
LDL 46	
LDLB 44	
LDLBI	7
LDLC	1
LDLCI	3
LDLI	3
LDLS	
LDLSI	
LDS	
LDSI)

3 Input/Output Cells

Input Buffers
Global Buffers
Output Buffers 52
Bidirectional Buffers
Truth Table Symbol Descriptions
Macros
GLx
GLxU
GLINT
GLIBx
GLIBxU
GLMIBx
GLMIBxU
GLMIBLx

GLMIBLxU	61
IBx	62
IBxU	62
IOB25x	63
IOB25xU	63
IOB25LPx.	64
IOB25LPxU	64
IOB33x	65
IOB33xU	65
IOBL25x	66
IOBL25xU	66
IOBL25LPx.	67
IOBL25LPxU	67
IOBL33x	68
IOBL33xU	68
OB25x	69
OB25LPx	69
OB33x	70
OTB25x	70
OTB25LPx	71
OTB33x	71
OTBL25x	72
OTBL25LPx	72
OTBL33x	73
GLMIOBx	74
GLMIOBLx	75
GLMXx	76
GLMXLx.	77
GLPE	78
GLPEMIB	78

4 Memory Cells

Naming Convention for RAMs.	. 79
Naming Convention for FIFOs	. 80
Macros	
RAM256x9AA	83
RAM256x9AAP	
RAM256x9ASR	84
RAM256x9ASRP	84
RAM256x9AST	85
RAM256x9ASTP	85
RAM256x9SA	86
RAM256x9SAP	86
RAM256x9SSR	87
RAM256x9SSRP	87
RAM256x9SST	88
RAM256x9SSTP	88
FIFO256x9AA	
FIFO256x9AAP	89
FIFO256x9ASR	90
FIFO256x9ASRP	
FIFO256x9AST	
FIFO256x9ASTP	
FIFO256x9SA	92

FIFO256x9SAP	92
FIFO256x9SSR	
FIFO256x9SSRP	
FIFO256x9SSTP	
PLLMACRO	95

A Product Support

Customer Service	. 97
Actel Customer Technical Support Center	. 97
Actel Technical Support	. 97
Website	. 97
Contacting the Customer Technical Support Center	. 98

Combinational Cells

The A500K and APA combinational cells implement all basic logic functions and have the following features:

- Inversion available on all inputs.
- Optimized for synthesis applications.

Naming Conventions for Combinational Cells

Names for combinational cells are composed of two parts:

- A name identifying the logic function (AND2, NOR3, XOR2, BFR, etc.).
- A 2- or 3-character code describing the pin inversions such as TFF. Capital T (true) indicates not inverted and capital F (false) indicates inverted. When no inputs are inverted, the inversion code is omitted.

Note: Not all combinations of inverted inputs are available. We have limited the number to avoid redundancy (e.g. AND2FF is logical equal to NOR2).

For Example:

AND2FT - The cell is a 2-input AND gate. The pin inversion code FT indicates that the A input pin is inverted, and the B input pin is not inverted.

AOI21FTF - The cell is a 3-input AND-OR-INVERT gate into a 2-input NOR gate. Pin A and C are inverted, pin B is not.

Truth Table Symbol Descriptions

Combinational truth tables use the following symbols:

- 1 indicates logic level one.
- 0 indicates logic level zero.
- X indicates either logic level one or zero (don't care).

AND2

Function

2 Input AND

Truth Table

В	Y
1	1
Х	0
0	0
	1 X 0

	Family	Tiles
ľ	All listed	1

AND2FT					A500K, APA
		Function 2 Input AND v	with Active Low	A Input	
<u>_</u> A		Truth Table			
		Α	В	Y	
<u>_ B</u>		Х	0	0	
-		0	1 X	1	
		Tile Usage	Х	0	
		Family	Tiles		
		All listed	1		
Input	Output			-	
A, B	Y				

AND3

A B Y

Function

3 Input AND

Truth Table

Α	В	С	Y
1	1	1	1
Х	Х	0	0
Х	0	Х	0
0	Х	Х	0

Tile Usage

Family	Tiles
All listed	1

In	pu	l
A,	B,	С

AND3FFT

...

Output Y

A500K, APA

A500K, APA

A, B, C

Y

Function

3 Input AND with Active Low A and B Inputs

Truth Table

Α	В	С	Y
Х	Х	0	0
0	0	1	1
Х	1	Х	0
1	Х	Х	0

Family	Tiles
All listed	1

AND3FTT

Function

3 Input AND with Active Low A Input

Truth Table

Α	В	С	Y
Х	Х	0	0
Х	0	Х	0
0	1	1	1
1	Х	X	0

Tile Usage

Family	Tiles
All listed	1

Λ	M	91	
	.		

A, B, C

Output Y

A500K, APA

3 Input AND-OR

Truth Table

Α	В	С	Y
0	Х	0	0
Х	0	0	0
Х	Х	1	1
1	1	Х	1

Family	Tiles
All listed	1

A021FTF

Function

3 Input AND-OR with Active Low A and C Inputs

Truth Table

Α	В	С	Y
Х	Х	0	1
Х	0	1	0
0	1	Х	1
1	Х	1	0

Tile Usage

Family	Tiles	
All listed	1	

n	pu	t
٩.	B,	С

A500K, APA

Function

3 Input AND-OR with Active Low A Input

Truth Table

Α	В	С	Y
Х	0	0	0
Х	Х	1	1
0	1	Х	1
1	Х	0	0

Tile Usage

Family	Tiles
All listed	1

A021FTT

A021TTF

Function

3 Input AND-OR with Active Low C Input

Truth Table

Α	В	С	Y
Х	Х	0	1
Х	0	1	0
0	Х	1	0
1	1	Х	1

Tile Usage

Family	Tiles
All listed	1

A0121

A500K, APA

Function

3 Input AND-OR-INVERT

Truth Table

Α	В	С	Y
0	Х	0	1
Х	0	0	1
Х	Х	1	0
1	1	Х	0

Family	Tiles
All listed	1

AOI21FTF

Function

3 Input AND-OR-INVERT with Active Low A and C Inputs

Truth Table

Α	В	С	Y
Х	Х	0	0
Х	0	1	1
0	1	Х	0
1	Х	1	1

Tile Usage

Family	Tiles
All listed	1

n		t	
Α.	B.	С	

A0I21FTT

Y

A500K, APA

A500K, APA

Function

3 Input AND-OR-INVERT with Active Low A Input

Truth Table

Α	В	С	Y
Х	0	0	1
Х	Х	1	0
0	1	Х	0
1	Х	0	1

Family	Tiles
All listed	1

AOI21TTF

Function

3 Input AND-OR-INVERT with Active Low C Input

Truth Table

Α	В	С	Y
Х	Х	0	0
Х	0	1	1
0	Х	1	1
1	1	Х	0

Family	Tiles
All listed	1

BUBBLE

Function

Inverter (Only for internal embedded memory)

Truth Table

Α	Y
0	1
1	0

Tile Usage

Family	Tiles
All listed	1

input A Output Y

INV

Function

Inverter

Truth Table

All listed

Α	Y
0	1
1	0
Tile Usage	
Family	Tiles

1

MUX2	

A, B, S

Output Y

A500K, APA

Function

2 to 1 Multiplexer

Truth Table

S	Y	
0	А	
1	В	
Tile Usage		
Family	Tiles	

1

All listed

ProASIC Macro Library Guide

MUX2L

Function
2 to 1 Multiplexer with Active Low Select

Truth Table

S	Y
0	В
1	А

Tile Usage

Family	Tiles
All listed	1

A, B, S

NAND2

Output Y

A500K, APA

A, B

Output Y

Function

2 Input NAND

Truth Table

Α	В	Y
1	1	0
0	Х	1
Х	0	1
Tile Usage		

Family	Tiles
All listed	1

NAND2FT

Function

2 Input NAND with Active Low A Input

Truth Table

Α	В	Y
1	Х	1
0	1	0
Х	0	1

Family	Tiles
All listed	1

NAND3						a500k, apa
		Function 3 Input NAND)			
A B C		Truth Table			Γ	1
B) <u> </u>	Α	В	С	Y	
<u> </u>		1	1	1	0	
		0	Х	Х	1	
		Х	Х	0	1	-
		Х	0	Х	1]
		Tile Usage				
	Outrust	Family	Tiles]		
Input	Output	All listed	1	1		
A, B, C	Y			-		

NAND3FFT

Function

3 Input NAND with Active Low A and B Inputs

Truth Table

Α	В	С	Y
Х	Х	0	1
0	0	1	0
Х	1	Х	1
1	Х	Х	1

Tile Usage

Family	Tiles	
All listed	1	

Input A, B, C

OI Y

Output Y

NAND3FTT

Output Y

Function

3 Input NAND with Active Low A Input

Truth Table

Α	В	С	Y
Х	Х	0	1
Х	0	Х	1
0	1	1	0
1	Х	Х	1

Tile Usage

Family	Tiles	
All listed	1	

A500K, APA

NOR2

A500K, APA

A500K, APA

2 Input NOR

Truth Table

Α	В	Y
0	0	1
1	Х	0
Х	1	0

Tile Usage

Family	Tiles
All listed	1

NOR2FT

Y_ В

Function

2 Input NOR with Active Low A Input

Truth Table

А	В	Y
0	Х	0
1	0	1
Х	1	0

Tile Usage

Family	Tiles	
All listed	1	

Input A, B

Output Y

NOR3

Function

3 Input NOR

Truth Table

Α	В	С	Y
0	0	0	1
1	Х	Х	0
Х	Х	1	0
Х	1	Х	0

Tile Usage

Family	Tiles	
All listed	1	

Input A, B, C Output Y

A500K, APA

A500K, APA

Y

Input A, B, C Output Y

Function

3 Input NOR with Active Low A and B Inputs

Truth Table

Α	В	С	Y
Х	0	Х	0
0	Х	Х	0
1	1	0	1
Х	Х	1	0
Tile Usage			

Family	Tiles
All listed	1

NOR3FFT

22

NOR3FTT

Function

3 Input NOR with Active Low A Input

Truth Table

Α	В	С	Y
0	Х	Х	0
1	0	0	1
Х	Х	1	0
Х	1	X	0

Tile Usage

Function

Truth Table

Family	Tiles
All listed	1

NUBBLE

Α	Y
0	0
1	1
Tile Usage	
Family	Tiles

Buffer (Only for internal embedded memory)

Input А

Output Y

0A21

Function

3 Input OR-AND

Truth Table

Α	В	С	Y
1	Х	1	1
Х	1	1	1
Х	Х	0	0
0	0	Х	0

Tile Usage

Family	Tiles
All listed	1

Function

3 Input OR-AND with Active Low A and C Inputs

Truth Table

Α	В	С	Y
0	Х	0	1
Х	Х	1	0
1	0	Х	0
Х	1	0	1

Tile Usage

Family	Tiles
All listed	1

A500K, APA

OA21FTT

Function

3 Input OR-AND with Active Low A Input

Truth Table

Α	В	С	Y
Х	Х	0	0
0	Х	1	1
1	0	Х	0
Х	1	1	1

Tile Usage

	Family	Tiles
Ì	All listed	1

OA21TTF

A500K, APA

Function

3 Input OR-AND with Active Low C Input

Truth Table

Α	В	С	Y
0	0	Х	0
Х	1	0	1
Х	Х	1	0
1	Х	0	1

Family	Tiles
All listed	1

OAI21

Function

3 Input OR-NAND

Truth Table

Α	В	С	Y
1	Х	1	0
Х	1	1	0
Х	Х	0	1
0	0	Х	1

Tile Usage

Family	Tiles
All listed	1

A, B, C

OAI21FTF

Y

A500K, APA

A500K, APA

Function

3 Input OR-NAND with Active Low A and C Inputs

Truth Table

Α	В	С	Y
0	Х	0	0
Х	Х	1	1
1	0	Х	1
Х	1	0	0

Family	Tiles
All listed	1

OAI21FTT

Function

3 Input OR-NAND with Active Low A Input

Truth Table

Α	В	С	Y
Х	Х	0	1
0	Х	1	0
1	0	Х	1
Х	1	1	0

Tile Usage

Family	Tiles
All listed	1

OAI21TTF

A500K, APA

Function

3 Input OR-NAND with Active Low C Input

Truth Table

Α	В	С	Y
0	0	Х	1
Х	1	0	0
Х	Х	1	1
1	Х	0	0

Tile Usage

Family	Tiles
All listed	1

Output Y

OR2

Function

2 Input OR

Truth Table

Α	В	Y
1	Х	1
Х	1	1
0	0	0

Tile Usage

Family	Tiles
All listed	1

Input A, B Output Y

A500K, APA

OR2FT

Function

2 Input OR with Active Low A Input

Truth Table

Α	В	Y
0	Х	1
1	0	0
Х	1	1

Tile Usage

Family	Tiles
All listed	1

OR3

Α	В	С	Y
1	Х	Х	1
Х	1	Х	1
Х	Х	1	1
0	0	0	0

Family	Tiles
All listed	1

OR3FFT

OR3FTT

Function

3 Input OR with Active Low A Input

Truth Table

Α	В	С	Y
0	Х	Х	1
1	0	0	0
Х	Х	1	1
Х	1	Х	1

Tile Usage

Family	Tiles
All listed	1

Input A, B, C Output Y

PWR A500K, APA

XNOR2

Function 2 Input Exclusive NOR

Truth Table

Α	В	Y
0	0	1
1	1	1
1	0	0
0	1	0

Tile Usage

Family	Tiles
All listed	1

XNOR2FT

A500K, APA

Function

2 Input Exclusive NOR with Active Low A Input

Truth Table

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Tile Usage

Family	Tiles
All listed	1

Input A, B Output Y

XOR2

Function Y В Input Output

2 Input Exclusive OR

Truth Table

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	0

Tile Usage

Family	Tiles
All listed	1

A, B

XOR2FT

Y

A500K, APA

Input A, B

Output Y

Function

2 Input Exclusive OR with Active Low A Input

Truth Table

Α	В	Y
0	0	1
0	1	0
1	0	0
1	1	1

Tile Usage

Family	Tiles
All listed	1

Storage Cells

The A500K storage cells implement transparent latch and D-type flip-flop functions and have the following features:

- Inversion available on Enable pin on all latches.
- Optimized for synthesis flows.
- Asynchronous CLR and SET pins.

Naming Conventions for Flip-Flops

Names for the flip-flop cells are composed of four parts:

- A base name identifying the cell as a D-type flip-flop (DFF).
- An optional 1-character code describing the clock pin. L indicates negative edge triggered. No code indicates positive edge triggered.
- Asynchronous input type and polarity: an optional 1-character code designating the control pins as follows:
 - B = Active high, **b**oth set and clear
 - C = Active high clear
 - $S = Active \ high \ \boldsymbol{s}et$

When omitted, the cell has neither SET nor CLEAR input.

• An optional 1-character code describing the output. I indicates output is inverted. No code indicates output is not inverted.

For Example:

DFFC - The cell is a positive edge triggered D-type flip-flop with active high CLEAR.

DFFLB - The cell is a negative edge triggered D-type flip-flop with active high SET and CLEAR.

Naming Conventions for Latches

Names for the latch cells are composed of four parts:

- A name identifying the logic function as a latch (LD).
- An optional 1-character code describing the Enable pin. L indicates active low. No code indicates active high.

- Asynchronous input type: an optional 1-character code designating the control pins as follows:
 - B = Active high, **b**oth set and clear
 - C = Active high clear
 - S = Active high set

When the latch has neither SET nor CLEAR pins, this code is omitted.

• An optional 1-character code describing the output polarity. I indicates output is inverted. No code indicates output is not inverted.

For Example:

LDL - The cell is a transparent latch with active low enable and neither SET nor CLEAR pins.

LDLSI - The cell is a transparent latch with active low enable, active high SET pin and inverted output pin named QBAR.

Truth Table Symbol Descriptions

Combinational truth tables use the following symbols:

- 1 indicates logic level one.
- 0 indicates logic level zero.
- \uparrow indicates positive (rising) edge.
- \downarrow indicates negative (falling) edge.
- D indicates input port.
- !D indicates inverted input port.
- Q indicates output port.
- QBAR indicates inverted output port.
- X indicates either logic level one or zero (don't care).

DFF

Function

Positive Edge Triggered D-Type Flip-Flop

1

Truth Table

All listed

CLK	Q _{n+1}
\uparrow	D
Tile Usage	
Family	Tiles

A500K, APA

Function

Positive Edge Triggered D-Type Flip-Flop with Active High Set and Clear

Truth Table

CLK	SET	CLR	\mathbf{Q}_{n+1}
Х	1	0	1
Х	Х	1	0
\uparrow	0	0	D

Family	Tiles
All listed	4

DFFBI

Function

Positive Edge Triggered D-Type Flip-Flop with Active High Set and Clear and Active Low Output

Truth Table

CLK	SET	CLR	QBAR _{n+1}
Х	1	0	0
Х	Х	1	1
↑	0	0	!D

Tile Usage

Family	Tiles
All listed	4

DFFC

Function

Positive Edge Triggered D-Type Flip-Flop with Active High Clear

Truth Table

CLK	CLR	\mathbf{Q}_{n+1}
Х	1	0
\uparrow	0	D

Tile Usage

-

Family	Tiles
All listed	1

A500K, APA
DFFCI

Function

Positive Edge Triggered D-Type Flip-Flop with Active High Clear and Active Low Output

Truth Table

X 1	1
↑ 0	!D

Tile Usage

Family	Tiles
All listed	1

DFFL

Function

Negative Edge Triggered D-Type Flip-Flop

Truth Table

CLK	Q_{n+1}
\downarrow	D
Tile Usage	
Family	Tiles
All listed	1

DFFLB

Function

Negative Edge Triggered D-Type Flip-Flop with Active High Set and Clear

Truth Table

CLK	SET	CLR	\mathbf{Q}_{n+1}
Х	1	0	1
Х	Х	1	0
\downarrow	0	0	D

Tile Usage

Family	Tiles
All listed	4

A500K, APA

Flip-Flops

A500K, APA

DFFLBI

Function

Negative Edge Triggered D-Type Flip-Flop with Active High Set and Clear and Active Low Output

Truth Table

CLK	SET	CLR	QBAR _{n+1}
Х	1	0	0
Х	Х	1	1
\downarrow	0	0	!D

Tile Usage

Family	Tiles
All listed	4

DFFLCI

Input	
CLR, CLK, D	

Output QBAR

Function

Negative Edge Triggered D-Type Flip-Flop with Active High Clear and Active Low Output

Truth Table

CLK	CLR	QBAR _{n+1}
Х	1	1
\downarrow	0	!D
	-	

Tile Usage

Family	Tiles
All listed	1

DFFLI

Function

Negative Edge Triggered D-Type Flip-Flop with Active Low Output

Truth Table

CLK	QBAR _{n+1}
\downarrow	!D
Tile Usage	

Family	Tiles
All listed	1

A500K, APA

DFFLS

Function

Negative Edge Triggered D-Type Flip-Flop with Active High Set

Truth Table

CLK	SET	\mathbf{Q}_{n+1}
Х	1	1
\downarrow	0	D

Tile Usage

Family	Tiles
All listed	1

DFFS

Input SET, CLK, D

Output Q

Function

Positive Edge Triggered D-Type Flip-Flop with Active High Set

Truth Table

CLK	SET	\mathbf{Q}_{n+1}
Х	1	1
↑	0	D

Tile Usage

Family	Tiles
All listed	1

DFFSI

Function

Positive Edge Triggered D-Type Flip-Flop with Active High Set and Active Low Output

Truth Table

CLK	SET	QBAR _{n+1}
Х	1	0
	0	!D

Tile Usage

Family	Tiles
All listed	1

set, clk, d

Output QBAR

A500K, APA

LD

Function

Active High Latch

Truth Table

EN	\mathbf{Q}_{n+1}	
0	Q	
1	D	
Tile Usage		
Family	Tiles	

A500K, APA

Function

Active High Latch with Active High Set and Clear

Truth Table

EN	SET	CLR	\mathbf{Q}_{n+1}
Х	1	0	1
Х	Х	1	0
1	0	0	D
0	0	0	Q

Tile Usage

Family	Tiles	
All listed	2	

LDBI

Output QBAR

Function

Active High Latch with Active High Set and Clear and Active Low Output

Truth Table

EN	SET	CLR	QBAR _{n+1}
Х	1	0	0
Х	Х	1	1
1	0	0	!D
0	0	0	QBAR

Tile Usage

Family	Tiles
All listed	2

A500K, APA

A500K, APA

LDC

Function

Active High Latch with Active High Clear

Truth Table

EN	CLR	\mathbf{Q}_{n+1}
Х	1	0
1	0	D
0	0	Q

Tile Usage

Family	Tiles
All listed	1

44

A500K, APA

LDCI

Function

Active High Latch with Active High Clear and Active Low Output

Truth Table

EN	CLR	QBAR _{n+1}
Х	1	1
1	0	!D
0	0	QBAR

Tile Usage

Family	Tiles
All listed	1

LDI

LDL

Function

Active Low Latch

Truth Table

All listed

EN	\mathbf{Q}_{n+1}
0	D
1	Q
Tile Usage	

Tiles

1

Family

Input	
EN, D	

Q

A500K, APA

LDLB

Function

Active Low Latch with Active High Set and Clear

Truth Table

EN	SET	CLR	\mathbf{Q}_{n+1}
Х	1	0	1
Х	Х	1	0
0	0	0	D
1	0	0	Q

Tile Usage

Family	Tiles
All listed	2

LDLBI

Function

Active Low Latch with Active High Set and Clear and Active Low Output

Truth Table

EN	SET	CLR	QBAR _{n+1}
Х	1	0	0
Х	Х	1	1
0	0	0	!D
1	0	0	QBAR

Tile Usage

Family	Tiles
All listed	2

LDLC

Function

Active Low Latch with Active High Clear

Truth Table

EN	CLR	\mathbf{Q}_{n+1}
Х	1	0
0	0	D
1	0	Q

LDLCI

Function

Active Low Latch with Active High Clear and Active Low Output

Truth Table

EN	CLR	QBAR _{n+1}
Х	1	1
0	0	!D
1	0	QBAR

Tile Usage

Family	Tiles
All listed	1

LDLI

Function

Active Low Latch with Active Low Output

Truth Table

EN	QBAR _{n+1}
0	!D
1	QBAR
Tilo Iloogo	

Tile Usage

Family	Tiles
All listed	1

A500K, APA

A500K, APA

48

LDLS

Function

Active Low Latch with Active High Set

Truth Table

EN	SET	\mathbf{Q}_{n+1}
Х	1	1
0	0	D
1	0	Q

Tile Usage

Family	Tiles
All listed	1

LDLSI

A500K, APA

Function

Active Low Latch with Active High Set and Active Low Output

Truth Table

EN	SET	QBAR _{n+1}
Х	1	0
0	0	!D
1	0	QBAR

Tile Usage

Family	Tiles
All listed	1

LDS

Function

Active High Latch with Active High Set

Truth Table

EN	SET	\mathbf{Q}_{n+1}
Х	1	1
0	0	Q
1	0	D

Tile Usage

Family	Tiles
All listed	1

LDSI

Function

Active High Latch with Active High Set and Active Low Output

Truth Table

EN	SET	QBAR _{n+1}
Х	1	0
0	0	QBAR
1	0	!D

Tile Usage

Family	Tiles
All listed	1

A500K, APA

Input/Output Cells

This section describes input buffers, global buffers, output buffers and bidirectional buffers.

Input Buffers

A500K input buffers have the following features:

- CMOS voltage levels for 2.5 V and 3.3 V.
- Optional pull-up resistor.
- ESD protection circuitry.
- Latch-up protection circuitry.

Input Buffer Naming Conventions

Names for the input buffers are composed of up to 4 parts:

- A base name indicating the type of input buffer (IB for input with positive pad logic, IBN with negative pad logic).
- The number code 25 or 33 indicating a 2.5 or 3.3 voltage level.
- A two character code indicating low power pad voltage (LP).
- An optional one character code (U) designating a pull-up resistor. When the buffer has no resistor, this code is omitted.

For Example:

IB25 - An input buffer with 2.5 CMOS voltage levels and no pull-up resistor.

IB33U - An input buffer with 3.3 CMOS voltage levels and pull-up resistor.

Global Buffers

Global buffers are provided for use with low skew, high fanout nets, such as, clock and reset. They can be either driven from a pad or internally. If a global buffer is used internally, the pad can be used for other input signals.

A500K global buffers have the following features:

- 2.5 or 3.3 CMOS voltage levels.
- Optional pull-up resistor.
- ESD protection circuitry.

- Latch-up protection circuitry.
- Multiplexed input for external or internal drive.

Global Buffer Naming Conventions

Four types of global buffers are available: standard global input buffers (GL), global buffers with independent input buffers (GLIB), global multiplexed input buffers (GLMIB) and global buffers with internal connection only (GLINT).

Global buffer names are composed of up to four parts:

- The name base indicating the type of buffer (GL, GLIB, GLMIB for external buffers, GLINT for an internal connected global buffer).
- The number code 25 or 33 indicating a 2.5 or 3.3 voltage level.
- A two character code indicating low power pad voltage (LP).
- An optional one character code (U) designating a pull-up resistor (except GLINT). When there is no resistor, this code is omitted.

For Example:

GL25U - Global input buffer with 2.5 CMOS voltage levels and pull-up resistor.

GLIB33 - Global buffer with 3.3 CMOS voltage levels input buffer and global buffer with input A.

GLMIBL33U - Global multiplexed input buffer with 3.3 CMOS voltage levels, active low enable and pull-up resistor.

Output Buffers

A500K output buffers have the following features:

- Optional PCI compliance with PCI 2.1 Component Specification (3.3 Voltage pad only).
- Selectable drive strengths.
- Selectable slew rates.
- Optional three-state functionality.
- ESD protection circuitry.
- Latch-up protection circuitry.

Output Buffer Naming Conventions

Names for the output buffers are composed of up to five parts:

- The name base indicating the type of output buffer (OB for output buffer, OTB for three-state output buffer).
- An optional one character code (L) designating an active low enable input for the OTB output buffer. The code is omitted for the active high enable input.
- The number code 25 or 33 indicating a 2.5 or 3.3 voltage level.

- A code indicating the drive strength (2.5 Volt pad: L for 1 mA, H for 3.5 mA; 3.3 Volt pad: L for 5 mA and P for PCI compliant 10 mA).
- A one character code indicating the slew rate (L for low 25 mA/ns, N for nominal 50 mA/ns, and H for high 100 mA/ns).

For Example:

OB25HN - 2.5 Volt output buffer, high drive strengths and nominal slew rate.

OTB33LH - Three-state output buffer, low drive strengths, high slew rate.

OB33PL - PCI compliant output buffer (= high drive strengths) and low slew rate.

Bidirectional Buffers

A500K bidirectional buffers have all the features of both the input buffers and the output buffers:

- 2.5 and 3.3 CMOS input voltage levels.
- Optional pull-up resistor.
- Optional PCI compliance with PCI 2.1 Component Specification (3.3 Voltage pad only).
- Selectable drive strengths.
- Selectable slew rates.
- Three-state functionality.
- ESD protection circuitry.
- Latch-up protection circuitry.

Bidirectional Buffer Naming Conventions

Names for the bidirectional buffers are composed of up to seven parts:

- The name base IOB identifying the buffer as a bidirectional buffer.
- An optional one character code (L) designating an active low enable input for the IOB output buffer part. The code is omitted for the active high enable input.
- The number code 25 or 33 indicating a 2.5 or 3.3 voltage level.
- A two character code indicating low power pad voltage (LP).
- A code indicating the drive strength (2.5 Volt pad: L for 1 mA, H for 3.5 mA; 3.3 Volt pad: L for 5 mA and P for PCI compliant 10 mA). I/O macros which have *25LP* require VDDP of 2.5V, while *33* and *25* (no LP) require VDDP of 3.3V.
- A one character code indicating the slew rate (L for low 25 mA/ns, N for nominal 50 mA/ns, and H for high 100 mA/ns).
- An optional one character code (U) designating a pull-up resistor. When there is no resistor, this code is omitted.

For Example:

IOB25LLU - A 2.5 Volt bidirectional buffer with low drive strength, low slew rate and a pull-up resistor.

IOB33PHU - A 3.3 Volt PCI compliant bidirectional buffer with high slew rate and a pull-up resistor.

IOBL33LN - A 3.3 Volt bidirectional buffer with active low enable input, low drive strength and normal slew rate.

Truth Table Symbol Descriptions

Combinational truth tables use the following symbols:

- 1 indicates logic level one.
- 0 indicates logic level zero.
- A indicates internal input port.
- NC indicates not connected.
- PAD indicates external port.
- X indicates either logic level one or zero (don't care).
- Z indicates three-state logic level (high resistance).

GLX

Function

Global Input Buffer

This macro is available with a Schmitt Trigger for APA devices.

Truth Table

Input	Output
PAD	GL
0	0
1	1

Tile Usage

Family	I/O Tiles
All listed	2

Available GLx Macro Types

Name	Description	
GL25	2.5 Volt CMOS input levels	
GL33	3.3 Volt CMOS input levels, PCI compliant	
GL25LP	2.5 Volt CMOS input levels, low power	
GL25S	2.5 Volt CMOS input levels, Schmitt Trigger	
GL33S	3.3 Volt CMOS input levels, Schmitt Trigger	
GL25LPS	2.5 Volt CMOS input levels, low power, Schmitt Trigger	

GLXU

Function

Global Input Buffer with Pull-up Resistor;

This macro is available with a Schmitt Trigger for APA devices.

Truth Table

Input	Output
PAD	GL
0	0
1	1
NC	1

Tile Usage

Family	I/O Tiles
All listed	2

Available GLxU Macro Types

Name	Description	
GL25U	2.5 Volt CMOS input levels, with pull-up resistor	
GL33U	3.3 Volt CMOS input levels, with pull-up resistor, PCI compliant	
GL25LPU	2.5 Volt CMOS input levels, low power, with pull-up resistor	
GL25US	2.5 Volt CMOS input levels, with pull-up resistor, Schmitt Trigger	
GL33US	3.3 Volt CMOS input levels, with pull-up resistor, Schmitt Trigger	
GL25LPUS	2.5 Volt CMOS input levels, low power, with pull-up resistor, Schmitt Trigger	

GLINT

Function

Global Buffer with Internal Connection

Truth Table

Input	Output	
Α	GL	
1	1	
0	0	

Tile Usage

Family	I/O Tiles
All listed	1

GLIBX

PAD, A

_	1	Tile	Usage

Function

Truth Table Input

PAD

1

0

Family	I/O Tiles
All listed	2

Global Input Buffer with Independent Input Buffer; This macro is available with a Schmitt Trigger for APA devices.

Output

Y

1

0

Input

A

1

0

Available GLIBx Macro Types

Name	Description	
GLIB25	2.5 Volt CMOS input levels	
GLIB33	3.3 Volt CMOS input levels, PCI compliant	
GLIB25LP	2.5 Volt CMOS input levels, low power	
GLIB25S	2.5 Volt CMOS input levels, Schmitt Trigger	
GLIB33S	3.3 Volt CMOS input levels, Schmitt Trigger	
GLIB25LPS	2.5 Volt CMOS input levels, low power, Schmitt Trigger	

A500K, APA

A500K, APA

Output

GL

1

0

56

GLIBXU

Function

Global Input Buffer with Independent Input Buffer and Pull-up Resistor. This macro is available with a Schmitt Trigger for APA devices.

Truth Table

Input	Output	Input	Output
PAD	Y	Α	GL
1	1	1	1
0	0	0	0
NC	1		

PAD,	А	

Output	
Y, GL	

Tile Usage

Family	I/O Tiles
All listed	2

Available GLIBxU Macro Types

Name	Description	
GLIB25U	2.5 Volt CMOS input levels, with pull-up resistor	
GLIB33U	3.3 Volt CMOS input levels, with pull-up resistor, PCI compliant	
GLIB25LPU	2.5 Volt CMOS input levels, low power, with pull-up resistor	
GLIB25US	2.5 Volt CMOS input levels, with pull-up resistor and Schmitt Trigger	
GLIB33US	3.3 Volt CMOS input levels, with pull-up resistor and Schmitt Trigger	
GLIB25LPUS	2.5 Volt CMOS input levels, low power, with pull-up resistor and Schmitt Trigger	

GLMIBX

Function

Global Multiplexed Input Buffer

This macro is available with a Schmitt Trigger for APA devices.

Truth Table

Input	Output
PAD	Y
1	1
0	0

Truth Table

Input	Output
PAD, A, EN	Y, GL

	Input		Output
PAD	Α	EN	GL
0	Х	0	0
1	Х	0	1
Х	1	1	1
Х	0	1	0

Tile Usage

Family	I/O Tiles
All listed	2

Available GLMIBx Macro Types

Name	Description
GLMIB25	2.5 Volt CMOS input levels
GLMIB33	3.3 Volt CMOS input levels, PCI compliant
GLMIB25LP	2.5 Volt CMOS input levels, low power
GLMIB25S	2.5 Volt CMOS input levels, Schmitt Trigger
GLMIB33S	3.3 Volt CMOS input levels, Schmitt Trigger
GLMIB25LPS	2.5 Volt CMOS input levels, low power, Schmitt Trigger

GLMIBXU

Input PAD, A, EN Output Y, GL

Tile Usage

Family	I/O Tiles
All listed	2

Function

Global Multiplexed Input Buffer with Pull-up Resistor; this macro is available with a Schmitt Trigger for APA devices.

Truth Table

Input	Output
PAD	Y
1	1
0	0
NC	1

Truth Table

	Input		Output
PAD	Α	EN	GL
0	Х	0	0
1	Х	0	1
Х	1	1	1
Х	0	1	0
NC	Х	0	1

Available GLMIBxU Macro Types

Name	Description	
GLMIB25U	2.5 Volt CMOS input levels, with pull-up resistor	
GLMIB33U	3.3 Volt CMOS input levels, with pull-up resistor, PCI compliant	
GLMIB25LPU	2.5 Volt CMOS input levels, low power, with pull-up resistor	
GLMIB25US	2.5 Volt CMOS input levels, with pull-up resistor and Schmitt Trigger	
GLMIB33US	3.3 Volt CMOS input levels, with pull-up resistor and Schmitt Trigger	
GLMIB25LPUS	2.5 Volt CMOS input levels, low power, with pull-up resistor and Schmitt Trigger	

GLMIBLX

PAD Y A EN

Input	Output
PAD, A, EN	Y, GL

Family I/O Tiles All listed 2

Function

Global Multiplexed Input Buffer with Active Low Enable; this macro is available with a Schmitt Trigger for APA devices.

Truth Table

Input	Output
PAD	Y
1	1
0	0

Truth Table

Input		Output	
PAD	Α	EN	GL
Х	0	0	0
Х	1	0	1
1	Х	1	1
0	Х	1	0

Available GLMIBLxU Macro Types

Name	Description
GLMIBL25	2.5 Volt CMOS input levels
GLMIBL33	3.3 Volt CMOS input levels, PCI compliant
GLMIBL25LP	2.5 Volt CMOS input levels, low power
GLMIBL25S	2.5 Volt CMOS input levels, Schmitt Trigger
GLMIBL33S	3.3 Volt CMOS input levels, Schmitt Trigger
GLMIBL25LPS	2.5 Volt CMOS input levels, low power, Schmitt Trigger

GLMIBLXU

Output Y, GL Function

Global Multiplexed Input Buffer with Active Low Enable and Pull-up Resistor. This macro is available with a Schmitt Trigger for APA devices.

Truth Table

Input	Output
PAD	Y
0	0
1	1
NC	1

Truth Table

PAD, A, EN Tile Usage

Input

Family	I/O Tiles
All listed	2

Input		Output	
PAD	Α	EN	GL
Х	0	0	0
Х	1	0	1
1	Х	1	1
0	Х	1	0
NC	Х	1	1

Available GLMIBLxU Macro Types

Name	Description
GLMIBL25U	2.5 Volt CMOS input levels, with pull-up resistor
GLMIBL33U	3.3 Volt CMOS input levels, with pull-up resistor, PCI compliant
GLMIBL25LPU	2.5 Volt CMOS input levels, low power, with pull-up resistor
GLMIBL25US	2.5 Volt CMOS input levels, with pull-up resistor and Schmitt Trigger
GLMIBL33US	3.3 Volt CMOS input levels, with pull-up resistor and Schmitt Trigger
GLMIBL25LPUS	2.5 Volt CMOS input levels, low power, with pull-up resistor and Schmitt Trigger

ProASIC Macro Library Guide

Input Buffer

This macro is available with a Schmitt Trigger for APA devices. I/O macros which have *25LP* require VDDP of 2.5V, while *33* and *25* (no LP) require VDDP of 3.3V.

Truth Table

Y

Output

Y

Input	Output
PAD	Y
0	0
1	1

Tile Usage

Family	I/O Tiles
All listed	1

Input PAD

PAD

Available IBx Macro Types

Name	Description
IB25	2.5 Volt CMOS input levels
IB33	3.3 Volt CMOS input levels, PCI compliant
IB25LP	2.5 Volt CMOS input levels, low power
IB25S	2.5 Volt CMOS input levels, Schmitt Trigger
IB33S	3.3 Volt CMOS input levels, Schmitt Trigger
IB25LPS	2.5 Volt CMOS input levels, low power, Schmitt Trigger

IBxU

Function

Input Buffer with Pull-up Resistor This macro is available with a Schmitt Trigger for APA devices. I/O macros which have *25LP* require VDDP of 2.5V, while *33* and *25* (no LP) require VDDP of 3.3V

Truth Table

Input	Output
PAD	Y
0	0
1	1
NC	1

Tile Usage

Family	I/O Tiles
All listed	1

Available IBxU Macro Types

Name	Description	
IB25U	2.5 Volt CMOS input levels, with pull-up resistor	
IB33U	3.3 Volt CMOS input levels, with pull-up resistor, PCI compliant	
IB25LPU	2.5 Volt CMOS input levels, low power, with pull-up resistor	
IB25US	2.5 Volt CMOS input levels, with pull-up resistor and Schmitt Trigger	
IB33US	3.3 Volt CMOS input levels, with pull-up resistor and Schmitt Trigger	
IB25LPUS	2.5 Volt CMOS input levels, low power, with pull-up resistor and Schmitt Trigger	

IOB25x

PAD, Y

Function

Bi-Directional Buffer; I/O macros that have $^{*}33^{*}$ and $^{*}25^{*}$ (no LP) require VDDP of 3.3V

Truth Table

Input			Out	tput
EN	Α	PAD	PAD	Y
1	Х	Х	А	А
0	Х	Х	Х	PAD

Tile Usage

Family	I/O Tiles
All listed	1

Available IOB25x Macro Types

Name	Description	
IOB25HH	2.5 Volt CMOS input levels, high drive strength, high slew rate	
IOB25HL	2.5 Volt CMOS input levels, high drive strength, low slew rate	
IOB25HN	2.5 Volt CMOS input levels, high drive strength, normal slew rate	
IOB25LH	2.5 Volt CMOS input levels, low drive strength, high slew rate	
IOB25LL	2.5 Volt CMOS input levels, low drive strength, low slew rate	
IOB25LN	2.5 Volt CMOS input levels, low drive strength, normal slew rate	

EN, A, PAD

EN, A, PAD

A A Y Input

PAD, Y

Function

Bi-Directional Buffer with Pull-up Resistor; I/O macros that have *25LP* require VDDP of $2.5\mathrm{V}$

Truth Table

Input			Out	tput
EN	Α	PAD	PAD	Y
1	Х	Х	А	А
0	Х	Х	Х	PAD
0	Х	NC	NC	1

Tile Usage

Family	I/O Tiles
All listed	1

Available IOB25xU Macro Types

Name	Description	
IOB25HHU	2.5 Volt CMOS input levels, high drive strength, high slew rate, with pull-up resistor	
IOB25HLU	2.5 Volt CMOS input levels, high drive strength, low slew rate, with pull-up resistor	
IOB25HNU	2.5 Volt CMOS input levels, high drive strength, normal slew rate, with pull-up resistor	
IOB25LHU	2.5 Volt CMOS input levels, low drive strength, high slew rate, with pull-up resistor	
IOB25LLU	2.5 Volt CMOS input levels, low drive strength, low slew rate, with pull-up resistor	
IOB25LNU	2.5 Volt CMOS input levels, low drive strength, normal slew rate, with pull-up resistor	

IOB25LPx

A Y PAD

Output PAD, Y

Function

Bi-Directional Buffer (Low Power); I/O macros that have *25LP* require VDDP of $2.5\mathrm{V}$

Truth Table

Input			Out	tput
EN	Α	PAD	PAD	Y
1	Х	Х	А	А
0	Х	Х	Х	PAD

Tile Usage

Family	I/O Tiles
All listed	1

Inpl	It		
ΕN	А	PAD	

Available IOB25LPx Macro Types

Name	Description	
IOB25LPHH	2.5 Volt CMOS input levels, low power, high drive strength, high slew rate	
IOB25LPHL	2.5 Volt CMOS input levels, low power, high drive strength, low slew rate	
IOB25LPHN	2.5 Volt CMOS input levels, low power, high drive strength, normal slew rate	
IOB25LPLH	2.5 Volt CMOS input levels, low power, low drive strength, high slew rate	
IOB25LPLL	2.5 Volt CMOS input levels, low power, low drive strength, low slew rate	
IOB25LPLN	2.5 Volt CMOS input levels, low power, low drive strength, normal slew rate	

IOB25LPxU

PAD, Y

Function

Bi-Directional Buffer with Low Power and Pull-up Resistor; I/O macros that have <code>*25LP*</code> require VDDP of 2.5V

Truth Table

	Input		Out	tput
EN	Α	PAD	PAD	Y
1	Х	Х	А	А
0	Х	Х	Х	PAD
0	Х	NC	NC	1

Tile Usage

Family	I/O Tiles
All listed	1

Available IOB25LPxU Macro Types

Name	Description
IOB25LPHHU	2.5 Volt CMOS input levels, low power, high drive strength, high slew rate, with pull-up resistor
IOB25LPHLU	2.5 Volt CMOS input levels, low power, high drive strength, low slew rate, with pull-up resistor
IOB25LPHNU	2.5 Volt CMOS input levels, low power, high drive strength, normal slew rate, with pull-up resistor
IOB25LPLHU	2.5 Volt CMOS input levels, low power, low drive strength, high slew rate, with pull-up resistor
IOB25LPLLU	2.5 Volt CMOS input levels, low power, low drive strength, low slew rate, with pull-up resistor
IOB25LPLNU	2.5 Volt CMOS input levels, low power, low drive strength, normal slew rate, with pull-up resistor

A500K, APA

A500K, APA

64

EN, A, PAD

IOB33x

PAD, Y

Functi	on

Bi-Directional Buffer; I/O macros that have $*33^{\ast}$ and $*25^{\ast}$ (no LP) require VDDP of 3.3V.

Truth Table

	Input		Out	tput
EN	Α	PAD	PAD	Y
1	Х	Х	А	А
0	Х	Х	Х	PAD

Tile Usage

Family	I/O Tiles
All listed	1

Available IOB33x Macro Types

Name	Description	
IOB33LH	3.3 Volt CMOS input levels, low strength drive, high slew rate	
IOB33LL	3.3 Volt CMOS input levels, low strength drive, low slew rate	
IOB33LN	3.3 Volt CMOS input levels, low strength drive, normal slew rate	
IOB33PH	3.3 Volt CMOS input levels, PCI compliant, high slew rate	
IOB33PL	3.3 Volt CMOS input levels, PCI compliant, low slew rate	
IOB33PN	3.3 Volt CMOS input levels, PCI compliant, normal slew rate	

IOB33xU

EN, A, PAD

Input EN, A, PAD Output PAD, Y

Function

Bi-Directional Buffer with Pull-up Resistor; I/O macros that have *33* and *25* (no LP) require VDDP of 3.3V.

Truth Table

	Input		Out	tput
EN	Α	PAD	PAD	Y
1	Х	Х	А	А
0	Х	Х	Х	PAD
0	Х	NC	NC	1

Tile Usage

Family	I/O Tiles
All listed	1

Available IOB33xU Macro Types

Name	Description	
IOB33LHU	3.3 Volt CMOS input levels, low strength drive, high slew rate, with pull-up resistor	
IOB33LLU	3.3 Volt CMOS input levels, low strength drive, low slew rate, with pull-up resistor	
IOB33LNU	3.3 Volt CMOS input levels, low strength drive, normal slew rate, with pull-up resistor	
IOB33PHU	3.3 Volt CMOS input levels, PCI compliant, high slew rate, with pull-up resistor	
IOB33PLU	3.3 Volt CMOS input levels, PCI compliant, low slew rate, with pull-up resistor	
IOB33PNU	3.3 Volt CMOS input levels, PCI compliant, normal slew rate, with pull-up resistor	

IOBL25x

PAD, Y

Function

Bi-Directional Buffer with Active Low Enable; I/O macros that have *25* (no LP) require VDDP of 3.3V.

Truth Table

Input			Output	
EN	Α	PAD	PAD	Y
1	Х	Х	Х	PAD
0	Х	Х	А	А

Tile Usage

	Family	I/O Tiles
Ī	All listed	1

Available IOBL25x Macro Types

Name	Description	
IOBL25HH	2.5 Volt CMOS input levels, high drive strength, high slew rate	
IOBL25HL	2.5 Volt CMOS input levels, high drive strength, low slew rate	
IOBL25HN	2.5 Volt CMOS input levels, high drive strength, normal slew rate	
IOBL25LH	2.5 Volt CMOS input levels, low drive strength, high slew rate	
IOBL25LL	2.5 Volt CMOS input levels, low drive strength, low slew rate	
IOBL25LN	2.5 Volt CMOS input levels, low drive strength, normal slew rate	

IOBL25xU

EN, A, PAD

Function

Bi-Directional Buffer with Active Low Enable and Pull-up Resistor; I/O macros that have *25* (no LP) require VDDP of 3.3V.

Truth Table

Input			Output	
EN	Α	PAD	PAD	Y
1	Х	Х	Х	PAD
0	Х	Х	А	А
1	Х	NC	NC	1

Tile Usage

Family	I/O Tiles		
All listed	1		

Available IOBL25xU Macro Types

Name	Description	
IOBL25HHU	2.5 Volt CMOS input levels, high drive strength, high slew rate, with pull-up resistor	
IOBL25HLU	2.5 Volt CMOS input levels, high drive strength, low slew rate, with pull-up resistor	
IOBL25HNU	2.5 Volt CMOS input levels, high drive strength, normal slew rate, with pull-up resistor	
IOBL25LHU	2.5 Volt CMOS input levels, low drive strength, high slew rate, with pull-up resistor	
IOBL25LLU	2.5 Volt CMOS input levels, low drive strength, low slew rate, with pull-up resistor	
IOBL25LNU	2.5 Volt CMOS input levels, low drive strength, normal slew rate, with pull-up resistor	

A500K, APA

A500K, APA

IOBL25LPx

EN, A, PAD

PAD, Y

Function

Bi-Directional Buffer with Active Low Enable (Low Power); I/O macros that have $*25LP^*$ require VDDP of 2.5V

Truth Table

Input			Out	tput
EN	Α	PAD	PAD	Y
1	Х	Х	Х	PAD
0	Х	Х	А	А

Tile Usage

Family	I/O Tiles	
All listed	1	

Available IOBL25LPx Macro Types

Name	Description	
IOBL25LPHH	2.5 Volt CMOS input levels, low power, high drive strength, high slew rate	
IOBL25LPHL	2.5 Volt CMOS input levels, low power, high drive strength, low slew rate	
IOBL25LPHN	2.5 Volt CMOS input levels, low power, high drive strength, normal slew rate	
IOBL25LPLH	2.5 Volt CMOS input levels, low power, low drive strength, high slew rate	
IOBL25LPLL	2.5 Volt CMOS input levels, low power, low drive strength, low slew rate	
IOBL25LPLN	2.5 Volt CMOS input levels, low power, low drive strength, normal slew rate	

IOBL25LPxU

PAD PAD Y

PAD, Y

Function

Bi-Directional Buffer with Active Low Enable, Low Power, and Pull-up Resistor; I/O macros that have *25LP* require VDDP of 2.5V.

Truth Table

Input			Output	
EN	Α	PAD	PAD	Y
1	Х	Х	Х	PAD
0	Х	Х	А	А
1	Х	NC	NC	1

Tile Usage

Family	I/O Tiles
All listed	1

Available IOBL25LPxU Macro Types

EN, A, PAD

Name	Description	
IOBL25LPHHU	2.5 Volt CMOS input levels, low power, high drive strength, high slew rate, with pull-up resistor	
IOBL25LPHLU	2.5 Volt CMOS input levels, low power, high drive strength, low slew rate, with pull-up resistor	
IOBL25LPHNU	2.5 Volt CMOS input levels, low power, high drive strength, normal slew rate, with pull-up resistor	
IOBL25LPLHU	2.5 Volt CMOS input levels, low power, low drive strength, high slew rate, with pull-up resistor	
IOBL25LPLLU	2.5 Volt CMOS input levels, low power, low drive strength, low slew rate, with pull-up resistor	
IOBL25LPLNU	2.5 Volt CMOS input levels, low power, low drive strength, normal slew rate, with pull-up resistor	

ProASIC Macro Library Guide

IOBL33x

PAD, Y

Fun	iction
	1011011

Bi-Directional Buffer with Active Low Enable; I/O macros that have *33* and *25* (no LP) require VDDP of 3.3V.

Truth Table

Input			Output	
EN	Α	PAD	PAD	Y
1	Х	Х	Х	PAD
0	Х	Х	А	А

Tile Usage

Family	I/O Tiles
All listed	1

Available IOBL33x Macro Types

Name	Description	
IOBL33LH	3.3 Volt CMOS input levels, low strength drive, high slew rate	
IOBL33LL	3.3 Volt CMOS input levels, low strength drive, low slew rate	
IOBL33LN	3.3 Volt CMOS input levels, low strength drive, normal slew rate	
IOBL33PH	3.3 Volt CMOS input levels, PCI compliant, high slew rate	
IOBL33PL	3.3 Volt CMOS input levels, PCI compliant, low slew rate	
IOBL33PN	3.3 Volt CMOS input levels, PCI compliant, normal slew rate	

IOBL33xU

EN. PAD, A

EN. PAD, A

PAD, Y

Function

Bi-Directional Buffer with Active Low Enable and Pull-up Resistor; I/O macros that have *33* (no LP) require VDDP of 3.3V.

Truth Table

Input		Output		
EN	Α	PAD	PAD	Y
1	Х	Х	Х	PAD
0	Х	Х	А	А
1	Х	NC	NC	1

Tile Usage

Family	I/O Tiles
All listed	1

Available IOBL33xU Macro Types

Name	Description	
IOBL33LHU	3.3 Volt CMOS input levels, low strength drive, high slew rate, with pull-up resistor	
IOBL33LLU	3.3 Volt CMOS input levels, low strength drive, low slew rate, with pull-up resistor	
IOBL33LNU	3.3 Volt CMOS input levels, low strength drive, normal slew rate, with pull-up resistor	
IOBL33PHU	3.3 Volt CMOS input levels, PCI compliant, high slew rate, with pull-up resistor	
IOBL33PLU	3.3 Volt CMOS input levels, PCI compliant, low slew rate, with pull-up resistor	
IOBL33PNU	3.3 Volt CMOS input levels, PCI compliant, normal slew rate, with pull-up resistor	

A500K, APA

OB25x

А

PAD

Output	Buffer

Function

Truth Table

Input	Output
Α	PAD
0	0
1	1

Tile Usage

Family	I/O Tiles
All listed	1

Available OB25x Macro Types

Name	Description	
OB25HH	2.5 Volt CMOS input levels, high strength drive, high slew rate	
OB25HL	2.5 Volt CMOS input levels, high strength drive, low slew rate	
OB25HN	2.5 Volt CMOS input levels, high strength drive, normal slew rate	
OB25LH	2.5 Volt CMOS input levels, low strength drive, high slew rate	
OB25LL	2.5 Volt CMOS input levels, low strength drive, low slew rate	
OB25LN	2.5 Volt CMOS input levels, low strength drive, normal slew rate	

Available OB25LPx Macro Types

Name	Description	
OB25LPHH	2.5 Volt CMOS input levels, low power, high strength drive, high slew rate	
OB25LPHL	2.5 Volt CMOS input levels, low power, high strength drive, low slew rate	
OB25LPHN	2.5 Volt CMOS input levels, low power, high strength drive, normal slew rate	
OB25LPLH	LH 2.5 Volt CMOS input levels, low power, low strength drive, high slew rate	
OB25LPLL	2.5 Volt CMOS input levels, low power, low strength drive, low slew rate	
OB25LPLN	2.5 Volt CMOS input levels, low power, low strength drive, normal slew rate	

251 Px

OB33X

PAD A

μ	Function

E

Output Buffer

Truth Table

Input	Output
Α	PAD
0	0
1	1

Tile Usage

Family	I/O Tiles
All listed	1

A500K, APA

Input	Output
А	PAD

Available OB33x Macro Types

Name	Description	
OB33LH	3.3 Volt CMOS input levels, low strength drive, high slew rate	
OB33LL	3.3 Volt CMOS input levels, low strength drive, low slew rate	
OB33LN	3.3 Volt CMOS input levels, low strength drive, normal slew rate	
OB33PH	3.3 Volt CMOS input levels, PCI compliant, high slew rate	
OB33PL	3.3 Volt CMOS input levels, PCI compliant, low slew rate	
OB33PN	3.3 Volt CMOS input levels, PCI compliant, normal slew rate	

Three State Output Buffer

OTB25x

Truth Table

Function

Input		Output
EN	Α	PAD
0	Х	Z
1	1	1
1	0	0

Tile Usage

Family	I/O Tiles
All listed	1

Available OTB25x Macro Types

Name	Description	
ОТВ25НН	2.5 Volt CMOS input levels, high strength drive, high slew rate	
OTB25HL	2.5 Volt CMOS input levels, high strength drive, low slew rate	
OTB25HN	2.5 Volt CMOS input levels, high strength drive, normal slew rate	
OTB25LH	2.5 Volt CMOS input levels, low strength drive, high slew rate	
OTB25LL	2.5 Volt CMOS input levels, low strength drive, low slew rate	
OTB25LN	2.5 Volt CMOS input levels, low strength drive, normal slew rate	

A500K, APA

70

OTB25LPx

Input	Output
EN, A	PAD

Function

Three State Output Buffer (Low Power)

Truth Table

Inj	put	Output
EN	Α	PAD
0	Х	Z
1	1	1
1	0	0

Tile Usage

Family	I/O Tiles
All listed	1

Available OTB25LPx Macro Types

Name	Description	
OTB25LPHH	2.5 Volt CMOS input levels, low power, high strength drive, high slew rate	
OTB25LPHL	2.5 Volt CMOS input levels, low power, high strength drive, low slew rate	
OTB25LPHN	2.5 Volt CMOS input levels, low power, high strength drive, normal slew rate	
OTB25LPLH	2.5 Volt CMOS input levels, low power, low strength drive, high slew rate	
OTB25LPLL	2.5 Volt CMOS input levels, low power, low strength drive, low slew rate	
OTB25LPLN	2.5 Volt CMOS input levels, low power, low strength drive, normal slew rate	

Available OTB33x Macro Types

Name	Description	
OTB33LH	3.3 Volt CMOS input levels, low strength drive, high slew rate	
OTB33LL	3.3 Volt CMOS input levels, low strength drive, low slew rate	
OTB33LN	3.3 Volt CMOS input levels, low strength drive, normal slew rate	
OTB33PH	3.3 Volt CMOS input levels, PCI compliant, high slew rate	
OTB33PL	3.3 Volt CMOS input levels, PCI compliant, low slew rate	
OTB33PN	3.3 Volt CMOS input levels, PCI compliant, normal slew rate	

ProASIC Macro Library Guide

OTBL25x

Function

Three State Output Buffer with Active Low Enable

Truth Table

Input		Output
EN	Α	PAD
0	0	0
0	1	1
1	Х	Z

Input	Output
EN, A	PAD

Tile	Usage
------	-------

Family	I/O Tiles
All listed	1

Available OTBL25x Macro Types

Name	Description
OTBL25HH	2.5 Volt CMOS input levels, high strength drive, high slew rate
OTBL25HL	2.5 Volt CMOS input levels, high strength drive, low slew rate
OTBL25HN	2.5 Volt CMOS input levels, high strength drive, normal slew rate
OTBL25LH	2.5 Volt CMOS input levels, low strength drive, high slew rate
OTBL25LL	2.5 Volt CMOS input levels, low strength drive, low slew rate
OTBL25LN	2.5 Volt CMOS input levels, low strength drive, normal slew rate

OTBL25LPx

EN

Function

Three State Output Buffer with Active Low Enable

Truth Table

PAD

Output

PAD

Input		Output
EN	Α	PAD
0	0	0
0	1	1
1	Х	Z

Tile Usage

Family	I/O Tiles
All listed	1

Available OTBL25LPx Macro Types

Name	Description
OTBL25LPHH	2.5 Volt CMOS input levels, low power, high strength drive, high slew rate
OTB125LPHL	2.5 Volt CMOS input levels, low power, high strength drive, low slew rate
OTBL25LPHN	2.5 Volt CMOS input levels, low power, high strength drive, normal slew rate
OTBL25LPPH	2.5 Volt CMOS input levels, low power, low strength drive, high slew rate
OTBL25LPLL	2.5 Volt CMOS input levels, low power, low strength drive, low slew rate
OTBL25LPPN	2.5 Volt CMOS input levels, low power, low strength drive, normal slew rate

A500K, APA

A500K, APA

Input

EN, A
OTBL33x

Input	Output
EN, A	PAD

Function

Three State Output Buffer with Active Low Enable

Truth Table

Inj	Output	
EN	Α	PAD
0	0	0
0	1	1
1	Х	Z

Tile Usage

Family	I/O Tiles
All listed	1

Available OTBL33X Macro Types

Name	Description
OTBL33LH	3.3 Volt CMOS input levels, low strength drive, high slew rate
OTBL33LL	3.3 Volt CMOS input levels, low strength drive, low slew rate
OTBL33LN	3.3 Volt CMOS input levels, low strength drive, normal slew rate
OTBL33PH	3.3 Volt CMOS input levels, PCI compliant, high slew rate
OTBL33PL	3.3 Volt CMOS input levels, PCI compliant, low slew rate
OTBL33PN	3.3 Volt CMOS input levels, PCI compliant, normal slew rate

GLMIOBX

Function

Bi-directional IO buffer and global connection

Truth Table

		Input			Output		
DE	D	PAD	A	EN	PAD	Y	GL
1	Х	N/A	Х	0	D	D	D
1	Х	N/A	Х	1	D	D	А
0	Х	Х	Х	0	N/A	PAD	PAD
0	Х	Х	Х	1	N/A	PAD	А

Tile Usage

Family	I/O Tiles
All listed	1

Available GLMIOBx Macro Types

Name	Description
GLMIOB25LLU	2.5 Volt CMOS input levels, low power, low slew, w/ pull-up resistor
GLMIOB25LL	2.5 Volt CMOS input levels, low power, low slew
GLMIOB25LNU	2.5 Volt CMOS input levels, low power, normal slew, w/ pull up resistor
GLMIOB25LN	2.5 Volt CMOS input levels, low power, normal slew
GLMIOB25LHU	2.5 Volt CMOS input levels, low power, high slew, w/ pull-up resistor
GLMIOB25LH	2.5 Volt CMOS input levels, low power, high slew
GLMIOB25HLU	2.5 Volt CMOS input levels, high power, low slew, w/ pull-up resistor
GLMIOB25HL	2.5 Volt CMOS input levels, high power, low slew
GLMIOB25HNU	2.5 Volt CMOS input levels, high power, normal slew, w/ pull-up resistor
GLMIOB25HN	2.5 Volt CMOS input levels, high power, normal slew
GLMIOB25HHU	2.5 Volt CMOS input levels, high power, high slew, w/ pull-up resistor
GLMIOB25HH	2.5 Volt CMOS input levels, high power, high slew
GLMIOB25LPLLU	2.5 Volt CMOS input levels, low power, low strength, low slew, w/ pull-up resistor
GLMIOB25LPLL	2.5 Volt CMOS input levels, low power, low strength, low slew
GLMIOB25LPLNU	2.5 Volt CMOS input levels, low power, low strength, normal slew, w/ pull-up resistor
GLMIOB25LPLN	2.5 Volt CMOS input levels, low power, low strength, normal slew
GLMIOB25LPLHU	2.5 Volt CMOS input levels, low power, low strength, high slew, w/ pull-up resistor
GLMIOB25LPLH	2.5 Volt CMOS input levels, low power, low strength, high slew
GLMIOB25LPHLU	2.5 Volt CMOS input levels, low power, high strength, low slew, w/ pull-up resistor
GLMIOB25LPHL	2.5 Volt CMOS input levels, low power, high strength, low slew
GLMIOB25LPHN	2.5 Volt CMOS input levels, low power, high strength, normal slew
GLMIOB25LPHNU	2.5 Volt CMOS input levels, low power, high strength, normal slew, w/ pull-up resistor
GLMIOB25LPHHU	2.5 Volt CMOS input levels, low power, high strength, high slew, w/ pull-up resistor
GLMIOB25LPHH	2.5 Volt CMOS input levels, low power, high strength, high slew
GLMIOB33LLU	3.3 Volt CMOS input levels, low power, low slew, w/ pull-up resistor
GLMIOB33LL	3.3 Volt CMOS input levels, low power, low slew
GLMIOB33LNU	3.3 Volt CMOS input levels, low power, normal slew, w/ pull up resistor
GLMIOB33LN	3.3 Volt CMOS input levels, low power, normal slew
GLMIOB33LHU	3.3 Volt CMOS input levels, low power, high slew, w/ pull-up resistor
GLMIOB33LH	3.3 Volt CMOS input levels, low power, high slew
GLMIOB33PLU	3.3 Volt CMOS input levels, PCI compliant, low slew, w/ pull-up resistor
GLMIOB33PL	3.3 Volt CMOS input levels, PCI compliant, low slew
GLMIOB33PNU	3.3 Volt CMOS input levels, PCI compliant, normal slew, w/ pull-up resistor
GLMIOB33PN	3.3 Volt CMOS input levels, PCI compliant, normal slew
GLMIOB33PHU	3.3 Volt CMOS input levels, PCI compliant, high slew, w/ pull-up resistor
GLMIOB33PH	3.3 Volt CMOS input levels, PCI compliant, high slew

APA

APA

GLMIOBLX

Function

Bi-directional IO buffer and global connection, with active low enable

Truth Table

		Input			Output		
DE	D	PAD	A	EN	PAD	Y	GL
1	Х	N/A	Х	0	D	D	А
1	Х	N/A	Х	1	D	D	D
0	Х	Х	Х	0	N/A	PAD	А
0	Х	Х	Х	1	N/A	PAD	PAD

Tile Usage

Family	I/O Tiles
All listed	2

Available GLMIOBLx Macro Types

Name	Description
GLMIOBL25LLU	2.5 Volt CMOS input levels, low power, low slew, w/ pull-up resistor
GLMIOBL25LL	2.5 Volt CMOS input levels, low power, low slew
GLMIOBL25LNU	2.5 Volt CMOS input levels, low power, normal slew, w/ pull up resistor
GLMIOBL25LN	2.5 Volt CMOS input levels, low power, normal slew
GLMIOBL25LHU	2.5 Volt CMOS input levels, low power, high slew, w/ pull-up resistor
GLMIOBL25LH	2.5 Volt CMOS input levels, low power, high slew
GLMIOBL25HLU	2.5 Volt CMOS input levels, high power, low slew, w/ pull-up resistor
GLMIOBL25HL	2.5 Volt CMOS input levels, high power, low slew
GLMIOBL25HNU	2.5 Volt CMOS input levels, high power, normal slew, w/ pull-up resistor
GLMIOBL25HN	2.5 Volt CMOS input levels, high power, normal slew
GLMIOBL25HHU	2.5 Volt CMOS input levels, high power, high slew, w/ pull-up resistor
GLMIOBL25HH	2.5 Volt CMOS input levels, high power, high slew
GLMIOBL25LPLLU	2.5 Volt CMOS input levels, low power, low strength, low slew, w/ pull-up resistor
GLMIOBL25LPLL	2.5 Volt CMOS input levels, low power, low strength, low slew
GLMIOBL25LPLNU	2.5 Volt CMOS input levels, low power, low strength, normal slew, w/ pull-up resistor
GLMIOBL25LPLN	2.5 Volt CMOS input levels, low power, low strength, normal slew
GLMIOBL25LPLHU	2.5 Volt CMOS input levels, low power, low strength, high slew, w/ pull-up resistor
GLMIOBL25LPLH	2.5 Volt CMOS input levels, low power, low strength, high slew
GLMIOBL25LPHLU	2.5 Volt CMOS input levels, low power, high strength, low slew, w/ pull-up resistor
GLMIOBL25LPHL	2.5 Volt CMOS input levels, low power, high strength, low slew
GLMIOBL25LPHN	2.5 Volt CMOS input levels, low power, high strength, normal slew
GLMIOBL25LPHNU	2.5 Volt CMOS input levels, low power, high strength, normal slew, w/ pull-up resistor
GLMIOBL25LPHHU	2.5 Volt CMOS input levels, low power, high strength, high slew, w/ pull-up resistor
GLMIOBL25LPHH	2.5 Volt CMOS input levels, low power, high strength, high slew
GLMIOBL33LLU	3.3 Volt CMOS input levels, low power, low slew, w/ pull-up resistor
GLMIOBL33LL	3.3 Volt CMOS input levels, low power, low slew
GLMIOBL33LNU	3.3 Volt CMOS input levels, low power, normal slew, w/ pull up resistor
GLMIOBL33LN	3.3 Volt CMOS input levels, low power, normal slew
GLMIOBL33LHU	3.3 Volt CMOS input levels, low power, high slew, w/ pull-up resistor
GLMIOBL33LH	3.3 Volt CMOS input levels, low power, high slew
GLMIOBL33PLU	3.3 Volt CMOS input levels, PCI compliant, low slew, w/ pull-up resistor
GLMIOBL33PL	3.3 Volt CMOS input levels, PCI compliant, low slew
GLMIOBL33PNU	3.3 Volt CMOS input levels, PCI compliant, normal slew, w/ pull-up resistor
GLMIOBL33PN	3.3 Volt CMOS input levels, PCI compliant, normal slew
GLMIOBL33PHU	3.3 Volt CMOS input levels, PCI compliant, high slew, w/ pull-up resistor
GLMIOBL33PH	3.3 Volt CMOS input levels, PCI compliant, high slew

GLMXx

Function

Two bi-directional IO pads (global and regular), multiplexed

Truth Table

Input									Output		
DE	D1	PAD1	DE2	D2	PAD2	EN	PAD1	Y1	PAD2	Y2	GL
1	Х	N/A	1	Х	N/A	0	D1	D1	D2	D2	D1
1	Х	N/A	1	Х	N/A	1	D1	D1	D2	D2	D2
0	Х	Х	0	Х	Х	0	N/A	PAD1	N/A	PAD2	PAD1
0	Х	Х	0	Х	Х	1	N/A	PAD1	N/A	PAD2	PAD2
1	Х	N/A	0	Х	Х	0	D1	D1	N/A	PAD2	D1
1	Х	N/A	0	Х	Х	1	D1	D1	N/A	PAD2	PAD2
0	Х	Х	1	Х	N/A	0	N/A	PAD1	D2	D2	PAD1
0	Х	Х	1	Х	N/A	1	N/A	PAD1	D2	D2	D2

Available GLMIOBLx Macro Types

Name	Description
GLMX25LLU	2.5 Volt CMOS input levels, low power, low slew, w/ pull-up resistor
GLMX25LL	2.5 Volt CMOS input levels, low power, low slew
GLMX25LNU	2.5 Volt CMOS input levels, low power, normal slew, w/ pull up resistor
GLMX25LN	2.5 Volt CMOS input levels, low power, normal slew
GLMX25LHU	2.5 Volt CMOS input levels, low power, high slew, w/ pull-up resistor
GLMX25LH	2.5 Volt CMOS input levels, low power, high slew
GLMX25HLU	2.5 Volt CMOS input levels, high power, low slew, w/ pull-up resistor
GLMX25HL	2.5 Volt CMOS input levels, high power, low slew
GLMX25HNU	2.5 Volt CMOS input levels, high power, normal slew, w/ pull-up resistor
GLMX25HN	2.5 Volt CMOS input levels, high power, normal slew
GLMX25HHU	2.5 Volt CMOS input levels, high power, high slew, w/ pull-up resistor
GLMX25HH	2.5 Volt CMOS input levels, high power, high slew
GLMX25LPLLU	2.5 Volt CMOS input levels, low power, low strength, low slew, w/ pull-up resistor
GLMX25LPLL	2.5 Volt CMOS input levels, low power, low strength, low slew
GLMX25LPLNU	2.5 Volt CMOS input levels, low power, low strength, normal slew, w/ pull-up resistor
GLMX25LPLN	2.5 Volt CMOS input levels, low power, low strength, normal slew
GLMX25LPLHU	2.5 Volt CMOS input levels, low power, low strength, high slew, w/ pull-up resistor
GLMX25LPLH	2.5 Volt CMOS input levels, low power, low strength, high slew
GLMX25LPHLU	2.5 Volt CMOS input levels, low power, high strength, low slew, w/ pull-up resistor
GLMX25LPHL	2.5 Volt CMOS input levels, low power, high strength, low slew
GLMX25LPHN	2.5 Volt CMOS input levels, low power, high strength, normal slew
GLMX25LPHNU	2.5 Volt CMOS input levels, low power, high strength, normal slew, w/ pull-up resistor
GLMX25LPHHU	2.5 Volt CMOS input levels, low power, high strength, high slew, w/ pull-up resistor
GLMX25LPHH	2.5 Volt CMOS input levels, low power, high strength, high slew
GLMX33LLU	3.3 Volt CMOS input levels, low power, low slew, w/ pull-up resistor
GLMX33LL	3.3 Volt CMOS input levels, low power, low slew
GLMX33LNU	3.3 Volt CMOS input levels, low power, normal slew, w/ pull up resistor
GLMX33LN	3.3 Volt CMOS input levels, low power, normal slew
GLMX33LHU	3.3 Volt CMOS input levels, low power, high slew, w/ pull-up resistor
GLMX33LH	3.3 Volt CMOS input levels, low power, high slew
GLMX33PLU	3.3 Volt CMOS input levels, PCI compliant, low slew, w/ pull-up resistor
GLMX33PL	3.3 Volt CMOS input levels, PCI compliant, low slew
GLMX33PNU	3.3 Volt CMOS input levels, PCI compliant, normal slew, w/ pull-up resistor
GLMX33PN	3.3 Volt CMOS input levels, PCI compliant, normal slew
GLMX33PHU	3.3 Volt CMOS input levels, PCI compliant, high slew, w/ pull-up resistor
GLMX33PH	3.3 Volt CMOS input levels, PCI compliant, high slew

APA

GLMXLx

Two	bi-diı	rectional	IO pade	s (glob	al and re	gular),	multiplex	ed, w∕ act	ive low en	able	
Trut	h Ta	ble									
			Inpu	t					Output		
DE	D1	PAD1	DE2	D2	PAD2	EN	PAD1	Y1	PAD2	Y2	GL
1	Х	N/A	1	Х	N/A	0	D1	D1	D2	D2	D2
1	Х	N/A	1	Х	N/A	1	D1	D1	D2	D2	D1
0	Х	Х	0	Х	Х	0	N/A	PAD1	N/A	PAD2	PAD2
0	Х	Х	0	Х	Х	1	N/A	PAD1	N/A	PAD2	PAD1
1	Х	N/A	0	Х	Х	0	D1	D1	N/A	PAD2	PAD2
1	Х	N/A	0	Х	Х	1	D1	D1	N/A	PAD2	D1
0	Х	Х	1	Х	N/A	0	N/A	PAD1	D2	D2	D2
0	Х	Х	1	Х	N/A	1	N/A	PAD1	D2	D2	PAD1
<i>,</i>	••		-		1.7/11		1,711		52	52	

Available GLMIOBLx Macro Types

Name	Description
GLMXL25LLU	2.5 Volt CMOS input levels, low power, low slew, w/ pull-up resistor
GLMXL25LL	2.5 Volt CMOS input levels, low power, low slew
GLMXL25LNU	2.5 Volt CMOS input levels, low power, normal slew, w/ pull up resistor
GLMXL25LN	2.5 Volt CMOS input levels, low power, normal slew
GLMXL25LHU	2.5 Volt CMOS input levels, low power, high slew, w/ pull-up resistor
GLMXL25LH	2.5 Volt CMOS input levels, low power, high slew
GLMXL25HLU	2.5 Volt CMOS input levels, high power, low slew, w/ pull-up resistor
GLMXL25HL	2.5 Volt CMOS input levels, high power, low slew
GLMXL25HNU	2.5 Volt CMOS input levels, high power, normal slew, w/ pull-up resistor
GLMXL25HN	2.5 Volt CMOS input levels, high power, normal slew
GLMXL25HHU	2.5 Volt CMOS input levels, high power, high slew, w/ pull-up resistor
GLMXL25HH	2.5 Volt CMOS input levels, high power, high slew
GLMXL25LPLLU	2.5 Volt CMOS input levels, low power, low strength, low slew, w/ pull-up resistor
GLMXL25LPLL	2.5 Volt CMOS input levels, low power, low strength, low slew
GLMXL25LPLNU	2.5 Volt CMOS input levels, low power, low strength, normal slew, w/ pull-up resistor
GLMXL25LPLN	2.5 Volt CMOS input levels, low power, low strength, normal slew
GLMXL25LPLHU	2.5 Volt CMOS input levels, low power, low strength, high slew, w/ pull-up resistor
GLMXL25LPLH	2.5 Volt CMOS input levels, low power, low strength, high slew
GLMXL25LPHLU	2.5 Volt CMOS input levels, low power, high strength, low slew, w/ pull-up resistor
GLMXL25LPHL	2.5 Volt CMOS input levels, low power, high strength, low slew
GLMXL25LPHN	2.5 Volt CMOS input levels, low power, high strength, normal slew
GLMXL25LPHNU	2.5 Volt CMOS input levels, low power, high strength, normal slew, w/ pull-up resistor
GLMXL25LPHHU	2.5 Volt CMOS input levels, low power, high strength, high slew, w/ pull-up resistor
GLMXL25LPHH	2.5 Volt CMOS input levels, low power, high strength, high slew
GLMXL33LLU	3.3 Volt CMOS input levels, low power, low slew, w/ pull-up resistor
GLMXL33LL	3.3 Volt CMOS input levels, low power, low slew
GLMXL33LNU	3.3 Volt CMOS input levels, low power, normal slew, w/ pull up resistor
GLMXL33LN	3.3 Volt CMOS input levels, low power, normal slew
GLMXL33LHU	3.3 Volt CMOS input levels, low power, high slew, w/ pull-up resistor
GLMXL33LH	3.3 Volt CMOS input levels, low power, high slew
GLMXL33PLU	3.3 Volt CMOS input levels, PCI compliant, low slew, w/ pull-up resistor
GLMXL33PL	3.3 Volt CMOS input levels, PCI compliant, low slew
GLMXL33PNU	3.3 Volt CMOS input levels, PCI compliant, normal slew, w/ pull-up resistor
GLMXL33PN	3.3 Volt CMOS input levels, PCI compliant, normal slew
GLMXL33PHU	3.3 Volt CMOS input levels, PCI compliant, high slew, w/ pull-up resistor
GLMXL33PH	3.3 Volt CMOS input levels, PCI compliant, high slew

Function

GLPE

Function

LVPECL inputs for high-speed signaling.

The GLPE macro reads the difference between the PECLIN and PECLREF analog signals and returns a voltage of 1 if it is above a (user-specified) threshold.

Truth Table

	Input ^a	Output
PECLIN	PECLREF	GL
Х	Х	PECLIN

a. This table describes digital model behavior for PECLIN and PECLREF

Tile Usage

Family	I/O Tiles
All listed	1

GLPEMIB

Function

LVPECL inputs for high-speed signaling.

The GLPEMIB macro reads the difference between the PECLIN and PECL-REF analog signals and returns a voltage of 1 if it is above a (user-specified) threshold.

Truth Table

		Input ^a	Output		
A	EN	PECLIN / PECLREF	GL	Y	
Х	1	Х	PECLIN/PECLREF	PECLIN/ PECLREF	
Х	0	Х	А	PECLIN/ PECLREF	

a. This table describes digital model behavior for PECLIN and PECLREF

Tile Usage

Family	I/O Tiles	
All listed	1	

APA

Memory Cells

Embedded memory blocks in the A500K family can be configured as FIFO or static RAM with the following features:

- basic block size is 256 word by 9 bit.
- FIFO includes complete control logic.
- static RAM with independent read and write ports.

Naming Convention for RAMs

RAM model names consist of up to four parts:

- A base name indicating the type and size (RAM256x9)
- A one character code designating the write port as asynchronous (A) or synchronous (S).
- A one or two character code designating the read port as asynchronous (A) or synchronous registered (SR) or synchronous transparent (ST).
- An optional one character code designating parity (P) generated.

For example: RAM256x9SAP is a 256-word by 9-bit RAM with synchronous write and asynchronous read ports using the generate parity feature.

SRAM Interface Signals

The illustration and table below describe basic embedded SRAM interface signals.

SRAM Signal	Bits	In/Out	Description
DI<8:0>	9	IN	Input data bits <8:0>, <8> can be used for parity in
RADDR<7:0>	8	IN	Read address
WADDR<7:0>	8	IN	Write address
WRB	1	IN	Negative true write pulse
RDB	1	IN	Negative true read pulse
WBLKB	1	IN	Negative true write block select
RBLKB	1	IN	Negative true read block select
PARODD	1	IN	Selects odd parity generation/detect when high, even when low
WCLKS	1	IN	Write clock used in synchronous mode on write side
RCLKS	1	IN	Write clock used in synchronous mode on read side
DO<8:0>	9	OUT	Output data bits <8:0>, <8> can be used for parity out
WPE	1	OUT	Write parity error flag
RPE	1	OUT	Read parity error flag

Naming Convention for FIFOs

FIFO model names consist of up to four parts:

- A base name indicating the type and size (FIFO256x9)
- A one character code designating the write port as asynchronous (A) or synchronous (S).
- A one or two character code designating the read port as asynchronous (A) or synchronous registered (SR) or synchronous transparent (ST).
- An optional one character code designating parity (P) generated.

For example: FIFO256x9SSRP is a 256-word by 9-bit FIFO with synchronous write and synchronous read ports (synchronous to separate clocks named RCLKS and WCLKS), has registered outputs and uses the generate parity feature.

FIFO Interface Signals

This illustration and the table below describe FIFO interface signals.

Table 4-2: FIFO Signal Descriptions

FIFO Signal	Bits	In/Out	Description	
DI<8:0>	9	IN	Input data bits <8:0>, <8> can be used for parity in	
LEVEL<7:0>	8	IN	Reference signal for the generation of the EQTH and GEQTH flags	
LGDEP<2:0>	3	IN	Configures DEPTH of the FIFO to 2 ^(LGDEP+1)	
WRB	1	IN	Negative true write pulse	
RDB	1	IN	Negative true read pulse	
WBLKB	1	IN	Negative true write block select	
RBLKB	1	IN	Negative true read block select	
PARODD	1	IN	Selects odd parity generation/detect when high, even when low	
WCLKS	1	IN	Write clock used in synchronous mode on write side	
RCLKS	1	IN	Write clock used in synchronous mode on read side	
RESET	1	IN	Negative true reset for FIFO pointers	
DO<8:0>	9	OUT	Output data bits <8:0>, <8> can be used for parity out	
FULL	2	OUT	FIFO flag. FULL prevents write. EMPTY prevents read	
EMPTY	1	OUT	FIFO flag. EMPTY prevents read	
WPE	1	OUT	Write parity error flag	
RPE	1	OUT	Read parity error flag	
EQTH	1	OUT	EQTH is true when the FIFO holds (LEVEL) words	
GEQTH	1	OUT	GEQTH is true when the FIFO holds (LEVEL) words or more	

RAM256x9AA

DI<8:0> — RADDR<7:0> — WADDR<7:0> — WRB — RDB — WBLKB — RBLKB — PARROD —	RAM256x9AA	DO<8:0> WPE RPE	Function Asynchronous Write/Asynchronous Read RAM with Parity Checking Tile Usage Family RAM Port Tiles All listed 16
Input DI, RADDR, WADDR, WRB, RDB, WBLKB, RBLKB, PARROD	Output DO, WPE, RPE		

RAM256x9AAP

A500K, APA

RAM256x9ASR

DI<8:0> -DO<8:0> RADDR<7:0> -WPE WADDR<7:0> -RPE WRB -RAM256x9ASR RDB · WBLKB -RBLKB RCLKS PARROD -Input Output DO, WPE, RPE DI, RADDR, WADDR, WRB, RDB, WBLKB, RBLKB, RCLKS, PARROD

Function

Asynchronous Write/Synchronous Read RAM with Registered Output and Parity Checking

A500K, APA

Tile Usage

Family	RAM Port Tiles
All listed	16

RAM256x9ASRP A500K, APA Function Asynchronous Write/Synchronous Read RAM with DI<8:0> -DO<8:0> Registered Output and Parity Generation RADDR<7:0> **Tile Usage** WADDR<7:0> -Family **RAM Port Tiles** WRB -All listed 16 RAM256x9ASRP RDB -WBLKB RBLKB -RCLKS PARODD · Output Input DI, RADDR, WADDR, DO WRB, RDB, WBLKB, RBLKB, RCLKS, PARROD

RAM256x9AST

Function Asynchronous Write/Synchronous Read RAM with DO<8:0> DI<8:0> Transparent Output and Parity Checking RADDR<7:0> WPE Tile Usage WADDR<7:0> RPE Family **RAM Port Tiles** WRB RAM256x9AST All listed 16 RDB WBLKB RBLKB RCLKS PARODD Input Output DO. WPE. RPE DI. RADDR. WADDR. WRB, RDB, WBLKB, RBLKB, RCLKS, PARROD

RAM256x9ASTP

A500K, APA

Asynchronous Write/Synchronous Read RAM with Transparent Output and Parity Generation

Family	RAM Port Tiles
All listed	16

RAM256x9SA

Function Synchronous Write/Asynchronous Read RAM with Parity DI<8:0> DO<8:0> Checking RADDR<7:0> WPE Tile Usage WADDR<7:0> RPE Family **RAM Port Tiles** WRB RAM256x9SA All listed 16 RDB WBLKB RBLKB WCLKS PARODD Input Output DO, WPE, RPE DI, RADDR, WADDR, WRB, RDB, WBLKB, RBLKB, WCLKS, PARROD

RAM256x9SAP	DO<8:0> M256x9SAP	Function Synchronous Write/Asynchronous Read RAM with Parity Generation Tile Usage Family RAM Port Tiles All listed 16		
Input DI, RADDR, WADDR, WRB, RDB, WBLKB, RBLKB, WCLKS, PARROD	Output DO			

A500K, APA

RAM256x9SSR

RAM256x9SSRP

A500K, APA

Synchronous Write/Synchronous Read RAM with Registered Output and Parity Generation

Family	RAM Port Tiles
All listed	16

RAM256x9SST

A500K, APA

Function

Synchronous Write/Synchronous Read RAM with Transparent Output and Parity Checking

Tile Usage

Family	RAM Port Tiles
All listed	16

RAM256x9SSTP

DI<8:0>

RADDR<7:0> WADDR<7:0>

A500K, APA

Function

DO<8:0>

Synchronous Write/Synchronous Read RAM with Transparent Output and Parity Generation

Tile Usage

Family	RAM Port Tiles
All listed	16

A500K, APA

FIF0256x9AA

Function

Asynchronous Write/Asynchronous Read FIFO with Parity Checking

Tile Usage

Family	RAM Port Tiles
All listed	16

RESET, PARROD

FIF0256x9AAP

Function

Asynchronous Write/Asynchronous Read FIFO with Parity Generation

Family	RAM Port Tiles
All listed	16

FIF0256x9ASR

A500K, APA

Function

Asynchronous Write/Synchronous Read FIFO with Registered Output and Parity Checking

Tile Usage

Family	RAM Port Tiles
All listed	16

FIF0256x9ASRP

RCLKS, RESET, PARROD

DI<8:0>	DO<8:0> FULL EMPTY EQTH GEQTH
Input DI, LEVEL, LGDEP, WRB, RDB, WBLKB, RBLKB, RCLKS, RESET, PARROD	Output DO, FULL, EMPTY, EQTH, GEQTH

A500K, APA

Function

1

Asynchronous Write/Synchronous Read FIFO with Registered Output and Parity Generation

Family	RAM Port Tiles
All listed	16

FIF0256x9AST

FIF0256x9ASTP

A500K, APA

Function

Asynchronous Write/Synchronous Read FIFO with Transparent Output and Parity Generation

Family	RAM Port Tiles
All listed	16

FIF0256x9SA

A500K, APA

Function

Synchronous Write/Asynchronous Read FIFO with Parity Checking

Tile Usage

Family	RAM Port Tiles
All listed	16

FIF0256x9SAP

DI<8:0> — LEVEL<7:0> — LGDEP<2:0> — WRB — RDB — WBLKB — WBLKB — RBLKB — WCLKS — RESET — PARODD —	FIFO256x9SAP	FL Syy G TÎ
Input DI, LEVEL, LGDEP, WRF RDB, WBLKB, RBLKB, WCLKS, RESET, PARROI	GEQTH	

A500K, APA

Function

Synchronous Write/Asynchronous Read FIFO with Parity Generation

Family	RAM Port Tiles
All listed	16

FIF0256x9SSRP

FIF0256x9SSR

Function

Synchronous Write/Synchronous Read FIFO with Registered Output and Parity Generation

Family	RAM Port Tiles
All listed	16

FIF0256x9SST

A500K, APA

Input

DI, LEVEL, LGDEP, WRB, RDB, WBLKB, RBLKB, WCLKS, RCLKS, RESET, PARROD

Output DO, FULL, EMPTY, WPE, RPE, EQTH, GEQTH

FIF0256x9SSTP

DI<8:0> LEVEL<7:0> LGDEP<2:0> WRB RDB WBLKB RBLKB WCLKS RCLKS RESET PARODD	FIFO:	256x9SSTP	DO<8:0> FULL EQTH GEQTH	Funct Synch Transp Tile U Fe All lis
Input DI, LEVEL, LGDI RDB, WBLKB, RB WCLKS, RCLKS, F PARROD	LKB,	Output DO, FUL GEQTH	L, EMPTY, EQTH,	

Function

Synchronous Write/Synchronous Read FIFO with Transparent Output and Parity Checking

Tile Usage

Family	RAM Port Tiles
All listed	16

A500K, APA

tion

ronous Write/Synchronous Read FIFO with parent Output and Parity Generation

Isage

Family	RAM Port Tiles
All listed	16

APA

PLLMACRO

Function

Phase locked loop; please refer to PLL and APA datasheets for more information on the PLL.

Family	I/O Tiles
All listed	6

Product Support

Actel backs its products with various support services including Customer Service, a Customer Technical Support Center, a web site, an FTP site, electronic mail, and worldwide sales offices. This appendix contains information about contacting Actel and using these support services.

Customer Service

Contact Customer Service for non-technical product support, such as product pricing, product upgrades, update information, order status, and authorization.

From Northeast and North Central U.S.A., call **650.318.4480** From Southeast and Southwest U.S.A., call **650.318.4480** From South Central U.S.A., call **650.318.4434** From Northwest U.S.A., call **650.318.4434** From Canada, call **650.318.4480** From Europe, call **650.318.4252** or +44 (0)1276.401500 From Japan, call **650.318.4743** From the rest of the world, call **650.318.4743** Fax, from anywhere in the world **650.318.8044**

Actel Customer Technical Support Center

Actel staffs its Customer Technical Support Center with highly skilled engineers who can help answer your hardware, software, and design questions. The Customer Technical Support Center spends a great deal of time creating application notes and answers to FAQs. So, before you contact us, please visit our online resources. It is very likely we have already answered your questions.

Actel Technical Support

Visit the Actel Customer Support website (www.actelcom/.custsup/search.html) for more information and support. Many answers available on the searchable web resource include diagrams, illustrations, and links to other resources on the Actel web site.

Website

You can browse a variety of technical and non-technical information on Actel's home page, at www.actel.com.

Contacting the Customer Technical Support Center

Highly skilled engineers staff the Technical Support Center from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through Friday. Several ways of contacting the Center follow:

Email

You can communicate your technical questions to our email address and receive answers back by email, fax, or phone. Also, if you have design problems, you can email your design files to receive assistance. We constantly monitor the email account throughout the day. When sending your request to us, please be sure to include your full name, company name, and your contact information for efficient processing of your request.

The technical support email address is tech@actel.com.

Phone

Our Technical Support Center answers all calls. The center retrieves information, such as your name, company name, phone number and your question, and then issues a case number. The Center then forwards the information to a queue where the first available application engineer receives the data and returns your call. The phone hours are from 7:00 A.M. to 6:00 P.M., Pacific Time, Monday through Friday. The Technical Support numbers are:

650.318.4460 800.262.1060

Customers needing assistance outside the US time zones can either contact technical support via email (tech@actel.com) or contact a local sales office. Sales office listings can be found at www.actel.com/contact/offices/index.html.

For more information about Actel's products, visit our website at http://www.actel.com

Actel Corporation • 2061 Stierlin Court • Mountain View, CA 94043 USA Customer Service: 650.318.1010 • Customer Applications Center: 800.262.1060 Actel Europe Ltd. • Dunlop House, Riverside Way • Camberley, Surrey GU15 3YL • United Kingdom Phone +44 (0)1276 401 463 • Fax +44 (0)1276 401 490 Actel Japan • EXOS Ebisu Bldg. 4F • 1-24-14 Ebisu Shibuya-ku • Tokyo 150 • Japan Phone +81.03.3445.7671 Fax +81.03.3445.7668 Actel Hong Kong • 39th Floor, One Pacific Place • 88 Queensway, Admiralty Hong Kong Phone +852.227.35712 Fax +852.227.35999

5579016-4

