Model Sim.

Actel

User’s Manual

Version 5.5e

Published: 25/Sep/01

The world’s most popular HDL simulator

ModelSim User’s Manual

ModelSim is produced by Model Technology™ Incorporated. Unauthorized
copying, duplication, or other reproduction is prohibited without the written consent
of Model Technology.

The information in this manual is subject to change without notice and does not
represent a commitment on the part of Model Technology. The program described
in this manual is furnished under a license agreement and may not be used or
copied except in accordance with the terms of the agreement. The online
documentation provided with this product may be printed by the end-user. The
number of copies that may be printed is limited to the number of licenses
purchased.

ModelSim is a registered trademark of Model Technology Incorporated. Model
Technology is a trademark of Mentor Graphics Corporation. PostScript is a
registered trademark of Adobe Systems Incorporated. UNIX is a registered
trademark of AT&T in the USA and other countries. FLEXIm is a trademark of
Globetrotter Software, Inc. IBM, AT, and PC are registered trademarks, AIX and
RISC System/6000 are trademarks of International Business Machines
Corporation. Windows, Microsoft, and MS-DOS are registered trademarks of
Microsoft Corporation. OSF/Moatif is a trademark of the Open Software Foundation,
Inc. in the USA and other countries. SPARC is a registered trademark and
SPARCSstation is a trademark of SPARC International, Inc. Sun Microsystems is a
registered trademark, and Sun, SunOS and OpenWindows are trademarks of Sun
Microsystems, Inc. All other trademarks and registered trademarks are the
properties of their respective holders.

Copyright (c) 1990 -2001, Model Technology Incorporated.
All rights reserved. Confidential. Online documentation may be printed by licensed
customers of Model Technology Incorporated for internal business purposes only.

ModelSim support

Support for ModelSim is available from your FPGA vendor. See the About
ModelSim dialog box (accessed via the Help menu) for contact information.

Table of Contents

1 - Introduction (UM-11)

Standardssupported L L L L
ASSUMPLiONS L L L e e
Sectionsinthisdocument L L.
Commandreferenceo e e
What isan"HDL item" oo
Textconventionso e e e e

2 - Projects and system initialization (UM-15)

Introduction L L L e e e
How do projectsdiffer inverson55?

Getting started withprojectso
Step 1 — Createanew projecto
Step 2 — Addfilestotheproject L.
Step 3— Compilethefiles oL
Step4— Simulateadesign L L Lo e
Other projectoperationso e

Customizing project settings o
Changing compileordero
Groupingfiles. oo
Setting compileroptions. L oL Lo Lo

Accessing projectsfromthecommandlineo

Systeminitidization L L L L e e
Filesaccessedduringstartupo
Environment variablesaccessed during startup L L L L L L L.
Initializationsequence L L L Lo oo

3 - Design libraries (UM-31)

Designlibrarycontents
Designlibrarytypes e

Working with design librarieso 0L
Managing library contents Lo Lo
Assigning alogical nameto adesignlibraryo L.
Movingalibrary L oL

Specifying theresource librarieso
Predefined libraries. oL oL
Alternate IEEE librariessupplied
VITAL 2000 library o o e e
Regenerating your design libraries.

UM-3

ModelSim User's Manual

UM-4 Table of Contents

Importing FPGA libraries .

4 - VHDL Simulation (UM-43)

Compiling VHDL designs .
Invoking the VHDL compiler
Dependency checking .
Range and index checking .

Simulating VHDL designs .

Invoking the simulator from the M ain wi ndow .

Using the TextlO package .
Syntax for file declaration .

Using STD_INPUT and STD OUTPUTWIthIn ModeIS|m o

TextlO implementation issues
Reading and writing hexadecimal numbers
Dangling pointers
The ENDLINE function .
The ENDFILE function . .
Using alternative input/output flle;
Providing stimulus .

Obtaining the VITAL specification and source code

VITAL packages

ModelSim VITAL compliance .
VITAL compliance checking .

Compiling and Simulating with accelerated VITAL packag%

Util package . .
get_resolution()
init_signal_spy() . .
torea() . .
to time() . .

5 - Verilog Simulation (UM-59)

Compilation
Incremental comp|lat|on
Library usage .

Verilog-XL companble compller optlons .

Verilog-XL ‘uselib compiler directive

Simulation .
Simulation resol ut|on I|m|t
Event order issues . .

Verilog-XL compati blesmulator optlons .

Cell Libraries . .
Delay modes

System Tasks . .
|EEE Std 1364 wstem tasks o

ModelSim User’'s Manual

. UM-42

. . UM-45
. . UM-45
. . UM-45
. UM-45
. UM-46
. UM-46

. . UM-47
. . UM-47
. UM-48

. . UM-49

. UM-50
. .UM-50
. . UM-50
. . UM-50
. . UM-51

. UM-51

. UM-52
. UM-52

. . UM-52
. UM-52

. UM-53

. . UM-54
. . UM-54
. UM-55
. . UM-56
. UM-57

. . UM-61
. . UM-62
. . UM-64
. . UM-65

. UM-67

. . UM-69
. UM-70
. .UM-70
. UM-71

. . UM-75
. UM-75

. . UM-77
. UM-77

UM-5

Verilog-XL compatiblesystemtasksUM-80
$int signal_spy e e e e e e e e e e e e e L UMAB2

Compiler Directives N U] v/ 5<%
IEEEStd136400mp|Ierd|rect|ves N U] v/ 5<%
Verilog-XL compatible compiler directivesUM-8

Verilog PLI/VPL. T 0]|V B2 1§)
ReglstenngPLIaplecatlons.........................UM-86
Registering VPI applications I] \Y 831
ComplllngandlmklngPLI/VPIappllcatlons...................UM-89
ThePLI callback reasonargumentUM-G3
The sizetf callback functionUM%A
PLI objecthandlesUMA
Third party PLI applicationsUM95
Support for VHDL objectsUM-9
IEEE Std 1364 ACCroutines.UM-97
IEEE Std 1364 TFroutines.UM-98
Verilog-XL compatibleroutines. UM-100
64-bit supportinthePLI. UM-100
PLI/VPItracingUM-100

6 - WLF files (datasets) and virtuals (UM-103)

WLFfiles (datasets) . . N 0]V K0!
SavmgasmulanontanLFflIe N 0 | V/ RS [0}
Openingdatasets.UM-105
Viewing dataset structure UM-106
Managing datasets N U1V 4 K03
UsmgdatasetswnhModel&mcommands N U1V 4 K0S
Restricting the dataset prefixdisplay UM-109

Virtual Objects (User-defined buses,andmore) UM-110
Virtualsignals.UM110
Virtual functions. L. UMI2
Virtual regions L L. L L L Lo e e e UM122
Virtualtypes L s s s U122

Dataset, WLF file, and virtualcommands UM-113

7 - Graphic Interface (UM-115)

Windowoverview UM-116

Commonwindow features.UM117
Quick accesstoolbarsUM-118
DragandDropUM-118
CommandhistoryUM-118
Automaticwindowupdating UM-119
Finding names, and locatingcursors UM-119
SortingHDLitemsUM12
Savingwindow layoutUM12
ContextmenusUMI20

ModelSim User's Manual

UM-6 Table of Contents

Menu tear off .
Combining signals into a user- defrned bus
Tree window hierarchical view .

Main window . .
Workspace .
Transcript .. Co
The Main window menu bar .
The Main window toolbar .
The Main window status bar .
Mouse and keyboard shortcuts .

Dataflow window . .
Link to active cursor in Wave wi ndow .
Dataflow window menu bar ..
Tracing HDL items with the Dataflow wi ndow
Saving the Dataflow window as a Postscript file

List window
HDL itemsyou can view
The List window menu bar . .
Setting List window display propertles .
Adding HDL itemsto the List window . . .
Editing and formatting HDL itemsin the List wi ndow .
Examining simulation results with the List window . .
Finding items by name in the List window
Setting time markers in the List window
List window keyboard shortcuts .
Saving List window datato afile .

Process window .
The Process window menu bar

Signalswindow .
The Signals window menu bar
Selecting HDL item typesto view .
Forcing signal and net values .
Adding HDL itemsto the Wave and Lrst WII’IdOWS or aWLF f|Ie
Finding HDL itemsin the Signals window
Setting signal breakpoints . .
Defining clock signals

Source window .
The Source window menu bar
The Source window toolbar
Setting file-line breakpoints .
Editing the source file in the Source wi ndow .
Checking HDL item values and descriptions . .
Finding and replacing in the Source window . .
Setting tab stopsin the Source window .

Structure window
The Structure window menu bar
Finding itemsin the Structure window .

Variableswindow .

ModelSim User’'s Manual

UM-120
UM-121
UM-121

UM-123
UM-124
UM-125
UM-126
UM-131
UM-133
UM-133

UM-135
UM-135
UM-136
UM-137
UM-138

UM-139

UM-139

UM-140
UM-142
UM-144
UM-145
UM-148
UM-149
UM-149
UM-150
UM-150

UM-152
UM-153

UM-155
UM-156
UM-157
UM-158
UM-159
UM-160
UM-160
UM-162

UM-163
UM-164
UM-166
UM-168
UM-170
UM-170
UM-170
UM-171

UM-172
UM-173
UM-174

UM-175

The Variables window menu bar

Wave window
Pathname pane
Values pane
Waveform pane . .
Cursor panes
HDL itemsyou can view
Adding HDL itemsin the Wave wi ndow
The Wave window menu bar .
The Wave window toolbar .
Using Dividers
Splitting Wave window panes .
Combining itemsin the Wave window . . .
Editing and formatting HDL itemsin the Wave wi ndow .
Setting Wave window display properties .
Setting signal breakpoints .
Finding items by name or value in the Wave wi ndow
Using time cursors in the Wave window
Findingacursor . .
Making cursor measurements .
Zooming - changing the waveform dlsplay range .
Saving zoom range and scroll position with bookmarks
Wave window mouse and keyboard shortcuts
Saving waveforms .

Compiling with the graphic interface
L ocating source errors during compilation .
Setting default compile options .

Simulating with the graphic interface

Design selection tab

VHDL settingstab .

Verilog settings tab .

Libraries settingstab .

SDF seftingstab . .

SDF options .
Setting default scmulatlon optlons .

ModelSim tools . o
The GUI Expression Bunder .

Graphic interface commands . .

8 - Standard Delay Format (SDF) Timing Annotation (UM-233)

Specifying SDF filesfor simulation .
Instance specification .
SDF specification with the GUI
Errors and warnings

VHDL VITAL SDF
SDF to VHDL generic matchmg
Resolving errors . -

UM-7

UM-176

UM-178
UM-178
UM-179
UM-179
UM-180
UM-180
UM-181
UM-182
UM-186
UM-189
UM-190
UM-191
UM-192
UM-197
UM-198
UM-199
UM-200
UM-201
UM-201
UM-201
UM-203
UM-205
UM-206

UM-211
UM-212
UM-213

UM-217
UM-218
UM-220
UM-222
UM-223
UM-224
UM-225
UM-226

UM-230
UM-230

UM-232

UM-234
UM-234
UM-235
UM-235

UM-236
UM-236
UM-237

ModelSim User's Manual

UM-8 Table of Contents

VerilogSDF N U] V/ B '3
The$sdfannotatewstemtask.......................UM—238
SDFto Verilog construct matching UM-239
Optional edge specificationsUM-241
Optionalconditions...........................UM—242
Rounded timing values T U]V B

SDFforM|xedVHDLandVenIogDesgns N 1Y RS)
Interconnectdelays UM244

Troubleshooting N 0 | V/ B2 1)
Mlstakmgacomponentormodulenameforanmstancelabel e e e e e o UM-246
Forgetting to specify theinstance UM-246

9 - Value Change Dump (VCD) Files (UM-247)

ModelSimVCD commandsandVCDtasks UM-248

CreatingaVCDfile UM-249
Flow for four-stateVCDfile UM-249

A VCD filefromsourcetooutput UM-250
VCDsimulatorcommands UM-250
VCDoutputo oo UM-2B1

10 - Tcl and macros (UM-253)

Tcl featureswithin ModelSm UM-2o4
Tol Referenceso o UM2A4
TclcommandsUM-25

TcdcommandsyntaxUM-256
ifcommandsyntaxUM-258
setcommandsyntax oo e e e e e .o UM-259
Command substitution UM-25
Commandseparator e v e UM-260
Multiple-linecommands.UM-260
Evaluationorder e e e e e e e ..o UM-260
Tclrelanonalexprmonevaluanon.....................UM—260
Variablesubstitution UM-261
SystemcommandsUM-261

Listprocessingo UM-262
ModelSimTclcommands UM-262

ModelSim Tcl timecommandsUM-263
Conversions e e e e e e e e e e e e oo oo .. . UM-263
Relations. UM-263
Arithmetic UM-2064

Tclexamples UM-265
Example2 UM-266

Macros(DOfiles) UM-269

ModelSim User’'s Manual

UM-9

Using ParameterswithDOfiles. UM-269

A - ModelSim Variables (UM-273)

Variablesettingsreport UM-27/4
Personal preferences N 0 |\ By
Returning to the original ModelSimdefaults UM-274
Environment variables N Y X)
Creatlngenvwonmentvanablesmedows A U \Y/ E52¥ ()
Referencing environment variableswithin ModelSm UM-277
Removing temp files(VSOUT) UM277
Preferencevariableslocated in INI files UM-278
[Library] library pathvariablesUM-278
[vcom] VHDL compiler control variables UM-278
[vlog] Verilog compiler control variables UM-279
[veim] simulator control variables UM-280
Setting variablesinINI filesUM-283
Commonly used INlvariablesUM-284
Preferencevariableslocated in Tcl files UM-287
User-definedvariablesUM-287
Morepreferences UM-287
Variableprecedence UM-288
Simulator state variables N 0]/ B 518
Referencmgsmulatorstatevanabl& N U1V 2 318
Specia considerationsfor$now UM-290

B - ModelSim Shortcuts (UM-291)

Wave window mouse and keyboard shortcuts UM-291
List window keyboard shortcuts UM-292
Commandshortcuts UM-293
Mouse and keyboard shortcutsin Main and Sourcewindows UM-293

Right mousebutton.UM-2%4

C - Tips and Techniques (UM-295)

Running command-line and batch-mode smulations UM-29
Sourcecode securityand-nodebugo UM-297
Saving and viewing waveformsin batchmode UM-298
Setting up librariesforgroupuse UM-208
Detecting infinite zero-delay loops e e e e e e e e e s UM-299
Performance affected byscheduledeventsbemgcancelled e e e e UM-300
Modelingmemory inVHDL UM-301

ModelSim User's Manual

UM-10 Table of Contents

Setting up aList trigger with Expression Builder

Index (UM-307)

ModelSim User’'s Manual

UM-11

1 - Introduction

Chapter contents

StandardssupportedUM-12
AssumptionsUM-12
SectionsinthisdocumentUM-12
Command referenceUM-13
TextconventionsUM-14
Whatisan"HDL item"UM-14

This documentation was written for Model Sm version 5.5e for Microsoft Windows 95/98/
Me/NT/2000. If the Model Sm software you are using is a later release, check the
README filethat accompanied the software. Any supplemental information will bethere.

ModelSim User's Manual

UM-12 1 - Introduction

Standards supported

ModelSm VHDL supports both the IEEE 1076-1987 and 1076-1993 VHDL, the
1164-1993 Sandard Multivalue Logic Systemfor VHDL Interoperability, and the
1076.2-1996 Sandard VHDL Mathematical Packages standards. Any design developed
with ModelSmwill be compatible with any other VHDL system that is compliant with
either IEEE Standard 1076-1987 or 1076-1993.

ModelSm Verilog is based on |EEE Std 1364-1995 and a partial implementation of
1364-2001, Sandard Hardware Description Language Based on the Verilog Hardware
Description Language. The Open Verilog International Verilog LRM version 2.0 isalso
applicableto alarge extent. Both PLI (Programming Language Interface) and VCD (Value
Change Dump) are supported for Model Sm PE and SE users.

In addition, all products support SDF 1.0 through 3.0, VITAL 2.2b, VITAL'95 - IEEE
1076.4-1995, and VITAL 2000.

Assumptions

Sections in

ModelSim User’'s Manual

We assume that you are familiar with the use of your operating system. If you are not
familiar with Microsoft Windows, we recommend that you work through the tutorials
provided with MS Windows before using ModelSm.

We also assume that you have aworking knowledge of VHDL and Verilog. Although
ModelSmis an excellent tool to use while learning HDL concepts and practices, this
document is not written to support that goal.

Finally, we make the assumption that you have worked the appropriate lessons in the
ModelSmTutorial and arethereforefamiliar with the basic functionality of ModelSm. The
ModelSim Tutorial is available from the ModelSm Help menu.

this document

In addition to thisintroduction, you will find the following major sectionsin this document:

2 - Projects and system initialization (UM-15)
This chapter provides a definition of aModelSm "project” and discusses the use of a
new file extension for project files.

3 - Design libraries (UM-31)
To simulate an HDL design using ModelSm, you need to know how to create,
compile, maintain, and delete design libraries as described in this chapter.

4 - VHDL Simulation (UM-43)
This chapter is an overview of compilation and simulation for VHDL within the
Model Sm environment.

5- Verilog Simulation (UM-59)
This chapter is an overview of compilation and simulation for Verilog within the
Model Sm environment.

Command reference UM-13

6 - WLF files (datasets) and virtuals (UM-103)
This chapter describes datasets and virtuals - both methodsfor viewing and organizing
simulation datain ModelSm.

7 - Graphic Interface (UM-115)
This chapter describes the graphic interface available while operating ModelSm.
Model Sm's graphic interface is designed to provide consistency throughout all
operating system environments.

8 - Standard Delay Format (SDF) Timing Annotation (UM-233)
This chapter discusses Model Sm's implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

9 - Value Change Dump (VCD) Files (UM-247)
This chapter explains Model Technology’s Verilog VCD implementation for
ModelSm. The VCD usage is extended to include VHDL designs.

10 - Tcl and macros (UM-253)
This chapter provides an overview of Tcl (tool command language) as used with
ModelSm.

A - ModelSim Variables (UM-273)
This appendix describes environment, system, and preference variables used in
ModelSm.

B - ModelSim Shortcuts (UM-291)
This appendix describes Model Sm keyboard and mouse shortcuts.

C - Tips and Techniques (UM-295)

This appendix contains an extended collection of Model Sm usage examples taken
from our manuals, and tech support solutions.

Command reference

The complete command reference for all Model Sm commandsislocated in the ModelSm
Command Reference. Command Reference cross reference page numbersare prefixed with
"CR" (e.g.,"Commands’ (CR-25)).

ModelSim User's Manual

UM-14 1 - Introduction

What is an "HDL item"

Because Model Smworks with both VHDL and Verilog, “HDL” refersto either VHDL or
Verilog when aspecific languagereferenceis not needed. Depending on the context, “HDL
item” can refer to any of the following:

VHDL block statement, component instantiation, constant, generate
statement, generic, package, signal, or variable

Verilog function, module instantiation, named fork, named begin, net,
task, or register variable

Text conventions

Text conventions used in this manual include:

italic text

provides emphasis and sets off filenames, path names, and
design unit names

bold text

indicates commands, command options, menu choices,
package and library logical names, aswell as variables and
dialog box selection

monospace type

monospace typeisused for program and command examples

Theright angle (>)

is used to connect menu choices when traversing menus as
in: File> Save

UPPER CASE

denotesfile types used by ModelSm (e.g., DO, WLF, INI,
MPF, PDF, etc.)

ModelSim User’'s Manual

UM-15

2 - Projects and system initialization

Chapter contents

IntroductionUM-16
What are prOjects’) .oUM-16
What are the benefits of proj ects’)UM-16
How do projects differ inverson55?UM-17

Getting started withprojectsUM-18
Step 1 — Createanew projectUM-19
Step 2— Add filestotheproject.UM-21
Step 3— CompilethefilesUM-21
Step 4 — SimulateadesignUM-22
Other project operationsUM-23

Customizing project settingsUM-24
Changing compileorderUM-24
Setting compiler optionsUM-25

Accessing projectsfrom thecommandlineUM-26

Systeminitialization . . e e L UM27
Files accessed during startup .o JUm-27
Environment variables accessed during startupUM-28
Initializationsequence.UM-29

This chapter discusses Model S m projects. Projects simplify the process of compiling and
simulating adesign and are agreat tool for getting started with Model Sm. This chapter also
includes a section on Model Sminitialization.

ModelSim User's Manual

UM-16 2 - Projects and system initialization

Introduction

What are projects?

Projects are collection entities for HDL designs under specification or test. At aminimum
projectshave aroot directory, awork library, and "metadata’ which are stored ina.mpf file
located in aproject’sroot directory. The metadatainclude compiler switch settings, compile
order, and file mappings. Projects may also consist of:

» HDL source files or references to source files

« other files such as READMEs or other project documentation
* local libraries

« referencesto global libraries

What are the benefits of projects?

ModelSim User’'s Manual

Projects offer benefits to both new and advanced users. Projects

« simplify interaction with Model Sim; you don’t need to understand the intricacies of
compiler switches and library mappings

« eliminate the need to remember a conceptual model of the design; the compile order is
maintained for you in the project

* remove the necessity to re-establish compiler switches and settings at each session; these
are stored in the project metadata as are mappings to HDL sourcefiles

« alow usersto share libraries without copying filesto alocal directory; you can establish
references to source files that are stored remotely or locally

« alow you to changeindividua parameters across multiplefiles; in previousversionsyou
could only set parametersone file at atime

« enable"what-if" analysis; you can copy a project, manipulate the settings, and rerun it to
observe the new results

« reload .ini variable settings every timethe project is opened; in previousversions you had
to quit ModelSm and restart the program to read in anew .ini file

Introduction UM-17

How do projects differ in version 5.5?

Projects have improved a great deal from earlier versions. Some of the key differences
include:

» A new interface eliminates the need to write custom scripts.

« Youdon't haveto copy filesinto a specific directory; you can establish referencesto files
in any location.

* You don't have to specify compiler switches; the automatic defaults will work for many
designs. However, if you do want to customize the settings, you do it through a dialog
box rather than by writing a script.

« All metadata (compiler settings, compile order, file mappings) are stored in the project
.mpf file.

A mportant: Due to the significant changes, projects created in versions prior to 5.5
cannot be converted automatically. If you created aproject in an earlier version, you will
need to recreate it in version 5.5. With the new interface even the most complex project
should take lessthan 15 minutesto recreate. Follow theinstructionsin the ensuing pages
to recreate your project.

ModelSim User's Manual

UM-18 2 - Projects and system initialization

Getting started with projects

ModelSim User’'s Manual

This section describes the four basic steps to working with a project. For a discussion of
more advanced project features, see "Customizing project settings" (UM-24).
Step 1 — Create a new project (UM-19)

This creates a.mpf file and aworking library.

Step 2 — Add files to the project (Um-21)
Projects can reference or include HDL source files and any other files you want to
associate with the project. Y ou can copy filesinto the project directory or ssimply creste
mappingsto files in other locations.

Step 3 — Compile the files (Um-22)
This checks syntax and semantics and creates the pseudo machine code Model Sm uses
for simulation.

Step 4 — Simulate a design (Um-23)

This specifies the design unit you want to simulate and opens a structure tab in the
workspace.

Getting started with projects UM-19

Step 1 — Create a new project

1 Select Createa Project from the Welcome to Model Sm screen that opensthefirst time

you start Model Sm. If this screenis not available, you can enableit by selecting Help >
Enable Welcome (Main window).

|54 "‘Welcome to ModelSim

Create a New Project

Specify a name for the new project
and it will be created and opened.

Create a Project

[T Do not zhow thiz dialog again

Y ou can also use the File > New > Project (Main window) command to create a new
project.

2 Clicking the Create a Project button opens the Create Project dialog box.

Create Project

Froject Mame
|test

— Project Location

E: /modelsimab projects Browsze... |

—Default Libramy Mame
|w::nrk

Ok | Cancel

ModelSim User's Manual

UM-20 2 - Projects and system initialization

3 Specify aProject Name and Project L ocation. Thelocation is where the project .mpf
file and any copied source fileswill be stored. Y ou can leave the Default Library Name
set to "work," or specify adifferent name if desired. The name that is specified will be
used to create aworking library subdirectory within the Project Location.

After selecting OK, you will see ablank Project tab in the workspace area of the Main
window. Y ou can hide or show the workspace at any time using the View > Hide/Show

Wor kspace command.
|:, ModelSim
Eile Edit Design “iew Proect Bun Macro Options Window Help
B BE G 04 ERRR

Reading E:/modelzimb5_sedwind2s. =
Aelfvezimdpref el

Loading project

Modifving E: /modelzimB5_zedwindad
example. mpf

ModelSim: |

/

workspace

_\,l F'ru:uiectJ{ Library Jn'[3
P

|F'rujen:t - test |~::N|:| Design Loaded:= <MNo Context>

The name of the current project is shown at the bottom left corner of the Main window.

ModelSim User’'s Manual

Getting started with projects

Step 2 — Add files to the project

Y our right mouse button gives quick accessto project commands. When you right-click in
theworkspace, a context menu appears. The menu that appears depends on where you click
in the workspace.

7] Modelsim =10] =|
File Edit Design Miew Project Fun Compare Macro Oplions Window Help

S BB G o

kodelSim:

Compile Al

Add file to Project...
k‘- ort by Cormpile Crder
Select All

Cloze Froject

Y Project l: Libram | 3

|F'rnjen:t . test <Mo Design Loaded= =No Context= s

1 Right click in ablank area on the Project tab and select Add fileto Project. Thisopens
the Add file to Project dialog. Y ou can also select Project > Add fileto Project from
the menu bar.

Add file to Project
— File Marne

Browse... |

Add file &5 type ¥ Reference fram curent location

|default ;I

" Copy to project directary

Ok | Cancel

2 Specify one or more filesyou want to add to the project. (Thefiles used in this example
are available in the examples directory that is installed along with ModelSm.)

3 For thefilesyou' re adding, choose whether to reference them from their current location
or copy them into the project directory.

UM-21

ModelSim User's Manual

UM-22

Step 3 — Compile the files

2 - Projects and system initialization

1 Tocompilethefiles, right click in the Project tab and select Compile All. Y ou can aso
select Project > Compile All from the menu bar.

IE]'r*"h:m:lelﬁin'l
File Edit

Design Wiew Projeck

Run Compare Macro Oplions

=101 |

Window Help

no

B Ba@E o -4

covmter, v

boounter.y-*
Compile Dut-of-D ate Files
&dd file ta Project...
Sort by Compile Order
Select All
Cloze Project

Project 4 Libram

b adelSirm:

|F'r|:|ject : test

=ho Design Loaded:=

=Mo Context=

An asterisk next to afile denotes that that file has changed since the last compilation.
Compile Out-of-Date Files will compile only files that have changed.

2 Once compilation isfinished, click the Library tab and you' |l see the two compiled

designs.

|-, ModelSim

File Edit

Dezign Miew Project

Bun Compare Macro Options

Window Help

T

E=Ri=N

[o

Likrany: Iwnrk

|/] counter

| 1] test_counter

Top level modules:

B test_counter

wlog -wark, work, E:/modelsimS5_011801 Aexam
plezdcounter.y

Model Technology ModelSim SE/EE «wlog 5.
5 Beta 4 Compiler 2007.071 Jan 18 2001

-- Compiling module counter

Top level modules:

counter

wim work. counter

H wzim work. counter

Loading wark. counter

quit -gim

todelSinn: |

|F'rnjen:t : test

|~::N|:| Design Loaded:=

<Mao Context= g

ModelSim User’'s Manual

i

Getting started with projects UM-23

Step 4 — Simulate a design

1 Tosimulate one of the designs, either double-click the name or right click the name and
select Load. A new tab appears showing the structure of the current active simulation.

|-, ModelSim

File Edit Deszign “iew Project Bun Compare Macro Option: Window Help

S BR [mYElEE S BT
x|

plezdcounter. v
JE # Model Technology ModelSim SE/EE wlog b
B e 5 Beta 4 Compiler 2001.01 Jan 18 2001
- Compiling module counter
Top level modules:
counter
waim wiork. counter
waim wark, counter
Loading wark. counter
quit -zim
wim work. counter
B wgimn work. counter
Loading wark. counter

]'\ Project ;{ Library];\ i Jl'[WEIM 82 |

|F'r|:|ject - test |Nuw: Ons Delta: 0 sim:/counter

0 Function increment

= BN

At this point you are ready to run the simulation and analyze your results. Y ou often do this
by adding signals to the Wave window and running the simulation for a given period of
time. See the ModelSm Tutorial for examples.

Other project operations

In addition to the four actionsjust discussed, the following are common project operations.

Open an existing project

When you leave a Model Sm session, Model Sm will remember the last opened project.

Y ou can reopen it for your next session by clicking Open Project in the Welcome to
Model Smdialog. Y ou can al so open an existing project by selecting File> Open > Project
(Main window).

Close a project

Select File > Close > Project (Main window). This closes the Project tab but leaves the
Library and Structure (labeled "Sim" in the graphic above) tabs open in the workspace.

Delete a project
Select File > Delete > Project (Main window).

ModelSim User's Manual

UM-24 2 - Projects and system initialization

Customizing project settings

Though the default project settings will work for many designs, it is easy to customize the
settings if needed.

Changing compile order

Grouping files

ModelSim User’'s Manual

When you compileall filesin aproject, Model Smby default compilesthefilesin the order
inwhich they were added to the project. Y ou have two alternativesfor changing the default
compile order: 1) select and compile each file individually; 2) specify a custom compile
order.

To specify a custom compile order, follow these steps:
1 Right click in an empty area of the Project tab and select Sort by Compile Order.

2 Dragthefilesinto the correct order. Notethat you can select multiplefilesand drag them
simultaneoudly.

P Note: Filescan bedisplayedinthe Project tab in alphabetical or compile order (using the
Sort by Alphabetical Order or Sort by Compile Order commands on the context
menu). Keep in mind that the order you see in the Project tab is not necessarily the order
in which the files will be compiled.

Y ou can group two or more filesin the Project tab. Y ou might do this for organizational
purposes or to send thefilesto the compiler at the same time. For example, you might have
one file with abunch of Verilog define statements and a second file that isa Verilog
module. Y ou would want to compile these two files at the same time.

To group files, follow these steps:
1 Right click in an empty area of the Project tab and select Sort by Compile Order.
2 Select thefiles you want to group.

3 Right click one of the selected files and select Group.

Customizing project settings UM-25

Setting compiler options

The VHDL and Verilog compilers (vcom and vlog, respectively) have numerous options
that affect how adesign is compiled and subsequently simulated. Outside of a project you
can set the defaultsfor all future simulations using the Options> Compile (Main window)
command. Inside of aproject you can set these options on individual files or a group of
files.

To set the compiler optionsin a project, select the file(s) in the Project tab, right click on

thefile names, and select Properties. Theresulting dial og varies depending on the number
and type of files you have selected. If you select asingle VHDL or Verilog file, you'll see
the General tab and the VHDL or Verilog tab, respectively. On the General tab, you'll see
file properties such as Type, Path, and Size. If you select multiplefiles, the file properties
on the General tab are not listed. Finally, if you select bothaVHDL fileand aVerilog file,
you'll see al three tabs but no file information on the General tab.

Froject Compiler Settings

— Project Properties

[Exclude File fram Build Compile to library: |wu:urk ;I

— File Properties

Multiple filez zelected

Ok | Canhcel

The General tab includes these options;

» ExcludeFilefrom Build
Determines whether the file is excluded from the compile.

e Compiletolibrary
Specifies to which library you want to compile the file; defaults to the working library.

ModelSim User’'s Manual

UM-26 2 - Projects and system initialization

* File Properties
A variety of information about the selected file (e.g, type, size, path). Displaysonly if a
singlefile is selected in the Project tab.

The definitions of the options on the VHDL and Verilog tabs can be found in the section

" Setting default compile options® (UM-213).

When setting options on a group of files, keep in mind the following:

« If two or morefiles have different settingsfor the same option, the checkbox inthe dialog
will be"grayed out.” If you change the option, you cannot changeit back toa"multi- state

setting" without cancelling out of the dialog. Once you click OK, ModelSmwill set the
option the same for all selected files.

* If you select acombination of VHDL and Verilog files, the options you set on the VHDL
and Verilog tabs apply only to those file types.

Accessing projects from the command line

Generally, projects are used only within the Model Sm graphical user interface. However,
standalone tools will use the project fileif they areinvoked in the project's root directory.
If invoked outside the project directory, the M ODEL SIM environment variable can be set
with the path to the project file (<Project_Root_Dir>/<Project_Name>.mpf).

Y ou can also usethe pr oj ect command (CR-96) from the command line to perform common
operations on new projects. The command is to be used outside of a simulation session.

ModelSim User’'s Manual

System initialization ~ UM-27

System initialization

ModelSm goes through numerous steps as it initializes the system during startup. It
accesses variousfiles and environment variables to determine library mappings, configure
the GUI, check licensing, and so forth.

Files accessed during startup
The table below describesthefilesthat are read during startup. They are listed in the order

in which they are accessed.

File Purpose

modelsim.ini containsinitial tool settings; see " Preference variableslocated in
INI files" (um-278) for specific details on the modelsim.ini file

location map file used by ModelSmtools to find source files based on easily
reallocated "soft" paths; default file nameis mgc_location_map

pref.tcl contains defaults for fonts, colors, prompts, window positions,
and other smulator window characteristics; see "Preference
variableslocated in Tcl files" (um-287) for specific details on the
pref.tcl file

modelsim.tcl contains user-customi zed settings for fonts, colors, prompts,
window positions, and other simulator window characteristics;
see "Preference variables located in Tcl files" (um-287) for
specific details on the modelsim.tcl file

ModelSim User's Manual

UM-28 2 - Projects and system initialization

Environment variables accessed during startup

The table bel ow describes the environment variablesthat are read during startup. They are
listed in the order in which they are accessed. For more information on environment
variables, see "Environment variables" (UM-275).

Environment variable

Purpose

MODEL_TECH

set by Model Sm to the directory in which the binary executables reside
(e.g., ../modeltech/<platform>/)

MODEL_TECH_OVERRIDE

provides an alternative directory for the binary executables;
MODEL_TECH is set to this path

MODELSIM

identifies path to the modelsim.ini file

MGC_WD

identifiesthe Mentor Graphicsworking directory (set by Mentor Graphics
tools)

MGC_LOCATION_MAP

identifies the path to the location map file; set by Model Smif not defined

MODEL_TECH_TCL

identifies the path to all Tcl libraries installed with ModelSm

HOME identifies your login directory (UNIX only)

MGC_HOME identifies the path to the MGC tool suite

TCL_LIBRARY identifies the path to the Tcl library; set by Model Smto the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

TK_LIBRARY identifies the path to the Tk library; set by Model Sm to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

TIX_LIBRARY identifies the path to the Tix library; set by Model Sm to the same path as
MODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITCL_LIBRARY identifies the path to the [incr] Tcl library; set by ModelSmto the same
path asMODEL_TECH_TCL; must point to libraries supplied by Model
Technology

ITK_LIBRARY identifies the path to the [incr] Tk library; set by Model Sm to the same

path asMODEL_TECH_TCL; must point to libraries supplied by Model
Technology

VSIM_LIBRARY

identifies the path to the Tcl files that are used by Model Sim; set by
Model Sm to the same path as MODEL_TECH_TCL; must point to
libraries supplied by Model Technology

MTI_LIB_DIR

identifies the path to all Tcl libraries installed with ModelSm

MODELSIM_TCL

identifies the path to the modelsim.tcl file; this environment variable can
be alist of file pathnames, separated by semicolons (Windows)

ModelSim User’'s Manual

System initialization UM-29

Initialization sequence

The following list describesin detail Model Sm' sinitialization sequence. The sequence
includes a number of conditional structures, the results of which are determined by the
existence of certain files and the current settings of environment variables.

In the steps below, names in uppercase denote environment variables (except
MTI_LIB_DIRwhichisaTcl variable). Instances of $(NAME) denote paths that are
determined by an environment variable (except $(MTI_LIB_DIR) which is determined by
aTcl variable).

1 Determinesthe path to the executable directory (../modeltech/<platform>/). Sets
MODEL_TECH tothispath, unlessMODEL_TECH_OVERRIDE exists, inwhich case
MODEL_TECH is set to the same value asMODEL_TECH_OVERRIDE.

2 Findsthe modelsim.ini file by evaluating the following conditions:
* use MODELSIM if it exists; else

* use 3(MGC_WD)/modelsim.ini; else

* use ./modelsim.ini; else

* use $(MODEL_TECH)/modelsim.ini; else

 use $(MODEL_TECH)/../modelsim.ini; else

 use $(MGC_HOME)/lib/modelsim.ini; else

* set path to ./modelsim.ini even though the file doesn’t exist

3 Findsthe location map file by evaluating the following conditions:

* use MGC _LOCATION_MAPIf it exists (if thisvariableis set to "no_map", ModelSm
skipsinitialization of the location map); else

« use mgc_location_map if it exists; else

* use $(HOME)/mgc/mgc_location_map; else

* use $(HOME)/mgc_location_map; €lse

» use $(MGC_HOME)/etc/mgc_location_map; else

 use $(MGC_HOME)/shared/etc/mgc_location_map; else
* use $(MODEL_TECH)/mgc_location_map; else

* use $(MODEL_TECH)/../mgc_location_map; else

* use no map

4 Reads various variables from the [vsim] section of the modelsim.ini file. See "[vsim]
simulator control variables" (UM-280) for more details.

5 Parsesany command line argumentsthat were included when you started Model Smand
reports any problems.

6 Definesthe following environment variables:
use MODEL_TECH_TCL if it exists; else

ModelSim User's Manual

UM-30 2 - Projects and system initialization

ModelSim User’'s Manual

set MODEL_TECH_TCL=$(MODEL_TECH)/../tcl
set TCL_LIBRARY=$(MODEL_TECH_TCL)/tcl8.0

« set TK_LIBRARY=$(MODEL_TECH_TCL)/tk8.0

set TIX_LIBRARY=$(MODEL_TECH_TCL)/tix4.1
set ITCL_LIBRARY=$(MODEL_TECH_TCL)/itc|3.0
set ITK_LIBRARY=$(MODEL_TECH_TCL)/itk3.0
set VSIM_LIBRARY=$(MODEL_TECH_TCL)/vsim

7 Initializesthe simulator’s Tcl interpreter.

8 Checksfor avalidlicense (alicenseisnot checked out unless specified by amodelsim.ini
setting or command line option).

The next four stepsrelate to initializing the graphical user interface.
9 SetsTcl variable"MTI_LIB_DIR"=MODEL_TECH_TCL
10 Loads $(MTI_LIB_DIR)/pref.tcl.

11 Loadslast working directory, project init, project history, and printer defaultsfrom the
registry (Windows).

12 Findsthe modelsim.tcl file by evaluating the following conditions:

e use MODELSIM_TCL if it exists (if MODELSIM_TCL isalist of files, each fileis
loaded in the order that it appearsin the list); else

* use./modelsim.tcl; else

* use $(HOME)/modelsim.tcl if it exists

That completestheinitialization sequence. Also note the following about the modelsim.ini
file:

» When you change the working directory within Model Sm, the tool reads the [library],
[vcom], and [vlog] sectionsof thelocal modelsim.ini file. When you make changesin the
compiler options dialog or use the vmap command, the tool updates the appropriate
sections of thefile.

» The pref.tcl file references the default .ini file viathe [GetPrivateProfileString] Tcl
command. The .ini filethat isread will be the default file defined at the time pref.tcl is
loaded.

UM-31

3 - Design libraries

Chapter contents

Designlibrary contents.UM-32
DesignunitinformationUM-32
DesignlibrarytypesUM-32
Working with design libraries.UM-33
CregtingalibraryUM-33
Managing library contents L UM-34
Assigning alogical name to adesign I|brary e ... L UM-37
MovingalibraryUM-39
Specifying theresource librariesUM-40
VHDL resourcelibrariesUM-40
Predefined librariesUM-40
AIternateIEEEhbrarl&ssupleed e JuMa
VITAL 2000 library . . . N 0 \Y Y2 X
Regenerating your design I|brar|es e JuMa
Importing FPGA librariesUM-42

VHDL contains libraries, which are objects that contain compiled design units; libraries
are given names so they may be referenced. Verilog designs simulated within ModelSm
are compiled into libraries as well.

ModelSim User's Manual

UM-32 3 - Design libraries

Design library contents

A design library is adirectory that serves as arepository for compiled design units. The
design unitscontained inadesignlibrary consist of VHDL entities, packages, architectures,
and configurations; and Verilog modules and UDPs (user defined primitives). The design
units are classified as follows:

* Primary design units
Consist of entities, package declarations, configuration declarations, modules, and
UDPs. Primary design units within a given library must have unique names.

» Secondary design units
Consist of architecture bodies and package bodies. Secondary design units are associated
with a primary design unit. Architectures by the same name can exist if they are
associated with different entities.

Design unit information

The information stored for each design unit in adesign library is:
* retargetable, executable code

« debugging information

* dependency information

Design library types

ModelSim User’'s Manual

There aretwo kinds of design libraries: working librariesand resourcelibraries. A working
libraryisthelibrary into which adesign unit isplaced after compilation. A resourcelibrary
contains design units that can be referenced within the design unit being compiled. Only
one library can be the working library; in contrast, any number of libraries (including the
working library itself) can be resource libraries during a compilation.

The library named work has specia attributes within ModelSm; it is predefined in the

compiler and need not be declared explicitly (i.e. library work). It isa so thelibrary name
used by the compiler asthe default destination of compiled design units. In other words the
work library istheworking library. In al other aspectsit is the same as any other library.

Working with design libraries UM-33

Working with design libraries

The implementation of adesign library is not defined within standard VHDL or Verilog.
Within Model Sm, design libraries are implemented as directories and can have any legal

name allowed by the operating system, with one exception; extended identifiers are not
supported for library names.

Creating a library

When you create a project (see "Getting started with projects’ (Um-18)), ModelSim
automatically creates aworking design library. If you don’t create a project, you need to
create aworking design library before you run the compiler. This can be done from either
the command line or from the Model Sm graphic interface.

From the Model Sm prompt or a DOS prompt, use thisvlib command (CR-161):

vlib <directory_pat hnane>

Tocreateanew library with the Model Smgraphicinterface, select Design > CreateaNew
Library (Main window). Thisbrings up adialog box that allows you to specify thelibrary
name and its logical mapping.

IZ:-.__1'Ereate a Mew Library

Create

& anew library and a logizal mapping ta it

" amap to an existing library

— Library Hame

[ivcrd

|wu:|rk ;I Browsze. . |

] | Cancel

The Createa New Library dialog box includes these options:

» Createanew library and alogical mapping to it
Typethe new library nameinto the Library Namefield. This createsalibrary sub-
directory in your current working directory, initially mapped to itself. Once created, the
mapped library is easily remapped to a different library.

» Createamap to an existing library
Typethe new library name into the Library Namefield, then type into the Library
Mapsto field or Browse to select alibrary name for the mapping.

* Library Name
Typethe new library nameinto this field.

ModelSim User's Manual

UM-34 3 - Design libraries

e Library Mapsto
Type or Browse for amapping for the specified library. Thisfield can be changed only
when the Create a map to an existing library option is selected.

When you click OK, ModelSm creates the specified library directory and writes a
specially-formatted file named _info into that directory. The _info file must remain in the
directory to distinguish it asaModelSm library.

The new map entry is written to the modelsim.ini filein the [Library] section. See
"[Library] library path variables" (um-278) for more information.

P Note: Remember that adesign library isaspecial kind of directory; the only way to
createalibrary isto use the Model Sm GUI or thevlib command (CR-161). Do not create
libraries using DOS or Windows commands.

Managing library contents

Library contents can be viewed, deleted, recompiled, edited and so on using either the
graphic interface or command line.

The Library tab in the Main window workspace provides access to design units
(configurations, modules, packages, entities, and architectures) in alibrary. Note the icons
identify whether a unit is an entity (E), amodule (M), and so forth.

|5, ModelSim
Eile Edit Dezsign “iew Project Bun Macro Options Window Help
S BE SK

Reading E:/modelzimb5_sefvwind2s.. =
Aeldesimdpref.tel

Library: |wu:|rk

E|E] andg
EE] counter

| A only
EHE]org
|C] test_adder_behavioral

|C] test_adder_structural
|1] test_counter
E] tr=thrnirh j

' Libramy

|<:Nn:| Design Loaded>

b odelSim:

w]

The Library tab includes these options:

e Library
Select thelibrary you wish to view from the drop-down list. Related command line
command isvdir (CR-135).

ModelSim User’'s Manual

» DesignUnit/Description list

Select aplus (+) box to view the associated architecture, or select aminus (-) box to hide

the architecture.

Working with design libraries

The Library tab also has two context menus that you access with your right mouse

button.One menu is accessed by right-clicking a design unit name; the second is accessed
by right-clicking ablank areain the Library tab. The graphic below shows the two menus.

[¥]ModelSim [_ O] x]
File Edit Design “iew Project Bun Compare Macro Option: Window Help
B BEBE 04 il
: # -- Loading package gates i
Library: |wu:|rk # - Compiling architecture stroctural of adder
1 #-- Lu:uau:ling entit_l,l adder
A Q T E - tnag!ng enlity :-:-:urélg
E it 5 - Lnad!ng en:!:_l,l andg
: -- Loading entity arg
HE] Refresh I:_reate Library... # -- Compiling entity addern
EE] Recampie Wiew % it -- Compiling architecture structural of addern
Dslet Ipdate #-- Lu:uau:llr_'|_g entity ;u:h:ler _
HE] BiRE # - Compiling architecture bebavioral of addemn
1] test_counter __||# - Loading entity adderm
B E] org J kodelSim: wm tite . "ModelSim"

b odelSim: |

|F'r|:|jec:t : test

=Moo Desigh Loaded:

|<:N|:| Context>

B,

The context menu at the left includes the following commands;

L oad

Simulates the selected design unit and opens a structure tab in the workspace. Related

command line command isvsim (CR-168).
Edit

Opens the selected design unit in the Source window.

Refresh

Rebuilds the library image of the selected item(s) without using source code. Related
command line command is vcom (CR-129) with the -refresh argument.

Recompile

Recompiles the selected design unit. Related command line command isvcom (CR-129).

Delete

Deletes the selected design unit. Related command line command isvdel (CR-134).

Deleting apackage, configuration, or entity will remove the design unit fromthelibrary.
If you delete an entity that has one or more architectures, the entity and all its associated

architectures will be deleted.

UM-35

ModelSim User's Manual

UM-36 3 - Design libraries

Y ou can also delete an architecture without deleting its associated entity. Expand the
entity, right-click the desired architecture name, and select Delete. Y ou are prompted for
confirmation before any design unit is actually deleted.

The second context menu has the following options:

e Load
Opensthe Load Design dialog box. See" Simulating with the graphic interface” (Um-217)
for details. Related command line command isvsim (CR-168).

e CreatelLibrary
Opensthe Create a New Library dialog box. See"Creating alibrary” (UM-33) earlier in
this chapter for details. Related command line command isvlib (CR-161).

* View
Provides various options for displaying design units.

» Update
Reloads the library in case any of the design units were modified outside of the current
session (e.g., by ascript or another user).

ModelSim User’'s Manual

Working with design libraries UM-37

Assigning a logical name to a design library

VHDL useslogical library names that can be mapped to ModelSm library directories. By
default, Model Smcan find librariesin your current directory (assuming they havetheright
name), but for it to find libraries | ocated el sewhere, you need to map alogical library name
to the pathname of the library.

Y ou can use the GUI, acommand, or aproject to assign alogical nameto adesign library.

Library mappings with the GUI

To associate alogical name with alibrary, select Design > Browse Libraries (Main
window). This brings up adialog box that allows you to view, add, edit, and delete
mappings, as shown below:

% Library Browser

Show: |.-’-‘-.II izible Libraries ﬂ
Library Type ";I
AN g TR L TR, A arir =
ieEE maps to $MODEL_TECH/!. fieee
mgc_partable maps to $MODEL_TECH.. . /mac_portable
zhd maps to $MODEL_TECH./. . Aztd
ztd_developerskit maps to $MODEL_TECH/../=td_developerzkit
EYNOPEYE maps to $MODEL_TECH/. . Asynopsys
werlog maps to $MODEL_TECH.. . Mvenlog
ok, maps to mixed
mixed [local directaon] -

Cloze

Wi | Add | E dit | Delete

The Library Browser dialog box includes these options:

» Show
Choose the mapping and library scope to view from the drop-down list.

e Library/Typelist

To view the contents of a library
Select thelibrary, then click the View button. This brings up the Library tab (um-34) in
the Main window. From there you can also delete design units from the library.

To create a new library mapping

Click the Add button. Thisbringsup Create a New Library (Um-33) dialog box that
allows you to enter anew logical library name and the pathname to which it isto be
mapped.

It is possible to enter the name of a non-existent directory, but the specified directory
must exist asaModelSmlibrary before you can compile design unitsinto it. ModelSim
will issue awarning message if you try to map to a non-existent directory.

ModelSim User's Manual

UM-38 3 - Design libraries

ModelSim User’'s Manual

To edit an existing library mapping

Select the desired mapping entry, then click the Edit button. This brings up adialog box
that allows you to modify the logical library name and the pathname to which it is
mapped. Selecting Delete removes an existing library mapping, but it does not delete the
library itself. The library can be deleted with this vdel command (CR-134);

vdel -lib <library_nane> -al

Library mapping from the command line

Y ou can issue a command to set the mapping between alogical library name and a
directory; itsformis:

vmap <l ogi cal _nane> <directory_pat hname>

Thiscommand may beinvoked from either aDOS prompt or from the command linewithin
ModelSm.

When you use vmap (CR-167) thisway you are modifying the modelsim.ini file. Y ou can
also modify modelsim.ini manually by adding a mapping line. To do this, edit the
modelsim.ini file using any text editor and add aline under the [Library] section heading
using the syntax:

<l ogi cal _nanme> = <di rectory_pat hname>

More than onelogical name can be mapped to asingle directory. For example, suppose the
modelsim.ini file in the current working directory contains following lines:

[Li brary]
work = /usr/rick/design
ny_asic = /usr/rick/design

Thiswould allow you to use either the logical namework or my_asicinalibrary or use
clauseto refer to the same design library.

The vmap command (CR-167) can also be used to display the mapping of alogical library
name to adirectory. To do this, enter the shortened form of the command:

vmap <l ogi cal _nane>

Library search rules
The system searches for the mapping of alogical name in the following order:
* First the system looks for amodelsim.ini file.

« |If the system doesn’t find a modelsim.ini file, or if the specified logical name does not
exist in the modelsim.ini file, the system searches the current working directory for a
subdirectory that matches the logical name.

An error isgenerated by the compiler if you specify alogical name that does not resolve to
an existing directory.

See also

See "Commands" (CR-25) for more information about the library management commands,
"Graphic Interface" (uM-115) for more information about the graphical user interface, and
"Projects and system initialization" (UM-15) for more information about the modelsim.ini
file

Working with design libraries UM-39

Moving a library

Individual design unitsin adesign library cannot be moved. An entire design library can
be moved, however, by using standard operating system commands for moving adirectory.

ModelSim User's Manual

UM-40 3 - Design libraries

Specifying the resource libraries

VHDL resource libraries

WithinaVHDL sourcefile, you can usethe VHDL library clauseto specify logical names
of one or moreresource libraries to be referenced in the subsequent design unit. The scope
of alibrary clause includes the text region that startsimmediately after the library clause
and extends to the end of the declarative region of the associated design unit. It does not
extend to the next design unit in thefile.

Notethat thelibrary clauseisnot used to specify theworking library into which thedesign
unit is placed after compilation; the vcom command (CR-129) adds compiled design units
to the current working library. By default, thisisthe library named work. To change the
current working library, you can use vcom -wor k and specify the name of the desired target
library.

Predefined libraries

ModelSim User’'s Manual

Certain resource libraries are predefined in standard VHDL. The library named std
contains the packages standar d and textio, which should not be modified. The contents of
these packages and other aspects of the predefined language environment are documented
in the IEEE Sandard VHDL Language Reference Manual, Sd 1076-1987 and ANS/IEEE
Sd 1076-1993. See also, "Using the TextlO package" (UM-47).

A VHDL use clause can be used to select specific declarationsin alibrary or package that
are to be visible within a design unit during compilation. A use clause referencesthe
compiled version of the package—not the source.

By default, every design unit is assumed to contain the following declarations:

LI BRARY std, work;
USE std. standard. al |

To specify that al declarations in alibrary or package can be referenced, you can add the
suffix .all to the library/package name. For example, the use clause above specifiesthat all
declarations in the package standard in the design library named std are to be visible to
the VHDL design filein which the use clause is placed. Other libraries or packages are not
visible unless they are explicitly specified using alibrary or use clause.

Another predefined library iswork, the library where a design unit is stored after it is
compiled as described earlier. There is no limit to the number of libraries that can be
referenced, but only one library is modified during compilation.

Specifying the resource libraries UM-41

Alternate IEEE libraries supplied
Theinstallation directory may contain two or more versions of the |IEEE library:

* ieeepure
Contains only |EEE approved std_logic_1164 packages (accelerated for Model Sm).

* ieee
Contains precompiled Synopsys and |EEE arithmetic packages which have been
accelerated by Model Technology including math_complex, math_real, numeric_bit,
numeric_std, std logic 1164, std logic_misc, std_logic_textio, std_logic_arith,
std_logic_signed, std_logic_unsigned, vital_primitives, vital_timing, and vital_memory.

Y ou can select which library to use by changing the mapping in the modelsim.ini file. The
modelsim.ini file in the installation directory defaults to the ieee library.

VITAL 2000 library

ModelSim versions 5.5 and later include a separate VITAL 2000 library that contains an
accelerated vital_memory package.

You'll need to add a use clause to your VHDL code to access the package. For example:

LI BRARY vi t al 2000
USE vi tal 2000.vital _nenory. al

Also, when you compile, use the -vital2000 switch to vcom (CR-129).

Regenerating your design libraries

Depending on your current Model Sim version, you may need to regenerate your design
libraries before running a simulation. Check the installation README file to seeif your
libraries require an update. Y ou can regenerate your design libraries using the Refresh
command from the Library tab context menu (see"Managing library contents" (UM-34)), or
by using the -r efr esh argument to vcom (CR-129) and vlog (CR-162).

From the command line, you would use vcom with the -r efr esh option to update VHDL
design unitsin alibrary, and vlog with the -r efr esh option to update Verilog design units.
By default, the work library is updated; use -work <library> to update adifferent library.
For example, if you have alibrary named mylib that contains both VHDL and Verilog
design units:

vcom -work nylib -refresh
viog -work nmylib -refresh

An important feature of -refresh is that it rebuilds the library image without using source
code. This means that models delivered as compiled libraries without source code can be
rebuilt for a specific release of Model Sm (4.6 and later only). In general, this works for
moving forwards or backwards on arel ease. Moving backwards on arel ease may not work
if the models used compiler switches or directives (Verilog only) that do not exist in the
older release.

P Note: Youdon't need to regeneratethe std, ieee, vital 22b, and verilog libraries. Also, you
cannot use the -refr esh option to update libraries that were built before the 4.6 release.

ModelSim User's Manual

UM-42 3 - Design libraries

Importing FPGA libraries

Model Simincludes animport wizard for referencing and using vendor FPGA libraries. The
wizard scans for and enforces dependencies in the libraries and determines the correct
mappings and target directories.

A | mportant: The FPGA libraries you import must be pre-compiled. Most FPGA vendors
supply pre-compiled libraries configured for use with Model Sim.

To import an FPGA library, select Design > Import Library (Main window).

B ‘Import Library Wizard

The Import Libram Wizard will step pou through the tazks neceszsary
ta reference and use a libran,.

& library can be either an exizting Model Technology libran or an
FPGEA library that you received from an FPGA vendor. [the library
wag received fram ah FPGA vendor, it must be a precompiled
library.

Fleaze enter the location of the library to be imported below.

Impart Library Fathnarne

Browse. .

< Previous Mest » | Cancel

Follow the instructions in the wizard to complete the import.

ModelSim User’'s Manual

UM-43

4 - VHDL Simulation

Chapter contents

CompilingvVHDL designs.UM-45
CreatingadesignlibraryUM-45
Invoking the VHDL compiler.UM-45
Dependency checking.UM-45
RangeandindexcheckingUM-45

Simulating VHDL designs.UM-46
Invoking the simulator from the M ainwi ndowUM-46

Using the TextlO package.UM-47
Syntax for file declaration. UM-47
Using STD_INPUT and STD OUTPUTWlthln ModeIS|m .. .UM-48

TextlO implementationissues.UM-49
Writing stringsand aggregatesUM-49
Reading and writing hexadecimal numbersUM-50
Danglingpointers.UM-B0
The ENDLINE functionUM-50
The ENDFILE functionUM-50
Using alternanvemput/outputflleﬁum-Bm
Providing stimulusUM-51

Obtaining the VITAL specificationand sourcecode UM-52

VITAL packagesUM-b2

ModelSim VITAL compliance.UM-52
VITAL compliancechecking. UM-52
Compiling and Simulating with accel erated VITAL packag% . . UM-53

Compiling and Simulating with accelerated VITAL packages . . . UM-53

UtilpackageUM-H4
get_resolution()UM-H4
init_signal_spy()UM-55
toredd)UM-56
totime()UM-57

Thischapter providesan overview of compilation and simulation for VHDL designswithin
the Model Sm environment, using the TextlO package with ModelSm; ModelSm'’s
implementation of the VITAL (VHDL Initiative Towards ASIC Libraries) specification for
ASIC modeling; and documentation on Model Sn's special built-in utilities package.

The TextlO package is defined within the VHDL Language Reference Manuals, |EEE Std
1076-1987 and |IEEE Sd 1076-1993; it allows human-readable text input from a declared
source within aVHDL file during simulation.

ModelSim User's Manual

UM-44 4 - VHDL Simulation

Compiling and simulating with the GUI

Many of the examplesin thischapter are shown from the command line. For compiling and
simulating within a project or the ModelSm GUI, see:

* Getting started with projects (UM-18)
« Compiling with the graphic interface (Um-211)
« Simulating with the graphic interface (UM-217)

ModelSim variables

Severa variables are available to control simulation, provide simulator state feedback, or
modify the appearance of the Model Sm GUI. To take effect, some variables, such as
environment variables, must be set prior to simulation. See Appendix A - ModelSm
Variables for acomplete listing of Model Sm variables.

ModelSim User’'s Manual

Compiling VHDL designs UM-45

Compiling VHDL designs

Creating a design library

Before you can compile your design, you must create alibrary in which to store the
compilation results. Use vlib (CR-161) to create anew library. For example:

vlib work

This creates a library named wor k. By default, compilation results are stored in the work
library.

P Note: Thework library is actually a subdirectory named work. This subdirectory
contains a special filenamed _info. Do not create libraries using MS Windows or DOS
commands — always use the vlib command (CR-161).

See "Design libraries' (um-31) for additional information on working with libraries.

Invoking the VHDL compiler

Model Sm compiles one or more VHDL design unitswith asingle invocation of vcom (CR-
129), the VHDL compiler. The design units are compiled in the order that they appear on
the command line. For VHDL, the order of compilation isimportant — you must compile
any entities or configurations before an architecture that references them.

Y ou can simulate a design containing units written with both the 1076 -1987 and 1076
-1993 versionsof VHDL. To do so you will need to compileunitsfrom each VHDL version
separately. The vcom (CR-129) command compiles units written with version 1076 -1987
by default; use the -93 option with vcom (CR-129) to compile units written with version
1076 -1993. Y ou can al so change the default by modifying the modelsim.ini file (see
"Preference variables located in INI files' (um-278) for more information).

Dependency checking

Dependent design units must be reanalyzed when the design units they depend on are
changed in the library. vcom (CR-129) determines whether or not the compilation results
have changed. For example, if you keep an entity and its architectures in the same source
file and you modify only an architecture and recompile the source file, the entity
compilation resultswill remain unchanged and you will not have to recompile design units
that depend on the entity.

Range and index checking

A range check verifiesthat a scalar value defined with a range subtypeis always assigned
avaluewithin its range. An index check verifies that whenever an array subscript
expression is evaluated, the subscript will be within the array's range.

Index checks are performed by default when you compile your design. In versions 5.5 and
later, range checks are not performed by default. Y ou can specify that range checks are
performed by using the- r angecheck argument to thevcom (CR-129) command. Or, you can
use the RangeCheck and Nol ndexCheck variablesin the modelsim.ini to specify whether
or not they are performed. See "Preference variableslocated in INI files' (UM-278).

ModelSim User's Manual

UM-46 4 - VHDL Simulation

Simulating VHDL designs

After compiling the design units, you can simulate your designs with veim (CR-168). This
section discusses simulation from the Windows/DOScommand line. Y ou can also use a
project to simulate (see " Getting started with projects” (Um-18)) or the Load Design dialog
box (see "Simulating with the graphic interface" (Um-217)).

P Note: Simulation normally stops if afailure occurs; however, if abounds check on a
signal fails the simulator will continue running.

Invoking the simulator from the Main window

ModelSim User’'s Manual

For VHDL, invoke vsim (CR-168) with the name of the configuration, or entity/architecture
pair. Note that if you specify a configuration you may not specify an architecture.

This example invokes vsim (CR-168) on the entity my_asic and the architecture structure:
vsim my_asic structure
If adesign unit nameis not specified, vsim (CR-168) will present the L oad Design dialog

box from which you can choose a configuration or entity/architecture pair. See" Simulating
with the graphic interface” (UM-217) for more information.

Selecting the time resolution

The simulation time resolution is 1 ps by default. Y ou can select a specific time resolution
with the vsim (CR-168) -t option or from the L oad Design dialog box. Availableresolutions
are: 1x, 10x or 100x of fs, ps, ns, us, ms, or sec.

For example, to run in femtosecond resol ution, or 10fs resolution respectively:
vsim-t fs topnod
vsim-t 10fs topnod

Note that there is no space between the value and the units (i.e., 10fs, not 10 fs).

The default time resolution can also be changed by modifying the Resolution (UM-282)
variable in the modelsim.ini file. (See "Preference variables located in INI files" (Um-278)
for more information on modifying the modelsim.ini file) Y ou can view the current
resolution by invoking the report command (CR-102) with the smulator state option.

Using the TextlO package = UM-47

Using the TextlO package

To access the routines in Textl O, include the following statement in your VHDL source
code:

USE std.textio.all;

A simple example using the package TextlO is:

USE std.textio.all;
ENTITY sinple_textio IS
END;

ARCHI TECTURE si npl e_behavi or OF sinple_textio IS

BEGI N

PROCESS
VARI ABLE i: | NTEGER = 42;
VARI ABLE LLL: LINE;

BEGI N
WRITE (LLL, i);
WRI TELI NE (OUTPUT, LLL);
VAIT;

END PROCESS;

END si npl e_behavi or;

Syntax for file declaration
The VHDL' 87 syntax for afile declaration is:

fileidentifier : subtype indicationi s [node] file_logical _nane ;

where "file_logical_name" must be a string expression.
The VHDL' 93 syntax for afile declaration is:

fileidentifier list : subtype indication [file open_information] ;

Y ou can specify afull or relative path as the file_logical_name; for example (VHDL'87):

Normally if afileis declared within an architecture, process, or package, thefileis opened
when you start the simulator and is closed when you exit from it. If afileisdeclared in a
subprogram, the file is opened when the subprogram is called and closed when execution
RETURNSs from the subprogram. Alternatively, the opening of files can be delayed until
thefirst read or write by setting the DelayFileOpen variable in the modelsim.ini file. Also,
the number of concurrently open files can be controlled by the ConcurrentFileL imit
variable. These variables help you manage a large number of files during simulation. See
Appendix A - ModelSm Variables for more details.

ModelSim User's Manual

UM-48 4 - VHDL Simulation

Using STD_INPUT and STD_OUTPUT within ModelSim

The standard VHDL' 87 TextlO package contains the following file declarations:
file input: TEXTiS in "STD INPUT";
file output: TEXT i S out "STD OUTPUT";
The standard VHDL' 93 Textl O package contains these file declarations:
file input: TEXT open read_node i S "STD | NPUT";
file output: TEXT open wite_node i S "STD_OUTPUT";

STD_INPUT isafile logica _name that refersto characters that are entered interactively
from the keyboard, and STD_OUTPUT refers to text that is displayed on the screen.

In Model Sm, reading from the STD_INPUT file allows you to enter text into the current
buffer from a prompt in the Main window. The last line written to the STD_OUTPUT file
appears at the prompt.

ModelSim User’'s Manual

TextlO implementation issues UM-49

TextlO implementation issues

Writing strings and aggregates

A common error in VHDL source code occurswhen acall to aWRITE procedure does not
specify whether the argument is of type STRING or BIT_VECTOR. For example, the
VHDL procedure:

VR TE (L, "hello");

will cause the following error:
ERROR: Subprogram "WRI TE" is ambi guous.

In the TextlO package, the WRITE procedure is overloaded for the types STRING and
BIT_VECTOR. These lines are reproduced here:

procedure WRI TE(L: inout LINE, VALUE: in Bl T_VECTOR;
JUSTIFIED: in SIDE = RIGHT; FIELD: in WDTH := 0);

procedure WRI TE(L: inout LINE, VALUE: in STRI NG
JUSTIFIED: in SIDE = RIGHT; FIELD: in WDTH := 0);

The error occurs because the argument "hello" could be interpreted as a string or a bit
vector, but the compiler isnot allowed to determine the argument type until it knowswhich
functionis being called.

The following procedure call also generates an error:

WRI TE (L, "010101");
This call is even more ambiguous, because the compiler could not determine, even if
allowed to, whether the argument "010101" should beinterpreted as astring or abit vector.
There are two possible solutions to this problem:
» Useaqualified expression to specify thetype, asin:

WRI TE (L, string ("hello"));

« Call aprocedure that is not overloaded, asin:

WRI TE_STRING (L, "hello");
The WRITE_STRING procedure simply defines the value to be a STRING and callsthe
WRITE procedure, but it serves as a shell around the WRITE procedure that solves the

overloading problem. For further details, refer to the WRITE_STRING procedure in the
io_utils package, which islocated in the file /modeltech/examples/io_utils.vhd.

ModelSim User’'s Manual

UM-50 4 - VHDL Simulation

Reading and writing hexadecimal numbers

The reading and writing of hexadecimal numbersis not specified in standard VHDL. The
I ssues Screening and Analysis Committee of the VHDL Analysis and Standardization
Group (ISAC-VASG) has specified that the Textl O package reads and writes only decimal
numbers.

To expand this functionality, Model Sm supplies hexadecimal routines in the package
io_utils, which islocated in the file /modeltech/examples/io_utils.vhd. To use these
routines, compile the io_utils package and then include the following use clausesin your
VHDL source code;

use std.textio.all;
use work.io_utils.all;

Dangling pointers

Dangling pointers are easily created when using the Textl O package, because
WRITELINE de-allocates the access type (pointer) that is passed to it. Following are
examples of good and bad VHDL coding styles:

Bad VHDL (because L1 and L2 both point to the same buffer):

READLINE (infile, L1); -- Read and al |l ocate buffer
L2 := L1, -- Copy pointers
WRI TELI NE (outfile, L1); -- Deallocate buffer

Good VHDL (because L1 and L2 point to different buffers):

READLINE (infile, L1); -- Read and al | ocate buffer
L2 := new string’ (L1.all); -- Copy contents
WRI TELI NE (outfile, L1); -- Deall ocate buffer

The ENDLINE function

The ENDLINE function described in the IEEE Sandard VHDL Language Reference
Manual, |EEE Sd 1076-1987 containsinvalid VHDL syntax and cannot be implemented
in VHDL. Thisis because access types must be passed as variables, but functions only
allow constant parameters.

Based on an ISAC-VASG recommendation the ENDLINE function has been removed
from the TextlO package. The following test may be substituted for this function:;

(L = NULL) OR (L' LENGTH = 0)

The ENDFILE function

ModelSim User’'s Manual

Inthe VHDL Language Reference Manuals, |EEE Sd 1076-1987 and | EEE Std 1076-1993,
the ENDFILE function islisted as:

- function ENDFILE (L: in TEXT) return BOOLEAN,
Asyou can see, this function is commented out of the standard TextlO package. Thisis

because the ENDFILE function isimplicitly declared, so it can be used with files of any
type, not just files of type TEXT.

TextlO implementation issues UM-51

Using alternative input/output files

Y ou can use the Textl O package to read and write to your own files. To do this, just declare
aninput or output file of type TEXT.

The VHDL' 87 declaration is:
file nyinput : TEXT i S in "pathnane. dat";

The VHDL' 93 declaration is:
file nyinput : TEXT open read_node i S "pathnane. dat";

Then include the identifier for thisfile ("myinput” in this example) in the READLINE or
WRITELINE procedure call.

Providing stimulus

Y ou can stimulate and test a design by reading vectors from afile, using them to drive
values onto signals, and testing theresults. A VHDL test bench has been included with the
ModelSminstall files as an example. Check for thisfile:

<install_dir>/modeltech/examples/stimulus.vhd

ModelSim User’'s Manual

UM-52 4 - VHDL Simulation

Obtaining the VITAL specification and source code

VITAL ASIC Modeling Specification

The |IEEE 1076.4 VITAL ASIC Modeling Specification is available from the Institute of
Electrical and Electronics Engineers, Inc.:

|EEE Customer Service
445 Hoes Lane
Piscataway, NJ 08855-1331

Tel: (800)678-4333 ((908)562-5420 from outside the U.S.)
Fax: (908)981-9667
home page: http://www.ieee.org

VITAL source code

The source code for VITAL packagesis provided in the/<install_dir>/vhdl_src/vital22b,
Nvital95, or /vital2000 directories.

VITAL packages

VITAL v3.0 accelerated packages are pre-compiled into theieeelibrary in the installation
directory.

P Note: By default, ModelSmis optimized for VITAL v3.0. You can, however, revert to
VITAL v2.2b by invoking vsim (CR-168) with the -vital2.2b option, and by mapping
library vital to <install_dir>/modeltech/vital2.2b.

ModelSim VITAL compliance

A simulator is VITAL compliant if it implements the SDF mapping and if it correctly
simulates designs using the VITAL packages, as outlined in the VITAL Model
Development Specification. ModelSimis compliant with the IEEE 1076.4 VITAL ASIC
Modeling Specification. In addition, Model Sm accelerates the VITAL_Timing and
VITAL_Primitives packages. The procedures in these packages are optimized and built
into the smulator kernel. By default, vsim (CR-168) uses the optimized procedures. The
optimized procedures are functionally equivalent to the IEEE 1076.4 VITAL ASIC
Modeling Specification (VITAL v3.0).

VITAL compliance checking

ModelSim User’'s Manual

If you areusing VITAL 2.2b, you must turn off the compliance checking either by not
setting the attributes, or by invoking vcom (CR-129) with the option -novitalcheck.

http://www.ieee.org

Compiling and Simulating with accelerated VITAL packages UM-53

Compiling and Simulating with accelerated VITAL packages

vcom (CR-129) automatically recognizesthat a VITAL function is being referenced from
the ieeelibrary and generates code to call the optimized built-in routines.

Invoke with the-novital option if you do not want to use the built-in VITAL routines. To
exclude all VITAL functions, use -novital all:

vcom -novital all design.vhd

To exclude selected VITAL functions, use one or more -novital <fname> options:
vcom -novital Vital Ti mi ngCheck -novital Vital AND design.vhd
The -novital switch only affects callsto VITAL functions from the design units currently

being compiled. Pre-compiled design units referenced from the current design units will
still call the built-in functions unless they too are compiled with the -novital option.

ModelSmVITAL built-inswill be updated in step with new releases of the VITAL
packages.

ModelSim User’'s Manual

UM-54 4 - VHDL Simulation

Util package

The util package isincluded in ModelSim versions 5.5 and later and serves as a container
for various VHDL utilities. The packageis part of the modelsim_lib library whichis
located in the modelsim tree and mapped in the default modelsim.ini file.

Toaccessthe utilitiesin the package, you would add lineslike the following to your VHDL
code:

l'ibrary nodelsimlib;
use nodel simlib.util.all;

get_resolution()

ModelSim User’'s Manual

get_resolution() returns the current simulator resolution as areal number. For example, 1
femtosecond corresponds to 1e-15.

Syntax

resval := get_resolution();

Returns

Name Type Description

resva real The simulator resolution represented as a real

Arguments
None

Related functions
to_real() (UM-56)
to_time() (UM-57)

Example
If the simulator resolution is set to 10ps, and you invoke the command:

resval := get_resolution();

the value returned to resval would be 1e-11.

Util package = UM-55

init_signal_spy()

The init_signal_spy() utility mirrors the value of aVVHDL signal or Verilog register/wire
(called the spy_object) onto an existing VHDL signal or Verilog register (called the
dest_object). This allows you to reference signals, registers, or wires at any level of
hierarchy from within aVHDL architecture (e.g., a testbench).

This system task works only in Model Sim versions 5.5 and newer.

Syntax

init_signal _spy(spy_object, dest_object, verbose);

Returns
Nothing

Arguments

Name Type Description

spy_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/wire. Usethe
path separator to which your simulation is set
(i.e,"/" or"."). A full hierarchical path must
beginwitha"/" or ".". The path must be
contained within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to an
existing VHDL signal or Verilogregister. Use
the path separator to which your simulation is
set (i.e., /" or"."). A full hierarchical path
must begin with a"/* or ".". The path must be
contained within double quotes.

verbose integer Optional. Possible valuesare O or 1. Specifies
whether you want a message reported in the

Transcript stating that the spy_object’s value
ismirrored onto the dest_object. Default is 0,

no message.

Related functions
None

Limitations

« When mirroring the value of a Verilog register/wire onto a VHDL signal, the VHDL
signal must be of type bit, bit_vector, std logic, or std logic_vector.

» Mirroring slices or single bits of avector is not supported. If you do reference adlice or
bit of a vector, the function will assume that you are referencing the entire vector.

ModelSim User's Manual

UM-56 4 - VHDL Simulation

to_real()

ModelSim User’'s Manual

Example

library model simlib;

use nodelsimlib.util.all;
entity top is

end;

architecture ...
signal top_sigl : std_logic;

begi n
Spy_process : process
begi n
init_signal _spy("/top/uut/instl/sigl","/top_sigl",1);
wai t;

end process Sspy_process;
end;

In this example, the value of "/ t op/ uut /i nst 1/ si g1* will be mirrored onto
"/top_sigl".

to_real() converts the physical type time value into areal value with respect to the current
simulator resolution. The precision of the converted value is determined by the simulator
resolution. For example, if you were converting 1900 fsto areal and the simulator
resolution was ps, then the real value would be 2.0 (i.e. 2 ps).

Syntax
realval := to_real (tinmeval);

Returns

Name Type Description

realval real Thetime value represented as areal with

respect to the simulator resolution

Arguments

Name Type Description

timeval time The value of the physical type time

Related functions
get_resolution() (Um-54)
to_time() (UM-57)

Util package UM-57

Example
If the simulator resolution is set to ps, and you enter the following function:
realval := to_real (12.99 ns);
then the value returned to realval would be 12990.0. If you wanted the returned value to be

in units of nanoseconds (ns) instead, you would use the get_resolution() (UM-54) function
to recalculate the value:

realval := 1e+9 * (to_real (12.99 ns)) * get_resolution();

If you wanted the returned value to be in units of femtoseconds (fs), you would enter the
function this way:

realval := le+15 * (to_real (12.99 ns)) * get_resolution();

to_time()

to_time converts areal value into atime value with respect to the current simulator
resolution. The precision of the converted value is determined by the simulator resolution.
For example, if you were converting 5.9 to atime and the simulator resolution was ps, then
the time value would be 6 ps.

Syntax
tinmeval := to_tine(realval);

Returns

Name Type Description

timeval time Thereal value represented as a physical type

time with respect to the simulator resolution

Arguments

Name Type Description

realval real Thevalue of the typerea

Related functions
get_resolution() (Um-54)
to_real() (UM-56)

Example
If the simulator resolution is set to ps, and you enter the following function:

timeval = to_tine(72.49);

then the value returned to timeval would be 72 ps.

ModelSim User's Manual

UM-58

ModelSim User’s Manual

UM-59

5 - Verilog Simulation

Chapter contents

CompilationuM-e1
Incremental comp|lat|on UM-e2
Library usageUM-64
Verilog-XL companble compller optlons .« .«UM-65
Verilog-XL ‘uselib compiler directiveUM-67

Simulation UM-69
Invoking thesmulator e U] \Y G
Simulation resolution limitUM-70
Event order issues.Uwm-70
Verilog-XL compati blesmulator opt|ons JUM-71

Cell Libraries . . e Y B3
SDF timing annotanonUM-75
DelaymodesUM-75

System Tasks . . e 0 |V Y 24
|EEE Std 1364 wstem tasks e 0 |\ Y 24
Verilog-XL compatiblesystemtasks.UM-80
$init signal_spyUM-8

Compiler Directives . . e LuM-84
| EEE Std 1364 compiler d| rectwe; e JuM-84
Verilog-XL compatible compiler directivesUM-85

Verilog PLI/VPLUM-86
Registering PLI appllcat|onsUM-86
Registering VPI applicationsUM-88
Compiling and linking PLI/VPI appllcatlons.UM-89
The PLI callback reasonargumentUM-93
The sizetf callback functionUM-%A4
PLI objecthandles.UM-%4
Third party PLI applicationsUM-95
Support for VHDL objectsUM-9
|IEEE Std 1364 ACCroutines.UM-97
|IEEE Std 1364 TFroutinesUM-98
Verilog-XL compatibleroutines UM-100
64-bit supportinthefPL.! UM-100
PLI/VPI tracing UM-100

This chapter describes how to compile and simulate Verilog designs with ModelSm
Verilog. Model Sm Verilog implements the Verilog language as defined by the |EEE Std
1364, and it is recommended that you obtain this specification as a reference manual.

In addition to the functionality described in the IEEE Std 1364, Model Sm Verilog includes
the following features:

« Standard Delay Format (SDF) annotator compatible with many ASI C and FPGA vendor's
Verilog libraries

ModelSim User's Manual

UM-60 5 - Verilog Simulation

 Value Change Dump (VCD) file extensions for ASIC vendor test tools
» Dynamic loading of PLI/VPI applications

« Compilation into retargetable, executable code

* Incremental design compilation

* Extensive support for mixing VHDL and Verilog in the same design (including SDF
annotation)

 Graphic Interface that is common with ModelSm VHDL
 Extensions to provide compatibility with Verilog-XL
Thefollowing |EEE Std 1364 functionality is partially implemented in Model Sm Verilog:

« Verilog Procedural Interface (VPI) (see/<install_dir>/modeltech/docs/technotes/
Verilog_VPI.note for details)

Many of the examplesin this chapter are shown from the command line. For compiling and
simulating within a project or Model Sm’s GUI see:

* Getting started with projects (UM-18)
» Compiling with the graphic interface (Um-211)
» Simulating with the graphic interface (UM-217)

ModelSim variables

ModelSim User’'s Manual

Several variables are available to control simulation, provide simulator state feedback, or
modify the appearance of the Model Sm GUI. To take effect, some variables, such as
environment variables, must be set prior to simulation. See Appendix A - ModelSm
Variables for acomplete listing of Model Sim variables.

Compilation UM-61

Compilation

Before you can simulate a Verilog design, you must first create alibrary and compile the
Verilog source code into that library. This section provides detailed information on
compiling Verilog designs. For information on creating a design library, see Chapter 3 -
Design libraries.

The Model Sm Verilog compiler, viog, compiles Verilog source code into retargetable,
executable code, meaning that the library format is compatible across all supported
platforms and that you can simulate your design on any platform without having to
recompile your design specifically for that platform. Asyou compile your design, the
resulting object code for modules and UDPs is generated into alibrary. By default, the
compiler places resultsinto the work library. Y ou can specify an alternate library with the
-work option. The following is asimple example of how to create awork library, compile
adesign, and simulate it:

Contents of top.v:

nodul e top;
initial $display("Hello world");
endnodul e

Create the work library:

% vlib work

Compile the design:

% vlog top.v
- Conpiling nodul e top

Top | evel nodul es:
top

View the contents of the work library (optional):

% vdi r
MCODULE t op

Simulate the design:

% vsim-c top

Loadi ng work.top
VSIM 1> run -all

Hello world
VSIM 2> quit

In this example, the simulator was run without the graphic interface by specifying the -c
option. After the design was|oaded, the simulator command run -all was entered, meaning
to simulate until there are no more simulator events. Finally, the quit command was entered
to exit the simulator. By default, alog of the simulation iswritten to the file "transcript” in
the current directory.

ModelSim User's Manual

UM-62 5 - Verilog Simulation

Incremental compilation

ModelSim User’'s Manual

By default, Model Sm Verilog supports incremental compilation of designs, thus saving
compilation time when you modify your design. Unlike other Verilog simulators, thereis
no requirement that you compile the entire design in one invocation of the compiler .

Y ou are not required to compile your design in any particular order because all module and
UDP instantiations and external hierarchical references are resolved when the design is
loaded by the simulator. Incremental compilation is made possible by deferring these
bindings, and as aresult some errors cannot be detected during compilation. Commonly,
these errorsinclude: modules that were referenced but not compiled, incorrect port
connections, and incorrect hierarchical references.

The following example shows how a hierarchical design can be compiled in top-down
order:

Contents of top.v:

nodul e top;
or2(nl, a, b);
and2(n2, nl, c);
endnodul e

Contents of and2.v:

nodul e and2(y, a, b);
out put vy;
i nput a, b;
and(y, a, b);
endnodul e

Contents of or2.v:

nodul e or2(y, a, b);
out put y;
i nput a, b;
or(y, a, b);
endnodul e

Compile the design in top down order (assumes work library already exists):

% vlog top.v
- Conpiling nodul e top

Top | evel nodul es:
top
% vl og and2.v
- Conpi li ng nodul e and2

Top | evel nodul es:
and2
% vlog or2.v
- Conpiling nodul e or2

Top | evel nodul es:
or2

Note that the compiler lists each module as atop level module, although, ultimately, only
"top" isatop-level module. If amoduleis not referenced by another module compiled in
the same invocation of the compiler, then it islisted as atop level module. Thisisjust an

Compilation

informative message and can be ignored during incremental compilation. The messageis
more useful when you compile an entire design in one invocation of the compiler and need
to know the top level module names for the simulator. For example,

% vlog top.v and2.v or2.v
- Conpiling nodul e top
- Conpi ling nodul e and2
- Conpiling nodul e or2

Top | evel nodul es
top

The most efficient method of incremental compilation isto manually compile only the
modules that have changed. Thisis not always convenient, especially if your source files
have compiler directive interdependencies (such as macros). In this case, you may prefer to
always compile your entire design in one invocation of the compiler. If you specify the
-incr option, the compiler will automatically determine which modules have changed and
generate code only for those modules. Thisis not as efficient as manual incremental
compilation because the compiler must scan all of the source code to determine which
modules must be compiled.

The following is an example of how to compile a design with automatic incremental
compilation:

% vlog -incr top.v and2.v or2.v

- Conpiling nodul e top

- Conpi ling nodul e and2

- Conpiling nmodul e or2

Top | evel nodul es
top

Now, suppose that you modify the functionality of the "or2" module:

% vlog -incr top.v and2.v or2.v
- Ski ppi ng nodul e top
- Ski ppi ng nodul e and2
- Conpiling nmodul e or2

Top | evel nodul es
top

The compiler informs you that it skipped the modules "top" and "and2", and compiled
"or2".

Automatic incremental compilation isintelligent about when to compile a module. For
example, changing acomment in your source code does not result in arecompile; however,
changing the compiler command line options results in arecompile of all modules.

P Note: Changes to your source code that do not change functionality but that do affect
source code line numbers (such as adding a comment line) will cause all affected
modul esto be recompiled. This happens because debug information must be kept current
so that Model Sm can trace back to the correct areas of the source code.

UM-63

ModelSim User's Manual

UM-64 5 - Verilog Simulation

Library usage

ModelSim User’'s Manual

All modules and UDPsin aVerilog design must be compiled into one or more libraries.
Onelibrary is usually sufficient for a simple design, but you may want to organize your
modulesinto various libraries for acomplex design. If your design uses different modules
having the same name, then you are required to put those modules in different libraries
because design unit names must be unique within alibrary.

The following isan example of how you may organize your ASIC cellsinto onelibrary and
therest of your design into another:

% vlib work

%vlib asiclib

% vliog -work asiclib and2.v or2.v

- Conpi li ng nodul e and2

- Conpiling nodul e or2

Top | evel nodul es
and2
or2
% vlog top.v
- Conpiling nodul e top

Top | evel nodul es
top

Note that the first compilation uses the -work asiclib option to instruct the compiler to
place theresultsin the asiclib library rather than the default work library.

Since instantiation bindings are not determined at compile time, you must instruct the
simulator to search your libraries when loading the design. The top level modules are
loaded from the library named wor k unless you specify an aternate library with the -lib
option. All other Verilog instantiations are resolved in the following order:

* Search libraries specified with -L f optionsin the order they appear on the command line.
 Search thelibrary specified in the "Verilog-XL “uselib compiler directive" (UM-67).

* Search libraries specified with -L optionsin the order they appear on the command line.
* Search thework library.

» Search thelibrary explicitly named in the specia escaped identifier instance name.

It isimportant to recognize that the work library is not necessarily alibrary named work -
thework library refersto the library containing the modul e that instantiates the module or
UDP that is currently being searched for. This definitionis useful if you have hierarchical
modules organized into separate libraries and if sub-module names overlap among the
libraries. In this situation you want the modules to search for their sub-modulesin the work
library first. Thisisaccomplished by specifying -L work first in thelist of search libraries.

For exampl e, assume you have atop level module "top" that instantiates module "modA™
from library "libA" and module "modB" from library "libB". Furthermore, "modA" and
"modB" both instantiate modules named "cell A", but the definition of "cellA" compiled
into "libA" isdifferent from that compiled into "libB". In this case, it isinsufficient to just
specify "-L libA - L libB" as the search libraries because instantiations of "cellA" from
"modB" resolvetothe"libA" version of "cell A". The appropriate search library optionsare
"-L work -L libA -L libB".

Compilation UM-65

Verilog-XL compatible compiler options

See vlog (CR-162) for acomplete list of compiler options. The options described here are
equivalent to Verilog-XL options. Many of these are provided to ease the porting of a
design to ModelSm Verilog.

+def i ne+<nmacr o_nane>[=<nmcr o_t ext >]
This option alows you to define amacro from the command linethat is equivalent to the
following compiler directive:

‘ define <macro_nanme> <macro_text>

Multiple +define options are allowed on the command line. A command line macro
overrides a macro of the same name defined with the * define compiler directive.

+i ncdi r+<directory>
This option specifies which directories to search for filesincluded with ‘include
compiler directives. By default, the current directory is searched first and then the
directories specified by the +incdir optionsin the order they appear on the command
line. Y ou may specify multiple +incdir options aswell as multiple directories separated
by "+" in asingle +incdir option.

+del ay_node_di stri but ed
This option disables path delaysin favor of distributed delays. See Delay modes (UM-75)
for details.

+del ay_node_path
This option sets distributed delays to zero in favor of path delays. See Delay modes (Um-
75) for details.

+del ay_node_uni t
This option sets path delaysto zero and non-zero distributed delays to one time unit. See
Delay modes (UM-75) for details.

+del ay_node_zero
This option sets path delays and distributed delays to zero. See Delay modes (UM-75) for
details.

-f <fil enane>
This option reads more command line arguments from the specified text file. Nesting of
-f optionsis allowed.

+m ndel ays
This option selects minimum delays from the "min:typ:max" expressions. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.

+t ypdel ays
This option selectstypical delaysfrom the "min:typ:max" expressions. If preferred, you
can defer delay selection until simulation time by specifying the same option to the
simulator.

+maxdel ays
This option selects maximum delays from the "min:typ:max" expressions. If preferred,
you can defer delay selection until simulation time by specifying the same option to the
simulator.

ModelSim User's Manual

UM-66 5 - Verilog Simulation

ModelSim User’'s Manual

+nowar n<rmenoni c>
This option disables the class of warning messages specified by <mnemonic>. This
option only disables warning messages accompanied by a mnemonic enclosed in square
brackets. For example,

WARNING. test.v(2): [TFMPC] - Too few port connections
This warning message can be disabled with the +nowarnTFM PC option.

-u
Thisoption treats all identifiersin the source code as all uppercase.

Options supporting source libraries

Thefollowing options support sourcelibrariesin the samemanner asVerilog-XL. Notethat
these libraries are source libraries and are very different from the libraries that the
Model Sm compiler uses to store compilation results. Y ou may find it convenient to use
these optionsif you are porting adesign to ModelSm or if you are familiar with these
options and prefer to use them.

Source libraries are searched after the source files on the command line are compiled. If
there are any unresolved references to modules or UDPs, then the compiler searches the
source libraries to satisfy them. The modules compiled from source libraries may in turn
have additional unresolved references that cause the source libraries to be searched again.
This processis repeated until all references are resolved or until no new unresolved
referencesarefound. Sourcelibrariesare searched in the order they appear on the command
line.

-v <fil enane>
This option specifies a source library file containing module and UDP definitions.
Modulesand UDPswithinthefile are compiled only if they match previously unresolved
references. Multiple -v options are allowed.

-y <directory>
This option specifies a source library directory containing module and UDP definitions.
Files within this directory are compiled only if the file names match the names of
previously unresolved references. Multiple -y options are allowed.

+l i bext +<suf fi x>
This option works in conjunction with the -y option. It specifiesfile extensions for the
filesinasource library directory. By default the compiler searches for files without
extensions. If you specify the +libext option, then the compiler will search for afilewith
the suffix appended to an unresolved name. Y ou may specify only one +libext option,
but it may contain multiple suffixes separated by "+". The extensions aretried in the
order they appear in the +libext option.

+l i brescan
This option changes how unresolved references are handled that are added while
compiling amodule or UDP from a source library. By default, the compiler attemptsto
resolve these references as it continues searching the source libraries. If you specify the
+librescan option, then the new unresolved references are deferred until after the current
passthrough the sourcelibraries. They arethen resolved by searching the sourcelibraries
from the beginning in the order they are specified on the command line.

Compilation UM-67

+nol i bcel
By default, all modules compiled from asourcelibrary aretreated asthough they contain
a‘celldefine compiler directive. This option disables this default. The ‘ celldefine
directive only affectsthe PLI Accessroutines acc_next_cell and acc_next_cell_load.

-R <si margs>
Thisoptioninstructsthe compiler toinvokethe simulator after compiling thedesign. The
compiler automatically determines which top level modules are to be ssmulated. The
command line arguments following -R are passed to the simulator, not the compiler.
Place the -R option at the end of the command line or terminate the simulator command
line argumentswith asingle"-" character to differentiate them from compiler command
line arguments.

The-R optionisnot aVerilog-XL option, but it isused by Model Sm Verilog to combine
the compile and simul ate phases together as you may be used to doing with Verilog-XL.
It is not recommended that you regularly use this option because you will incur the
unnecessary overhead of compiling your design for each simulation run. Mainly, itis
provided to ease the transition to ModelSm Verilog.

Verilog-XL ‘uselib compiler directive

The *uselib compiler directive is an aternative source library management scheme to the
-v, -y, and +libext compiler options. It has the advantage that a design may reference
different modules having the same name. Y ou compile designs that contain ‘uselib
directive statements using the -compile_uselibs vliog switch (described below).

The syntax for the ‘uselib directiveis:

‘uselib <library_reference>..

where <library_reference> is:
dir=<library_directory> | file=<library file> | |ibext=<file_extension>
l'i b=<li brary_name>

In Verilog-XL, thelibrary references are equivalent to command line options as follows:
dir=<library_directory> -y <library_directory>
file=<library_file> -v <library_file>
I i bext=<fil e_extension> +libext+<file_extension>

For example, the following directive

‘uselib dir=/h/vendorA libext=.v

is equivalent to the following command line options:

-y /h/vendor A +libext+.v

Since the ‘uselib directives are embedded in the Verilog source code, thereis more
flexibility in defining the source libraries for the instantiations in the design. The
appearance of a‘usdlib directive in the source code explicitly defines how instantiations
that follow it are resolved, completely overriding any previous ‘uselib directives.

For example, the following code fragment shows how two different modules that have the
same name can be instantiated within the same design:

‘uselib dir=/h/vendorA file=.v
NAND2 ul(nl, n2, n3)

ModelSim User's Manual

UM-68 5 - Verilog Simulation

ModelSim User’'s Manual

‘uselib dir=/h/vendorB file=.v
NAND2 u2(n4, n5, n6);

This allows the NAND2 modul e to have different definitions in the vendorA and vendorB
libraries.

-compile_uselibs argument

In Model Smversions 5.5 and later, use the -compile_uselibs argument to vlog (CR-162) to
reference‘ usdlib directives. The argument findsthe sourcefilesreferenced inthedirective,
compilesthem into automatically created object libraries, and updatesthe modelsm.ini file
with the logical mappings to the libraries.

When using -compile_uselibs, Model Sm determines into what directory to compile the
object libraries by choosing, in order, from the following three values:

« The directory name specified by the -compile_uselibs argument. For example,
-conpil e_uselibs=./mnmydir

» Thedirectory specified by the MTI_USELIB_DIR environment variable (see
"Environment variables' (UM-275))

« A directory named "mti_uselibs" that is created in the current working directory

P Note: In ModelSm versions prior to 5.5, the library files referenced by the “uselib
directive were not automatically compiled by ModelSm Verilog. To maintain
backwards compatibility, thisis still the default behavior when -compile_uselibs is not
used. See Pre-5.5 release implementation of "uselib directives for a description of the
pre-5.5 implementation.

'uselib is persistent

As mentioned above, the appearance of a ‘uselib directivein the source code explicitly
defines how instantiations that follow it are resolved. This may result in unexpected
consequences. For example, consider the following compile command:

vlog -conpile_uselibs dut.v srtr.v

Assume that dut.v contains a’ uselib directive. Since srtr.v is compiled after dut.v, the
“uselib directive is still in effect. When srtr isloaded it is using the “uselib directive from
dut.v to decide whereto locate modules. If thisisnot what you intend, then you need to put
an empty “uselib at the end of dut.v to "close" the previous "uselib statement.

http://www.model.com/products/documentation/pre55_uselib.pdf

Simulation UM-69

Simulation

The Model Smsimulator can load and simul ate both Verilog and VHDL designs, providing
auniform graphic interface and simulation control commandsfor debugging and analyzing
your designs. The graphic interface and simulator commands are described elsewhere in
this manual, while this section focuses specifically on Verilog simulation.

Invoking the simulator

A Verilog design is ready for simulation after it has been compiled into one or more
libraries. The simulator may then be invoked with the names of the top level modules
(many designs contain only onetop level module). For example, if your top level modules
are "testbench" and "globals', then invoke the simulator as follows:

vsi m t est bench gl obal s

If atop-level module nameis not specified, Model Smwill present the L oad Design dialog
box from which you can choose one or more top-level modules. See " Simulating with the
graphic interface" (Um-217) for more information.

After thesimulator loadsthetop level modules, it iteratively loads the instantiated modules
and UDPs in the design hierarchy, linking the design together by connecting the ports and
resolving hierarchical references. By default, all modules and UDPs are loaded from the
library named work.

On successful loading of the design, the simulation time is set to zero, and you must enter
arun command to begin simulation. Commonly, you enter run -all to run until there are
no more simulation events or until $finish is executed in the Verilog code. Y ou can also
run for specific time periods (e.g., run 100 ns). Enter the quit command to exit the
simulator.

ModelSim User's Manual

UM-70 5 - Verilog Simulation

Simulation resolution limit

The simulator internally represents time as a 64-bit integer in units equivalent to the
smallest unit of simulation time, also known as the simulation resolution limit. The
resolution limit defaults to the smallest time precision found among all of the ‘timescale
compiler directivesin the design. Thetime precision isthe second number inthe ‘timescale
directive. For example, "10 ps" in the following directive:

‘tinescale 1 ns / 10 ps

The time precision should not be unnecessarily small because it will limit the maximum
simulation time limit, and it will degrade performancein some cases. If the design contains
no ‘timescale directives, then the resolution limit defaults to the "resolution” value
specified in the modelsim.ini file (default is1 ps). In any case, you can override the default
resolution limit by specifying the -t option on the command line.

For example, to explicitly choose 100 fs resolution:
vsim-t 100fs top

Thisforces 100 fsresolution even if the design has finer time precision. As aresult, time
values with finer precision are rounded to the nearest 100 fs.

Event order issues

ModelSim User’'s Manual

The Verilog language is defined such that the simulator is not required to execute
simultaneous eventsin any particular order. Unfortunately, some models are inadvertently
written to rely on a particular event order, and these models may behave differently when
ported to another Verilog simulator. A model with event order dependenciesis ambiguous
and should be corrected. For example, the following code is ambiguous:

nodul e top;
reg r;

initial r
initial r

0,
1

initial #10 $display(r);
endnodul e

The value displayed for "r" depends on the order that the simulator executes the initial
constructs that assign to "r". Conceptually, the initial constructs run concurrently and the
simulator is alowed to execute them in any order. ModelSm Verilog executes the initial
constructs in the order they appear in the module, and the value displayed for "r" is"1".
Verilog-XL produces the same result, but a simulator that displays 0" is not incorrect
because the code is ambiguous.

Since many models have been developed on Verilog-XL, ModelSm Verilog duplicates
Verilog-XL event ordering as much as possible to ease the porting of those models to
ModelSm Verilog. However, Model Sm Verilog does not match Verilog-XL event
ordering in al cases, and if amodel ported to ModelSm Verilog does not behave as
expected, then you should suspect that there are event order dependencies.

Simulation UM-71

Tracking down event order dependencies is a tedious task, so Model Sm Verilog aids you
with a couple of compiler options:

- conpat

This option turns of f optimizationsthat result in different event ordering than Verilog-XL.
ModelSm Verilog generally duplicates Verilog-XL event ordering, but there are cases
where it isinefficient to do so. Using this option does not help you find the event order
dependencies, but it allows you to ignore them. Keep in mind that this option does not
account for all event order discrepancies, and that using this option may degrade
performance.

-hazards
This option detects event order hazards involving simultaneous reading and writing of the
same register in concurrently executing processes.

vsim (CR-168) detects the following kinds of hazards:

« WRITE/WRITE:
Two processes writing to the same variable at the same time.

« READ/WRITE:
One process reading avariable at the sametimeit is being written to by another process.
ModelSim callsthisa READ/WRITE hazard if it executed the read first.

* WRITE/READ:
Same as aREAD/WRITE hazard except that M odel Sm executed the write first.

vsim (CR-168) issues an error message when it detects a hazard. The message pinpointsthe
variable and thetwo processesinvolved. Y ou can have the simulator break on the statement
where the hazard is detected by setting the break on assertion level toerror.

To enable hazard detection you must invoke vlog (CR-162) with the -hazar ds option when
you compile your source code and you must also invoke vsim with the -hazar ds option
when you simulate.

Limitations of hazard detection:

» Reads and writesinvolving bit and part selects of vectors are not considered for hazard
detection. The overhead of tracking the overlap between the bit and part selects istoo
high.

« A WRITE/WRITE hazard is flagged even if the same value is written by both processes.

* A WRITE/READ or READ/WRITE hazard isflagged even if the write does not modify
the variable's value.

« Glitches on nets caused by non-guaranteed event ordering are not detected.

Verilog-XL compatible simulator options

See vsim (CR-168) for a complete list of simulator options. The options described here are
equivalent to Verilog-XL options. Many of these are provided to ease the porting of a
design to ModelSm Verilog.

+al t _pat h_del ays
Specify path delaysoperateininertial mode by default. Ininertial mode, apending output
transition is cancelled when a new output transition is scheduled. The result is that an
output may have no more than one pending transition at atime, and that pul ses narrower

ModelSim User's Manual

UM-72 5 - Verilog Simulation

ModelSim User’'s Manual

thanthedelay arefiltered. Thedelay isselected based on thetransition from the cancelled
pending value of the net to the new pending value. The +alt_path_delays option
modifies the inertial mode such that a delay is based on a transition from the current
output value rather than the cancelled pending value of the net. This option has no effect
in transport mode (see +pul se_e/ <per cent > and +pulse_r/<percent>).

-1 <fil enane>
By default, the smulation log is written to the file "transcript". The -I option allows you
to specify an alternatefile.

+maxdel ays
This option selects the maximum value in min;typ:max expressions. The default isthe
typical value. This option has no effect if the min:typ:max selection was determined at
compile time.

+m ndel ays
This option selects the minimum value in min:typ:max expressions. The default isthe
typical value. This option has no effect if the min:typ:max selection was determined at
compile time.

+mul ti source_i nt _del ays
This option enables multisource interconnect delays with transport delay behavior and
pulse handling. Model Sm uses a unique delay value for each driver-to-driven module
interconnect path specified in the SDF file. Pulse handling is configured using the
+pulse_int_eand +pulse_int_r switches (described below).

+no_cancel | ed_e_nsg
This option disables negative pul se warning messages. By default Vsim issuesawarning
and then filters negative pul ses on specify path delays. Y ou can drivean X for anegative
pulse using +show_cancel | ed_e.

+no_neg_t chk
This option disables negative timing check limits by setting them to zero. By default
negative timing check limits are enabled. Thisisjust the opposite of Verilog-XL, where
negative timing check limits are disabled by default, and they are enabled with the
+neg_tchk option.

+no_notifier
This option disables the toggling of the notifier register argument of the timing check
system tasks. By default, the notifier is toggled when there is atiming check violation,
and the notifier usually causes a UDP to propagate an X. Therefore, the +no_notifier
option suppresses X propagation on timing violations.

+no_pat h_edge
Thisoption causesModel Smtoignoretheinput edge specified in apath delay. Theresult
isthat all edges on the input are considered when sel ecting the output delay. Verilog-XL
always ignores the input edges on path delays.

+no_pul se_nsg
This option disablesthe warning message for specify path pulse errors. A path pulse error
occurs when a pulse propagated through a path delay falls between the pulse rejection
limit and pulseerror limit set with the +pulse r and +pulse_e options. A path pulse error
results in awarning message, and the pulseis propagated as an X. The +no_pulse msg
option disables the warning message, but the X is still propagated.

Simulation

+no_show_cancel | ed_e
This option filters negative pulses on specify path delays so they don’t show on the
output. Thisisthe default behavior of Vsim. Y ou can drive an X for anegative pulse
using +show_cancel | ed_e.

+no_t chk_nsg
This option disables error messages issued by timing check system tasks when timing
check violations occur. However, notifier registers are still toggled and may result in the
propagation of X's for timing check violations.

+nosdf war n
This option disables warning messages during SDF annotation.

+not i m ngchecks

This option completely disables all timing check system tasks.

+nowar n<rmenoni ¢c>
This option disables the class of warning messages specified by <mnemonic>. This
option only disables warning messages accompanied by a mnemonic enclosed in square
brackets. For example,

WARNING. test.v(2): [TFMPC] - Too few port connections.
This warning message can be disabled with the +nowarnTFM PC option.

+ntc_warn
This option enables warning messages from the negative timing constraint algorithm.
Thisagorithm attemptsto find aset of delaysfor thetiming check delayed net arguments
such that all negative limits can be converted to non-negative limits with respect to the
delayed nets. If there is no solution for this set of limits, then the algorithm sets one of
the negative limits to zero and recal culates the delays. This processis repeated until a
solution isfound. A warning message isissued for each negative limit set to zero. By
default these warnings are disabled.

+pul se_e/ <per cent >
This option controls how pulses are propagated through specify path delays, where
<percent> isanumber between 0 and 100 that specifiesthe error limit as a percentage of
the path delay. A pulse greater than or equal to the error limit propagates to the output in
transport mode (transport mode allows multiple pending transitions on an output). A
pulselessthan the error limit and greater than or equal to therejection limit (see+pulse _r/
<percent>) propagates to the output as an X. If thergjection limit is not specified, then it
defaults to the error limit. For example, consider a path delay of 10 along with a
+pulse_e/80 option. The error limit is 80% of 10 and the rejection limit defaults to 80%
of 10. Thisresultsin the propagation of pulses greater than or equal to 8, while all other
pulses are filtered. Note that you can force specify path delays to operate in transport
mode by using the +pulse_e/0 option.

+pul se_i nt _e/ <percent >
This option is analogous to +pulse_e, except it applies to interconnect delays only.

+pul se_i nt _r/ <percent >
Thisoption is analogous to +pulse _r, except it applies to interconnect delays only.

+pul se_r/ <percent >
This option controls how pulses are propagated through specify path delays, where
<percent>isanumber between 0 and 100 that specifiestherejection limit asapercentage
of the path delay. A pulse less than thergjection limit is suppressed from propagating to

UM-73

ModelSim User's Manual

UM-74 5 - Verilog Simulation

ModelSim User’'s Manual

the output. If the error limit isnot specified (see +pulse e (UM-73)), thenit defaultsto the
rejection limit.

+pul se_e_styl e_ondet ect
This option selects the "on detect” style of propagating pulse errors (see +pul se_e/
<per cent >). A pulse error propagates to the output as an X, and the "on detect" style
isto schedule the X immediately, as soon asit has been detected that a pulse error has
occurred. The "on event" style is the default for propagating pulse errors (see
+pul se_e_styl e onevent).

+pul se_e_styl e_onevent
This option selects the "on event" style of propagating pulse errors (see +pul se_e/
<per cent >). A pulse error propagates to the output asan X, and the "on event” styleis
to schedulethe X to occur at the sametime and for the same duration that the pulsewould
have occurred if it had propagated through normally. The "on event” style isthe default
for propagating pulse errors.

+sdf _nocheck_cel | type
By default, the SDF annotator checksthat the CELLTY PE namein the SDF file matches
the module or primitive name for the CELL instance. It is an error if the names do not
match. The +sdf_nocheck_celltype option disables this error check.

+sdf _verbose
This option displays a summary of the design objects annotated for each SDF file.

+show_cancel | ed_e
This option causes Vsim to drive a pulse error state (' X’) for the duration of negative
pulses on specify path delays. By default Vsim filters negative pul ses.

+transport _i nt _del ays
By default, interconnect delaysoperateininertial mode (pulsessmaller thanthedelay are
filtered). The +transport_int_delays option selects transport mode with pulse control
for single-source nets (one interconnect path). In transport mode, narrow pulses are
propagated through interconnect delays. This option works independent from
+multisource_int_delays.

+transport _pat h_del ays
By default, path delays operate in inertial mode (pulses smaller than the delay are
filtered). The +transport_path_delays option selects transport mode for path delays. In
transport mode, narrow pulses are propagated through path delays. Note that this option
affects path delays only, and not primitives. Primitives always operate in inertial delay
mode.

+t ypdel ays
Thisoption selectsthetypical valuein min:typ:max expressions. Thisisthe default. This
option has no effect if the min:typ:max selection was determined at compile time.

Cell Libraries UM-75

Cell Libraries

Model Technology passed the ASIC Council’ s Verilog test suite and achieved the"Library
Tested and Approved" designation from Si2 Labs. This test suiteis designed to ensure
Verilog timing accuracy and functionality and isthefirst significant hurdle to complete on
the way to achieving full ASIC vendor support. As a consequence, many ASIC and FPGA
vendors' Verilog cell libraries are compatible with ModelSim Verilog.

The cell models generally contain Verilog "specify blocks" that describe the path delays
and timing constraints for the cells. See section 13 in the |EEE Std 1364-1995 for details
on specify blocks, and section 14.5 for details on timing constraints. Model Sm Verilog
fully implements specify blocks and timing constraints as defined in |IEEE Std 1364 along
with some Verilog-XL compatible extensions.

SDF timing annotation

Model Sm Verilog supports timing annotation from Standard Delay Format (SDF) files.
See Chapter 8 - Sandard Delay Format (SDF) Timing Annotation for details.

Delay modes

Verilog models may contain both distributed delays and path delays. The delays on
primitives, UDPs, and continuous assignments are the distributed delays, whereas the port-
to-port delays specified in specify blocks are the path delays. These delays interact to
determine the actual delay observed. Most Verilog cells use path delays exclusively, with
the distributed delays set to zero. For example,

modul e and2(y, a, b);
input a, b;
out put vy;

and(y, a, b);

speci fy
(a =>1y)
(b =>y)
endspeci fy
endnodul e

In the above two-input "and" gate cell, the distributed delay for the"and" primitiveis zero,
and the actual delays observed on the module ports are taken from the path delays. Thisis
typical for most cells, but acomplex cell may require non-zero distributed delays to work
properly. Even so, these delays are usually small enough that the path delays take priority
over the distributed delays. The ruleisthat if amodule contains both path delays and
distributed delays, then the larger of the two delays for each path shall be used (as defined
by the IEEE Std 1364). Thisisthe default behavior, but you can specify alternate delay
modes with compiler directives and options. These options and directives are compatible
with Verilog-XL. Compiler delay mode options take precedence over delay mode
directivesin the source code.

ModelSim User's Manual

UM-76 5 - Verilog Simulation

ModelSim User’'s Manual

Distributed delay mode

In distributed delay mode the specify path delays are ignored in favor of the distributed
delays. Select this delay mode with the +delay_mode distributed compiler option or the
‘delay_mode _distributed compiler directive.

Path delay mode

In path delay mode the distributed delays are set to zero in any module that contains a path
delay. Select this delay mode with the +delay_mode_path compiler option or the
‘delay_mode_path compiler directive.

Unit delay mode

In unit delay mode the distributed delays are set to one (the unit is the time_unit specified
inthe‘timescale directive), and the specify path delays and timing constraints areignored.
Select this delay mode with the +delay_mode_unit compiler option or the
‘delay_mode_unit compiler directive.

Zero delay mode

In zero delay mode the distributed delays are set to zero, and the specify path delays and
timing constraints are ignored. Select this delay mode with the +delay_mode_zero
compiler option or the ‘delay_mode_zero compiler directive.

System Tasks UM-77

System Tasks

The |EEE Std 1364 defines many system tasks as part of the Verilog language, and
ModelSm Verilog supports all of these along with several non-standard Verilog-XL
system tasks. The system tasks listed in this chapter are built into the simulator, although
some designs depend on user-defined system tasks implemented with the Programming
Language Interface (PLI) or Verilog Procedural Interface (VPI). If the simulator issues
warnings regarding undefined system tasks, then it islikely that these system tasks are
defined by aPLI/VPI application that must be loaded by the ssimulator.

IEEE Std 1364 system tasks
The following system tasks are described in detail in the IEEE Std 1364.

Timescale tasks Simulator Simulation time Command line
control tasks functions input
$printtimescale $finish $realtime $test$plusargs
$timeformat $stop $stime $value$plusargs
$time
Probabilistic Conversion Stochastic Timing check
distribution functions analysis tasks tasks
functions
$dist_chi_square $hitstoreal $0_add $hold
$dist_erlang Sitor $g_exam $nochange
$dist_exponential Prealtobits $q_full $period
$dist_normal $rtoi $q initidize $recovery
$dist_poisson $signed $q_remove $setup
$dist_t $unsigned $setuphold
$dist_uniform $skew
$random Swidth
$removal
$recrem

ModelSim User's Manual

UM-78 5 - Verilog Simulation

Display tasks PLA modeling tasks Value change dump (VCD)
file tasks

$display $async$and$array $dumpall

$displayb $asyncnandsarray $dumpfile

$displayh $async$orSarray $dumpflush

$displayo $async$norSarray $dumplimit

$monitor $asynchand$plane $dumpoff

$monitorb $asyncInand$plane $dumpon

$monitorh $asyncordplane $dumpvars

$monitoro $async$nor$plane

$monitoroff $sync$andSarray

$monitoron $sync$nand$array

$strobe $sync$or$array

$strobeb $syncsnorsarray

$strobeh $syncsand$plane

$strobeo $syncSnand$plane

Pwrite $sync$or$plane

Pwriteb $sync$nor$plane

Pwriteh

$writeo

ModelSim User’'s Manual

File I/O tasks
$fclose
$fdisplay
$fdisplayb
$fdisplayh
$fdisplayo
$ferror
$fflush
$fgetc
$fgets
$fmonitor
$fmonitorb
$fmonitorh

$fmonitoro

$fopen
$fread
$fscanf
$fseek
$fstrobe
$fstrobeb
$fstrobeh
$fstrobeo
$ftell
$fwrite

$fwriteb

System Tasks

$fwriteh
$fwriteo
$readmemb
$readmemh
$rewind
$sdf _annotate
$sformat
$sscanf
$swrite
$swriteb
$swriteh
$swriteo
$ungetc

P Note: $readmemb and $readmemh match the behavior of Verilog-XL rather than IEEE
Std 1364. Specifically, it loads datainto memory starting with the lowest address. For
example, whether you make the declaration meror y[127: 0] Or nenory[0: 127] ,
ModelSmwill load data starting at address 0 and work upwards to address 127.

UM-79

ModelSim User's Manual

UM-80 5 - Verilog Simulation

Verilog-XL compatible system tasks

ModelSim User’'s Manual

Thefollowing system tasks are provided for compatibility with Verilog-XL. Although they
are not part of the |IEEE standard, they are described in an annex of the |EEE Std 1364.

$countdrivers
$getpattern
$sreadnmenb
$sreadmenmh

The following system tasks are also provided for compatibility with Verilog-XL; they are
not described in the |EEE Std 1364.

$deposi t (vari abl e, val ue);
This system task sets a Verilog register or net to the specified value. variableis the
register or net to be changed; value is the new value for the register or net. The value
remains until there is a subsequent driver transaction or another $deposit task for the
sameregister or net. Thissystem task operatesidentically to the Model Sim force -deposit
command.

The following system tasks are extended to provide additional functionality for negative
timing constraints and an alternate method of conditioning, as does Verilog-XL.

$recovery(reference event, data_event, renoval _limt, recovery_limt,
[notifier], [tstanmp_cond], [tcheck_cond], [del ayed_reference],
[del ayed_dat a])

The $recovery system task normally takes arecovery_limit asthe third argument and an
optional notifier as the fourth argument. By specifying alimit for both the third and
fourth arguments, the $recovery timing check istransformed into acombination removal
and recovery timing check similar to the $recrem timing check. The only differenceis
that the removal_limit and recovery_limit are swapped.

$set uphol d(cl k_event, data_event, setup_limt, hold_limt, [notifier],
[tstanp_cond], [tcheck_cond], [delayed_clk], [delayed_data])

The tstamp_cond argument conditions the data_event for the setup check and the
clk_event for the hold check. This aternate method of conditioning precludes specifying
conditionsin the clk_event and data_event arguments.

The tcheck_cond argument conditions the data_event for the hold check and the
clk_event for the setup check. Thisalternate method of conditioning precludes specifying
conditionsin the clk_event and data_event arguments.

The delayed_clk argument is a net that is continuously assigned the value of the net
specified in the clk_event. The delay is non-zero if the setup_limit is negative, zero
otherwise.

The delayed_data argument is a net that is continuoudly assigned the value of the net
specified in the data_event. The delay is non-zero if the hold_limit is negative, zero
otherwise.

The delayed_clk and delayed_data arguments are provided to ease the modeling of
devices that may have negative timing constraints. The model’s logic should reference
the delayed clk and delayed data nets in place of the normal clk and data nets. This
ensures that the correct datais latched in the presence of negative constraints. The
simul ator automatically calculatesthe delaysfor delayed clk and delayed data such that
the correct datais latched as long as a timing constraint has not been violated.

System Tasks

The following system tasks are Verilog-XL system tasks that are not implemented in
ModelSm Verilog, but have equivalent simulator commands.

$i nput ("fil enanme")
This system task reads commands from the specified filename. The equivalent ssmulator
command isdo <filename>.

$li st[(hierarchical _nane)]
This system task lists the source code for the specified scope. The equivalent
functionality is provided by selecting a module in the graphic interface Structure
window. The corresponding source code is displayed in the source window.

$reset
This system task resets the simulation back to its time 0 state. The equivalent simulator
command isrestart.

$restart("fil ename")
This system task setsthe simulation to the state specified by filename, saved in aprevious
call to $save. The equivalent simulator command is restore <filename>.

$save("fil ename")
This system task savesthe current simulation state to the file specified by filename. The
equivalent simulator command is checkpoint <filename>.

$scope(hi erarchi cal _nane)
This system task sets the interactive scope to the scope specified by hierarchical_name.
The equivalent simulator command is environment <pathname>.

$showscopes
This system task displays alist of scopes defined in the current interactive scope. The
equivaent simulator command is show.

$showar s
This system task displays alist of registers and nets defined in the current interactive
scope. The equivaent simulator command is show.

UM-81

ModelSim User's Manual

UM-82 5 - Verilog Simulation

$init_signal_spy

The $init_signal_spy() system task mirrorsthe value of aVHDL signal or Verilog register/
wire (called the spy_object) onto an existing Verilog register or VHDL signal (called the
dest_object). This system task allows you to reference VHDL signals at any level of
hierarchy from within aVerilog module; or, reference Verilog registers/wires at any level
of hierarchy from within a Verilog module when there is an interceding VHDL block.

This system task works only in Model Sim versions 5.5 and newer.

Syntax

$init_signal _spy(spy_object, dest_object, verbose)

Returns
Nothing

Arguments

Name Type Description

spy_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a
VHDL signal or Verilog register/wire. Usethe
path separator to which your simulation is set
(i.e.,"/" or"."). A full hierarchical path must
beginwith a"/" or ".". The path must be
contained within double quotes.

dest_object string Required. A full hierarchical path (or relative
path with reference to the calling block) to a

Verilog register or VHDL signal. Usethe path
separator to which your simulationis set (i.e.,
“I"or"."). A full hierarchical path must begin
witha"/" or ".". The path must be contained

within double quotes.

verbose integer Optional. Possible valuesare 0 or 1. Specifies
whether you want a message reported in the

Transcript stating that the spy_object’s value
ismirrored onto the dest_object. Default is0,

No message.

Limitations

» When mirroring the value of a VHDL signal onto a Verilog register, the VHDL signa
must be of type bit, bit_vector, std_logic, or std_logic_vector.

» Mirroring slices or single hits of avector is not supported. If you do reference adlice or
bit of a vector, the function will assume that you are referencing the entire vector.

ModelSim User’'s Manual

System Tasks UM-83

Example
nodul e ...
reg top_sigl;
initial
begi n
$init_signal _spy("/top/uut/instl/sigl","/top_sigl", 1);
end

endnodul e

In this example, the value of "/t op/ uut /i nst 1/ si g1 will be mirrored onto
"/top_sigl".

ModelSim User's Manual

UM-84

5 - Verilog Simulation

Model SmVerilog supportsall of the compiler directives defined in the |[EEE Std 1364 and
some additional Verilog-XL compiler directives for compatibility.

Many of the compiler directives (such as ‘timescale) take effect at the point they are
defined in the source code and stay in effect until the directiveisredefined or until it isreset
to its default by a‘resetall directive. The effect of compiler directives spans source files,
so the order of source files on the compilation command line could be significant. For
example, if you have afile that defines some common macros for the entire design, then
you might need to place it first in the list of files to be compiled.

The ‘resetall directive affects only the following directives by resetting them back to their
default settings (this information is not provided in the |EEE Std 1364):

‘cel | define

ModelSm Verilog implicitly defines the following macro:

ModelSim User’'s Manual

Compiler Directives

‘defaul t _decay_tine
“define_nettype

“del ay_node_di stri buted

“del ay_node_path
“del ay_node_uni t
“del ay_node_zero
“tinescal e
“unconnected_drive
“uselib

“define MODEL_TECH

IEEE Std 1364 compiler directives
The following compiler directives are described in detail in the IEEE Std 1364.

“cel | define
“defaul t_nettype
“define

‘el se
“endcel | defi ne
“endif

“ifdef

“ifndef

“include

‘line

“nounconnect ed_drive
“resetal
“tinmescal e
“unconnected_drive
“undef

Compiler Directives

Verilog-XL compatible compiler directives

The following compiler directives are provided for compatibility with Verilog-XL.

‘defaul t _decay_tine <tine>
Thisdirective specifies the default decay timeto be used in trireg net declarationsthat do
not explicitly declare a decay time. The decay time can be expressed as areal or integer
number, or asinfinite to specify that the charge never decays.

“del ay_node_di stri but ed

This directive disables path delays in favor of distributed delays. See Delay modes (UM-
75) for details.

“del ay_node_path

This directive sets distributed delays to zero in favor of path delays. See Delay modes
(UM-75) for details.

“del ay_node_uni t

This directive sets path delays to zero and non-zero distributed delays to one time unit.
See Delay modes (UM-75) for details.

“del ay_node_zero

This directive sets path delays and distributed delays to zero. See Delay modes (UM-75)
for details.

“uselib
Thisdirectiveisan alternative to the -v, -y, and +libext source library compiler options.
See Verilog-XL ‘uselib compiler directive (Um-67) for details.

The following Verilog-XL compiler directives are silently ignored by ModelSim Verilog.
Many of these directives areirrelevant to Model Sm Verilog, but may appear in code being
ported from Verilog-XL.

“accelerate

“aut oexpand_vectornets
“disable_portfaults
“enabl e_portfaults
“endpr ot ect
“expand_vect ornets
“noaccel erate
“noexpand_vectornets
‘ nor enpve_gat enanes
‘norenpbve_net nanmes
“nosuppress_faults

" protect

“renove_gat enanmes
“renove_net nanes
“suppress_faults

The following Verilog-XL compiler directives produce warning messagesin ModelSm
Verilog. These are not implemented in Model Sm Verilog, and any code containing these
directives may behave differently in ModelSm Verilog than in Verilog-XL.
“default_trireg_strength

“signed

“unsi gned

UM-85

ModelSim User's Manual

UM-86 5 - Verilog Simulation

Verilog PLI/VPI

The Verilog PLI (Programming Language Interface) and VPI (Verilog Procedural
Interface) both provide a mechanism for defining system tasks and functions that
communicate with the simulator through a C procedural interface. There are many third
party applications available that interface to Verilog simulators through the PLI (see Third
party PLI applications (Um-95)). In addition, you may write your own PLI/V Pl applications.

Model SmVerilog implementsthe PLI asdefined in the |EEE Std 1364, with the exception
of the acc_handle_datapath routine. We did not implement the acc_handle_datapath
routine because the information it returns is more appropriate for a static timing analysis
tool. Inversion 5.5e, the VPI ispartially implemented as defined in the |EEE Std 1364. The
list of currently supported functionality can be found in the following directory:

<install_dir>/nodel tech/docs/technotes/Veril og_VPI.note.

The |EEE Std 1364 is the reference that defines the usage of the PLI/VPI routines. This
manual only describes details of using the PLI/VPI with ModelSim Verilog.

Registering PLI applications

ModelSim User’'s Manual

Each PLI application must register its system tasks and functions with the simulator,
providing the name of each system task and function and the associated callback routines.
Since many PLI applications already interface to Verilog-XL, ModelSm Verilog PLI
applications make use of the same mechanism to register information about each system
task and function in an array of s _tfcell structures. This structure is declared in the
veriuser.h include file as follows:

typedef int (*p_tffn)();

typedef struct t_tfcell {
short type;/* USERTASK, USERFUNCTI ON, or USERREALFUNCTI ON */
short data;/* passed as data argument of callback function */
p_tffn checktf; /* argument checking callback function */

p_tffn sizetf; /* function return size callback function */
p_tffn calltf; /* task or function call callback function */
p_tffn msctf; /* mscellaneous reason call back function */

char *tfnane;/* nane of systemtask or function */

/* The following fields are ignored by Mdel Sim Verilog */
int forwef;
char *tfveritool;
char *tferrnessage;
int hash;
struct t_tfcell *left_p;
struct t_tfcell *right_p;
char *nanecel | _p;
int warning_printed;
} s_tfcell, *p_tfcell;

The various callback functions (checktf, sizetf, calltf, and misctf) are described in detail in
the |IEEE Std 1364. The simulator calls these functions for various reasons. All callback
functions are optional, but most applications contain at least the calltf function, whichis
called when the system task or function is executed in the Verilog code. Thefirst argument
tothe callback functionsisthe value supplied in the datafield (many PLI applications don't
use thisfield). The type field defines the entry as either a system task (USERTASK) or a

Verilog PLI/VPI

system function that returns either aregister (USERFUNCTION) or areal
(USERREALFUNCTION). The ttname field is the system task or function name (it must
begin with $). The remaining fields are not used by ModelSm Verilog.

On loading of aPLI application, the simulator first looks for an init_usertfs function, and
then averiusertfs array. If init_usertfsis found, the simulator calls that function so that it
can call mti_RegisterUserTF() for each system task or function defined. The
mti_RegisterUserTF() function is declared in veriuser.h asfollows:

void nti_RegisterUserTF(p_tfcell usertf);

The storage for each usertf entry passed to the simulator must persist throughout the
simulation because the simulator de-references the usertf pointer to call the callback
functions. It isrecommended that you define your entriesin an array, with the last entry set
to 0. If the array is named veriusertfs (asis the case for linking to Verilog-XL), then you
don't haveto provide aninit_usertfs function, and the simulator will automatically register
the entries directly from the array (the last entry must be 0). For example,
s_tfcell veriusertfs[] = {

{usertask, 0, 0, O, abc_calltf, 0, "$abc"},

{usertask, 0, 0, 0, xyz_calltf, 0, "$xyz"},

{0} /* last entry nmust be 0 */

b
Alternatively, you can add aniinit_usertfsfunction to explicitly register each entry fromthe
array:

void init_usertfs()

{

p_tfcell usertf = veriusertfs
whil e (usertf->type)
nti_Regi sterUser TF(usertf ++)
}

Itisan error if aPLI shared library does not contain a veriusertfs array or an init_usertfs
function.

Since PLI applications are dynamically loaded by the simulator, you must specify which
applications to load (each application must be adynamically loadable library, see
"Compiling and linking PL1/VPI applications" (UM-89)). The PLI applications are specified
asfollows:

* Asalistinthe Veriuser entry in the modelsim.ini file:
Veriuser = pliappl.so pliapp2.so pliappn.so

» Asalistinthe PLIOBJS environment variable:
% setenv PLIOBJS "pliappl.so pliapp2.so pliappn.so"

» Asa-pli option to the simulator (multiple options are allowed):
-pli pliappl.so -pli pliapp2.so -pli pliappn.so

The various methods of specifying PLI applications can be used smultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the librariesin all cases.

UM-87

ModelSim User's Manual

UM-88 5 - Verilog Simulation

Registering VPI applications

Each VPl application must register its system tasks and functions and its callbacks with the
simulator. To accomplishthis, one or more user-created regi stration routines must be called
at simulation startup. Each registration routine should make one or more calls to
vpi_register_systf() to register user-defined system tasks and functions and
vpi_register_ch() to register callbacks. The registration routines must be placed in atable
named vlog_startup_routines so that the simulator can find them. The table must be
terminated with a0 entry.

Example
PLI _I NT32 MyFuncCal I tf(PLI_BYTE8 *user_data)
...}
PLI _I NT32 MyFuncConpi |l etf(PLI_BYTE8 *user_data)
...}
PLI _I NT32 MyFuncSi zetf(PLI_BYTE8 *user_data)
{ ...}
PLI _I NT32 MyEndOf ConpCB(p_cb_data cb_data_p)
{ ...}
PLI _INT32 MyStartOf SinCB(p_cb_data cb_data_p)
{ ...}
voi d Regi sterMySystfs(void)

{

s_cb_data cal |l back;
s_vpi _systf_data systf_data;

systf_data.type vpi SysFunc;
systf_dat a. sysfunctype vpi Si zedFunc;
systf_data.tfname "$nyfunc";
systf_data.calltf MyFuncCal I tf;

systf_data. conpil etf
systf_dat a. si zetf MyFuncSi zetf;
systf_data. user_data 0;

vpi _register_systf(&systf_data);

MyFuncConpi | et f;

cal | back. reason
cal | back.cb_rtn MyEndOf CompCB;
cal | back. user _data 0;

(void) vpi_register_cbh(&callback);

cbEndOf Conpi | e;

cal | back. reason
cal | back.cb_rtn My St art O Si nCB;
cal | back. user _data 0;

(void) vpi_register_cbh(&callback);

cbStart O Si nul ati on;

}

void (*vlog_startup_routines[]) () ={
Regi st er MySyst fs,
0 /* last entry nmust be 0 */

b

Loading VPI applications into the ssimulator is the same as described in Registering PLI
applications (UM-86).

ModelSim User’'s Manual

Verilog PLI/VPI UM-89

PL1 and VPl applications can co-exist in the same application object file. In such cases, the
applications are loaded at startup as follows:

« If aninit_usertfs() function exists, then it is executed and only those system tasks and
functions registered by callsto mti_RegisterUserTF() will be defined.

« If aninit_usertfs() function does not exist but a veriusertfs table does exist, then only
those system tasks and functions listed in the veriusertfs table will be defined.

« If aninit_usertfs() function does not exist and a veriusertfs table does not exist, but a
vlog_startup_routines table does exist, then only those system tasks and functions and
callbacks registered by functionsin the viog_startup_routines table will be defined.

Asaresult, when PLI and VVPI applications exist in the same application object file, they
must be registered in the same manner. VPl registration functions that would normally be
listed in avlog_startup_routines table can be called from an init_usertfs() function instead.

Compiling and linking PLI/VPI applications

Model Sm Verilog uses operating system calls to dynamically load PL1 and VPI
applications when the simulator loads a design. Therefore, the applications must be
compiled and linked for dynamic loading on a specific operating system. The PLI/VPI
routines are declared in the include fileslocated in the Model Sm<install_dir>/modeltech/
includedirectory. Theacc_user.hfiledeclaresthe ACC routines, theveriuser.hfiledeclares
the TF routines, and the vpi_user.h file declares the VPI routines.

Thefollowing instructions assume that the PL1 or VPI application isin asingle sourcefile.
For multiple source files, compile each file as specified in the instructions and link all of
the resulting object files together with the specified link instructions.

Windows 95/98/2000/NT/Me platforms

Under Windows Model Sm loads a 32-bit dynamically linked library for each
PLI/VPI application. The following compile and link steps are used to create the
necessary.dll file (and other supporting files) using the Microsoft Visual C/C++ compiler.
cl -c -lI<install_dir>\nodeltech\include app.c
link -dll -export:<init_function> app.obj \
<install _dir>\nodeltech\wi n32\ntipli.lib out:app.exe

For the Verilog PL1, the <init_function> should be "init_usertfs'. Alternatively, if thereis
no init_usertfs function, the <init_function> specified on the command line should be
"veriusertfs'. For the Verilog VP, the <init_function> should be "vlog_startup_routines".
These requirements ensure that the appropriate symbol is exported, and thus Model Sm can
find the symbol when it dynamically loadsthe DLL.

ThePLI and VPl have been tested with DL L sbuilt using Microsoft Visual C/C++ compiler
version 4.1 or greater.

The gcc compiler cannot be used to compile PL1/VPI applications under Windows. Thisis
because gcc does not support the Microsoft .lib/.dll format.

ModelSim User's Manual

UM-90 5 - Verilog Simulation

ModelSim User’'s Manual

Specifying the PLI/VPI file to load
The PLI applications are specified as follows:
» Asalistinthe Veriuser entry in the modelsim.ini file:

Veriuser = pliappl.so pliapp2.so pliappn.so

» Asalistinthe PLIOBJS environment variable:
% setenv PLIOBJS "pliappl.so pliapp2.so pliappn.so"

« Asa-pli option to the simulator (multiple options are allowed):
-pli pliappl.so -pli pliapp2.so -pli pliappn.so

P Note: On Windows platforms, the file names shown above should end with ".dll" rather
than ".so".

The various methods of specifying PLI applications can be used smultaneously. The
libraries are loaded in the order listed above. Environment variable references can be used
in the paths to the librariesin all cases.

See also Appendix A - Model Sm Variables for more information on the modelsim.ini file.

Verilog PLI/VPI UM-91

PLI example

The following exampleis atrivial, but complete PLI application.

hell 0. c:

#i ncl ude "veriuser.h"
static hello()

{
}

s_tfcell veriusertfs[] = {
{usertask, 0, 0, 0, hello, 0, "$hello"},
{0} /* last entry nmust be 0 */

io_printf("H there\n");

b
hel | 0. v:
nodul e hel | o;
initial $hello;
endnodul e

Conpil e the PLI code for the Solaris operating system

%cc -c -l<install_dir>/nodeltech/include hello.c
%ld -G-0 hello.sl hello.o

Conpil e the Veril og code:

% vlib work
% vlog hello.v

Si mul ate the design:

%vsim-c -pli hello.sl hello
Loadi ng work. hello

Loading ./hello.sl

VSIM 1> run -all

H there

VSIM 2> quit

ModelSim User's Manual

UM-92 5 - Verilog Simulation

VPI example
The following exampleis atrivial, but complete VPI application.

hell 0. c:

#i ncl ude "vpi _user.h"
static hello()

{
vpi _printf("Hello world!\n");

}

voi d RegisterMyTfs(void)

{
s_vpi _systf_data systf_data;
systf_data.type = vpi SysTask;
systf_data. sysfunctype = vpi SysTask;
systf_data.tfnane = "$hel | 0";
systf_data.calltf = hel |l o;
systf_data. conpil etf = 0;
systf_dat a. si zetf = 0;
systf_data. user_data = 0;
vpi _register_systf(&systf_data);
vpi _free_object(systf_handle);

}

void (*vlog_startup_routines[])() = {
Regi st er MyTf s,
0

b

hel | 0. v:
nodul e hel | o;
initial $hello;
endnodul e

Conpil e the VPl code for the Solaris operating system

% gcc -c -l<install_dir>/include hello.c
%ld -G -0 hello.sl hello.o

Conpil e the Verilog code:

% vlib work
% vlog hello.v

Si mul ate the design:

%vsim-c -pli hello.sl hello
Loadi ng work. hello

Loading ./hello.sl

VSIM 1> run -all

Hello world!

VSIM 2> quit

P Note: A general VPI example can be found in <install_dir>/modeltech/examples/vpi.

ModelSim User’'s Manual

Verilog PLI/VPI UM-93

The PLI callback reason argument

The second argument to a PL| callback function is the reason argument. The values of the
various reason constants are defined in the veriuser.h include file. See |EEE Std 1364 for a
description of the reason constants. The following details relate to Model Sm Verilog, and
may not be obviousin the IEEE Std 1364. Specifically, the simulator passes the reason
values to the misctf callback functions under the following circumstances:

reason_endof conpil e
For the completion of loading the design.

reason_fini sh
For the execution of the $finish system task or the quit command.

reason_start of save
For the start of execution of the checkpoint command, but before any of the simulation
state has been saved. This allows the PLI application to prepare for the save, but it
shouldn't save its datawith callsto tf_write_save until it is called with reason_save.

reason_save
For the execution of the checkpoint command. Thisiswhen the PLI application must
saveits state with callsto tf_write save.

reason_start of restart
For the start of execution of the restore command, but before any of the smulation state
has been restored. This allows the PLI application to prepare for the restore, but it
shouldn't restoreitsstate with callstotf_read restart until it iscalled with reason_restart.
Thereason_startofrestart valueis passed only for arestore command, and not in the case
that the simulator is invoked with -restore.

reason_restart
For the execution of the restore command. Thisiswhen the PLI application must restore
its state with callsto tf_read restart.

reason_reset
For the execution of the restart command. This is when the PLI application should free
itsmemory and reset its state. We recommend that all PLI applicationsreset their internal
state during arestart asthe shared library containing the PLI code might not be reloaded.
(Seethe- keepl oaded (CR-170) and - keepl oadedr est art (CR-170) vSim
arguments for related information.)

reason_endof r eset
For the completion of the restart command, after the simulation state has been reset but
before the design has been rel oaded.

reason_interactive
For the execution of the $stop system task or any other time the simulation isinterrupted
and waiting for user input.

reason_scope
For the execution of the environment command or selecting a scope in the structure
window. Also for the call to acc_set_interactive_scope if the callback_flag argument is
non-zero.

reason_paranmvc
For the change of value on the system task or function argument.

ModelSim User's Manual

UM-94 5 - Verilog Simulation

reason_synch
For the end of time step event scheduled by tf_synchronize.

reason_rosynch
For the end of time step event scheduled by tf_rosynchronize.

reason_reactivate
For the simulation event scheduled by tf _setdelay.

reason_par andrc

Not supported in ModelSm Verilog.

reason_force

Not supported in ModelSm Verilog.

reason_rel ease

Not supported in ModelSm Verilog.

reason_di sabl e

Not supported in ModelSm Verilog.

The sizetf callback function

A user-defined system function specifies the width of its return value with the sizetf
callback function, and the simulator calls this function while loading the design. The
following details on the sizetf callback function are not found in the IEEE Std 1364:

* If you omit the sizetf function, then areturn width of 32 is assumed.

 The sizetf function should return O if the system function return value is of Verilog type
"rea".

* Thesizetf function should return-32 if the system function return valueis of Verilog type
"integer".

PLI object handles

ModelSim User’'s Manual

Many of the object handles returned by the PLI ACC routines are pointers to objects that
naturally exist in the simulation data structures, and the handles to these objects are valid
throughout the simulation, even after the acc_close() routineis called. However, some of
the objects are created on demand, and the handles to these objects become invalid after
acc_close() iscaled. The following object types are created on demand in ModelSim
Verilog:

accOperator (acc_handl e_condition)

accWrePath (acc_handl e_pat h)

accTerm nal (acc_handl e_term nal, acc_next_cell_l oad, acc_next_driver, and

acc_next _| oad)

accPat hTerm nal (acc_next_i nput and acc_next_out put)

accTchkTerm nal (acc_handl e_tchkargl and acc_handl e_t chkar g2)

accPart Sel ect (acc_handl e_conn, acc_handl e_pat hin, and acc_handl e_pat hout)

accRegBit (acc_handl e_by_nane, acc_handle_tfarg, and acc_handl e_itfarg)

If your PLI application uses these types of objects, then it isimportant to call acc_close()
to free the memory allocated for these objects when the application is done using them.

If your PLI application places value change cal|backs on accRegBit or accTerminal objects,
do not call acc_close() while these callbacks arein effect.

Verilog PLI/VPI UM-95

Third party PLI applications

Many third party PLI applications come with instructions on using them with ModelSm
Verilog. Even without the instructions, it is still likely that you can get it to work with
ModelSm Verilog as long as the application uses standard PLI routines. The following
guidelinesarefor preparing aVerilog-XL PLI application to work with ModelSim Verilog.

Generally, aVerilog-XL PLI application comes with a collection of object filesand a
veriuser.c file. The veriuser.c file contains the registration information as described above
in "Registering PLI applications". To prepare the application for ModelSm Verilog, you
must compile the veriuser.c file and link it to the object files to create a dynamically
loadable object (see " Compiling and linking PLI/VPI applications’ (Um-89)). For example,
if you haveaveriuser.cfileand alibrary archivelibapp.afile that containsthe application’s
object files, then the following commands should be used to create adynamically loadable
object for the Solaris operating system:

%cc -c -l<install_dir>/nodeltech/include veriuser.c
%ld -G -0 app.sl veriuser.o libapp.a

That's all thereistoit. The PLI application isready to be run with ModelSm Verilog. All
that'sleft isto specify theresulting object fileto the simulator for loading using the V eriuser
modesim.ini file entry, the-pli simulator option, or the PLIOBJS environment variable (see
"Registering PLI applications' (UM-86)).

P Note: Onthe HP700 platform, the object files must be compiled as position-independent
code by using the +z compiler option. Since, the object files supplied for Verilog-XL
may be compiled for static linking, you may not be able to use the object files to create
adynamically loadable object for Model SmVerilog. In this case, you must get the third
party application vendor to supply the object files compiled as position-independent
code.

ModelSim User's Manual

UM-96 5 - Verilog Simulation

Support for VHDL objects

The PLI ACC routines also provide limited support for VHDL objectsin anall VHDL
design. Thefollowing tableliststhe VHDL objects for which handles may be obtained and
their type and fulltype constants:

Type

Fulltype

Description

accArchitecture

accArchitecture

instantiation of an architecture

accArchitecture

accEntityVitalLevelO

instantiation of an architecture whose entity is marked
with the attribute VITAL LevelO

accArchitecture

accArchVitaLevelO

instantiation of an architecture which is marked with the
attribute VITAL LevelO

accArchitecture

accArchVitalLevell

instantiation of an architecture which is marked with the
attribute VITAL Levell

accArchitecture

accForeignArch

instantiation of an architecture which is marked with the
attribute FOREIGN and which does not contain any
VHDL statements or objects other than ports and generics

accArchitecture

accForeignArchMixed

instantiation of an architecture which is marked with the
attribute FOREIGN and which contains some VHDL
statements or objects besides ports and generics

accBlock accBlock block statement

accForLoop accForLoop for loop statement

accForeign accShadow foreign scope created by mti_CreateRegion()
accGenerate accGenerate generate statement

accPackage accPackage package declaration

accSignal accSigna signal declaration

ModelSim User’'s Manual

The type and fulltype constants for VHDL objects are defined in the acc_vhdl.h include
file. All of these objects (except signals) are scope objectsthat definelevels of hierarchy in
the Structure window. Currently, the PLI ACC interface has no provision for obtaining
handles to generics, types, constants, variables, attributes, subprograms, and processes.

IEEE Std 1364 ACC routines

Verilog PLI/VPI

Model SmV erilog supportsthe following ACC routines, described in detail inthe IEEE Std

1364.

acc_append_delays

acc_append pulsere

acc_close

acc_collect

acc_compare_handles

acc_configure

acc_count

acc fetch argc

acc fetch_argv

acc fetch_attribute

acc fetch attribute int

acc fetch_attribute_str

acc_fetch defname

acc _fetch _delay mode

acc_fetch delays

acc fetch direction

acc _fetch edge

acc_fetch fullname

acc_fetch_fulltype

acc_fetch index

acc fetch_location

acc_fetch_name

acc_fetch paramtype

acc_fetch_paramval

acc _fetch polarity

acc_fetch precision

acc fetch pulsere

acc fetch range

acc fetch size

acc fetch_tfarg

acc fetch_itfarg

acc fetch tfarg int

acc_fetch_itfarg int

acc fetch tfarg str

acc fetch itfarg str

acc fetch_timescale info

acc fetch type

acc_fetch type str

acc_fetch _value

acc free

acc_handle by name

acc_handle _calling_mod_m

acc_handle_condition

acc_handle _conn

acc_handle_hiconn

acc_handle interactive scope

acc_handle_loconn

acc_handle_modpath

acc_handle notifier

acc_handle_object

acc_handle_parent

acc_handle path

acc_handle pathin

acc_handle pathout

acc_handle port

acc_handle_scope

acc_handle simulated net

acc_handle_tchk

acc_handle_tchkargl

acc_handle_tchkarg2

acc_handle_terminal

acc_handle tfarg

acc_handle itfarg

acc_handle_tfinst

acc_initialize

acc_next

acc_next_bit

acc_next_cell

acc_next_cdl load

acc_next_child

acc_next_driver

acc_next_hiconn

acc_next_input acc_next_load acc_next_loconn
acc_next_modpath acc_next_net acc_next_output
acc_next_parameter acc_next_port acc_next_portout

UM-97

ModelSim User's Manual

UM-98 5 - Verilog Simulation

acc_next_primitive

acc_next_scope

acc_next_specparam

acc_next_tchk

acc_next_terminal

acc_next_topmod

acc_object_in typelist

acc_object_of_type

acc_product_type

acc_product_version

acc_release object

acc _replace _delays

acc_replace pulsere acc_reset_buffer acc_set_interactive_scope
acc_set pulsere acc_set scope acc_set_value
acc vcl_add acc_vcl_delete acc_version

P Note: acc_fetch paramval () cannot be used on 64-bit platformsto fetch astring val ue of
aparameter. Because of this, the function acc_fetch paramval_str() has been added to
the PLI for thisuse. acc_fetch paramval_str() isdeclared in acc_user.h. It functionsin a
manner similar to acc_fetch paramval() except that it returns a char *.
acc_fetch paramval_str() can be used on all platforms.

IEEE Std 1364 TF routines
Model Sm Verilog supports the following TF routines, described in detail in the |IEEE Std

1364.
io_mcdprintf io_printf mc_scan_plusargs
tf_add_long tf_asynchoff tf_iasynchoff
tf_asynchon tf_iasynchon tf_clearalldelays
tf_iclearalldelays tf_compare long tf_copypvc flag
tf_icopypvc_flag tf_divide_long tf_dofinish
tf_dostop tf_error tf_evaluatep
tf_ievaluatep tf_exprinfo tf_iexprinfo
tf_getcstringp tf_igetcstringp tf_getinstance
tf_getlongp tf_igetlongp tf_getlongtime
tf_igetlongtime tf_getnextlongtime tf_getp
tf_igetp tf_getpchange tf_igetpchange
tf_getrealp tf_igetrealp tf_getrealtime
tf_igetrealtime tf_gettime tf_igettime
tf_gettimeprecision tf_igettimeprecision tf_gettimeunit
tf_igettimeunit tf_getworkarea tf_igetworkarea

ModelSim User’'s Manual

Verilog PLI/VPI

tf_long_to real tf_longtime_tostr tf_message
tf_mipname tf_imipname tf_movepvc_flag
tf_imovepvc flag tf_multiply_long tf_nodeinfo
tf_inodeinfo tf_nump tf_inump
tf_propagatep tf_ipropagatep tf_putlongp
tf_iputlongp tf_putp tf_iputp
tf_putrealp tf_iputrealp tf_read restart
tf_real_to_long tf_rosynchronize tf_irosynchronize
tf_scale longdelay tf_scale realdelay tf_setdelay
tf_isetdelay tf_setlongdelay tf_isetlongdelay
tf_setrealdelay tf_isetrealdelay tf_setworkarea
tf_isetworkarea tf_sizep tf_isizep
tf_spname tf_ispname tf_strdel putp
tf_istrdelputp tf_strgetp tf_istrgetp

tf_strgettime

tf_strlongdel putp

tf_istrlongdelputp

tf_strrealdelputp

tf_istrrealdelputp

tf_subtract_long

tf_synchronize tf_isynchronize tf_testpvc flag
tf_itestpvc flag tf_text tf_typep

tf_itypep tf_unscale longdelay tf_unscale realdelay
tf_warning tf_write save

UM-99

ModelSim User's Manual

UM-100 5 - Verilog Simulation

Verilog-XL compatible routines

The following PLI routines are not defined in |EEE Std 1364, but Model Sm Verilog
provides them for compatibility with Verilog-XL.

char *acc_deconpi | e_exp(handl e condi tion)
This routine provides similar functionality to the Verilog-XL acc_decompile_expr
routine. The condition argument must be a handle obtained from the acc_handle_condition

routine. The value returned by acc_decompile_exp isthe string representation of the
condition expression.

char *tf_dunpfil ename(voi d)

This routine returns the name of the VCD file.

void tf_dunpflush(void)
A call to thisroutine flushes the VCD file buffer (same effect as calling $dumpflush in the
Verilog code).

int tf_getlongsintine(int *aof _hightine)

This routine gets the current simulation time as a 64-bit integer. The low-order bits are
returned by the routine, while the high-order bits are stored in the aof _hightime argument.

64-bit support in the PLI

PLI/VPI tracing

ModelSim User’'s Manual

ThePLI function acc_fetch paramval () cannot be used on 64-bit platformsto fetch astring
value of a parameter. Because of this, the function acc_fetch_paramval_str() has been
added to the PLI for thisuse. acc_fetch _paramval_str() isdeclared in acc_user.h. It
functions in amanner similar to acc_fetch paramval() except that it returns achar *.

acc fetch paramval_str() can be used on all platforms.

The foreign interface tracing feature is available for tracing PL1 and VPI function calls.
Foreign interface tracing creates two kinds of traces: a human-readable log of what
functions were called, the value of the arguments, and the results returned; and a set of
C-language files that can be used to replay what the foreign interface code did.

The purpose of tracing files

The purpose of thelogfileisto aid youin debugging PLI or VPI code. The primary purpose
of thereplay facility isto send thereplay fileto MTI support for debugging co-simulation
problems, or debugging PLI/VVPI problems for which it isimpractical to send thePLI/VPI
code. We still need you to send the VHDL/Verilog part of the design to actually execute a
replay, but many problems can be resolved with the trace only.

Invoking a trace

Toinvokethetrace, call vsim (CR-168) with the -trace foreign option:

Syntax

vsim
-trace_foreign <action> [-tag <nane>]

Verilog PLI/VPI UM-101

Arguments

<action>
Specifies one of the following actions:

Value Action Result

1 create log only writes alocal file called
"mti_trace <tag>"

2 create replay only writeslocal files called
"mti_data_<tag>.c",
"mti_init_<tag>.c",
"mti_replay_<tag>.c" and
"mti_top_<tag>.c"

3 create both log and replay

-tag <name>
Used to give distinct file names for multiple traces. Optional.

Examples

vsim -trace_foreign 1 nydesign
Creates alogfile.

vsim -trace_foreign 3 nydesign
Creates both alogfile and a set of replay files.

vsim-trace_foreign 1 -tag 2 nydesign
Creates alogfile with atag of "2".

Thetracing operationswill providetracing during all user foreign code-calls, includingPL1/
VPl user tasks and functions (calltf, checktf, sizetf and misctf routines), and Verilog VCL
callbacks.

ModelSim User's Manual

UM-102

ModelSim User’s Manual

6 - WLF files (datasets) and virtuals

UM-103

Chapter contents

WLFfiles(datasets)
Saving asimulation to aWLFfile
Opening datasets . .
Viewing dataset structure .
Managing datasets
Using datasets with Model Sim commands
Restricting the dataset prefix display .

Virtual Objects (User-defined buses, and more)
Virtual signals
Virtual functions .
Virtual regions
Virtual types .

Dataset, WLF file, and virtual commands .

UM-104
UM-104
UM-105
UM-106
UM-108
UM-108
UM-109

UM-110
UM-110
UM-111
UM-112
UM-112

UM-113

A ModelSm simulation can be saved to awave log format (WLF) file (using the -wl
<fil enanme> argument to the vsim command (CR-168)) for future viewing or comparison to
acurrent simulation. We use the term "dataset” to refer to aWLF file that has been

reopened for viewing.

With ModelSmrelease 5.3 and later, you can open more than one WLF file for
simultaneous viewing. Y ou can also create virtual signals that are simple logical
combinations of, or logical functions of, signals from different datasets.

ModelSim User's Manual

UM-104 6 - WLF files (datasets) and virtuals

WLF files (datasets)

Wave log format (WLF) files store saved simulation data. Any number of WLF files can
be rel oaded for viewing or comparing to the active simulation. The term "dataset” refersto
alogical namethat is assigned to the WLF file when it is rel oaded.

A dataset prefix identifies each WLF file that is opened. The current active simulation is
prefixed by "sim," while any datasets are prefixed by the name of the WLF file. For
exampl e, two datasets are displayed in the Wave window bel ow—the current simulationis
shown in the top pane and is indicated by the "sim" prefix; a dataset from a previous
simulation is shown in the bottom pane and is indicated by the "gold" prefix.

==+t wave - default ' o]
File Edit Cursor Zoom Compare Bookmark Format Window

FEHE SRR LGE o ®g Q@ P ELELEEE | fefe
e B

gold: /top/paddr [Q00071001

‘] []« [| e
2619 ns to 2831 ns

> I~

P Note: The simulator time resolution (see Resolution (UM-282)) must be the same for all
datasets you' re comparing, including the current simulation.

Saving a simulation to a WLF file

The results of each smulation run are automatically saved toaWLF file called vsmwif in
the current directory. If you run anew simulation in the same directory, the veim.wif fileis
overwritten with the new results. Therefore, you should usethe-w f <fil ename>

argument to the vsim command (CR-168) to specify adifferent nameif you want to savethe
WLFfile.

A 'mportant: You must end asimuléation session with a quit or quit -sim command in
order to produce avalid WLF file. If you don’'t end the simulation in this manner, the
WLFfilewill not close properly, and Model Sim will issuethe error message "bad magic
number!" when you try to open the dataset in subsequent sessions.

ModelSim User’'s Manual

WLF files (datasets) UM-105

Opening datasets

To open a dataset, select either File > Open > Dataset (Main window) or File > Open
Dataset (Wave window).

— D atazet Pathname

| j Browse... |

— Logical Mame far Dataszet

Ok Cancel

The Open Dataset dialog box includes the following options.

» Dataset Pathname
I dentifies the path and filename of the WLF file you want to open.

» Logical Namefor Dataset
Thisisthe name by which the dataset will be referred. By default thisis the name of the
WLFfile.

A 'mportant: You must end asimulation session with a quit or quit -sim command in
order to produce avalid WLFfile. If you don’'t end the simulation in this manner, the
WLFfilewill not close properly, and Model Sim will issue an error when you try to open
the dataset in subsequent sessions.

ModelSim User's Manual

UM-106 6 - WLF files (datasets) and virtuals

Viewing dataset structure

Inversions 5.5 and later, each dataset you open creates a Structure tab in the Main window
workspace. The tab is labeled with the name of the dataset and displays the same data as

the " Structure window" (UM-172).

The graphic below shows three Structure tabs: one for the active simulation ("Sim") and

one each for two open datasets ("Test" and "Gold").

|5, ModelSim

File Edit Deszign “iew Project

Bun Compare Macio Optionz Window Help

T

B2 | EF] oo ELEEEES & O

]

top: toplonly)

U o cache

) memory

B Package std_logic util
B Fackage +l_types

B Package std_logic 1164
B Package standard

~

\ Project j{\ Librarj,lq 2 ,{ best h gold f_

WSIM 13 |

|F"r|:|ject : test i

gald:ftop

-

o~

If you have too many tabs to display in the available space, you can scroll the tabs left or
right by clicking and dragging them.
Each Structure tab has a context menu that you access by clicking the right mouse button.

ModelSim User’'s Manual

WLF files (datasets) UM-107

|, ModelSim
File Edit Design “iew Project Bun Compare Macro Options Window Help
B2 B EF[] EIEIELS B E
x| -
top: toploniy] WSIM 13 |
& n proc Save hz.., .
o o cache ot
4 M memony _ _ Azoending
M Package std_logic_util Expand Selected Descending
B Package vI_types Collapse Selected Declaration Order
B FPackage std_logic_1164 Expand Al
B FPackage standard Collapze All
Find...
]'\l Project ,J; Library }{ zim }L test },l qold [_ 3
|Praject : test | gold:/ap 4

The Structure tab context menu includes the following options.

e Save As
Writes the HDL item names in the Structure tab to atext file.

» Sort
Sorts the HDL itemsin the Structure tab by al phabetic (ascending or descending) or
declaration order.

» Expand Sedlected
Shows the hierarchy of the selected HDL item.

» Collapse Selected
Hides the hierarchy of the selected HDL item.

» Expand All
Shows the hierarchy of all HDL itemsin the list.

« Collapse All
Hides the hierarchy of all HDL itemsin thelist.

* Find
Opensthe Find dialog. See"Finding itemsin the Structure window" (UM-174) for details.

ModelSim User's Manual

UM-108 6 - WLF files (datasets) and virtuals

Managing datasets

When you have one or more datasets open, you can manage them using the Dataset
Browser. To open the browser, select View > Datasets (Main window).

=4 'Dataset Browser

Datazet Cortext b ode Fileriarne I
qald fvachedsyzread Wi E:/modelzimBdb_selexal
zim Aoontral Sirnulation Mo zsignals logged

7| | i

Dpen D atazet LCloze D atazet Make Active Bename Dataset

The Dataset Browser dialog box includes the following options.

¢ Open Dataset
Opens the View Dataset dialog box (see "Opening datasets" (UM-105)) SO you can open
additional datasets.

* Close Dataset
Closes the selected dataset. Thiswill also remove the dataset’ s Structuretabinthe Main
window workspace.

* MakeActive
Makes the selected dataset "active." Y ou can also effect this change by double-clicking
the dataset name. Active dataset means that if you type aregion path as part of a
command and omit the dataset prefix, the active dataset will be assumed. It is equivalent
to typing: env <dataset>: at the VSIM prompt.

* Rename Dataset
Allows you to assign anew logical name for the selected dataset.

Using datasets with ModelSim commands

Multiple datasets can be opened when the simulator isinvoked by specifying morethan one
vsim -view <filename> option. By default the dataset prefix will be the filename of the
WLFfile. A different dataset name can also be specified asan optional qualifier tothevsim
-view switch on the command line using the following syntax:

-vi ew <dat aset >=<fi | enane>

For example: vsim -view foo=vsim.wlf

ModelSim User’'s Manual

WLF files (datasets) UM-109

Design regions and signal names can be fully specified over multiple WLF files by using
the dataset name as a prefix in the path. For example:

sim/top/al u/out
vi ew / t op/ al u/ out

gol den: . t op. al u. out

Dataset prefixesare not required unless more than one dataset isopen, and you want to refer
to something outside the default dataset. When more than one dataset is open, ModelSm
will automatically prefix namesin the Wave and List window with the dataset name. Y ou
can change this default by selecting Edit > Display Properties (Wave window) and
Prop > Display Props (List window).

Model Sm designates one of the datasets to be the "active" dataset, and refers all names
without dataset prefixesto that dataset. The active dataset is displayed in the context path
at the bottom of the Main window. When you select adesign unit in a dataset’s Structure
tab, that dataset becomes active automatically. Alternatively, you can use the Dataset
Browser or the environment command (CR-70) to change the active dataset.

ModelSm remembers a ' current context" within each open dataset. Y ou can toggle
between the current context of each dataset using the environment command (CR-70),
specifying the dataset without a path. For example:

env foo:

sets the active dataset to foo and the current context to the context last specified for foo.
The context is then applied to any unlocked windows.

The current context of the current dataset (usually referred to asjust "current context") is
used for finding objects specified without a path.

The Signals window can be locked to a specific context of a dataset. Being locked to a
dataset means that the window will update only when the content of that dataset changes.
If locked to both a dataset and a context (e.g., test: /top/foo), the window will update only
when that specific context changes. Y ou specify the dataset to which the window islocked
by selecting File > Environment (Signals window).

Restricting the dataset prefix display

The default for dataset prefix viewing is set with avariable in pref.tcl,

PrefM ain(DisplayDatasetPr efix). Setting the variable to 1 will display the prefix, setting
ittoOwill not. Itissetto 1 by default. Either edit the pref.tcl filedirectly or usethe Options
> Edit Preferences (Main window) command to change the variable value.

Additionally, you can restrict display of the dataset prefix if you use the environment
-nodataset command to view a dataset. To display the prefix use the environment
command (CR-70) with the -dataset option (you won't need to specify this option if the
variable noted aboveis set to 1). The environment command line switches override the
pref.tcl variable.

ModelSim User's Manual

UM-110 6 - WLF files (datasets) and virtuals

Virtual Objects (User-defined buses, and more)

Virtual objects are signal-like or region-like objects created in the GUI that do not exist in
the Model SSm simulation kernel. Beginning with release 5.3, Model S m supports the
following kinds of virtual objects:

* Virtual signals (UM-110)

 Virtual functions (UM-111)

* Virtua regions (UM-112)

* Virtual types (UM-112)

Virtual objects are indicated by an orange diamond as illustrated by BUSL below:

==+t wave - default : o]

File Edit Cursor Zoom Compare Bookmark Format Window

BEHES +sBB LK 2 ®QQ@f | Ef ELEIEH | (ebe
el i

fhol [u] el

ftop/pdata
= | AopdBUST

1870 ns to 2725 ns

Virtual signals

Virtual signals are aliases for combinations or subelements of signals written to the WLF
file by the simulation kernel. They can be displayed in the Signals, List, and Wave
windows, accessed by the examine command, and set using the for ce command. Virtual
signalscan be created viaamenu in the Wave and List windows (Edit > Combine), or with
thevirtual signal command (CR-156). Virtual signals can also bedragged and dropped from
the Signals window to the Wave and List windows.

Virtual signals are automatically attached to the design region in the hierarchy that

corresponds to the nearest common ancestor of all the elements of the virtual signal. The
virtual signal command hasan -install <region> option to specify wherethe virtual signal
should beinstalled. This can be used to install the virtual signal in auser-defined regionin

ModelSim User’'s Manual

Virtual Objects (User-defined buses, and more) UM-111

order to reconstruct the original RTL hierarchy when simulating and driving a
post-synthesis, gate-level implementation.

A virtual signal can be used to reconstruct RTL-level design buses that were broken down
during synthesis. Thevirtual hide command (CR-147) can be used to hide the display of the
broken-down bits if you don’t want them cluttering up the Signals window.

If the virtual signal has elements from more than one WLF file, it will be automatically
installed in the virtual region "virtuals./Signals.”

Virtual signals are not hierarchical —if two virtual signals are concatenated to become a
third virtual signal, theresulting virtual signal will beaconcatenation of all the subelements
of the first two virtual signals.

The definitions of virtuals can be saved to a macro file using the virtual save command
(CR-154). By default, when quitting, Model Smwill append any newly-created virtuals (that
have not been saved) to the virtuals.do file in the local directory.

If you have virtual signals displayed in the Wave or List window when you save the Wave
or List format, you will need to execute the virtuals.do file (or some other equivalent) to
restore the virtual signal definitions before you re-load the Wave or List format during a
later run. Thereisone exception: "implicit virtuals' are automatically saved with the Wave
or List format.

Implicit and explicit virtuals

Animplicit virtual isavirtual signal that was automatically created by Model Sm without
your knowledge and without you providing a name for it. An example would be if you
expand a bus in the Wave window, then drag one bit out of the busto display it separately.
That action creates a one-bit virtual signal whose definition is stored in a special location,
and is not visible in the Signals window or to the normal virtual commands.

All other virtual signals are considered "explicit virtuals".

Virtual functions

Virtual functions behave in the GUI like signals but are not aliases of combinations or
elements of signals logged by the kernel. They consist of logical operations on logged
signals and can be dependent on simulation time. They can be displayed in the Signals,
Wave, and List windows and accessed by the examine command (CR-71), but cannot be set
by the for ce command (CR-76).

Examples of virtual functions include the following:

« afunction defined as the inverse of agiven signal

« afunction defined as the exclusive-OR of two signals

« afunction defined as arepetitive clock

« afunction defined as "therising edge of CLK delayed by 1.34 ns"

Virtual functions can also be used to convert signal types and map signal values.

Theresult type of avirtual signal can be any of the types supported in the GUI expression
syntax: integer, real, boolean, std_logic, std_logic_vector, and arrays and records of these
types. Verilog types are converted to VHDL 9-state std_|ogic equivalents and Verilog net
strengths are ignored.

ModelSim User's Manual

UM-112 6 - WLF files (datasets) and virtuals

Virtual regions

Virtual types

ModelSim User’'s Manual

Virtual functions can be created using the virtual function command (CR-144).

Virtual functions are also implicitly created by Model Sm when referencing bit-selects or
part-selects of Verilog registersin the GUI, or when expanding Verilog registersin the
Signals, Wave or List windows. Thisis necessary because referencing Verilog register
elements requires an intermediate step of shifting and masking of the Verilog "vreg" data
structure.

User-defined design hierarchy regions can be defined and attached to any existing design
region or to the virtuals context tree. They can be used to reconstruct the RTL hierarchy in
agate-level designandtolocatevirtua signals. Thus, virtual signalsand virtual regionscan
be used in a gate-level design to allow you to use the RTL test bench.

Virtual regions are created and attached using the virtual region command (CR-153).

User-defined enumerated types can be defined in order to display signal bit sequences as
meaningful alphanumeric names. The virtual typeisthen used in atype conversion
expression to convert asignal to values of the new type. When the converted signal is
displayed in any of the windows, the value will be displayed as the enumeration string
corresponding to the value of the original signal.

Virtual types are created using the virtual type command (CR-159).

Dataset, WLF file, and virtual commands

Dataset, WLF file, and virtual commands

The table below provides a brief description of the actions associated with datasets, WLF
files, and virtual commands. For compl ete detail s about syntax, arguments, and usage, refer
to the Model Sm Command Reference.

Command name

Action

dataset alias (CR-54)

closes the specified dataset

dataset list (CR-58)

listsall open datasets

dataset open (CR-59)

opens a dataset

dataset rename (CR-60)

assigns anew logical name to the specified dataset

log (CR-81)

creates a WLF file for the current ssmulation

nolog (CR-87)

suspends writing of data to the WLF file for the specified signals

searchlog (CR-109)

searches one or more of the currently open WLF files for a specified
condition

virtual function (CR-144)

createsanew signal that consists of logical operationson existing signalsand
simulation time

virtual region (CR-153)

creates a new user-defined design hierarchy region

virtual signal (CR-156)

creates anew signal that consists of concatenations of signals and
subelements

virtual type (CR-159)

creates a new enumerated type

vsim (CR-168) -wlf <filename>

creates a WLF file for the simulation which can be reopened as a dataset

UM-113

ModelSim User's Manual

UM-114

ModelSim User’s Manual

UM-115

7 - Graphic Interface

Chapter contents

Window overview UM-116
Common window features. UM-117
Manwindow UM-123
Dataflow window UM-135
Liswindow UM-139
Processwindow UM-152
Signaswindow UM-155
Sourcewindow. UM-163
Structurewindow UM-172
Varigbleswindow UM-175
Wavewindow UM-178
Compiling with the graphicinterface UM-211
Simulating with the graphicinterface UM-217
ModelSmtools UM-230
Graphicinterfacecommands UM-232

ModelSim User's Manual

UM-116 7 - Graphic Interface

Window overview

ModelSim User’'s Manual

The Model Sm simulation and debugging environment consists of nine windows. A brief
description of each window follows:

e Main window (UM-123)
The initial window that appears upon startup. All subsequent ModelSm windows are
opened from the Main window. This window contains the session transcript.

 Dataflow window (UM-135)
Lets you trace signals and nets through your design by showing related processes.

¢ List window (UM-139)
Shows the simulation values of selected VHDL signals and variables and V erilog nets
and register variables in tabular format.

* Process window (UM-152)
Displaysalist of processesin the region currently selected in the Structure window.

 Signals window (UM-155)
Shows the names and current values of VHDL signals, and Verilog nets and register
variablesin the region currently selected in the Structure window.

 Source window (UM-163)
Displaysthe HDL source code for the design. (Y our source code can remain hidden if
you wish, see "Source code security and -nodebug” (UM-297).)

« Structure window (UM-172)
Displaysthe hierarchy of structural elements such as VHDL component instances,
packages, blocks, generate statements, and V erilog model instances, named blocks, tasks
and functions. In versions 5.5 and later, this same information is displayed in the Main
window workspace.

» Variables window (UM-175)
Displays VHDL constants, generics, variables, and Verilog register variables in the
current process and their current values.

* Wave window (UM-178)
Displayswaveforms, and current valuesfor the VHDL signalsand variables and Verilog
nets and register variables you have selected. Current and past simulations can be
compared side-by-side in one Wave window.

Common window features UM-117

Common window features

Model Sm's graphic interface provides many features that add to its usability; features
common to many of the windows are described below.

Feature Feature applies to these windows

Quick access toolbars (UM-118) Main, Source, and Wave windows

Drag and Drop (UM-118) Dataflow, List, Signals, Source, Structure, Variables, and
Wave windows

Command history (UM-118) Main window command line

Automatic window updating (UM-119) Dataflow, Process, Signals, and Structure windows

Finding names, and |ocating cursors (UM-119) various windows

Sorting HDL items (UM-120) Process, Signals, Source, Structure, Variables and Wave
windows

Menu tear off (UM-120) al windows

Combining signalsinto a user-defined bus (UM-121) List and Wave windows

Tree window hierarchical view (Um-121) Structure, Signals, Variables, and Wave windows

 Cut/Copy/Paste/Del ete into any entry box by clicking the right

mouse button in the entry box. E“t
« Standard cut/copy/paste shortcut keystrokes — *X/*C/"V —will F'ZE:IJE
work in all entry boxes. Delet
L= L=
* When the focus changes to an entry box, the contents of that box
are selected (highlighted). This allows you to replace the current Select Al

contents of the entry box with new contents with a simple paste
command, without having to delete the old value.

* Dialog boxeswill appear on top of their parent window (instead of the upper left corner
of the screen)

» The Main window includes context menus that are accessed by

L . C
clicking the right mouse button. |—j ZE:’JE
» The middle mouse button will allow you to paste the following —
into the transcript window: Select Al
. . . Urzelect Al
—text currently selected in the transcript window, -
—acurrent primary X-Windows sel ection (can be from another Fird... _
application), or Ereakpaint(z]...
—contents of the clipboard. Ig?‘?;f{'ﬁ:e";'[?dow

P Note: Selecting text in the transcript window makesiit the current primary X-Windows
selection. Thisway you can copy transcript window selections to other X-Windows
windows (xterm, emacs, €tc.).

ModelSim User's Manual

UM-118 7 - Graphic Interface

» The Edit > Paste operation in the transcript window will ONLY paste from the clipboard.
« All menus highlight their accelerator keys.

Quick access toolbars

={ wave - default =|0) >

File Edit Cursor ZFoom Compare Bookmark Format Stindow

HS BRI LE T QQQOR | EF | ELEIERE | Jule e 0]

Buttons on the Main, Source, and Wave windows provide access to commonly used
commands and functions. See, "The Main window toolbar" (Um-131), " The Source window
toolbar" (Um-166), and "The Wave window toolbar" (UM-186).

Drag and Drop

Drag and drop of HDL itemsis possible between the following windows. Using the | eft
mouse button, click and release to select an item, then click and hold to drag it.

» Drag itemsfrom these windows:
Dataflow, List, Signals, Source, Structure, Variables, and Wave windows

» Drop itemsinto these windows:
Dataflow, List, and Wave windows

P Note: Drag and drop works to rearrange items within the List and Wave windows as
well.

Command history

Avoid entering long commands twice; use the down and up keyboard arrows to move
through the command history for the current simulation.

ModelSim User’'s Manual

Common window features UM-119

Automatic window updating

Selecting an item in the following windows automatically updates other related ModelSm
windows as indicated bel ow:

Select an item in this window To update these windows

Dataflow window (UM-135) Process window (UM-152)

(with aprocess selected in the center of | Signaswindow (Um-155)

the window) Source window (UM-163)

Structure window (UM-172)

V ariables window (UM-175)

Process window (UM-152) Dataflow window (UM-135)

Signals window (UM-155)

Structure window (UM-172)

Variables window (UM-175)

Signals window (UM-155) Dataflow window (UM-135)

Structure window (UM-172) Process window (UM-152)

Signals window (UM-155)

Source window (UM-163)

Finding names, and locating cursors

 Find HDL item names with the Edit > Find menu selection in these windows:
List, Process, Signals, Source, Structure, Variables, and Wave windows.

Y ou can also:
* Locate time markersin the List window with the M arkers > Goto menu selection.
» L ocate time cursors in the Wave window with the Cur sor > Goto menu selection.

ModelSim User's Manual

UM-120 7 - Graphic Interface

Sorting HDL items

Use the Edit > Sort menu selection in the windows below to sort HDL itemsin ascending,
descending or declaration order.

Process, Signals, Structure, Variables and Wave windows

Names such asnet_1, net 10, and net_2 will sort numericaly in the Signals and Wave
windows.

Saving window layout

Context menus

Menu tear off

ModelSim User’'s Manual

Y ou can save the current positions and sizes of Model Sim windows as a default. Follow
these steps to save the layout as a default:

1 Position and size the windows the way you want them to display;

2 Select Options > Save Prefer ences (Main window) and save the modelsim.tcl fileinto
the desired directory.

3 Modify the "Working Directory" of your Model Sim shortcut to point at the directory, or
set the MODELSIM_TCL environment variable to point at the directory (see"Creating
environment variablesin Windows' (uM-276) for more details).

Context menus refer to menus that "pop-up" in the middle of the interface by clicking the
right mouse button (. The commands on the menu change depending on wherein the
interface you click. In other words, the menus change based on the context of their use.

All window menus can be "torn off " to create a separate menu window. To tear off, click
on the menu, then select the dotted-line button at the top of the menu.

Common window features UM-121

Combining signals into a user-defined bus

Y ou can collect items of the same type in the List window (uUM-139) or Wave window (UM-
178) and combine them into abus. Use the Edit > Combine menu command in either
window.

Tree window hierarchical view

Model Sm provides a hierarchical, or "tree view" of some aspects of your design in the
Main window Structure tabs and the Structure, Signals, Variables, and Wave windows.

HDL items you can view

! struct X
Depending on which window you are . 't' 4 = E
viewing, one entry is created for each oie B o

of the following VHDL and Verilog Mﬂ

HDL items within the design: @ o poc

VHDL items L mernorny
Fack. bdl_logic_util
(indicated by adark blue square icon) B Package std_logic_uli

signals, variables, component _
instantiations, generate statements, M Package std_logic_1164
block statements, and packages B Package standard

E-i0 cache: cache

— 0 Function hazh
(indicated by alighter blue circleicon) — @ Task update_mmu
parameters, registers, nets, module
instantiations, named forks, named
begins, tasks, and functions

B Fackage v_types

Verilog items

— 2 Function pick_set
0 Tazk zysread
— 0 Tazk zpawite

Virtual items — 0 Function get_hit
(indicated by an orange diamond icon) — Ml s0: cache_set{only]
virtual signals, buses, and functions, —l =1: cache_set[only]
see "Vi rtual Ob] eCtS (U%r'den ned —. 32: Cache_set[unly]
puses, and more)" (UM-110) for more LW =3 cache_setfonl] |
information -
. : A |+
Viewing the hierarchy :
sim:ftop e

Whenever you seeatreeview, asinthe
Structure window displayed here, you can use the mouse to collapse or expand the
hierarchy. Select the symbols as shown below to change the view of the structure.

Symbol Description
[+] click a plus box to expand the item and view the structure
[-] click aminus box to hide a hierarchy that has been expanded

ModelSim User's Manual

UM-122 7 - Graphic Interface

ModelSim User’'s Manual

Finding items within tree windows

Y ou can open the Find dialog box within all windows (except the Dataflow windows) by
selecting Edit > Find or by using <control-s> (Unix) or <control-f> (Windows).

Options within the Find dialog box allow you to search unique text-string fields within the
specific window. See also,

 "Finding items by name in the List window" (UM-149),
* "Finding HDL itemsin the Signals window" (um-160), and

 "Finding items by name or value in the Wave window" (UM-199).

Main window

Main window

workspace

The Main window is pictured below as it appears when ModelSim is first invoked. Note
that your operating system graphic interface provides the window-management frameonly;
Model Sm handles all internal-window features including menus, buttons, and scroll bars.

|, ModelSim

File Edit Deszign “iew Proect Bun Compare Macro Option: Window Help

Sz BB] 0=
x|

Librany: |ieee LI bl odelS irm

P

\

-\ Libram }.'r

.
Lo

|~=:N|:| Design Loaded=

transcript

The menu bar at the top of the window provides access to awide variety of simulation
commands and M odel Sm preferences. Thetoolbar provides buttonsfor quick accessto the
many common commands. The status bar at the bottom of the window gives you
information about the data in the active Model Sm window. The menu bar, toolbar, and
status bar are described in detail below.

UM-123

ModelSim User's Manual

UM-124 7 - Graphic Interface

Workspace

Theworkspaceisavailablein software versions5.5 and | ater. It provides convenient access
to projects, compiled design units, and simulation/dataset structures. It can be hidden or
displayed by selecting the View > Hide/Show Wor kspace command.

The workspace can display four types of tabs, as shown in the graphic below.

|, ModelSim

Eile Edit Design “iew Proect Bun Compare Macmo Options ‘Window Help

2 BRI EF[wHEIEEE PR
] # Hu:u tezt object found matching zim:Aadderor_out j
EHE adder: adder|structural] =] ;S\Iwrgi::?aﬂ;rid:;:rler
— Il =orl: warganly) # Loading E: /modelsim®5 102500 win324. Aetd. standard
— Il =orZ worglonly) # Loading E:/modelsim55_ 102800032/, feee std_logic_
— Il andl: andgloniy] 1164[body]
| 1 | # Loading work. gates
M o erglonly) # Loading wark. adder(structural]
—l andZ andgloniy] # Laading wirk, =orgfonly]
— orZ: orglonly) # Loading wark. andglonly]
B Fackage gates | 14 Loading work. orglonly]
J WSIk 55w title . "M odelSim"
1\ F'rn:nie::tJJ,rk Libram }\ Sirn ;{ Teszt ;’{ Campare ;"[W5IM 56> | j

|F'r|:|jec:t D test | test:fadder 4

e Project tab
Shows all filesthat areincluded in the open project. See Chapter 2 - Projects and system
initialization for details.

e Library tab
Shows compiled design units in the specified library. See "Managing library contents’
(UM-34) for details.

* Structuretabs
Shows a hierarchical view of the active simulation and any open datasets. Thisisthe
same data that is displayed in the " Structure window" (Um-172). There is one tab for the
current simulation and one tab for each open dataset. See "Viewing dataset structure”
(UM-106) for details.

ModelSim User’'s Manual

Main window UM-125

Transcript

The transcript portion of the Main window maintains a running history of commands that
are invoked and messages that occur as you work with ModelSm. When asimulation is
running, the transcript displays aVSIM prompt, alowing you to enter command-line
commands from within the graphic interface.

Y ou can scroll backward and forward through the current work history by using the vertical
scrollbar. Y ou can also use arrow keysto recall previous commands, or copy and paste
using the mouse within the window; see "The following mouse actions and specia
keystrokes can be used to edit commandsin the entry region of the Main window. They can
also be used in editing the file displayed in the Source window and all Notepad windows
(enter the notepad command within Model Sim to open the Notepad editor).” (Um-133) for
details.

Saving the Main window transcript file

Variable settings determine the filename used for saving the Main window transcript. If
either PrefMain(file) in modelsim.tcl, or TranscriptFile in modelsim.ini fileis set, then the
transcript output is logged to the specified file. By default the TranscriptFile variable in
modelsim.ini is set to transcript. If either variable is set, the transcript contents are always
saved and no explicit saving is necessary.

If youwould like to save an additional copy of the transcript with adifferent filename, you
canusetheFile> Save Transcript As, or File> Save Transcript menu items. Theinitial
save must be made with the Save Transcript As selection, which storesthefilenameinthe
Tcl variable PrefMain(saveFile). Subsequent saves can be made with the Save Transcript
selection. Since no automatic saves are performed for thisfile, it iswritten only when you
invoke a Save command. Thefileiswritten to the specified directory and records the
contents of the transcript at the time of the save.

Using the saved transcript as a macro (DO file)

Saved transcript files can be used as macros (DO files). See the do command (CR-64) for
more information.

ModelSim User's Manual

UM-126 7 - Graphic Interface

The Main window menu bar

The menu bar at the top of the Main window lets you access many Model Sm commands
and features. The menus are listed below with brief descriptions of each command’ s use.

|5, ModelSim
Eile Edit Design “iew Proect Bun Compare Macro Option: window Help
Sz BB] 0 ESRERS
File menu
New provides three options:

Folder — create a new folder in the current directory
Source — create a VHDL, Verilog, or Other sourcefile
Project — create a new project

Open provides three options:

File — open the selected hdl file

Project — open the selected .mpf project file

Dataset — open the specified WLF file and assign it the specified dataset name

Close provides three options:
Project — close the currently open project file
Dataset — close the specified dataset

Delete provides one option:
Project — delete the selected .mpf project file
Change Directory change to a different working directory
Save Transcript save the current contents of the transcript window to thefileindicated with a" Save

Transcript As' selection (this selection is not initially available because the
transcript iswritten to the transcript file by default), see " Saving the Main window
transcript file" (UM-125)

Save Transcript As... save the current contents of the transcript window to afile

Clear Transcript clear the Main window transcript display

Options Transcript File: set atranscript file to save for this session only

(al options are set for the Command History: file for saving command history only, no comments
current session only) Save File: set filename for Save Transcript, and Save Transcript As

Saved Lines: limit the number of lines saved in the transcript (default is 5000)
Line Prefix: specify the comment prefix for the transcript

Update Rate; specify the update frequency for the Main status bar

Model Sm Prompt: change the title of the Model Sm prompt

VSIM Prompt: change the title of the VSIM prompt

Paused Prompt: change thetitle of the Paused prompt

<path list> alist of the most recent working directory changes

Quit quit ModelSm

ModelSim User’'s Manual

Main window

Edit menu

Copy copy the selected text

Paste paste the previously cut or copied text to the left of the currently
selected text

Select All select all text in the Main window transcript

Unselect All deselect all text in the Main window transcript

Find segrch the transcript forward or backward for the specified text
string

Breakpoints open the Breakpoints dialog box; see "Setting file-line

breakpoints" (UM-168) for details

Design menu

Browse Libraries

browse all libraries within the scope of the design

Create aNew create anew library or map alibrary to anew name

Library

Compile compile HDL source filesinto the current project’s work library

Load Design initiate simulation by specifying the top level design unit in the
Design tab; specify HDL specific smulator settings with the
VHDL and Verilog tabs; specify the library to search for design
units instantiated from Verilog with the Libraries tab; specify
settings relating to the annotation of design timing with the SDF
tab

End Simulation end the ssimulation

UM-127

ModelSim User's Manual

UM-128 7 - Graphic Interface

View menu

All

open al Model Sim windows

Hide/Show
Workspace

hide or show the workspace

Layout Style?

provides five options:

Default - restore the window layout to that used for versions 5.5
and later

Classic - restore the window layout to that used in versions prior
t05.5

Cascade - Cascade all open windows

Horizontal - Tile all open windows horizontally

Vertical - Tile al open windows vertically

Source

open and/or view the Source window (UM-163)

Structure

open and/or view the Structure window (UM-172)

Variables

open and/or view the Variables window (UM-175)

Signals

open and/or view the Signals window (UM-155)

List

open and/or view the List window (UM-139)

Process

open and/or view the Process window (UM-152)

Wave

open and/or view the Wave window (UM-178)

Dataflow

open and/or view the Dataflow window (UM-135)

Datasets

open the Dataset Browser for selecting the current Dataset

a.Y ou can specify aLayout Style to becomethe default for Model Sim. After choosing
the Layout Style you want, select Options > Save Preferences and the layout style
will be saved to the PrefMain(layoutStyle) preference variable.

Project menu

Compile Order

set the compile order of the filesin the open Project; see
"Changing compile order" (Um-24) for details

Compile All

compile all filesin the open Project; see " Step 3 — Compile the
files' (um-22) for details

Add Fileto Project

add file(s) to the open Project; see "Step 2 — Add files to the
project” (UM-21) for details

Run menu

Run <default>

ModelSim User’'s Manual

run simulation for one default run length; change the run length
with Options> Simulation, or usethe Run Length text box on the
toolbar

Main window UM-129

Run -All run simulation until you stop it

Continue continue the simulation

Run -Next run to the next event time

Step single-step the simulator

Step -Over execute without single-stepping through a subprogram call
Restart reload the design elements and reset the simulation time to zero;

only design elementsthat have changed are rel oaded; you specify
whether to maintain the following after restart—list and wave
window environment, breakpoints, logged signals, and virtual
definitions; see also the restart command (CR-104)

Macro menu

Execute Macro

browse for and execute a DO file (macro)

Options menu

Compile

set both VHDL and Verilog compile options

Simulation

set various simulation options;

Edit Preferences

set various preference variables; see
http://www.model.com/resources/pref variables/frameset.htm

Save Preferences

save current Model Sm settings to a Tcl preference file; http://
www.model.com/resources/pref variables/frameset.htm

Window menu

Initial Layout restore all windows to the size and placement of theinitial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile al open windows horizontally

Tile Verticaly tile al open windows vertically
Icon Children icon al but the Main window
Icon All icon all windows

Deicon All deicon all windows

ModelSim User's Manual

http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm
http://www.model.com/resources/pref_variables/frameset.htm

UM-130 7 - Graphic Interface

ModelSim User’'s Manual

<window_name>

list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (UM-128) in the Main
window

Help menu
About ModelSm display Model Smapplication information (e.g., software version)
Release Notes view current release notes with the Model Sm notepad (CR-89)
Enable Welcome enable the Welcome screen for starting a new project or opening
an existing project when ModelSmisinitiated
Welcome Menu open the Welcome screen

Information about
Help

view the readme file pertaining to Model Sm’s online
documentation

Documentation

open and read Model Sm documentation in PDF or HTML
format; PDF files can be read with afree Adobe Acrobat reader
available on the Model Sm installation CD or from
www.adobe.com

Tcl Help open the Tcl command reference (man pages) in Windows help
format

Tcl Syntax open Tcl syntax detailsin HTML format

Tcl Man Pages open the Tcl /Tk 8.0 manual in HTML format

Technotes select atechnical note to view from the drop-down list

http://www.adobe.com

The Main window toolbar

Main window

Buttons on the Main window toolbar give you quick accessto these Model Sm commands

and functions.

|, ModelSim

File Edit

Dezign Miew Project

Bun Compare Macro Optionz Window Help

UM-131

Main wind

ow toolbar buttons

Button

Menu equivalent

Command equivalents

e

Compile

open the Compile HDL Source
Filesdialog box to select filesfor
compilation

Design > Compile, dso
Options > Compile
(opens the Compile
Options dialog box)

vcom <arguments>, or
vlog <arguments>

see: vcom (CR-129) or vlog (CR-
162)

| 03

specify therun length for the
current simulation

L oad Design Design > Load Design vsim <arguments>
Ii'q openthe Load Design dial og box
toinitiate simulation see: vsim (CR-168)
Copy Edit > Copy see: "Mouse and keyboard
copy the selected text within the shortcuts' (UM-133)
& Main window transcript
Paste Edit > Paste see: "Mouse and keyboard
E paste the copied text to the cursor shortcuts' (UM-133)
location
Restart Run > Restart restart <arguments>
reload the design elements and
resets the simulation time to see: restart (CR-104)
zero, with the option of using
current formatting, breakpoints,
and WLFfile
Run Length none run <specific run length>

See: run (CR-107)

ModelSim User's Manual

UM-132 7 - Graphic Interface

Main window toolbar buttons

Button

Menu equivalent

Command equivalents

Run
run the current simulation for the
3 specified run length

Run > Run
<default_run_length>

run (no arguments)

SEee: run (CR-107)

Continue Run

El‘ continue the current simulation
run until the end of specified run

length or until it hitsabreakpoint

Run > Continue

run -continue

SEee: run (CR-107)

F} step the current simulation to the
next HDL statement

or specified break event
Run -All Run > Run -All run -all

run the current simulation

; forever, or until it hitsa SEE: run (CR-107), see "Assertion

breakpoint or specified break settings tab" (UM-227)
event
Break none none

@ stop the current simulation run
Step Run > Step step

see: step (CR-114)

Step Over

ﬁl HDL statementsare executed but
treated as simple statements
instead of entered and traced line
by line

Run > Step -Over

step -over

see: step (CR-114)

ModelSim User’'s Manual

Main window UM-133

The Main window status bar

Maow: 1,100 ne Delta: 1 Erve: Atopdm

Fields at the bottom of the Main window provide the following information about the
current simulation:

Field Description

Now the current simulation time, using the default resolution units
(see "Simulating with the graphic interface” (UM-217)), or a
larger time unit if one can be used without afractional remainder

Delta the current simulation iteration number

<dataset name> name of the current dataset (item selected in the Structure
window (UM-172))

Mouse and keyboard shortcuts

The following mouse actions and special keystrokes can be used to edit commands in the
entry region of the Main window. They can also be used in editing thefile displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSm

to open the Notepad editor).
Keystrokes Result
< left | right - arrow > move the cursor left | right one character
< up | down - arrow > scroll through command history (in Source
window, move cursor one line up | down)
< control > < |eft | right - arrow > move cursor |eft | right one word

<shift > <left [right |up |down - arrow > | extend selection of text

< control > < shift > <left |right - arrow > | extend selection of text by word

< up | down - arrow > scroll through command history (in Source
window, moves cursor one line up | down)

< control > < up | down > move cursor up | down one paragraph

<at> activate or inactivate menu bar mode

<dt><F4> close active window

< backspace > delete character to the left

< home > move cursor to the beginning of the line

<end> move cursor to the end of theline

ModelSim User's Manual

UM-134 7 - Graphic Interface

ModelSim User’'s Manual

Keystrokes

Result

< control > < home >

move cursor to the beginning of the text

< control > < end >

move cursor to the end of the text

< esc >

cancel

< control - a>

select the entire content of the widget

< control - ¢ >

copy the selection

< control - f > find
<F3> find next
< control - k > delete from the cursor to the end of the line

< control - s>

save

< control -t >

reverse the order of thetwo charactersto the
right of the cursor

< control - u>

deleteline

< control - v >

paste from the clipboard

< control - X >

cut the selection

<F8> search for the most recent command that
matches the characters typed

<F9> run simulation

<F10> continue simulation

<Fl1> single-step

<F12> step-over

The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

Dataflow window UM-135

Dataflow window

The Dataflow window allows you to trace VHDL signals or Verilog nets and registers
through your design. Double-click an item with the left mouse button to move it to the
center of the Dataflow display.

VHDL signalsor processesin the Dataflow window:

» A signd isdisplayed in the center of the window with all the processes that drive the
signal on the left, and all the processes that read the signal on the right.

A processisdisplayed with all the signals read by the process shown asinputs on the | eft
of thewindow, and all the signals driven by the process on the right.

Verilog nets/registersor processesin the Dataflow window:

A net or register is displayed in the center of the window with all the processesthat drive
the net or register on the left, and all the processes triggered by the net or register on the
right.

A processis displayed with all the nets or registers that trigger the process shown as
inputs on the left of the window, and all the nets or registers driven by the process on the
right.

£z dataflow M= £z dataflow M=l
File *findow Filz wWindow

fopdpd £t ine___ 34 UM

Qo000

collt

signal, net, register process

Link to active cursor in Wave window

Inversions 5.5 and | ater, the value of asignal, net, or register in the Dataflow window is
linked to the active cursor in the Wave window. Asyou move the active cursor in the Wave
window, the value of the signal, net, or register in the Dataflow window will update.

ModelSim User's Manual

UM-136 7 - Graphic Interface

Dataflow window menu bar

ModelSim User’'s Manual

The following menu commands and button options are available from the Dataflow

window menu bar.

File menu

Save Postscript savethe current datafl ow view asaPostscript file; see" Saving the
Dataflow window as a Postscript file" (UM-138)

Selection Selection > Follow Selection updates the Datafl ow window when
the Process window (UM-152) or Signals window (UM-155)
changes; Selection > Fix Selection freezesthe view selected from
within the Dataflow window

Close close this copy of the Dataflow window

Window menu

Initial Layout restore all windows to the size and placement of theinitial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile all open windows horizontally

Tile Verticaly tile al open windows vertically
Icon Children icon all but the Main window
Icon All icon all windows

Deicon All deicon all windows

<window_name>

list of the currently open windows; select awindow nameto
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (UM-128) in the Main
window

Dataflow window UM-137

Tracing HDL items with the Dataflow window

The Dataflow window islinked with the Signal s window (Um-155) and the Process window
(UM-152). To examine a particular process in the Dataflow window, click on the process
name in the Process window. To examine a particular HDL item in the Dataflow window,
click on the item namein the Signals window.

With a signal in the center of the Dataflow window, you can:

« click once on a process name in the Dataflow window to make the Source, Process,
Signals, and V ariable windows update to show that process,

« click twice on aprocess name in the Dataflow window to move the process to the center
of the Dataflow window

With a processin the center of the Dataflow window, you can:
« click twice on an item name to move that item to the center of the Dataflow window.

The backward and forward buttons on the toolbar are analogous to Back and Forward
buttonsin aweb browser. They move backward or forward through previous views of the
dataflow.

move backward through dataflow views

=

move forward through dataflow views

=

The Dataflow window will display the current process when you single-step or when
Model Sm hits a breakpoint.

ModelSim User's Manual

UM-138 7 - Graphic Interface

Saving the Dataflow window as a Postscript file

ModelSim User’'s Manual

Select File > Save Postscript (Dataflow window) to save the current Dataflow view asa

Postscript file. Configure the Postscript output with the following dialog box, or use the
Options > Edit Preferences (Main window) command.

The dialog box has the
following options:

Postscript File

specify the name of the
fileto save, default is
dataflow.ps

Orientation

specify Landscape
(horizontal) or Portrait
(vertical) orientation

Color Mode

specify Color (256
colors), Gray (gray-scale)
or Mono (monochrome)
color mode

Postscript

specify Normal Postscript
or EPS (Encapsulated
Postscript) file type

Color Map

|1:-._,1'Datafluw - Save Postscript

—wirite Postzcript

Postscript FiIE:Idatafluw.ps

Browsze... |

_Color Mode:
Ornientation: Postscript:
-————— Calar -_—
Landzcape M arrnal
Gray
Fortrait | EPS
b ono
Color Hap:l'w'hite {0.00.00.0 setrgbcolart
] | Cancel

specify the color mapping from current Dataflow window colors to Postscript colors

List window UM-139

List window

The List window displaystheresults of your simulation run in tabular format. The window
is divided into two adjustable panes, which allow you to scroll horizontally through the
listing on the right, while keeping time and delta visible on the | eft.

P list M= E3
Eile Edit Markerz FProp ‘window
NE—= topiclk. = ftopdpaddr — Mtopdpdata = Atopdeaddr — .-’tnd
delta = | Atop/prw — ftopdam —
fopfpstth — ftopdzstth —
Jopdprdy —- Mopdardy —
500 +0 1017 1 00000070 0000000000000010 O 0 1 00000010 £257s
505 +0 1017 1 00000070 0000000000000010 O 1 1 00000070 Qo000;
520 +0 0011 00000070 0000000000000010 O 1 1 00000070 QO0000;
540 +0 101 1 00000010 0000000000000010 0 1 1 00000010 IIIEIEIEIEIu
BEO0 +0 00711 00000070 0O00000000000010 O 1 1 00000070 00000
530 +0 107 1 00000010 0000000000000010 O 1 1 00000070 Qo000
535 +0 107 1 00000010 0000000000000010 0 1 0 00000070 Qoo
530 +0 107 000000010 0000000000000010 0 1 0 00000070 Qoo
GO0 +0 0071 000000010 0000000000000010 0 1 0 00000070 00000¢
G20 +0 101 0 00000070 0000000000000010 0 1 0 00000070 Qo000
625 +0 1001 00000011 (F1 1 00000010 ZEEZj
+ | ~
Default datazet: zim

HDL items you can view

Oneentry is created for each of the following VHDL and Verilog HDL items within the
design:

e VHDL items
signals and process variables

 Verilog items
nets and register variables

* Virtua items
Virtual signals and functions

P> Note: Constants, generics, and parameters are not viewable in the List or Wave windows.

ModelSim User's Manual

UM-140 7 - Graphic Interface

The List window menu bar

ModelSim User’'s Manual

The following menu commands are available from the List window menu bar.

File menu

Write List (format)

save the listing as atext file in one of three formats: tabular,
events, or TSSI

Load Format run aList window format DO file previously saved with Save
Format

Save Format save the current List window display and signal preferencesto a
DO (macro) file; running the DO file will reformat the List
window to match the display asit appeared whenthe DO filewas
created

Close close this copy of the List window

Edit menu

Cut cut the selected item field from the listing; see "Editing and
formatting HDL itemsin the List window" (UM-145)

Copy copy the selected item field

Paste paste the previoudly cut or copied item to the left of the currently
selected item

Delete delete the selected item field

Combine combinethe sel ected fieldsinto auser-defined bus; keep copiesof
the original items rather than moving them; see "Combining
signalsinto a user-defined bus" (Um-121)

Select All select al signalsin the List window

Unselect All deselect all signalsin the List window

Find find the specified item label within the List window

Markers menu

Add Marker add atime marker at the currently selected line
Delete Marker delete the selected marker from the listing
Goto choose the time marker to go to from alist of current markers

List window

Prop menu
Display Props set display properties for all itemsin the window: delta settings,
trigger on selection, strobe period, |abel size, and dataset prefix
Signal Props set label, radix, trigger on/off, and field width for the selected item

Window menu

Initial Layout restore all windows to the size and placement of theinitial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile al open windows horizontally

Tile Verticaly tile al open windows vertically
Icon Children icon al but the Main window
Icon All icon all windows

Deicon All deicon all windows

<window_name>

list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (UM-128) in the Main
window

UM-141

ModelSim User's Manual

UM-142 7 - Graphic Interface

Setting List window display properties

Before you add items to the List window you can set the window’ s display properties. To
change when and how a signal is displayed in the List window, select Prop > Display
Props(List window). Theresulting Modify Display Properties dialog box contains options
for Trigger Settings and Window Properties.

Window Properties tab

|:Z-.__.|IHDdif_',l Dizplay Properties [list]

[Wwindow Properties]-

Signal Names: IEI Path Elements [0 for Full Path)

Max Title Hows: IE

Datazet Prehix
" Show &l Datazet Prefises

% Show &l Except "sim"

" Show Mo Dataszet Prefizes

K Cancel Apply

The Window Properties tab includes these options:

 Signal Names
Sets the number of path elements to be shown in the List window. For example, "0"
shows the full path. "1" shows only the leaf element.

* Max Title Rows
Sets the maximum number of rows in the name pane.

» Dataset Prefix: Show All Dataset Prefixes
Displays the dataset prefix associated with each signal pathname. Useful for displaying
signals from multiple datasets.

 Dataset Prefix: Show All Except "sim”
Displays all dataset prefixes except the one associated with the current simulation —
"sim." Useful for displaying signals from multiple datasets.

ModelSim User’'s Manual

List window UM-143

 Dataset Prefix: Show No Dataset Prefixes
Turns off display of dataset prefixes.

Trigger settings tab

TheTriggerstab controlsthetriggering for thedisplay of new linesintheList window. Y ou
can specify whether an HDL item trigger or a strobe trigger is used to determine when the
List window displaysanew line. If you choose Trigger on: Signals, then you can choose
between collapsed or expanded deltadisplays. Y ou can al so choose acombination of signal
or strobe triggers. To use gating, Signals or Strobe or both must be selected.

7 'Mudiﬁr Display Properties (list) i |EI|5|
—Deltas:

{* Expand Deltas " Collapse Deltaz " MoDeltas

—Tngger On:
[V i Ciahal Chon Strobe Penod: |0 n=

[T Stobe First Strobe at: IEI his

— Tngger Gating:

[Use Gating E <pression Ilze Exprezsion Builder

Expression: |

0On Duration: |EI nz

ok, LCancel Apply

The Triggers tab includes the following options:

 Deltas:Expand Deltas
When selected with the Trigger on: Signalscheck box, displaysanew linefor eachtime
step on which items change, including deltas within a single unit of time resolution.

 Deltas:Collapse Deltas
Displays only the final value for each time unit.

» Deltas:No Deltas
Hides simulation cycle (delta) column.

» Trigger On: Signal Change
Triggers on signal changes. Defaults to all signals. Individual signals can be excluded

ModelSim User's Manual

UM-144 7 - Graphic Interface

from triggering by using the Prop > Signals Props dialog box or by originally adding
them with the -notrigger option to the add list command (CR-32).

e Trigger On: Strobe
Triggerson the Strobe Period you specify; specify thefirst strobe with First Strobeat:.

e Trigger Gating: Use Gating Expression
Enables triggers to be gated on (avaue of 1) or off (avalue of 0) by the specified
Expression.

» Trigger Gating: On Duration
The duration for gating to remain open after the last list row in which the expression
evaluates to true; expressed in x number of default timescale units. Gating is
level-sengitive rather than edge-triggered.

Adding HDL items to the List window

ModelSim User’'s Manual

Before adding itemsto the List window you may want to set the window display properties
(see "Setting List window display properties” (UM-142)). Y ou can add items to the List
window in severa ways.

Adding items with drag and drop

Y ou can drag and drop items into the List window from the Signals, Source, Process,
Variables, Wave, Dataflow, or Structure window. Select theitemsin thefirst window, then
drop them into the List window. Depending on what you select, all items or any portion of
the design may be added.

Adding items from the Main window command line

Invoke the add list (CR-32) command to add one or more individual items; separate the
names with a space:

add list <itemnane> <item name>

Y ou can add all theitemsin the current region with this command:
add list *

Or add dl theitemsin the design with:
add list -r / *

Adding items with a List window format file

To use aList window format file you must first save aformat file for the design you are
simulating. The saved format file can then be used asa DO file to recreate the List window
formatting. Follow these steps:

* Add HDL itemsto your List window.

* Edit and format theitemsto create the view you want (see "Editing and formatting HDL
itemsin the List window" (UM-145)).

» Savetheformat to afile by selecting File > Save Format (List window).

List window UM-145

To use the format (do) file, start with ablank List window, and run the DO filein one of
two ways:

* Invoke the do (CR-64) command from the command line:
do <ny_list_format>

» Select File > Load For mat from the List window menu bar.

Select Edit > Select All and Edit > Delete to remove the items from the current List
window or create a new, blank List window by selecting View > New > List (Main
window). You may find it useful to have two differently formatted windows open at the
same time, see "Examining simulation results with the List window" (UM-148).

P Note: List window format files are design-specific; use them only with the design you
were simulating when they were created. If you try to use the wrong format file,
ModelSmwill advise you of the HDL items it expects to find.

Editing and formatting HDL items in the List window

Once you have the HDL items you want in the List window, you can edit and format the
list to create the view you find most useful. (See also, "Adding HDL itemsto the List
window" (UM-144))

To edit an item:

Select the item’ s label at the top of the List window or one of its values from the listing.
Move, copy or remove the item by selecting commands from the List window Edit menu
(UM-140) menu.

Y ou can aso click+drag to move items within the window:

« to select severa contiguous items:
click+drag to select additional items to the right or the |eft of the original selection

* to select severa items randomly:
Control+click to add or subtract from the selected group

* to move the selected items:
re-click on one of the selected items, hold and drag it to the new location

ModelSim User's Manual

UM-146 7 - Graphic Interface

ModelSim User’'s Manual

To format an item:

Select theitem’s label at the top of the List window or one of its values from the listing,
then select Prop > Signal Props (List window). The resulting Modify Signal Properties
dialog box allows you to set the item'’ s label, label width, triggering, and radix.

m Modify Signal Properties [list] [(O]
Signal: fadderforl_out
Label:
—Radix:

™ Symbali

SITHEiE Width: |1 Characters
' Binany
" Octal
" Decimal
" Unszigned Trigger:
" Hexadecimal " Triggers line
i ASCI " Daoes not tigger line
" Diefault

ok Cancel Apply

The Modify Signal Properties dialog box includes these options:

* Signal
Shows the full pathname of the selected signal.

» Label
Specifies the label that appears at the top of the List window column.

» Radix
Specifies the radix (base) in which the item value is expressed. The default radix is
symbolic, which means that for an enumerated type, the List window lists the actual
values of the enumerated type of that item. Y ou can change the default radix for the
current simulation using either Options > Simulation (Main window) or the radix
command (CR-101). Y ou can change the default radix permanently by editing the
DefaultRadix (UM-281) variable in the modelsim.ini file.

For the other radixes - binary, octal, decimal, unsigned, hexadecimal, or ASCII - theitem
value is converted to an appropriate representation in that radix. In the system
initialization file, modelsim.tcl, you can specify the list translation rules for arrays of
enumerated types for binary, octal, decimal, unsigned decimal, or hexadecimal item
valuesin the design unit.

List window UM-147

e Width
Allows you to specify the desired width of the column used to list the item value. The
default is an approximation of the width of the current value.

e Trigger: Triggersline
Specifiesthat achangein the value of the selected item causes anew lineto be displayed
in the List window.

» Trigger: Doesnot trigger line
Specifies that a change in the value of the selected item does not affect the List window.

Thetrigger specification affectsthetrigger property of the selected item. See also, " Setting
List window display properties' (UM-142).

ModelSim User's Manual

UM-148 7 - Graphic Interface

Examining simulation results with the List window

Because you can use the Main window View menu (UM-128) to create a second List
window, you can reformat another List window after the simulation run if you decide a
different format would reveal the information you' re after. Compare the two illustrations.

Eile Edit Markerz FProp ‘window
The divider bar

separates time and NE—= topiclk. = ftopdpaddr — Mtopdpdata = Atopdeaddr —
delta from values: delta = | Atop/prw — ftopdam —
signal values are fopfpstth — ftopdzstth —
listed in symbolic Mopdprdy = foplady
g;‘:gtéf:i‘;gaefs'tzm 500 +0 101 1 00000070 0000000000000010 O 0 1 00000010 Z
new line 505 +0 101 1 00000070 0000000000000010 0 1 1 00000010 0f
’ 520 +0 0011 00000070 0O0000000000001T0 0 1 1 00000010 0f
540 +0 101 1 00000070 0000000000000010 0 1 1 00000010 0f
BEO0 +0 0011 00000070 0O0000000000001T0 0 1 1 00000010 0f
530 +0 107 1 00000070 0Q00000000000070 0 1 1 00000000 0
535 +0 1017 1 00000010 0Q00000000000010 0 1 0 00000000 0
530 +0 107 0 00000010 0000000000000010 0 1 0 00000000 0
GO0 +0 0071 000000010 0000000000000010 0 1 0 00000010 Of
File Edit Markers FProp window
nE— ‘topfclk — Aopdpdata — fopdedata —
Aopdpr — Jopdene —
Signal values are Mopdpstth — Aopdsstib —
listed in decimal l."tgpl."p[d_lrl — l."tgp.."grd_lrl —
format; Mopdpaddr — Mopdzaddr —
500 +0 1011 2 2001 2 £
505 +0 1011 2 2011 2 2
520 +0 oot11 2 2011 2 2
540 +0 1011 2 2011 2 2
560 +0 oot11 2 2011 2 2
530 +0 1011 2 2011 2 2
535 +0 1011 2 2010 2 2
RAn 4N inin 2 2n1n 2 2

Inthefirst List window, the HDL items are formatted as symbolic and use an item change
totrigger aline; the field width was changed to accommodate the default label width. The
window divider maintains the time and deltain the left pane; signalsin the right pane can
be viewed by scrolling. For the second listing, the item radix for paddr, pdata, saddr, and
sdatais now decimal.

ModelSim User’'s Manual

List window UM-149

Finding items by name in the List window

The Find dialog box allows you to search for text stringsin the List window. Select Edit >
Find (List window) to bring up the Find dialog box.

Enter atext string and
Find it by searching
Right or L eft through the
List window display. Find: | Find Mest
Specify Name to search

Find in list

thereal pathnames of the At D"E‘_:""“ Close
items or Label to search " Mame (* Right

their assigned names (see -

"Setting List window ¢ Labal " Leh ¥ Autowrap

display properties’ (UM-
142)). Checking Auto
Wrap makesthe search continue at the beginning of the window. Note that you can change
anitem’slabel.

Setting time markers in the List window

Select Markers> Add Marker (List window) to tag the selected list line with amarker.
The marker isindicated by athin box surrounding the marked line. The selected line uses
the sameindicator, but its values are highlighted. Delete markers by first selecting the
marked line, then selecting Markers > Delete Marker .

Finding a marker

ﬂEilist _T0O[=]
Filz Edit | Markers Prop ‘window
hF=— = = = = = = = top/paddr — Mopdpdata — Atopdraddr — ftu:ud
Add M arker ftopfaw —
Delete Marker ftopdsstib —
_______ dopdzdy —

N00000000000001 0 0 1 00000001
100000000000007 0 0 1 000000071 £er
10] oo00000000000007 O 0 1 00000007 Z2iss
306 +0 101 1 00000001 00000000000000071 O 1 1 00000001 000000
320 +0 0071 1 00000001 0000000000000001 O 1 1 00000001 000000
340 +0 101 1 00000001 00000000000000071 O 1 1 00000001 000000
360 +0 0071 1 00000001 0000000000000001 O 1 1 00000001 000000
380 +0 101 1 000000071 0000000000000007 0 1 1 00000001 0000001
385 +0 101 1 000000071 00000000000000071 0 1 0 00000001 000000
330 +0 101 0 00000001 00000000000000071 O 1 0 00000001 000000
400 +0 0071 0 00000001 0000000000000001 O 1 O 00000007 DDDDDDL:J

| | 2]

Default datazet: sim

Choose a specific marked lineto view by selecting M arker s> Goto. The marker name (on
the Goto list) corresponds to the simulation time of the selected line.

ModelSim User's Manual

UM-150 7 - Graphic Interface

List window keyboard shortcuts

Saving List window data to a file

ModelSim User’'s Manual

Using the following keys when the mouse cursor is within the List window will cause the

indicated actions:

Key

Action

<arrow up>

scroll listing up (selects and highlights the line above the
currently selected line)

<arrow down>

scroll listing down (selects and highlights the line below the
currently selected line)

<arrow left>

scroll listing left

<arrow right>

scroll listing right

<page up> scroll listing up by page

<page down> scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signa

<shift-tab> searchesbackward (up) to the previoustransition on the sel ected
signal (does not function on HP workstations)

<control-f> opens the find dialog box; finds the specified item label within

thelist display

Select File> WriteList (format) (List window) to save the List window data in one of

these formats:
* tabular

writes atext file that looks like the window listing

s delta

n
0
0 +1
2

* event

/

a
X
0
0

/b /cin / sum / cout
X U X U
1 0 X U
1 0 X U

writes atext file containing transitions during simulation

@ +0
/a X
/b X
/cin U
/sum X
/cout U
@ +1
/a 0
/b 1
/cin O

List window UM-151

o TSSI
writes afilein standard TSSI format; see also, the write tssi command (CR-194)

4 00000000000000010000000010
100 00000001000000010000000010

You can also save List window output using the write list command (CR-190).

ModelSim User's Manual

UM-152 7 - Graphic Interface

Process window

The Process window displays alist of processes. If View > Activeis selected then all
processes schedul ed to run during the current simulation cycle are displayed along with the
pathname of the instance in which each processislocated. If View > In Region is selected
then only the processes in the currently selected region are displayed.

Each HDL item in the scrollbox is

preceded by one of the following MG process _ O] x|

indicators: File Edit Yiew ‘window

» <Ready> =
Indicates that the processis
scheduled to be executed within
the current deltatime.

o <Wait> e
Indicates that the processis
waiting for aVHDL signal or
Verilog net or variable to change
or for a specified time-out period. |

. <Done> + |+
Indicates that the process has gim; ftopdc
executed a VHDL wait statement
without a time-out or a sensitivity list. The process will not restart during the current
simulation run.

If you select a"Ready" process, it will be executed next by the ssimulator.
When you click on a process in the Process window, the following windows are updated:

Window updated Result
Structure window (UM-172) shows the region in which the processis located
Variables window (UM-175) shows the VHDL variables and Verilog register
variablesin the process
Source window (UM-163) shows the associated source code
Dataflow window (UM-135) shows the process, the signals, nets, and registers the

process reads, and the signals, nets, and registers
driven by the process

Source window (UM-163) shows the signals, nets, and registers declared in the
region in which the processis located

ModelSim User’'s Manual

The Process window menu bar

Process window

The following menu commands are available from the Process window menu bar.

File menu

Save As

save the process tree to atext file viewable with the ModelSm
notepad (CR-89)

Environment

Follow Context Selection: update the window based on the
selection in the Structure window (UM-172); Fix to Current
Context: maintain the current view, do not update

Close

close this copy of the Process window

Edit menu

Copy

copy the selected process' full name

Sort

sort the processlist in either ascending, descending, or declaration
order

Select All

select all processesin the Process window

Unselect All

deselect all processesin the Process window

Find

find the specified text string within the process list; choose the
Status (ready, wait or done), the Process label, or the path to
search, and the search direction: down or up

View menu

Active

display all the processes that are scheduled to run during the
current smulation cycle

In Region

display any processesthat exist intheregion that isselected inthe
Structure window

UM-153

ModelSim User's Manual

UM-154 7 - Graphic Interface

ModelSim User’'s Manual

Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile al open windows horizontally

Tile Verticaly tile al open windows vertically
Icon Children icon al but the Main window
Icon All icon all windows

Deicon All deicon all windows

<window_name>

list of the currently open windows; select awindow name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (UM-128) in the Main
window

Signals window

Signals window UM-155

The Signals window is divided into two window panes. The left pane shows the names of
HDL itemsin the current region (which is selected in the Structure window). Theright pane
showsthevalues of the associated HDL items at the end of the current run. The dataiin this
paneis similar to that shown in the Wave window (UM-178), except that the values do not

change dynamically with movement of the selected Wave window cursor.

Y ou can double-click asignal and it will highlight that signal in the Source window
(opening a Source window if one is not open already).

Horizontal scroll barsfor each window pane alow scrolling to theright or Ieft in each pane
individually. The vertical scroll bar will scroll both panes together.

The HDL items can be sorted in ascending, descending, or declaration order.

HDL items you can view

Oneentry is created for each of the
following VHDL and Verilog items
within the design:

VHDL items
signals

Verilog items

nets, register variables, named events,
and module parameters

Virtual items

(indicated by an orange diamond icon)
virtual signalsand virtual functions; see
"Virtual signals' (Um-110) for more
information

The names of any VHDL composite

@ zignals [sim] | _ (O] =]

Wiew Window

File Edit

ik
A
pztrb
prdy
paddr
pdata

‘| |

== ==

==

zim: ftop

types (arrays and record types) are shown in a hierarchical fashion.

Hierarchy also applies to Verilog nets and vector memories. (Verilog vector registers do
not have hierarchy because they are not internally represented as arrays.)

Hierarchy isindicated in typical Model Sm fashion with plus (expandable), minus
(expanded), and blank (single level) boxes.

See "Tree window hierarchical view" (Um-121) for more information.

ModelSim User's Manual

UM-156 7 - Graphic Interface

The Signals window menu bar

The following menu commands are available from the Signals window menu bar.

File menu

Save As save the signals tree to atext file viewable with the ModelSm
notepad (CR-89)

Environment alow the window contents to change based on the current
environment; or, fix to a specific context or dataset

Close close this copy of the Signals window

Edit menu

Copy copy the current selection in the Signals window

Sort sort thesignalstreein either ascending, descending, or declaration
order

Select All select all itemsin the Signals window

Unselect All unselect all itemsin the Signals window

Expand Selected expand the hierarchy of the selected items

Collapse Selected collapse the hierarchy of the selected items

Expand All expand the hierarchy of all itemsthat can be expanded

Collapse All collapse the hierarchy of all expanded items

Force apply stimulusto the specified Signal Name; specify Value, Kind
(Freeze/Drive/Deposit), Delay, and Cancel; see also the force
command (CR-76)

Noforce remove the effect of any active for ce command (CR-76) on the
selected HDL item; see also the nofor ce command (CR-86)

Clock define clock signals by Signal Name, Period, Duty Cycle, Offset,
and whether the first edgeisrising or falling, see"Defining clock
signals' (Um-162)

Justify Values justify values to the | eft or right margins of the window pane

Find find the specified text string within the Signals window; choose
the Name or Value field to search and the search direction: down
or up

ModelSim User’'s Manual

Signals window UM-157

View menu
Wave/List/Log placethe Selected Signals, Signalsin Region, or Signalsin Design
in the Wave window (UM-178), List window (UM-139), or WLFfile
Filter choose the port and signal typesto view (Input Ports, Output
Ports, InOut Ports and Internal Signals) in the Signals window

Window menu

Initial Layout restore all windows to the size and placement of theinitial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile al open windows horizontally

Tile Verticaly tile al open windows vertically

Icon Children icon al but the Main window

Icon All icon al windows

Deicon All deicon all windows

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (UM-128) in the Main
window

Selecting HDL item types to view

The View > Filter menu selection alows you to specify which
HDL items are shown in the Signals window. Multiple options i./| Filter [[u] E3

can be selected. Input Paorts

Cukput Ports
[n0t Ports
Internal Signals

ModelSim User's Manual

UM-158 7 - Graphic Interface

Forcing signal and net values

ModelSim User’'s Manual

The Edit > For ce command displays a dialog box that allows you to apply stimulus to the
selected signal or net. Multiple signals can be selected and forced; the force dialog box
remains open until al of the signals are either forced, skipped, or you close the dialog box.
To cancel aforce command, use the Edit > NoFor ce command. See also the force
command (CR-76).

Force Selected Signal

Signal Hame: |

'H"alue:IEI

Kind
’7 ¥ Freeze = Diive ' Deposit

Delay FDI:IEI
Cancel Mter:l

ak. | Cancel

The For ce dialog box includes these options:

 Signal Name
Specifies the signal or net for the applied stimulus.

» Value
Initially displays the current value, which can be changed by entering a new value into
the field. A value can be specified in radixes other than decimal by using the form (for
VHDL and Verilog, respectively):

base#val ue -or- b|o|d|h’value

16#EE or h' EE, for example, specifies the hexadecimal value EE.

» Kind: Freeze
Freezesthesignal or net at the specified value until itisforced again or until it isunforced
with anofor ce command (CR-86).

Freezeisthe default for Verilog nets and unresolved VHDL signalsand Driveisthe
default for resolved signals.

If you prefer Freeze as the default for resolved and unresolved signals, you can change
the default force kind in the modelsim.ini file; see "Projects and system initialization"
(UM-15).

« Kind: Drive
Attaches adriver to the signal and drives the specified value until the signal or net is
forced again or until it is unforced with anofor ce command (CR-86). Thisvalueisillegal
for unresolved VHDL signals.

Signals window UM-159

« Kind: Deposit
Setsthesignal or net to the specified value. The value remains until there is a subsequent
driver transaction, or until the signal or net is forced again, or until it is unforced with a
nofor ce command (CR-86).

» Delay For
Allows you to specify how many time units from the current time the stimulusis to be
applied.

» Cancel After
Cancels the for ce command (CR-76) after the specified period of simulation time.

*« OK
When you click the OK button, a for ce command (CR-76) is issued with the parameters
you have set, and is echoed in the Main window. If more than one signal is selected to

force, the next signal down appearsin the dial og box each timethe OK buttonis selected.
Unique force parameters can be set for each signal.

Adding HDL items to the Wave and List windows or a WLF file

Before adding items to the List or Wave window you may want to set the window display
properties (see " Setting List window display properties’ (UM-142)). Oncedisplay properties
have been set, you can add items to the windows or WLF filein severa ways.

Adding items with the Signals window View menu
Use the View menu with either the

Wave, List, or Log selectiontoadd HDL

itemsto the Wave window (UM-178), List i ave b

window (UM-139), or awave log format List N
(WLF) file, respectively. Log b | Selected Signals
TheWLFfileiswritten asan archivefile Signals in Begion

in binary format and is used to drive the Filter | ligrel st

List and Wave windows at a later time.
Once signals are added to the WLF file
they cannot be removed. If you begin a simulation by invoking vsim (CR-168) with the
-view <WLF_fileame> option, Model Sm reads the WLF file to drive the Wave and List
windows.

Choose one of the following options (Model Sm opens the target window for you):

» Selected Signal
Lists only the item(s) selected in the Signals window.

* Signalsin Region
Listsall itemsin the region that is selected in the Structure window.

* Signalsin Design
Listsall itemsin the design.

ModelSim User's Manual

UM-160 7 - Graphic Interface

Adding items from the Main window command line

Another way to add items to the Wave or List window or the WLF fileis to enter the one
of the following commands at the VSIM prompt (choose either the add list (CR-32), add
wave (CR-35), or log (CR-81) command):

add list | add wave | |log <itemnanme> <item name>

You can add all the items in the current region with this command:

add list | add wave | log *

Or add dl theitemsin the design with:

add list | add wave | log -r /*

If the target window (Wave or List) is closed, ModelSm opens it when you when you
invoke the command.

Finding HDL items in the Signals window

Tofind the specified text string within the Signalswindow, choosethe Nameor Valuefield
to search and the search direction: Down or Up.

Find in .signals] |
Find: | Find Mext
—Field —Direction Cloze

* Mame & Down
£ Walue " Up

Y ou can also do aquick find from the keyboard. When the Signals window is active, each
time you type aletter the signal selector (highlight) will move to the next signal whose
name begins with that letter.

Setting signal breakpoints

ModelSim User’'s Manual

Y ou can set signal breakpoints (a.k.a., when breakpoints; see the when command (CR-181)
for more details) via a context menu in the Signal window. When statements instruct
Model Smto perform actions when the specified conditions are met. For example, you can
break on asignal value or at a specific simulator time (see "Time-based breakpoints" (CR-
183)). When a breakpoint is hit, a message appears in the transcript window about which
signal caused the breakpoint.

To access the breakpoint commands, select asignal and then click your right mouse button
. To set a breakpoint on a selected signal, select Add Breakpoint from the context menu.
To remove a breakpoint from a selected signal, select Remove Signal Breakpoint. To
remove al breakpointsin the current region, select Remove All Signal Breakpoints. To
see alist of currently set breakpoints, select Show Breakpoints.

Signals window UM-161

The Edit Breakpoint command opens the Edit When dialog box.

Edit ‘when...

Condition: | {3 E
Opt. Label:| /top/zdata

echo "Break on Atopsdata" [stop

Command([z]:

ok Cancel

The Edit When dialog includes the following options:

« Condition
The condition(s) to be met for the specified command(s) to be executed. Required. See
the when command (CR-181) for more information on creating the condition statement.

e Opt. Label
An optional text label for the when statement.

e Command(s)
The command(s) to be executed when the specified condition is met. Any ModelSim or
Tcl command or series of commands are valid with one exception—the run command
(CR-107) cannot be used.

The Edit All Breakpoints command opens the Breakpoints dialog box. See " Setting file-
line breakpoints' (uM-168) for details.

ModelSim User's Manual

UM-162 7 - Graphic Interface

Defining clock signals

ModelSim User’'s Manual

Select Edit > Clock to define clock signals by Name, Period, Duty Cycle, Offset, and
whether the first rising edgeis rising or falling. Y ou can also specify a simulation period
after which the clock definition should be cancelled.

Define Clock

Clock Hame: |Gt Saitis

foset:l[l First Edge
Dut_v:IEEI " Rising
Pen d:I'IEIEI
Eno " Falling
Ean-::el:l

"Lugic Yalues

H igh:|1 Luw:IEI

ok | LCancel |

For clock signals starting on the rising edge, the definition for Period, Offset, and Duty
Cycleisasfollows:

Period

High Value

Low Value

Offset | High Time |

Duty Cycle = High Time/Period

If the signal typeisstd logic, std_ulogic, bit, verilog wire, verilog net, or any other logic
type where 1 and O are valid, then 1 isthe default High Value and 0 is the default Low
Value. For other signal types, you will need to specify aHigh Value and aLow Value for

the clock.

Source window

Source window UM-163

The Source window allows you to view and edit your HDL source code. When you first

load a design, the source file will display automatically if the Source window is open.
Alternatively, you can select an item in the Structure window (UM-172) or use the File >
Open command (Source window) to add a file to the window. (Y our source code can
remain hidden if you wish; see " Source code security and -nodebug” (UM-297)).

The window is divided into two panes—the left-hand pane contains line numbers, and the
right-hand pane containsthe source file. The pathname of the source fileisindicated in the

header of the Source window.

As shown in the picture below, you may also see the following in the left-hand pane:

» Green line numbers— denote executable lines

* Blue arrow—denotes a process that you have selected in the Process window (UM-152)

 Red circles—denoate file-line breakpoints; hollow circles denote breakpoints that are

currently disabled

B source - counter.vhd
File Edit Ohbject Options Safindow

I [=] E3

B tBRERaA BT

end process;

+

Zd end increment;
zE begin
Z5
z7 [nd =% s
zE processiclk, reset)
29 begin

—l if (reset = '1') then

if reset'event then

L 2 count <= f{others == '0') after tpd reset to_ count;

33 end if;
glsif clk'event and (clk = 'l') then

ik count <= increment (count) after tpd clk to count;

36 end if;

[
|]

If you hold your mouse pointer over an HDL item in the right-hand pane, a"pop-up"” will

show you the full pathname of the item and its current value.

ModelSim User's Manual

UM-164 7 - Graphic Interface

The Source window menu bar

The following menu commands are available from the Source window menu bar.

File menu

New

edit anew (VHDL, Verilog or Other) sourcefile

Open

select a source file to open

Use Source

specify an aternative file to use for the current sourcefile; this
alternative source mapping exists for the current simulation only

Source Directory

add to alist of directories(the SourceDir variablein modelsim.tcl)
to search for source files

Properties

list avariety of information about the sourcefile; for example, file
type, file size, file modification date

Save

save the current source file

Save As

save the current source file with a different name

Compile

compile HDL source files

Close

close this copy of the Source window

Edit menu

To edit a source file, make sure the Read Only option in the Source Options dialog box is
not selected (use the Edit > read only (Source menu) selection).

<editing option>

basic editing optionsinclude: Undo, Cut, Copy, Paste, Select All,
and Unselect All; see "The following mouse actions and special
keystrokes can be used to edit commandsin the entry region of the
Main window. They can also be used in editing the file displayed
inthe Source window and all Notepad windows (enter the notepad
command within Model Sim to open the Notepad editor)." (UM-
133)

ModelSim User’'s Manual

Comment Selected turns the selected lines into comments by inserting the correct
language comment character at the beginning of each line

Uncomment removes comment characters from the selected lines

Selected

Find find the specified text string or regular expression within the
source file; thereis an option to match case or search backwards

Find Next find the next occurrence of a string specified with the Find
command

Replace find the specified text string or regular expression and replace it

with the specified text string or regular expression

Source window UM-165

Previous Coverage
Miss

when simulating with Code Coverage (UM-251), findsthe previous
line of code that was not used in the simulation

Next Coverage Miss

when simulating with Code Coverage (UM-251), findsthe next line
of code that was not used in the simulation

Breakpoints add, edit, or delete file-line and signal breakpoints; see " Setting
file-line breakpoints" (UM-168)
read only toggle the read-only status of the current source file

Object menu

Describe display information about the selected HDL item; same as the
describe command (CR-62); theitem nameis shownin thetitle bar
Examine display the current value of the selected HDL item; same asthe

examine (CR-71) command; theitem nameis shownin thetitle bar

Options menu

Colorize Source

colorize key words, variables, and comments

Highlight
Executable Lines

highlight the line numbers of executable lines

Middle Mouse enable/disable pasting by pressing the middle-mouse button
Button Paste

Verilog specify Verilog-style colorizing

Highlighting

VHDL Highlighting

specify VHDL-style colorizing

Freeze File maintain the same source file in the Source window (useful when
you have two Source windows open; one can be updated from the
Structure window (UM-172), the other frozen)

Freeze View disable updating the source view from the

Process window (UM-152)

Window menu

Initial Layout restore all windows to the size and placement of theinitial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile all open windows horizontally

Tile Verticaly

tile al open windows vertically

Icon Children

icon all but the Main window

ModelSim User's Manual

UM-166 7 - Graphic Interface

Icon All

icon all windows

Deicon All

deicon all windows

<window_name>

list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (UM-128) in the Main
window

The Source window toolbar

Buttons on the Source window toolbar give you quick accessto these M odel S m commands

and functions.

B source - proc.v

Fil= Edt Object

Optionsz

Wafindom

=R fFBEE#Ae B0

A\ &
0&0 (,Q’K 0\\ 00 OOQ‘\ Q’b'
Q S &
) Q o\}
&QJ 9 e@
& S
S OQ &

Source window toolbar buttons

Button

Menu equivalent Other equivalents

Compile Source File
@ open the Compile HDL Source
File dialog

File> Compile use vcom or viog command at the

VSIM prompt

see; veom (CR-129) or
vlog (CR-162) command

ModelSim User’'s Manual

Open SourceFile File > Open select an HDL itemin the
~ open the Open File dialog box Structure window, the associated
= (you can open any text file for source fileisloaded into the
editing in the Source window) Source window
Save Source File File > Save none
] gvethefilein the Source
z window
Cut Edit > Cut see: "Mouse and keyboard
.}E cut the selected text within the shortcuts' (UM-133)
Source window

Source window

UM-167

Source window toolbar buttons

Button

Menu equivalent

Other equivalents

Run > Step -Over

Copy Edit > Copy see: "Mouse and keyboard
' copy the selected text within the shortcuts' (UM-133)
-
Source window
Paste Edit > Paste see: "Mouse and keyboard
E paste the copied text to the cursor shortcuts' (UM-133)
location
Find Edit > Find <control -f> (Windows)
find the specified text string
ﬂ within the sourcefile; match case
option
Step Main window: use step command at the VSIM
F} steps the current simulation to Run > Step prompt
the next HDL statement
see: step (CR-114) command
Step Over Main window: usethestep -over command at the

VSIM prompt

see: step (CR-114) command

ModelSim User's Manual

UM-168 7 - Graphic Interface

Setting file-line breakpoints

Y ou can set breakpoints three different ways:

* Using the command line; see the bp (CR-46) (breakpoint) command for details

« Using your mouse in the Source window
 Using the Edit > Breakpoints menu selection

Setting breakpoints with your mouse

To set abreakpoint with your mouse, click on a green line number at the left side of the
window (breakpoints can be set only on executable lines). The breakpoints are toggles —
click once to create the colored dot; click again to disable or enable the breakpoint. To
delete the breakpoint completely, click the colored dot with your right mouse button, and

select Remove Breakpoint.

Setting breakpoints with the Edit > Breakpoints command

Selecting Edit > Breakpoints (Source window) opens the dialog box shown below.

Breakpoint(z)...

<]

bp E:/modelzimb5_sederamples/misedHDL proc. « 23

bp E:/modelzim55_sederamples/mixedHDLAproc. « 43

< 7

when -label 11 -cond Mtopdsdata fecha "Break on Mopdsdata” : stop)

<]

when -label 15 -cond Mopdsra fecho "Break on Aopdzna'' ; stop)

&dd BF

Add When

Edit Selected

[T when -label 26 -cond /topdpdread/a {echo "Break on Mop/pieadda’
Delete Selected
:I Delete All BP
4| | B
Cloge

ModelSim User’'s Manual

The Breakpoints dialog box allows you to create and manage both file-line and signal
breakpoints (a.k.a., when breakpoints). For details on signal breakpoints, see " Setting

signal breakpoints" (Um-160) and the when command (CR-181).

Source window UM-169

Y ou can enable and disable existing breakpoints by checking or unchecking the box next
to the breakpoint’s name. To add a new file-line breakpoint, select Add BP (or Edit
Selected for an existing file-line breakpoint).

Add/E dit Breakpaint. .

File Hame: |
Line #:

Condition:

Instance:

Command(z]:

] LCancel

The Add/Edit Breakpoint dialog box includes the following options:

» FileName
The file name in which you want to set the breakpoint. Reguired. The button next to this
field allows you to browse to select afile.

e Line#
The line number on which you want to set the breakpoint. Required.

+ Condition
The condition(s) that determine whether the breakpoint is hit. See the bp command (CRr-
46) for more information on creating the condition statement.

* Instance
Specify aregion in which the breakpoint should be set. If left blank, the breakpoint
affects every instance in the design.

e Command(s)
One or more commands that you want executed at the breakpoint.

ModelSim User's Manual

UM-170 7 - Graphic Interface

Editing the source file in the Source window

Several toolbar buttons (shown above), mouse actions, and specia keystrokes can be used
to edit the source filein the Source window. See " The foll owing mouse actions and specia

keystrokes can be used to edit commandsin the entry region of the Main window. They can
also be used in editing the file displayed in the Source window and all Notepad windows

(enter the notepad command within Model Sim to open the Notepad editor)." (UM-133) for a
list of mouse and keyboard editing options.

Checking HDL item values and descriptions

There are two quick methods to determine the value and description of an HDL item
displayed in the Source window:

« select an item, then chose Obj ect > Examine or Object > Description from the Source
window menu

« select an item with the right mouse button to see an examine pop-up (select "now" to
examine the current simulation timein VHDL code)

Y ou can also invoke the examine (CR-71) and/or describe (CR-62) command on the
command line or in amacro.

Finding and replacing in the Source window

ModelSim User’'s Manual

The Find dialog box allowsyou to find and replace text strings or regular expressionsin the
Source window. Select Edit > Find or Edit > Replace to bring up the Find dialog box. If
you select Edit > Find, the Replace field is absent from the dialog.

Enter the value to
search for in the Find in: source -
Find field. If youare
doing a replace, Find: | Find Mext
enter the appropriate

valuein the Replace [T Case sensitive [T Search backwards Cloze
field. Optionaly
specify whether the
entries are case
sensitiveand
whether to search
backwards from the current cursor location. Check the Regular expression checkbox if
you are using regular expressions.

[Regular expression

Source window UM-171

Setting tab stops in the Source window

Y ou can set tab stopsin the Source window by selecting the Main window Options > Edit
Prefer ences command. Follow these steps:

1 Select the By Namestab.
2 Select Source in the first column, and then select the "tabs' item in the second column.
3 Pressthe Change Value button.

4 Inthe dialog that appears, enter a single number "n", which sets atab stop every n
characters (where a character width is the width of the "8" character).

or

Enter alist of screen distances for the tab stops. For instance,
214977 105 133 161 189 217 245 273 301 329 357 385 413 441 469

Thenumber 21 or 21p means 21 pixels; the number 3c meansthree centimeters; the number
1i means one inch.

A mportant: Do not use quotes or bracesin thelist (i.e., "21 49" or {21 49}). Thiswill
cause the GUI to hang.

Y ou can also set tab stops using the Pref Source(tabs) Tcl preference variable.

ModelSim User's Manual

UM-172 7 - Graphic Interface

Structure window

ModelSim User’'s Manual

P Note: In ModelSim versions 5.5 and later the information contained in the Structure
window is shown in the structure tabs of the Main window Workspace (UM-124). The
Structure window will not display by default. Y ou can display the Structure window at
any time by selecting View > Structure (Main window). The discussion below applies

to both the Structure window and the structure tabs in the Workspace.

The Structure window providesahierarchical view of the structure of your design. Anentry
is created by each HDL item within the design. (Y our design structure can remain hidden

if you wish, see " Source code security and -nodebug” (UM-297).)

HDL items you can view

ThefollowingHDL itemsfor VHDL
and Verilog are represented by
hierarchy within Structure window.

VHDL items

(indicated by a dark blue square
icon)

component instantiation, generate
statements, block statements, and
packages

Verilog items

(indicated by alighter bluecircle
icon)

modul e instantiations, named forks,
named begins, tasks, and functions

Virtual items

(indicated by an orange diamond
icon)

virtual regions; see "Virtual Objects
(User-defined buses, and more)"
(UM-110) for more information.

Y ou can expand and contract the
display to view the hierarchical
structure by clicking on the boxes
that contain "+" or "-". Clicking "+"

expands the hierarchy so the sub-elements of that item can be seen. Clicking

the hierarchy.

Thefirst line of the Structure window indicates the top-level design unit being simulated.

E structure
File Edit

M[=] E3
Wfindo

Md

B cache: cache

P oproc

) T mErnony
B Fackage std_logic_ ot
B Fackage v_types
B Fackage std_logic_1164
B Fackage standard
— i Function hash
— 0 Task update_mru
— i Function pick_set
— 0 Task sysread
— 0 Task syswnte
— % Function get_hit
— Il :0: cache_setjonly]
— Il :1: cache_setjonly]
— Il =2 cache_setjonly)
Il 3 cache_setonly)

-
—

+]

| +

sim:ftap P

By default, thisisthe only level of the hierarchy that is expanded upon opening the

Structure window.

"-" contracts

Structure window UM-173

Instance name components in the Structure window
An instance name displayed in the Structure window consists of the following parts:
* instantiation label

Indicates the label assigned to

[h [Ty
the component or module I_. s0: eache_set{onl]
instance in the instantiation /
statement.

. et (architecture)
instantiation label entity or module

* entity or module
Indicates the name of the
entity or module that has been instantiated.

* architecture
Indicatesthe name of the architecture associated with the entity (not present for Verilog).

When you select aregion in the Structure window, it becomes the current region and is
highlighted; the Source window (UM-163) and Signals window (UM-155) change
dynamically to reflect theinformation for that region. Thisfeature providesauseful method
for finding the source code for a selected region because the system keeps track of the
pathname where the source is located and displays it automatically, without the need for
you to provide the pathname.

Also, when you select aregion in the Structure window, the Process window (UM-152) is
updated if In Region isselected in that window; the Process window will in turn update the
Variables window (UM-175).

The Structure window menu bar

The following menu commands are available from the Structure window menu bar. Some
of the commands are also available from a context menu in a Structure tab of the Main
window workspace.

File menu
Save As save the structure tree to a text file viewable with the ModelSm
notepad (CR-89)
Environment alow the window contents to change when the active dataset is
changed; or, fix to a specific dataset
Close close this copy of the Structure window
Edit menu
Copy copy the current selection in the Structure window
Sort sort the structure tree in either ascending, descending, or
declaration order
Expand Selected expand the hierarchy of the selected item
Collapse Selected collapse the hierarchy of the selected item

ModelSim User's Manual

UM-174 7 - Graphic Interface

Expand All expand the hierarchy of al items that can be expanded

Collapse All collapse the hierarchy of all expanded items

Find find the specified text string withinthe structuretree; see"Finding
itemsin the Structure window" (UM-174)

Window menu

Initial Layout restore all windows to the size and placement of the initial full-
screen layout

Cascade cascade all open windows

Tile Horizontally tile al open windows horizontally

Tile Verticaly tile al open windows vertically

Icon Children icon all but the Main window

Icon All icon al windows

Deicon All deicon al windows

<window_name> list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (UM-128) in the Main
window

Finding items in the Structure window

ModelSim User’'s Manual

The Find dialog box allows you to search for text strings in the Structure window. Select
Edit > Find (Structure window) to bring up the Find dialog box.

Enter the value to

search for in the Find Find in . structure

field. Specify whether

you are looking for an Find: | Find Mest
Instance, _ -

Entity/M odule, or Field——— ~Direction Close
Architecture. Also % |nstance

specify which direction _ & Down

to search. Check Auto " Enlity/Module U

Wrap to have the ; P

search continue at the e W futa wirap
top of the window.

Variables window UM-175

Variables window

The Variables window is divided into two window panes. The left pane lists the names of
HDL items within the current process. The right pane lists the current value(s) associated
with each name. The pathname of the current processis displayed at the bottom of the
window. (Theinternal variables of your design can remain hidden if you wish, see " Source
code security and -nodebug” (UM-297).)

HDL items you can view

E variables M=

File Edit “iew wWindow

The following HDL itemsfor
VHDL and Verilog are viewable
within the Variables window.

VHDL items

constants, generics, and variables

Verilog items
register variables

The names of any VHDL composite
types (arrays and record types) are
shown in a hierarchical fashion.
Hierarchy also appliesto Verilog
vector memories. (Verilog vector
registers do not have hierarchy
because they are not internally
represented as arrays.) Hierarchy is
indicated in typical ModelSm
fashion with plus (expandable) and I
minus (expanded). See "Tree #IMPLICIT 4/IRE [wen[3])
window hierarchical view" (UM-121)

for more information.

To changethevaue of aVHDL variable, constant, or generic or aVerilog register variable,
move the pointer to the desired name and click to highlight the selection. Select Edit >
Change (Variables window) to bring up adialog box that lets you specify a new value.
Note that "Variable Name" is aterm that is used loosely in this case to signify VHDL
constants and generics aswell as VHDL and Verilog register variables. Y ou can enter any
value that isvalid for the variable. An array value must be specified as a string (without
surrounding quotation marks). To modify the values in arecord, you need to change each
field separately.

Click on a process in the Process window to change the Variables window.

ModelSim User's Manual

UM-176 7 - Graphic Interface

The Variables window menu bar

The following menu commands are available from the V ariables window menu bar.

File menu
Save As save the variables tree to a text file viewable with the ModelSm
notepad (CR-89)
Environment Follow Process Selection: update the window based on the
selection in the Process window (Um-152); Fix to Current
Process: maintain the current view, do not update
Close close this copy of the Variables window
Edit menu
Copy copy the selected items in the Variables window
Sort sort the variables tree in either ascending, descending, or
declaration order
Select All select dl itemsin the Variables window
Unselect All deselect all itemsin the Variables window
Expand Selected expand the hierarchy of the selected item
Collapse Selected collapse the hierarchy of the selected item
Expand All expand the hierarchy of all items that can be expanded
Collapse All collapse the hierarchy of all expanded items
Change change the value of the selected HDL item
Justify Values justify values to the left or right margins of the window pane
Find find the specified text string within the variables tree; choose the
Name or Value field to search and the search direction: Down or
Up
View menu
Wave/List/Log place the Selected Variables or Variablesin Region in the Wave
window (UM-178), List window (UM-139), or WLF file

ModelSim User’'s Manual

Window menu

Variables window

Initial Layout restore all windows to the size and placement of the initial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile al open windows horizontally

Tile Verticaly tile al open windows vertically
Icon Children icon al but the Main window
Icon All icon all windows

Deicon All deicon all windows

<window_name>

list of the currently open windows; select awindow name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (UM-128) in the Main
window

UM-177

ModelSim User's Manual

UM-178 7 - Graphic Interface

Wave window

The Wavewindow, likethe List window, allowsyou to view theresults of your simulation.
Inthe Wave window, however, you can seetheresultsas HDL waveformsand their values.

The Wave window is divided into a number of window panes. All window panesin the
Wave window can be resized by clicking and dragging the bar between any two panes.

=t wave - default o w]

File Edit Cursor Zoom Compare Bookmark Format Window

EEHE BB L X «of G Q@f | Ef | ELEIEE | (ele

——
(1]

| 1l
! sim: fropfpaddr @ 695 ns
I ooooooll

10000000 |:| oooo00i - I:I gnoooio oooooot
T — T — T
| .

| S

Y

O nsto 815 ns i

Pathname pane

The pathname pane displays signal pathnames. Signals
can be displayed with full pathnames, as shown here, or
with only the leaf element displayed. Y ou can increase
the size of the pane by clicking and dragging on the right
border. The selected signal is highlighted.

Thewhite bar along the left margin indicates the sel ected
dataset (see Splitting Wave window panes (UM-190)).

ModelSim User’'s Manual

Wave window UM-179

Values pane

A valuespane displaysthevalues of thedisplayed signals.

The radix for each signal can be symbolic, binary, octal,
decimal, unsigned, hexadecimal, ASCII, or default. The
default radix can be set by selecting Options >
Simulation (Main window) (see " Setting default
simulation options" (UM-226)).

The datain this paneis similar to that shown in the
Signals window (UM-155), except that the values change
dynamically whenever a cursor in the waveform pane
(below) is moved.

Waveform pane

The waveform pane displays the waveforms that correspond to the displayed signal
pathnames. It also displays up to 20 cursors. Signal values can be displayed in analog step,
anal og interpolated, analog backstep, literal, logic, and event formats. Each signal can be
formatted individually. The default format is logic.

If you rest your mouse pointer on asignal in the waveform pane, a popup displays with
information about the signal. Y ou can toggle this popup on and off in the Wave Window
Properties dialog (see " Setting Wave window display properties’ (UM-197)).

I S

'_|—I_I—I_—I_I—I_

| sim: ftopfpaddr @ &95 ns
ooooooll
| == i —I.I

cursors
Waveform popup

ModelSim User's Manual

UM-180 7 - Graphic Interface

Cursor panes

There are two cursor panes. The left pane shows the current simulation time and the value
for each cursor. The top-most value is the current simulation time. The selected cursor’s
valueis highlighted. Y ou can select a cursor by selecting its value in the left pane.

The right pane shows the absolute time value for each cursor and relative time between
cursors. Up to 20 cursors can be displayed.

two cursor panes

HDL items you can view

ModelSim User’'s Manual

VHDL items

(indicated by a dark blue sgquare)
signals and process variables

Verilog items

(indicated by alight blue circle)
nets, register variables, and named
events

Virtual items

(indicated by an orange diamond)
virtual signals, buses, and functions,
see; "Virtual Objects (User-defined
buses, and more)" (UM-110) for more
information

Comparison items

(indicated by ayellow triangl€)
comparison region and comparison signals; see Chapter 10 - Waveform Comparison for
more information

P Note: Constants, generics, and parameters are not viewable in the List or Wave
windows.

The datain the item values pane is very similar to the Signals window, except that the
values change dynamically whenever a cursor in the waveform pane is moved.

At the bottom of the waveform pane you can see atime line, tick marks, and a readout of
each cursor’ s position. Asyou click and drag to move acursor, the time value at the cursor
location is updated at the bottom of the cursor.

Wave window UM-181

Y ou can resize the window panes by clicking on the bar between them and dragging the bar
to anew location.

Waveform and signal-name formatting are easily changed via the Format menu (uM-184).
Y ou can reuse any formatting changes you make by saving aWave window format file, see
"Adding items with a Wave window format file" (uM-181).

Adding HDL items in the Wave window

Before adding items to the Wave window you may want to set the window display
properties (see " Setting Wave window display properties’ (UM-197)). Y ou can add itemsto
the Wave window in several ways.

Adding items from the Signals window with drag and drop

Y ou can drag and drop itemsinto the Wave window from the List, Process, Signal's, Source,
Structure, or Variables window. Select the itemsin the first window, then drop them into
the Wave window. Depending on what you select, all items or any portion of the design can
be added.

Adding items from the Main window command line

To add specific HDL items to the window, enter (separate the item names with a space):

add wave <item nane> <item name>

Y ou can add all theitemsin the current region with this command:

add wave *

Or add all the items in the design with:;

add wave -r /*

Adding items with a Wave window format file
To use aWave window format file you must first save aformat file for the design you are
simulating. Follow these steps:

1 Add theitemsyou want in the Wave window with any method shown above.

2 Edit and format theitems, see "Editing and formatting HDL itemsin the Wave window"
(UM-192) to create the view you want .

3 Savetheformat to afile by selecting File > Save Format (Wave window).

To use the format file, start with a blank Wave window and run the DO file in one of two
ways:
* Invoke the do command (CR-64) from the command line;

do <ny_wave_f or mat >

» Select File> Load Format (Wave window).

ModelSim User's Manual

UM-182 7 - Graphic Interface

Use Edit > Select All and Edit > Delete to remove the items from the current Wave
window, use the delete command (CR-61) with the wave option, or create a new, blank
Wave window with View > New > Wave (Main window).

P Note: Wave window format files are design-specific; use them only with the design you
were simulating when they were created.

The Wave window menu bar

==+ wave - default | il

File Edit Cursor Zoom Compare Bookmark Format Window

FEHS SRR DK i HOQQ@R | FF EEIER | jufeledHn

The following menu commands and button options are available from the Wave window
menu bar. If you see adotted line at the top of adrop-down menu, you can select it to create
a separate menu window. Many of these commands are also available via a context menu
by clicking your right mouse button within the wave window itself.

File menu

Open Dataset open a dataset

New Divider insert adivider at the current location

New Group setup a new group element — a container for other items that can be
moved, cut and pasted like other objects (NOT CURRENTLY
IMPLEMENTED)

Save Format savethe current Wave window display and signal preferencestoaDO
(macro) file; running the DO file will reformat the Wave window to
match the display asit appeared when the DO file was created

Load Format run a Wave window format (DO) file previously saved with Save
Format

Page Setup setup page for printing; optionsinclude: paper size, margins, label
width, cursors, color, scaling and orientation

Print send the contents of the Wave window to a selected printer; options
include:

All signals—print all signals
Current View — print signalsin current view for the time displayed
Selected — print al or current view signals for user-designated time

ModelSim User’'s Manual

Wave window UM-183

Print Postscript save or print the waveform display as a Postscript file; options
include;
All Signals—print al signals
Current View — print signalsin current view for the time displayed
Selected — print all or current view signals for user-designated time
New Window split the pathname, values and waveform window panes to provide
Pane room for a new waveset
Remove remove window split and active waveset
Window Pane
Refresh Display clear the Wave window, empty thefile cache, and rebuild the window
from scratch
Close close this copy of the Wave window
Edit menu
Cut cut the selected item and waveform from the Wave window; see
"Editing and formatting HDL items in the Wave window" (UM-
192)
Copy copy the selected item and waveform
Paste paste the previously cut or copied item above the currently
selected item
Delete delete the selected item and its waveform
Select All select, or unselect, all item names in the name pane
Unselect All
Combine combine the selected fields into a user-defined bus

Signal Breakpoints

add, edit, and delete signal breakpoints; see " Setting signal
breakpoints" (UM-160)

Sort sort the top-level itemsin the name pane; sort with full path name
or viewed name; use ascending or descending order

Find find the specified item label within the pathname pane or the
specified value within the value pane

Justify Values justify values to the left or right margins of the window pane

Display Properties

set display propertiesfor signal path length, cursor snap distance,
row margin, and dataset prefixes

Signal Properties

set [abel, height, color, radix, and format for the selected item (use
the Format menu selections below to quickly change individual
properties)

ModelSim User's Manual

UM-184 7 - Graphic Interface

Cursor menu

Add Cursor add a cursor to the center of the waveform window

Delete Cursor delete the selected cursor from the window

Goto choose a cursor to go to from alist of current cursors
Zoom menu

Zoom <selection>

selection: Full, In, Out, Last, Areawith mouse button 1, or Range
to change the waveform display range

Bookmark menu

Add Bookmark

add a new bookmark that saves a specific zoom and scroll range

Edit Bookmarks

edit an existing bookmark

<bookmark_name>

list of currently defined bookmarks

Format menu

Radix set the selected item’ s radix

Format set the waveform format for the selected item — Literal, Logic,
Event, Analog

Color set the color for the selected item from a color palette

Height set the waveform height in pixels for the selected item

Window menu

Initial Layout restore all windows to the size and placement of theinitial full-
screen layout
Cascade cascade all open windows

Tile Horizontally

tile al open windows horizontally

ModelSim User’'s Manual

Tile Verticaly tile al open windows vertically
Icon Children icon al but the Main window
Icon All icon all windows

Deicon All deicon all windows

Wave window UM-185

<window_name>

list of the currently open windows; select a window name to
switch to, or show that window if it is hidden; when the source
window is available, the source file name is also indicated; open
additional windows from the "View menu" (UM-128) in the Main
window

ModelSim User's Manual

UM-186 7 - Graphic Interface

The Wave window toolbar

The Wave window toolbar gives you quick access to these Model Sm commands and

functions.
==+t wave - default =
File Edit Cursor Zoom Compare Bookmark Format Window
EHE sBR LK o S Q@f: Ef ELEIEH | jeieles s
N ~ @ 'S S $ & & N > X O g
FES T8F 8 $SSITITFSE F $§SPF o9 8 o
SS9 c § $ S 58S T s & S e ¢ & & & o
© Q& R J I L T s §s ¢ F O Lo g9
S& 8 T g S5 S § ¢ gL e
T ¥ o < O N N $ 8§ § §
N SN b‘z’ 3 Q_}_ N)z & N O & ~
RN S N & & &
&g & CF e
3§ &
)

Wave window toolbar buttons

prints a user-sel ected range of the
current Wavewindow display to a
printer or afile

File > PrintPostscript

Button Menu equivalent Other options
L oad Wave For mat File > Load Format do wave.do
~ run a Wave window format (DO) see do command (CR-64)
ile previousdly saved wit e
L= | file previously saved with Sav
Format
Save Wave Format File > Save Format none
saves the current Wave window
] display and signal preferencestoa
- do (macro) file
Print Waveform File> Print none

copy the selected signal in the
signal-name pane

ModelSim User’'s Manual

Cut Edit > Cut right mouse in pathname pane > Cut
.;Ii{- cut the selected signal from the

Wave window

Copy Edit > Copy right mouse in pathname pane >

Copy

Wave window

UM-187

Wave window toolbar buttons

Button Menu equivalent Other options

Paste Edit > Paste right mouse in pathname pane >

E paste the copied signal above Paste
another selected signal
Add Cursor Cursor > Add Cursor none

E? add a cursor to the center of the

waveform pane
Delete Cur sor Cursor > Delete Cursor none

delete the selected cursor fromthe
window

zoom in by afactor of two from
the current view

Find Previous Transition Edit > Search keyboard: Shift + Tab
—lt locate the previous signal value (Search Reverse)

change for the selected signal

Find Next Transition Edit > Search keyboard: Tab
ﬂ— locate the next signal value (Search Forward)

change for the selected signal

Zoom in 2x Zoom > Zoom In keyboard: i | or +

right mouse in wave pane > Zoom
In

Zoom out 2x
zoom out by afactor of two from
current view

Zoom > Zoom Out

keyboard: 0 O or -

right mouse in wave pane > Zoom
Out

Zoom area with mouse button 1
use the cursor to outline a zoom
area

Zoom > Zoom Range

keyboard: r or R

right mouse in wave pane > Zoom
Area

Zoom Full

zoom out to view the full range of
the simulation from time O to the
current time

Zoom > Zoom Full

keyboard: f or F

right mouse in wave pane > Zoom
Full

Interrupt Wave Drawing
halts any waves currently being
drawn in the Wave window

none

none

ModelSim User's Manual

UM-188 7 - Graphic Interface

Wave window toolbar buttons

run the current simulation for the
: default time length

<default_length>

Button Menu equivalent Other options
Restart Main menu: restart <arguments>
reloads the design elements and Run > Restart

resets the simulation time to zero, see: restart (CR-104)
with the option of keeping the
current formatting, breakpoints,
and WLFfile
Run Main menu: See: run (CR-107)
Run > Run

Continue Run
Ef continue the current simulation

Main menu:
Run > Continue

SEe: run (CR-107)

@ stop the current simulation run

run
Run -All Main menu: See: run (CR-107), also see
runthe current simulation forever, | Run > Run-All "Assertion settings tab" (UM-227)
or until it hits a breakpoint or
specified break event
Break none none

ModelSim User’'s Manual

Wave window UM-189

Using Dividers

Dividing lines can be placed in the pathname and values window panes by selecting File >
New Divider (Wavewindow). Dividersserveasavisual aid to signa debugging, allowing
you to separate signals and waveforms for easier viewing.

Dividing lines can be assigned any name, or no name at all. The default nameis"New
Divider." In theillustration below, two datasets have been separated with a Divider called
"Gold." Notice that the waveformsin the waveform window pane have been separated by
the divider as well.

===t wave - default : ;lglzl
File Edit Cursor Zoom Compare Bookmark Format Window

FEHE SRR LGE o ®g Q@ ELEEELE | e
e i

M0 ng

< i [o
2619 ns to 2831 ns

> -

After you have added a divider, you can moveit, changeits properties (name and size), or
deleteit.

Tomoveadivider — Click and drag the divider to the location you want

Tochangeadivider’snameand size— Click thedivider with theright mouse button and
select Divider Properties from the pop-up menu

To delete adivider — Select the divider and either press the <Delete> key on your
keyboard or select Delete from the pop-up menu

ModelSim User's Manual

UM-190 7 - Graphic Interface

Splitting Wave window panes

The pathnames, values and waveforms window panes of the Wave window display can be
split to accommodate signals from one or more datasets. Selecting File > New Window
Pane (Wave window) creates a space below the selected waveset and makes the new
window pane the selected pane. (The selected wave window pane isindicated by awhite
bar along the left margin of the pane.)

In theillustration below, the Wave window is split, showing the current active simulation
with the prefix "sim," and a second view-mode dataset, with the prefix "gold."

For moreinformation on viewing multiple simulations, see Chapter 6 - WLF files
(datasets) and virtuals.

==+t wave - default o]

File Edit Cursor Zoom Compare Bookmark Format Window

BEHES +sBEB LK 2 Q@ Ef ELEIEEH | (ube

[|

g =

ARAD e +a 10T s

ModelSim User’'s Manual

Wave window UM-191

Combining items in the Wave window

Y ou can combine signalsin the Wave window into busses. A busisa collection of signals
concatenated in a specific order to create anew virtual signal with a specific value. To
create a bus, select one or more signals in the Wave window and then choose Edit >
Combine. .

4 'Combine Selected Signals

Name:|
Combine [t Order of Indexes
* Bus " Ascending
= Group {* Descending

[T Remove selected signals after combining

] 4 LCancel

The Combine Selected Signals dialog box includes these options:

» CombinelInto
Only the Bus option isvalid at thistime. Groups are not currently implemented.

» Order of Indexes
Specifiesin which order the selected signals are indexed in the bus. If set to Ascending,
the first signal selected in the Wave window will be assigned an index of 0. If set to
Descending, the first signal selected will be assigned the highest index number.

« Remove selected signals after combining
Specifies whether you want to remove the sel ected signals from the Wave window once
the busis created

Intheillustration below, three signals have been combined to form anew bus called BUSL.
Note that the component signals are listed in the order in which they were selected in the
Wave window. Also note that the bus' value is made up of the values of its component
signals arranged in a specific order. Virtual objects are indicated by an orange diamond.

ModelSim User's Manual

UM-192 7 - Graphic Interface

==t wave - default

=10} x|

File Edit Cursor Zoom Compare Bookmark Format Window

EEE (BRI L X o S Q@f FEEERR el
e of in

Mop/pdata

AopsEUST | o1 T o

1870 ns to 2725 ns

|/
R
y

Other virtual items in the Wave window

See"Virtual Objects (User-defined buses, and more)" (um-110) for information about other
virtual items viewable in the Wave window.

Editing and formatting HDL items in the Wave window

Once you have the HDL items you want in the Wave window, you can edit and format the
list in the pathname and val ues panes to create the view you find most useful. (See also,
"Setting Wave window display properties’ (UM-197).)

To edit an item:

Select the item’ slabel in the pathname pane or its waveform in the waveform pane. Move,

copy, or remove the item by selecting commands from the Wave window Edit menu (UM-
183).

Y ou can also click+drag to move items within the pathnames and values panes:
* to select severa items:
control+click to add or subtract from the selected group

* to move the selected items:
re-click and hold on one of the selected items, then drag to the new location

ModelSim User’'s Manual

Wave window UM-193

To format an item:

Select theitem’ s label in the pathname pane or its waveform in the waveform pane, then
select Edit > Signal Properties (Wave window). The resulting Wave Signal Properties
dialog box has three tabs: View, Format, and Compare.

Wave Signal Properties

Signal: wsim: Atop/paddr
— Dizplay Mame

— Fadix — "wiave Color

€ Symbolic € Unzighed I Eu:ul-:urs...l

" Binary ' Hexadecimal

" Octal £ ASCI —Mame Calar—————

i~ Decimal Default I Eu:ul-:urs...l

Ok | Cancel Apply |

The View tab includes these options:

 Display Name
Specifies anew name (in the pathname pane) for the selected signal.

» Radix
Specifies the Radix of the selected signal(s). Setting this to default causesthe signal’s
radix to change whenever the default is modified using the radix command (CR-101).
Item values are not translated if you select Symbolic.

* Wave Color
Specifies the waveform color. Select anew color from the color palette, or enter an
X-Windows color name.

» Name Color
Specifies the signal name's color. Select anew color from the color palette, or enter an
X-Windows color name.

ModelSim User's Manual

UM-194 7 - Graphic Interface

“Wiave Signal Properties

Signal: wzim: Mtop/paddr

— Format

o Literal Logic " Ewent " Analog

——Analog Display

" Analog Step

Height Offset: JOL0
|1 7 Analog Interpolated

" Analog Backstep et |1'D

Ok | Cancel

Apply |

The Format tab includes these options:

* Format: Literal
Displays the waveform as a box containing the item value (if the value fits the space
available). Thisisthe only format that can be used to list arecord.

» Format: Logic
Displaysvaluesas U, X, 0,1, Z, W, L, H, or -.

* Format: Event
Marks each transition during the simulation run.

ModelSim User’'s Manual

Wave window UM-195

« Format: Analog [Step | Interpolated | Backstep]
All signalsinthefollowingillustration are the same/top/clk signal. Starting with "analog
step”, the /top/clk signal has been relabeled to illustrate each different wave format.

=+t wave - default

File Edit Curgor Zoom Compare Bookmark Format Window

EEE +BER LN ko Q@ EIEIEH

logic

event

| |] e] | v

0 nz to 306 ns

Analog Step
Displays awaveform in step style.

Analog | nterpolated
Displays the waveform in interpol ated style.

Analog Backstep
Displays the waveform in backstep style. Often used for power calculations.

Offset and Scale

Allowsyou to adjust the scale of theitem asit is seen on the display. Offset isthe number
of pixelsoffset from zero. The scale factor reduces (if lessthan 1) or increases (if greater
than 1) the number of pixels displayed.

Only the following types are supported in Analog format:

VHDL types.
All vectors - std logic vectors, bit vectors, and vectors derived from these types
Scalar integers
Scalar reds
Scalar time

Verilog types:
All vectors
Scalar red
Scalar integers

ModelSim User's Manual

UM-196 7 - Graphic Interface

» Height
Allows you to specify the height (in pixels) of the waveform.

W ave Signal Properties

Signal compare: ftoppa

™ Clocked Comparizon

| ;l Clocks... |

£ Continuous Comparizon

Leading Tolerance———— Trailing Tolerance

o s o e ol

Specify “When Exprezzion

| Builder... |

Ok | Cancel

Apply

The Compar e tab includes the same options as those in the Add Signal Options dialog
box (see Adding Signals, Regions and/or Clocks (UM-267)).

ModelSim User’'s Manual

Wave window UM-197

Setting Wave window display properties

Y ou can define display properties of the Wave window by selecting Edit > Display
Properties (Wave window). To save these settings permanently, select Options > Save
Preferences (Main window).

|:; Wave Window Propertie P e B
—Dizplay Signal Path—— [Snap Distance——
IEI_ [# elementsz] IT [pixels]
I1ze 0 for full path —Row targin

4 [pixelz]

— Child B s b argin—

% Left " Right 2 [pirels]

it aveform Popup

—Justify Walue

¥ wiaveform Popup Enabled

—Datazet Prefig Dizplay
" Always Show Datazet Prefizes

£ Show Datazet Prefises if 2 or more

" Never Show D atazet Prefives

ok LCancel

The Wave Window Properties dialog box includes the following options:

* Display Signal Path
Sets the display to show anything from the full pathname of each signal (e.g., sim:/top/
clk) to only its leaf element (e.g., sim:clk). A non-zero number indicates the number of
path elements to be displayed. The default isFull Path. Y ou can change this permanently
by editing the SignalNameWidth Tcl variable. See "Preference variables located in Tcl
files' (um-287) for details.

« Jugtify Value
Specifieswhether the signal valueswill bejustified to theleft margin or theright margin
in the values window pane.

 Snap Distance
Specifies the distance the cursor needs to be placed from an item edge to jump to that
edge (a 0 specification turns off the snap).

* Row Margin
Specifies the distance in pixels between top-level signals.

ModelSim User's Manual

UM-198 7 - Graphic Interface

Child Row Margin
Specifies the distance in pixels between child signals.

Waveform Popup
Toggles on/off the popup that displays when you rest your mouse pointer on asignal or
comparison object

Dataset Prefix
Specifies how signals from different datasets are displayed.

Always Show Dataset Prefixes

All dataset prefixes will be displayed along with the dataset prefix of the current
simulation ("sim").

Show Dataset Prefixesif 2 or more

Displaysall dataset prefixesif 2 or more datasetsaredisplayed. "sim" isthe default prefix
for the current simulation.

Never Show No Dataset Prefixes
No dataset prefixes will be displayed. This selection is useful if you are running only a
single simulation.

Sorting a group of HDL items

Select Edit > Sort to sort the items in the pathname and val ues panes.

Setting signal breakpoints

ModelSim User’'s Manual

Y ou can set signal breakpoints (a.k.a., when breakpoints; see the when command (CR-181)
or "Setting signal breakpoints" (UM-160) for more details) using a pop-up menu. Start by
selecting asignal and then clicking your second mouse button. Select Signal Breakpoints
from the pop-up menu and you'll see six items:

Add
Creates asignal breakpoint on the selected signal

Edit Breakpoints
Opens the Edit When dialog. See " Setting signal breakpoints' (um-160) for more
information.

Edit All Breakpoints
Opens the Breakpoints dialog. See " Setting file-line breakpoints' (uUM-168) for more
information.

Remove Signal
Removes the signal breakpoint from the selected signal

Remove All Signals
Removes all signal breakpoints

Show All
Shows alist of al signal breakpoints

When abreakpoint is hit, a message appears in the transcript window about which signal
caused the breakpoint. Breakpoints created by thewhen command (CR-181) are not affected
by the Remove All Signals menu pick, nor are they reported via Show All.

Wave window UM-199

Finding items by name or value in the Wave window

The Find dialog box allows you to search for text strings in the Wave window. Select
Edit > Find (Wave window) to bring up the Find dialog box.

Choose either the Name
or Valuefield to search Find in . wave

and enter the value to

search for in the Find Find: | Find Mext
field. Find the item by

searching Down or Up Field
through the Wave % Mame ¥ Down
window display. Auto
Wrap continues the " Walue € Up ¥ Autowiap
search at the top of the
window.

Direction e

The find operation works only within the active pane.

ModelSim User's Manual

UM-200 7 - Graphic Interface

Using time cursors in the Wave window

Q
S O
S &
0\)«% ({o\ . o(\
A
' <SS
. ¢ ¥ +
These Wave window < éef’ © \:\S@ T PN
buttons give you quick @o @ 3 (\®+ Q& o é\féz o
access to cursor placement ¥ & QTR QN S J
2 N O O (9) o O
and zooming. £ b v v
4 ® G Q@
=== wave - default ;lglﬂ

File Edit Cursor Zoom Compare Booke \Formmat—\indof

BEHE BB (KX k2 QQQ@F Ef | ELEIEEH | jeie
e Bl B

1/ pnj J
."It I.-'I pa |:| |:|r ________

' L/
4| : .
P

| »|FT]
0 ns to 956 ns

7/ . !)
click a value here to interval measurement | Click and drag with
scroll the window to the center mouse

that value selected cursoris bold pytton to zoom in

on an area of the
display.

When the Wave window isfirst drawn, there is one cursor located at time zero. Clicking
anywhere in the waveform display brings that cursor to the mouse location. Y ou can add
cursors to the waveform pane with the Cursor > Add Cursor menu selection (or the Add
Cursor button shown below). The selected cursor is drawn as abold solid line; al other
cursors are drawn with thin dashed lines. Remove cursors by selecting them and selecting
Cursor > Delete Cursor (or the Delete Cursor button shown below).

Add Cursor Delete Cursor
E? add a cursor to the center ,Pé delete the selected cursor
of the waveform window from the window

ModelSim User’'s Manual

Wave window UM-201

Finding a cursor

The cursor value (on the Goto list) corresponds to the simulation time of that cursor.
Choose a specific cursor view by selecting Cursor > Goto. Y ou can a so select cursors by
clicking avalue in the cursor-value pane.

900 rz

125 nz

|

| 2JRT

Alternatively, you can click a value with your second mouse button and type the value to
which you want to scroll.

Making cursor measurements

Each cursor is displayed with atime box showing the precise simulation time at the bottom.
When you have more than one cursor, each time box appearsin a separate track at the
bottom of the display. Model Sm also adds a delta measurement showing the time
difference between two adjacent cursor positions.

If you click in the waveform display, the cursor closest to the mouse position is selected
and then moved to the mouse position. Another way to position multiple cursorsisto use
the mouse in the time box tracks at the bottom of the display. Clicking anywherein atrack
selects that cursor and brings it to the mouse position.

The cursors are designed to snap to the closest wave edge to the |eft on the waveform that
the mouse pointer is positioned over. Y ou can control the snap distance viathe
Edit > Display Properties menu selection.

Y ou can position a cursor without snapping by dragging in the area below the waveforms.
Y ou can al'so move cursors to the next transition of a signal with these toolbar buttons:

Find Previous Find Next Transition
Transition locate the next signal

—lt locate the previous signal ﬂ— value change for the
value change for the selected signal
selected signal

Zooming - changing the waveform display range

Zooming lets you change the simulation range in the waveform pane. Y ou can zoom with
either the context menu, toolbar buttons, mouse, keyboard, or commands.

Using the Zoom menu

Y ou can use the Wave window menu bar, or call up the context menu by clicking the right
mouse button in the waveform pane.

ModelSim User's Manual

UM-202 7 - Graphic Interface

ModelSim User’'s Manual

The Zoom menu options include:

e Zoom Areawith Mouse Button 1
Use mouse button 1 to create a zoom area. Position the mouse cursor to the left side of
the desired zoom interval, press mouse button 1 and drag to the right. Release when the
box has expanded to the right side of the desired zoom interval.

e Zoom In
Zooms in by afactor of two, increasing the resolution and decreasing the visible range
horizontally.

e Zoom Out
Zooms out by afactor of two, decreasing the resolution and increasing the visible range
horizontally.

* Zoom Full
Redraws the display to show the entire simulation from time O to the current simulation
time.

» Zoom Last
Restores the display to where it was before the last zoom operation.

* Zoom Range
Bringsup adialog box that allowsyouto enter the beginning and ending timesfor arange
of time unitsto be displayed.

Zooming with toolbar buttons
These zoom buttons are available on the toolbar:

Zoom in 2x Zoom area
(ﬂ zoomin by afactor of two q use the cursor to outlinea
from the current view zoom area
Zoom out 2x Zoom Full
El zoom out by afactor of zoom out to view the full
two from current view % range of the simulation
from time 0 to the current
time

Zooming with the mouse

To zoom with the mouse, position the mouse cursor to the left side of the desired zoom
interval, press the middle mouse button (three-button mouse), or <Ctrl>+left mouse button
(two-button mouse), and while continuing to press, drag to the right and then release at the
right side of the desired zoom interval.

Zooming keyboard shortcuts

See "Wave window mouse and keyboard shortcuts' (um-205) for a complete list of Wave
window keyboard shortcuts.

Wave window UM-203

Saving zoom range and scroll position with bookmarks

Bookmarks allow you to save a particular zoom range and scroll position. Thisletsyou
return easily to aspecific view later. Y ou save the bookmark with a name, and then access
the named bookmark from the Bookmark menu.

Bookmarks are saved in the Wave format file (see "Adding items with a Wave window
format file" (UM-181)) and are restored when the format file isread. Thereis no limit to the
number of bookmarks you can save.

Bookmarks can also be created and managed from the command line. See bookmark add
wave command (CR-42) for details.

To add a bookmark, select Bookmark > Add Bookmark (Wave window).

|24 'Bookmark Properties [wave)

Bookmark Label: |e:-:am|:||e

Zoom: |EI hs o |625 uz

Top Index: |E

¥ save zoom range with bookmark.

¥ zave scroll location with bookmark.

ok Cancel

The Bookmark Properties dialog includes the following options.

» Bookmark Label
A text label to assign to the bookmark. The label will identify the bookmark on the
Bookmark menu.

e Zoom
A starting value and ending value that define the zoom range.

e Top Index
Theitem that will display at the top of the wave window. For instance, if you specify 15,
the Wave window will be scrolled down to show the 15th item in the window.

 Save zoom range with bookmark
When checked the zoom range will be saved in the bookmark.

» Save scroll location with bookmark
When checked the scroll location will be saved in the bookmark.

Once the bookmark is saved, select it by name from the Bookmark menu, and the Wave
window will be zoomed and scrolled accordingly.

ModelSim User's Manual

UM-204 7 - Graphic Interface

To edit or delete a bookmark, select Bookmark > Edit Bookmar ks (Wave window).

54 'Bookmark Selection [.wave] =]
Example Add
odify...
Delete
Delete Al
[Eal{a]
Bookmark Configuration
I arne: Example
Zoorm Fange: {0 net (625 us)
Top Index: 1]
ok Cancel Apply

The Bookmark Selection dialog includes the following options.

* Add (bookmark add wave)
Add anew bookmark

* Modify
Edit the selected bookmark

* Delete (bookmark delete wave)
Delete the selected bookmark

» Delete All (bookmark delete wave)
Delete all bookmarks

 Goto (bookmark goto wave)
Zoom and scroll the Wave window using the selected bookmark

ModelSim User’'s Manual

Wave window UM-205

Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action Result

< control - left-button - click on a scroll arrow >

scrolls window to very top or
bottom(vertical scroll) or far left or
right (horizontal scroll)

Keystroke Action

il or + zoomin

oOor- zoom out

forF zoom full; mouse pointer must be over the the cursor or
waveform panes

| or L zoom last

rorR Zoom range

<arrow up> scroll waveform display up by selecting the item above the

currently selected item

<arrow down>

scroll waveform display down by selecting the item below the
currently selected item

<arrow left>

scroll waveform display left

<arrow right>

scroll waveform display right

<page up> scroll waveform display up by a page

<page down> scroll waveform display down by a page

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> open the find dialog box; searches within the specified field in

the pathname pane for text strings

ModelSim User's Manual

UM-206 7 - Graphic Interface

Saving waveforms

ModelSim User’'s Manual

Saving a .eps file

Select File> Print Postscript (Wave window) to save the waveform as a .epsfilewrite
wave command (CR-196). Printing and writing preferences are controlled by the dial og box
shown below.

Wite Postscipt__H|
—Printer

" Print command: |||:| -d Ip1 ll
Setup... |
i* File name: |I::MINNT;"F‘eriIes.-"charleys'[Browsze. .. |

—Signal Selection — Time Range
Al signals " Full Bange 0 ns 2820 ns
% Cunent view * Curent view 1869 n= 2869 ns

" Selected " Custom Fr-:um:l i’ To i’

Ok | Cancel |

The Write Postscript dialog box includes these options:

Printer

* Filename
Enter afilename for the encapsulated Postscript (.eps) file to be created; or browseto a
previously created .epsfile and use that filename.

Signal Selection

» All signals
Print all signals.

» Current View
Print signals in the current view

* Selected
Print all selected signals

Time Range

 Full Range
Print all specified signalsin the full smulation r

e Current view
Print the specified signals for the viewable time

e Custom

ange.

range.

Print the specified signals for a user-designated From and To time.

Setup button
See "Printer Page Setup” (UM-209)

Printing on Windows platforms

Wave window UM-207

Select File> Print (Wave window) to print al or part of the waveform in the current Wave
window, or save the waveform as a printer file (a Postscript file for Postscript printers).
Printing and writing preferences are controlled by the dialog box shown below.

—Printer
Mame: |MWLINKAGE'HP Laserlet 5L *| Propeties |
Status: Feady
Type: HF Lazerlet BL =etup.. |
Where: Local
Camment: [Print ta file
—Signal Selecton—————— — Time Range
™ Al signalz " Full Bange 0 ns 2820 ns
= Current view & Curent view 1869 ns 2869 ns
™ Selected " Custom From: ﬁ To: ﬁ
k. | Cancel |
Printer
¢ Name
Choose the printer from the drop-down menu. Set printer properties with the Properties
button.
e Status

Indicates the availability of the selected printer.

ModelSim User's Manual

UM-208 7 - Graphic Interface

ModelSim User’'s Manual

* Type
Printer driver name for the selected printer. The driver determines what type of fileis
output if "Print to file" is selected.

* Where
The printer port for the selected printer.

* Comment
The printer comment from the printer properties dial og box.

* Print tofile
Make this selection to print the waveform to afileinstead of aprinter. The printer driver
determines what type of fileis created. Postscript printers create a Postscript (.ps) file,
non-Postscript printers create a.prn or printer control language file. To create an
encapsul ated Postscript file (.eps) use the File > Print Postscript menu selection.

Signal Selection

» All signals
Print all signals.

» Current View
Print signalsin current view.

» Selected
Print all selected signals.

Time Range

 Full Range
Print all specified signalsin the full simulation range.

e Current view
Print the specified signals for the viewable time range.

e Custom
Print the specified signals for a user-designated From and To time.

Setup button
See "Printer Page Setup” (UM-209)

Printer Page Setup

Wave window UM-209

Clicking the Setup button in the Write Postscript or Print dialog box allows you to define
the following options (thisis the same dialog that opens via File > Page setup).

& Fitta: |1 ﬁ page(s] wide

—Paper —karging
Faper zize: Top |05 ﬂ
Lett ¥ -
= J Bottom: [0.5 EI
Width: |25 = Left: Jos =
Height: 1.0 = Right [05 =
—Label width — Curzors—— —Grid —Color
' Color
£ Auto Adjust O O
" Grayscale
€ Fived widthe 1.5 2 inches 0On & 0On
& By
—Scaling —Orientation
' Figed: |500ns i’per page " Portrait

' |Landscape

Ok | LCancel

» Paper Size

Select your output page size from a number of options; also choose the paper width and

height.
e Margins

Specify the page margins; changing the Mar gin will change the Scale and Page

specifications.
 Label width

Specify Auto Adjust to accommodate any length label, or set afixed label width.

e Cursors
Turn printing of cursors on or off.
» Grid
Turn printing of grid lines on or off.

ModelSim User's Manual

UM-210 7 - Graphic Interface

 Color
Select full color printing, grayscale or black and white.

 Scaling
Specify aFixed output time width in nanoseconds per page —the number of pages output
isautomatically computed; or, select Fit to to define the number of pages to be output
based on the paper size and time settings; if set, the time-width per page is automatically
computed.

* Orientation
Select the output page orientation, Portrait or L andscape.

ModelSim User’'s Manual

Compiling with the graphic interface UM-211

Compiling with the graphic interface

Y ou can use a project or the Compile HDL Sour ce Files dialog box to compile VHDL or
Verilog designs. For information on compiling in a project, see "Getting started with
projects” (UM-18). To open the Compile HDL Source Files dialog, select the Compile
button (Main window) or Design > Compile.

|-, ModelSim
File Edit Deszign Yiew Proect Bun Compare Macro Options Window Help

S B@ | o Bl
| Compile] # Reading E:/modelsimB5_sefwind2/. Atolfvesimdp
Libraig: juatk 7| | Modeisims wm title . ModelSim SE/EE”
I =

The Compile HDL Source Files dialog box opens as shown below.

Compile HDL Source Files |

Library: Iw::urk

Laak, i I £ mikedHDL
T work: util.vhd

.............

a cache v
MEMoIY. v
proc. v
set.vhd

top. vhd
File narme; I Compile
Files of type: [HDL Files [~ vhdl> vhd~.v] = Done

Drefault Dptions. . Edit Source |

From the Compile HDL Source Files dialog box you can:

* select source filesto compilein any language combination

« gpecify the target library for the compiled design units

« select among the compiler options for either VHDL or Verilog

ModelSim User’'s Manual

UM-212 7 - Graphic Interface

Select the Default Options button to change the compiler options, see " Setting default
compile options' (UM-213) for details. The same Compiler Options dialog box can also be
accessed by selecting Options > Compile (Main window) or by selecting Compile
Properties from the context menu in Project tab.

Select the Edit Sour ce button to view or edit a source file via the Compile dialog box. See
"Source window" (UM-163) for additional source file editing information.

Locating source errors during compilation

If acompiler error occurs during compilation, ared error message is printed in the Main
transcript. Double-click on the error message to open the source file in an editable Source
window with the error highlighted.

% ModelSim

File Edit Design
T BER |
[] eval compile Main {voom -wark test -87 -explicit -navital -nowarn 1 - j
adder vhd nowarn 2 -nowarn 3 -noweamn 4 -nowarn 5 {E; /modelsim55_sedexam

pleztadder. vhdl

counter.vhd | I 4 Model Technology ModelSim SE/EE weom 5.5 Alpha Compiler 20
0007 Sep 13 2000

- Loading package ztandard

B -- Loading package std_logic_1164 @ source_edit - adder. vhd

- Compiling entity adder

- Compiling architecture tfl of addsla EFile Edit Object Optians WWindow
ERROR: Could not find test. gate o B T
. i =] F o
ERROR: E:/modelzimS5_zelexamplesdac @ = R R A B
de”l:'a”d_ rj'amE: """'3.rk7gat‘33”’*'f————u,,,,,,w_ 3 -- description of adder using conponen
#EHH : ErdmodelzimBh_selenamples/ac [T nn g iommsian s . =L -
Y Project ||: Dezign: ;'iellrd' Haﬂtgg.F-JmndpleimHH codevnmnlmeda EE architecture structural of adder i=s
- = - g 3 sigmal xorl_out,
|F'rn:uject :test |<:Nc| Design Loaded> 2n andl_out,
Z8 andZ_out,
29 orl_out : std logic:;
double-click on the error in the Main window 2? begin . . ,
s xorl: oryg port map
and thg error is h|gh||ghted and ready 2z inl == a,
to edit in the Source window a3 inF == b,
34 outl == xorl_out);

ModelSim User’'s Manual

Compiling with the graphic interface UM-213

Setting default compile options

Select Options > Compile (Main window) to bring up the Compiler Options dialog box
shown below. OK accepts the changes made and closes the dialog box. Apply makesthe
changes with the dialog box open so you can test your settings. Cancel closes the dialog
box and makes no changes. The options found on each tab of the dialog box are detailed
below. Changes made in the Compiler Options dialog box become the default for al
future smulations.

VHDL compiler options tab

Compiler Dptions

YHDL |-

[T Use 1993 Language Syntax [T Dizable loading meszages
[T Don't put debugging infa in librame [~ Show souce lines with emars
¥ Use explicit declarations only
— Check for — Flag "Warnings On:
™ Synthesis ¥ Unbound component
[Vital Compliance WV Process without 2 %WAIT statement
— O ptirmize for: ¥ Null Range
F Stdlogic1164 ¥ Mo space in time literal [2.9. Snsl
M il ¥ tultiple divers on unresolved signals
ak. Cancel Apply

» Use 1993 language syntax
Specifiesthe use of VHDL 93 during compilation. The 1987 standard isthe default. Same
as the -93 switch for the vcom command (CR-129). Edit the VHDL 93 (uM-286) variable
in the modelsim.ini file to set a permanent default.

e Don't put debugging infoin library
Models compiled with this option do not use any of the Model Sm debugging features.
Consequently, your user will not be able to see into the model. This also means that you
cannot set breakpoints or single step within this code. Don’t compile with this option
until you' re done debugging. Same as the -nodebug switch for the vcom command (CR-
129). See "Source code security and -nodebug” (UM-297) for more details. Edit the
NoDebug (UM-279) variable in the modelsim.ini file to set a permanent default.

ModelSim User’'s Manual

UM-214 7 - Graphic Interface

ModelSim User’'s Manual

Use explicit declarations only

Used to ignore an error in packages supplied by some other EDA vendors; directs the
compiler to resolve ambiguous function overloading in favor of the explicit function
definition. Same asthe-explicit switch for thevcom command (CR-129). Edit the Explicit
(UM-279) variable in the modelsim.ini file to set a permanent default.

Although itisnot intuitively obvious, the = operator isoverloaded inthestd_logic 1164
package. All enumeration datatypesin VHDL get an “implicit” definition for the =
operator. So while there is no explicit = operator, there is an implicit one. Thisimplicit
declaration can be hidden by an explicit declaration of = in the same package (LRM
Section 10.3). However, if another version of the = operator is declared in a different
package than that containing the enumeration declaration, and both operators become
visible through use clauses, neither can be used without explicit naming, for example:

ARI THVETI C. " =" (l eft, right)
This option alows the explicit = operator to hide the implicit one.

Disable loading messages

Disables loading messagesin the Main window. Same asthe -quiet switch for the vcom
command (CR-129). Edit the Quiet (Um-279) variable in the modelsim.ini fileto set a
permanent default.

Show sourcelineswith errors

Causes the compiler to display the relevant lines of code in the transcript. Same as the
-sour ce switch for the vcom command (CR-129). Edit the Show_source (um-279) variable
in the modelsim.ini file to set a permanent default.

Flag Warnings on:

Unbound Component

Flags any component instantiation in the VHDL source code that has no matching entity
inalibrary that isreferenced in the source code, either directly or indirectly. Edit the
Show_Warningl (um-279) variable in the modelsim.ini file to set a permanent default.

Processwithout a WAIT statement
Flags any process that does not contain await statement or a sensitivity list. Edit the
Show_Warning2 (um-279) variable in the modelsim.ini file to set a permanent defaullt.

Null Range
Flags any null range, such as 0 down to 4. Edit the Show_Warning3 (UmM-279) variablein
the modelsim.ini file to set a permanent default.

No spacein timeliteral (e.g. 5ns)
Flags any time literal that is missing a space between the number and the time unit. Edit
the Show_Warning4 (Um-279) variablein the modelsim.ini file to set apermanent default.

Multipledriverson unresolved signals
Flags any unresolved signals that have multiple drivers. Edit the Show_Warning5 (Um-
279) variable in the modelsim.ini file to set a permanent default.

Check for:

Synthesis
Turns on limited synthesis-rule compliance checking. Edit the CheckSynthesis (Um-278)
variable in the modelsim.ini file to set a permanent default.

Compiling with the graphic interface

* Vital Compliance
Toggle Vital compliance checking. Edit the NoVital Check (uM-279) variable in the
modelsim.ini file to set a permanent defaullt.

Optimize for:

 StdLogicl164
Causes the compiler to perform specia optimizations for speeding up simulation when
the multi-value logic package std logic 1164 is used. Unless you have modified the
std_logic 1164 package, this option should always be checked. Edit the Optimize 1164
(UM-279) variable in the modelsim.ini file to set a permanent default.

* Vital
Toggle acceleration of the Vital packages. Edit the NoVital (UM-279) variable in the
modelsim.ini file to set a permanent default.

Verilog compiler options tab

Compiler Qptions
[Enable runtime hazard checks [Dizable loading meszages
[T Dizable debugging data [T Show source lines with errors

[T Corvert identifiers to upper-case

— Other Yerlog Options

Libram Search...

Extenzion.. —

Library File. ..

Iniciude Directony...

kacra...

[u] 4 Cancel &pply

« Enablerun-time hazard checks
Enables the run-time hazard checking code. Same as the -hazar ds switch for the viog
command (CR-162). Edit the Hazard (Um-279) variable in the modelsim.ini fileto set a
permanent default.

UM-215

ModelSim User’'s Manual

UM-216 7 - Graphic Interface

ModelSim User’'s Manual

 Disable debugging data
Models compiled with this option do not use any of the Model Sm debugging features.
Consequently, your user will not be able to see into the model. This also means that you
cannot set breakpoints or single step within this code. Don’t compile with this option
until you' re done debugging. Same as the -nodebug switch for the viog command (CR-
162). See "Source code security and -nodebug” (UM-297) for more details. Edit the
NoDebug (UM-279) variable in the modelsim.ini file to set a permanent default.

« Convert Verilog identifiersto upper-case
Converts regular Verilog identifiers to uppercase. Allows case insensitivity for module
names. Same as the -u switch for the viog command (CR-162). Edit the UpCase (UM-280)
variable in the modelsim.ini file to set a permanent default.

« Disable loading messages
Disables loading messages in the Main window. Same as the -quiet switch for the viog
command (CR-162). Edit the Quiet (Um-279) variable in the modelsim.ini fileto set a
permanent default.

» Show sourcelineswith errors
Causes the compiler to display the relevant lines of code in the transcript. Same as the
-sour ce switch for the viog command (CR-162). Edit the Show_source (UM-279) variable
in the modelsim.ini file to set a permanent default.

Other Verilog Options:

* Library Search
Specifies the Verilog source library directory to search for undefined modules. Same as
the -y <library_directory> switch for the viog command (CR-162).

» Extension
Specifies the suffix of filesin the library directory. Multiple suffixes can be used. Same
as the +libext+<suffix> switch for the viog command (CR-162).

e Library File
Specifiesthe Verilog source library file to search for undefined modules. Same as the -v
<library_file> switch for the viog command (CR-162).

* Include Directory
Specifies adirectory for filesincluded with the ‘include filename compiler directive.
Same as the +incdir +<directory> switch for the viog command (CR-162).

* Macro
Defines amacro to execute during compilation. Same as the compiler directive: ‘ define
macro_name macro_text. Also the same asthe
+definet<macro_name> [=<macro_text> | switch for the viog command (CR-162).

Simulating with the graphic interface UM-217

Simulating with the graphic interface

Y ou can use a project or the L oad Design dialog box to simulate a compiled design. For
information on simulating in aproject, see " Getting started with projects” (uMm-18). To open
the Load Design dialog, select the L oad Design button (Main window) or Design > L oad

Design.

|-, ModelSim

File Edit Design “iew Proect Bun Compare Macro Optione wfindow Help
e e - e

- “y Load Design————— [#Lnad!ng prniect

Library: | viark ll # Loading project

= | |8 Modifwing E:/modelzim55_seAwind2 test mpf

H E] adder 4 TLIY -OEr

Five tabs - Design, VHDL, Verilog, Libraries, and SDF - allow you to select various
simulation options.

Y ou can switch between tabs to modify settings, then begin simulation by selecting the

L oad button. If you select Cancel, all selectionsremain unchanged and you are returned to
the Main window; the Exit button (only active before simulation) closes ModelSm. The
Save Settings button allows you to save the preferences on all tabsto a DO (macro) file.

Compile before you simulate

To begin simulation you must have compiled design units located in adesign library, see
"Creating adesign library" (UM-45).

P Note: Many of the dialog box options discussed in this section include parenthetical

elements that correspond to vsim (CR-168) command options. For example,
Simulator Resolution (-time [<multiplier>]<time_unit>).

ModelSim User's Manual

UM-218 7 - Graphic Interface

Design selection tab

54 'Load Design

Libran: | wiork ll

|1] counter

|1] best_counter

Simuilate Simulatar Bezalution
|T add | |V default — |

Load Euit | Save... | Cancel

P Note: The Exit button closes the Load Design dialog box and quits Model Sm.

The Design tab includes these options:

e Library
Specifies alibrary to view. Make certain your selection isavalid ModelSm library —
the library must be created by Model Sim and it’s directory must include a_info file.

 Design Unit
This hierarchical list allows you to select one top-level entity or configuration to be
simulated. All entities, configurations, and modules that exist in the specified library are
displayed inthelist box. Architectures can beviewed by selecting the"+" box before any
name.

ModelSim User’'s Manual

Simulating with the graphic interface UM-219

» Simulate (<configuration> | <module> | <entity> [(<architecture>)])
Specifies the design unit(s) to simulate. Y ou can simulate several Verilog top-level
modules or aVHDL top-level design unit in one of three ways:

1 Typeadesign unit name (configuration, module, or entity) into thefield, separate
additional names with a space. Specify library/design units with the following
syntax:

[<library_nane>.]<design_unit>

2 Click on anamein the Design Unit list below and click the Add button.
3 Leavethisfield blank and click on anameinthe Design Unit list (single unit only).

» Simulator Resolution
(-time [<multiplier>]<time_unit>)
The drop-down menu sets the simulator time units (original default is ns).

Simulator time units can be expressed as any of the following:

Simulation time units

1fs, 10fs, or 100fs femtoseconds
1ps, 10ps, or 100ps picoseconds
Ins, 10ns, or 100ns nanoseconds
1us, 10us, or 100us microseconds
1ms, 10ms, or 100ms milliseconds
1sec, 10sec, or 100sec seconds

See also, "Selecting the time resolution” (UM-46).

ModelSim User's Manual

UM-220 7 - Graphic Interface

VHDL settings tab

|5, Load Design

— Genenics
Mame | Walue | Override Instance?
Add... | Delete Edi... |
—¥ITAL — TEXTIO Files
—STD_IMPUT
[Dizable Timing Checks
| Browsze. ..
r LSS ‘Jita!l 2._2I:| S0OF Mapping
[default is Wital 95) ——STD_OUTPUT
™ Disable Gliteh Generatian | Browse.
Load | E xit | Save.. Cancel

ModelSim User’'s Manual

The VHDL tab includes these options:

Generics

The Add button opens a dialog box (shown below) that allows you to specify the value
of generics within the current simulation; generics are then added to the Genericslist.
Y ou can also select ageneric on the listing to Delete or Edit.

Simulating with the graphic interface UM-221

From the Specify a
Genericdialogbox youcan %, Specify a Generic M=l E3
set the following options.

) Genenc Hame Itph_h'l
» Generic Name (-g

<Name>=<Vaue>) Value|1 ns
The name of the generic
parameter. Typeitinasit
appearsin the VHDL
source (case isignored).

* Value oK | Cancel
Specifiesavalue for all

genericsin the design
with the given name
(above) that have not
received explicit values in generic maps (such as top-level generics and generics that
would otherwise receive their default value). The value must be appropriate for the
declared data type of the generic parameter. No spaces are allowed in the specification
(except within quotes) when specifying a string value.

¥ {Overnide Instance-specific ' alues

¢ Override Instance - specific Values (-G <Name>=<Vaue>)
Select to override generics that received explicit values in generic maps. The name and
value are specified as above. The use of thisswitch isindicated inthe Overridelnstance
column of the Genericslist.

The OK button addsthe generic to the Genericslisting; Cancel dismissesthe dia og box
without changes.

VITAL

+ Disable Timing Checks (+notimingchecks)
Disables timing checks generated by VITAL models.

» UseVital 2.2b SDF Mapping (-vital2.2b)
Selects SDF mapping for VITAL 2.2b (default is Vital95).

 Disable Glitch Generation (-noglitch)
Disables VITAL glitch generation.

TEXTIO files

e STD_INPUT (-std_input <filename>)
Specifies the file to use for the VHDL textio STD_INPUT file. Use the Br owse button
to locate afile within your directories.

e STD_OUTPUT (-std_output <filename>)
Specifiesthefileto usefor the VHDL textio STD_OUTPUT file. Usethe Browse button
to locate afile within your directories.

ModelSim User's Manual

UM-222 7 - Graphic Interface

Verilog settings tab

|4 'Load Design

Delap Selection

Drelan: min = |

— Pulze Optionz — Other Optionz
Dizable pulze error and r Enable Hazard Checking
Warning meszages [-hazardz]

[+ho_pulze_mzg]

T Dizable Timing Checks in
Fiejection Limit Z [+pulze_r) [~ Specify Blocks
Errar Lirnit % [+pulze_e [+natimingchecks]

— Uzer Defined Arguments [+<pluzarg:]

Load E wit Save... Cancel

The Verilog tab includes these options:
» Delay Selection (+mindelays | +typdelays | +maxdelays)

Use the drop-down menu to select timing for min:typ:max expressions.
Pulse Options

 Disable pulseerror and war ning messages (+no_pulse_msg)
Disables path pulse error warning messages.

« Regection Limit (+pulse_r/<percent>)
Sets the module path pulse rejection limit as a percentage of the path delay.

e Error Limit (+pulse_e/<percent>)
Sets the module path pulse error limit as a percentage of the path delay.

ModelSim User’'s Manual

Simulating with the graphic interface UM-223

Other Options

» Enable Hazard Checking (-hazards)
Enables hazard checking in Verilog modules.

« Disable Timing Checksin Specify Blocks (+noti mingchecks)
Disables the timing check system tasks ($setup, $hold,...) in specify blocks.

» User Defined Arguments (+<plusarg>)
Arguments are preceded with “+”, making them accessible through the Verilog PLI
routine mc_scan_plusar gs. The values specified in thisfield must have a"+" preceding
them or Model Sm may incorrectly parse them.

Libraries settings tab

|:, Load Design

— Search Libranes [L |

&dd | E dit | Deletel

—Search Libraries Firgt [-LF]

&dd | Edit | Delete

Load | Ewit Save.. Cancel

The Librariestab includes these options:
* Search Libraries(-L)
Specifies the library to search for design units instantiated from Verilog.

» Search LibrariesFirst (-Lf)
Same as Search Libraries but these libraries are searched before ‘usdlib.

ModelSim User's Manual

UM-224 7 - Graphic Interface

SDF settings tab

|5, Load Design

 Desgn | VHDL | Verog | Libraies | 50F |

—SDF Filez
Fiegion/File Drelay
Add.. | Delete | Edi... |
—SDF Options —Multi-Source delay
: : & latest
[T Dizable 5DF warnings
i
[” Feduce SOF emrors bo warnings
 max
Load E xit Save.. Cancel

The SDF (Standard Delay Format) tab includes these options:

SDF Files

The Add button opens a dialog box that allows you to specify the SDF filesto load for
the current simulation; files are then added to the Region/Filelist. Y ou may also select
afile onthelisting to Delete or Edit (opens the dialog box below).

ModelSim User’'s Manual

SDF options

. | Specify an SDF File

Apply to regiunl.-’cuunter Delay Selection tbp — |

Simulating with the graphic interface

SDF Filelm_l,l.sdf Browsze. .. |

0Ok | Cancel

From the Specify an SDF File dialog box you can set the following options.

SDF file ([<region>] = <sdf_filename>)
Specifiesthe SDF fileto use for annotation. Use the Br owse button to locate afile within
your directories.

Apply toregion ([<region>] = <sdf_filename>)
Specifies the design region to use with the selected SDF options.

Delay Selection (-sdfmin | -sdftyp | -sdfmax)
The drop-down menu sel ects delay timing (min, typ or max) to be used from the specified
SDF file. See also, " Specifying SDF files for simulation” (UM-234).

The OK button places the specified SDF file and delay on the Region/Filelist; Cancel
dismisses the dialog box without changes.

Disable SDF war nings (-sdfnowarn)
Select to disable warnings from the SDF reader.

Reduce SDF errorsto warnings (-sdfnoerror)
Change SDF errors to warnings so the simulation can continue.

Multi-Sour ce Delay (-multisource_delay <sdf_option>)

Select max, min or latest delay. Controls how multiple PORT or INTERCONNECT
constructs that terminate at the same port are handled. By default, the Module | nput Port
Delay (MIPD) is set to the max value encountered in the SDF file. Alternatively, you can
choose the min or latest of the values.

UM-225

ModelSim User's Manual

UM-226 7 - Graphic Interface

Setting default simulation options

Select Options> Simulation... (Main window) to bring up the Simulation Optionsdialog
box shown below. Options you can set for the current simulation include: default radix,
default force type, default run length, iteration limit, warning suppression, break on
assertion specifications, and WLF file configuration. OK accepts the changes made and
closes the dialog box. Apply makes the changes with the dialog box open so you can test
your settings. Cancel closes the dialog box and makes no changes. The options found on
each tab are detailed below.

P Note: Changes made in the Simulation Options dialog box are the default for the
current simulation only. Options can be saved as the default for future simulations by
editing the simulator control variablesin the modelsim.ini file; the variables to edit are
noted in thetext below. Y ou can use Notepad (see notepad command (CR-89)) to edit the
variablesin modelsim.ini if you wish. See also, "Projects and system initialization" (Um-
15) for more information.

Default settings tab

m Simulation Options =]
Defaults _
—Default Radis———— —Supprezs Warnings:
' Symbuolic [From Synopsys Packages
' Binany [” From IEEE Wumeric 5td Packages
" Octal
 Decimal —Default Run ~Default Force Type——
" Unsigned . " " Fresze
€ Hesadecima — Iteration Lirnit £ Dive
& asol 1000 " Deposit

ok LCancel Apply

ModelSim User’'s Manual

The Defaults tab includes these options:

» Default Radix
Sets the default radix for the current simulation run. Y ou can also use theradix (CR-101)
command to set the same temporary default. A permanent default can be set by editing
the DefaultRadix (UM-281) variable in the modelsim.ini file. The chosen radix isused for
all commands (for ce (CR-76), examine (CR-71), change (CR-50) are examples) and for
displayed valuesin the Signals, Variables, Dataflow, List, and Wave windows.

Simulating with the graphic interface UM-227

» Suppress Warnings
Selecting From Synopsys Packages suppresses warnings generated within the
accelerated Synopsys std_arith packages. Edit the StdArithNoWarnings (UM-282)
variable in the modelsim.ini file to set a permanent default.

Selecting From | EEE Numer ic Std Pack ages suppresseswarnings generated withinthe
accelerated numeric_std and numeric_bit packages. Edit the NumericStdNoWarnings
(UM-282) variable in the modelsim.ini file to set a permanent default.

 Default Run
Sets the default run length for the current simulation. Edit the RunLength (Um-282)
variable in the modelsim.ini file to set a permanent default.

* |teration Limit
Sets alimit on the number of deltas within the same simulation time unit to prevent
infinite looping. Edit the IterationLimit (UM-281) variablein the modelsim.ini fileto set a
permanent iteration limit default.

 Default Force Type
Selects the default force type for the current simulation. Edit the DefaultForceKind (Um-
280) variable in the modelsim.ini file to set a permanent default.

Assertion settings tab

E Simulation Options [_ O] x|

—Break on Aszertion ~lgnore Azsertions For—
+ Fatal [T Failure
" Failure ™ Enmar
" Emor [~ Warming
" Waming [T Hote
" MNaote

ok LCancel Apply

The Assertions tab includes these options:

* Break on Assertion
Selects the assertion severity that will stop simulation. Edit the BreakOnA ssertion (UM-
280) variable in the modelsim.ini file to set a permanent default.

ModelSim User's Manual

UM-228 7 - Graphic Interface

* lIgnore Assertions For

Selects the assertion type to ignore for the current simulation. Multiple selections are
possible. Edit the IgnoreFailure, IgnoreError, IgnoreWarning, and IgnoreNote (UM-281)
variables in the modelsim.ini file to set permanent defaults.

When an assertion type isignored, no message will be printed, nor will the ssimulation
halt (even if break on assertion is set for that type).

P Note: Assertionsthat appear within an instantiation or configuration port map clause
conversion function will not stop the simulation regardless of the severity level of the

assertion.

WLF settings tab

m Simulation Options

—WLF File Size Limit

" Mo Size Limit

" Size Limit IEI

S I=] E3

—WLF File Tirne Lirnit

' Ma Time Limnit

" Time Limit [0 [rs =]

—wILF Attributes
¥ Compress WLF data.

[T Delete WLF file on exit.

— Design Hierarchy

' Save all regions in design.

¥ Save regions containing logged signals.

ok LCancel

Apply

ModelSim User’'s Manual

The WLF Filestab includes these options:

« WLF FileSizeLimit

Limitsthe WLFfileby size (asclosely aspossibl€) to the specified number of megabytes.
If both sizeand time limits are specified, the most restrictiveisused. Setting it to O results
in no limit. Edit the WLFSizeLimit (UM-283) variable in the modelsim.ini fileto set a

permanent default.
e WLF FileTimeLimit

Limitsthe WLF file by size (as closely as possible) to the specified amount of time. If
both time and size limits are specified, the most restrictive is used. Setting it to O results
in no limit. Edit the WLFTimeLimit (um-283) variable in the modelsim.ini fileto set a

permanent default.

Simulating with the graphic interface UM-229

e CompressWLF data
Compresses WLF files to reduce their size. Y ou would typically only disable
compression for troubleshooting purposes. Edit the WL FCompress (UM-283) variable in
the modelsim.ini file to set a permanent default.

» Delete WLF file on exit
Specifies whether the WLF file should be deleted when the simulation ends. Edit the
WLFDel eteOnQuit (uM-283) variable in the modelsim.ini file to set a permanent default.

» Design Hierarchy
Specifieswhether to save all design hierarchy in the WLF file or only regions containing

logged signals. Edit the WL FSaveAllRegions (UM-283) variable in the modelsim.ini file
to set a permanent defaullt.

ModelSim User's Manual

UM-230 7 - Graphic Interface

ModelSim tools

* "The GUI Expression Builder" (um-230)
Edit > Search > Search for Expression > Builder (List or Wave window)
Helps you build logical expressions for use in Wave and List window searches and
several simulator commands. For expression format syntax see
"GUI_expression_format" (CR-16).

The GUI Expression Builder

ModelSim User’'s Manual

The GUI Expression Builder is afeature of the Wave and List Signal Search dialog boxes,
and the List trigger properties dialog box. It aidsin building a search expression that
follows the "GUI_expression_format" (CR-16).

To locate the Builder:

« select Edit > Search (List or Wave window)

« select the Sear ch for Expression option in the resulting dialog box
* select the Builder button

|5 'Expression Builder

FEHpressiDn

— Exprezsion Builder
Ihzert Selected Signal [] ==
rizing falling Fet I I=
AMD| OR 1] 1 b »= 1
#“O0R| SLL b z §= +
SEL| SR H L i / %
Clear Save Test | Ok | Cancel

The Expression Builder dialog box provides an array of buttons that help you build a GUI
expression. For instance, rather than typing in asignal name, you can select the signal in
the associated Wave or List window and press Insert Reference Signal in the Expression
Builder. Theresult will bethefull signal name added to the expression field. All Expression
Builder buttons correspond to the "Expression syntax" (CR-19).

ModelSim tools UM-231

To search for when a signal reaches a particular value

Select the signal in the Wave window and click Insert Reference Signal and ==. Then,
click the value buttons or type a value.

To evaluate only on clock edges

Click the & & buttonto AND this condition with the rest of the expression. Then select the
clock in the Wave window and click I nsert Reference Signal and ‘rising. You can also
select the falling edge or both edges.

Operators

Other buttonswill add operators of various kinds (see "Expression syntax” (CR-19)), or you
can typethemin.

ModelSim User's Manual

UM-232 7 - Graphic Interface

Graphic interface commands

The following commands provide control and feedback during simulation. Only brief
descriptions are provided here; for more information and command syntax see the
Model Sm Command Reference.

Window control and Description

feedback commands

batch_mode (CR-40) returnsa 1l if Model Smis operating in batch mode, otherwise returns a 0;
itistypically used as acondition in an if statement

configure (CR-51) invokes the List or Wave widget configure command for the current
default List or Wave window

notepad (CR-89) asimpletext editor; used to view and edit ASCI|I files or create new files

write preferences (CR-191) saves the current GUI preference settingsto a Tcl preferencefile

ModelSim User’'s Manual

UM-233

8 - Standard Delay Format (SDF) Timing Annotation

Chapter contents

Specifying SDF filesfor smulation UM-234
Instance specification. UM-234
SDF specificationwiththeGul UM-23%5
Errorsandwarnings UM-23%

VHDL VITAL SDF UM-236
SDF to VHDL generic matchmg UM-236
Resolvingerrors UM-237

VerilogSDF . . . e uUM-238
The $sdf_annotate system task UM-238
SDF to Verilog construct matching UM-239
Optional edge specifications UM-241
Optiona conditions UM-242
Roundedtimingvalues UM-243

SDF for Mixed VHDL and VerilogDesigns UM-244

Interconnectdelays. UM-244

Troubleshooting UM-245
Specifying the wrong mstance .o . UM-245
Mistaking a component or module namefor an mstance Iabel . UM-246
Forgetting to specify theinstance. UM-246

This chapter discusses Model Sm's implementation of SDF (Standard Delay Format)
timing annotation. Included are sections on VITAL SDF and Verilog SDF, plus
troubleshooting.

Verilog and VHDL VITAL timing data can be annotated from SDF files by using the
simulator’ s built-in SDF annotator.
SDF and ModelSim

SDF timing annotations can be applied only to your FPGA vendor’s libraries; al other
libraries will simulate without annotation.

ModelSim User's Manual

UM-234 8 - Standard Delay Format (SDF) Timing Annotation

Specifying SDF files for simulation

Model Sm supports SDF versions 1.0 through 3.0. The simulator’ s built-in SDF annotator
automatically adjuststo the version of thefile. Use the following vsim (CR-168) command-
line options to specify the SDF files, the desired timing values, and their associated design
instances:

-sdf m n [<instance>=] <fil ename>

-sdftyp [<instance>=]<fil ename>
-sdf max [<i nstance>=] <fil ename>

Any number of SDF files can be applied to any instance in the design by specifying one of
the above options for each file. Use -sdfmin to select minimum, -sdftyp to select typical,
and -sdfmax to select maximum timing values from the SDF file.

Instance specification

ModelSim User’'s Manual

Theinstance pathsin the SDF file are relative to the instance to which the SDF is applied.
Usudlly, thisinstanceis an ASIC or FPGA moded instantiated under a testbench. For
exampl e, to annotate maximum timing values from the SDF file myasic.sdf to an instance
ul under atop-level named testbench, invoke the simulator as follows:

vsim -sdf max /testbench/ ul=nyasic.sdf testbench

If the instance name is omitted then the SDF file is applied to the top-level. Thisisusually
incorrect because in most cases the model isinstantiated under a testbench or within a
larger system level simulation. Infact, the design can have several models, each having its
own SDFfile. In this case, specify an SDF file for each instance. For example,

vsim -sdf max /systenful=asicl. sdf -sdfmax /systenfu2=asic2.sdf system

Specifying SDF files for simulation UM-235

SDF specification with the GUI

As an dternative to the command-line options, you can specify SDF files in the L oad
Design dialog box under the SDF tab.

|1:-.__|'Luad Design
Desin | DL | Verba | Lbaies} 50F |
—SDF Files
Reqion/File Delay
Add... | Delete Edit... |
—SDF Ophons bulti-Source delay
% |atest
[Disable SDF warnings
= min
[Reduce SDF emors o warnings
£ max
Load E it Save... Cancel

Y ou can accessthisdialog by invoking the ssmulator without any argumentsor by selecting
Design > Load Design (Main window). For Verilog designs, you can also specify SDF
files by using the $sdf _annotate system task. See "The $sdf annotate system task" (UM-
238) for more details.

Errors and warnings

Errorsissued by the SDF annotator while loading the design prevent the simulation from
continuing, whereas warnings do not. Use the -sdfnoerror option with vsim (CR-168) to
change SDF errorsto warnings so that the simulation can continue. Warning messages can
be suppressed by using vsim with either the -sdfnowar n or +nosdfwarn options.

Another option is to use the SDF tab from the L oad Design dialog box (shown above).
Select Disable SDF war nings (-sdfnowarn, or +nosdfwarn) to disable warnings, or select
Reduce SDF errorsto warnings (-sdfnoerror) to change errors to warnings.

See "Troubleshooting" (Um-245) for more information on errors and warnings, and how to
avoid them.

ModelSim User's Manual

UM-236 8 - Standard Delay Format (SDF) Timing Annotation

VHDL VITAL SDF

VHDL SDF annotation works on VITAL cellsonly. The IEEE 1076.4 VITAL ASIC
Modeling Specification describes how cells must be written to support SDF annotation.
Once again, the designer does not need to know the details of this specification because the
library provider has already written the VITAL cells and tools that create compatible SDF
files. However, thefollowing summary may help you understand simulator error messages.
For additional VITAL specification information, see "Obtaining the VITAL specification
and source code" (UM-52).

SDF to VHDL generic matching

ModelSim User’'s Manual

An SDF file contains delay and timing constraint datafor cell instancesin the design. The
annotator must locate the cell instances and the placehol ders (VHDL generics) for the
timing data. Each type of SDF timing construct is mapped to the name of a generic as
specified by the VITAL modeling specification. The annotator |ocates the generic and
updatesit with the timing value from the SDFfile. It isan error if the annotator failsto find
the cell instance or the named generic. The following are examples of SDF constructs and
their associated generic names:

SDF construct Matching VHDL generic name
(IOPATH ay (3)) tpd ay

(IOPATH (posedge clk) q (1) (2) tpd clk_q posedge
(INTERCONNECT ully u2/a(5)) tipd_a

(SETUPd (posedge clk) (5)) tsetup_d_clk_noedge posedge

(HOLD (negedge d) (posedge clk) (5)) thold _d clk negedge posedge

(SETUPHOLD d clk (5) (5)) tsetup_d_clk & thold_d_clk

(WIDTH (COND (reset==1"b0) clk) (5)) | tpw_clk reset_eq O

VHDL VITAL SDF UM-237

Resolving errors

If the simulator finds the cell instance but not the generic then an error message is issued.
For example,

ERROR: nyasi c. sdf (18)

I nstance '/testbench/dut/ul’ does not have a generic nanmed 'tpd_a_y
In this case, make sure that the design is using the appropriate VITAL library cells. If itis,
then thereis probably amismatch between the SDF and the VITAL cells. Y ou need to find
the cell instance and compare its generic names to those expected by the annotator. L ook
inthe VHDL source files provided by the cell library vendor.

If none of the generic names look like VITAL timing generic names, then perhaps the
VITAL library cells are not being used. If the generic names do look like VITAL timing
generic names but don’'t match the names expected by the annotator, then there are several
possibilities:

» The vendor’ stools are not conforming to the VITAL specification.

» The SDF file was accidentally applied to the wrong instance. In this case, the ssmulator

also issues other error messages indicating that cell instances in the SDF could not be
located in the design.

» Thevendor’slibrary and SDF were developed for the older VITAL 2.2b specification.
This version uses different name mapping rules. In this case, invoke vsim (CR-168) with
the -vital2.2b option:

vsim -vital 2. 2b -sdf max /testbench/ul=nyasic. sdf testbench

For more information on resolving errors see "Troubleshooting” (UM-245).

ModelSim User's Manual

UM-238 8 - Standard Delay Format (SDF) Timing Annotation

Verilog SDF

Verilog designs can be annotated using either the simulator command-line options or the
$sdf_annotate system task (also commonly used in other Verilog simulators). The
command-line options annotate the design immediately after it is loaded, but before any
simulation events take place. The $sdf_annotate task annotates the design at the timeit is
called in the Verilog source code. This provides more flexibility than the command-line
options.

The $sdf_annotate system task

ModelSim User’'s Manual

The syntax for $sdf_annotateis:

Syntax

$sdf _annot ate
(["<sdffile>"], [<instance>], ["<config_file>"], ["<log_file>"]
["<mtmspec>"], ["<scale_factor>"], ["<scale_type>"]);

Arguments

"<sdf fil e>"

String that specifies the SDF file. Required.

<i nst ance>
Hierarchical name of the instance to be annotated. Optional. Defaults to the instance
where the $sdf_annotate call is made.

"<config_file>"
String that specifies the configuration file. Optional. Currently not supported, this
argument isignored.

"<log_file>"
String that specifies the logfile. Optional. Currently not supported, this argument is
ignored.

"<nt m spec>"
String that specifies the delay selection. Optional. The allowed strings are "minimum”,
"typical"”, "maximum®”, and "tool_control”. Caseisignored and the default is
"tool_control”. The "tool_control" argument means to use the delay specified on the

command line by +mindelays, +typdelays, or +maxdelays (defaults to +typdelays).

"<scal e_factor>"
String that specifies delay scaling factors. Optional. The format is
"<min_mult>:<typ_mult>:<max_mult>". Each multiplier isareal number that isused to
scal e the corresponding delay in the SDF file.

"<scal e_type>"
String that overridesthe <mtm_spec> delay selection. Optional. The <mtm_spec> delay
selection is aways used to select the delay scaling factor, but if a<scale type> is
specified, then it will determine the min/typ/max selection from the SDF file. The
allowed strings are "from_min", "from_minimum", "from_typ", "from_typical",

"from_max", "from_maximum", and "from_mtm". Case isignored, and the default is
"from_mtm", which means to use the <mtm_spec> value.

Verilog SDF UM-239

Examples

Optional arguments can be omitted by using commas or by leaving them out if they are at
the end of the argument list. For example, to specify only the SDF file and the instance it
appliesto:

$sdf _annot ate("nyasi c. sdf ", testbench.ul);

To also specify maximum delay values:

$sdf _annot ate("nyasi c. sdf ", testbench.ul, , , "maximunt');

SDF to Verilog construct matching

The annotator matches SDF constructs to corresponding Verilog constructs in the cells.
Usually, the cells contain path delays and timing checks within specify blocks. For each
SDF construct, the annotator locates the cell instance and updates each specify path delay
or timing check that matches. An SDF construct can have multiple matches, in which case
each matching specify statement is updated with the SDF timing value. SDF constructs are
matched to Verilog constructs as follows:

IOPATH is matched to specify path delays or primitives:

SDF Verilog
(IOPATH (posedge clk) q (3) (4)) (posedgeclk =>q) = 0;
(IOPATH ay (3) (4) buf ul (y, a);

The IOPATH construct usually annotates path delays. If the module contains no path
delays, then al primitives that drive the specified output port are annotated.

INTERCONNECT and PORT are matched to input ports:

SDF Verilog
(INTERCONNECT ul.y u2.a(5)) input &
(PORT u2.a(5)) inout &

Both of these constructsidentify amoduleinput or inout port and create an internal net that
isadelayed version of the port. Thisis called aModule Input Port Delay (MIPD). All
primitives, specify path delays, and specify timing checks connected to the original port are
reconnected to the new MIPD net.

PATHPULSE and GLOBALPATHPULSE are matched to specify path delays:

SDF Verilog

(PATHPULSE ay (5) (10)) (a=>y)=0;

(GLOBALPATHPULSE ay (30) (60)) (a=>y)=0;

If the input and output ports are omitted in the SDF, then all path delays are matched in the
cell.

ModelSim User's Manual

UM-240 8 - Standard Delay Format (SDF) Timing Annotation

DEVICE is matched to primitives or specify path delays:

SDF Verilog
(DEVICEY (5)) and ul(y, a, b);
(DEVICEY (5)) (a=>y)=0; (b=>y)=0;

If the SDF cell instance is a primitive instance, then that primitive’s delay is annotated. If
it isamodule instance, then all specify path delays are annotated that drive the output port
specified in the DEVICE construct (all path delays are annotated if the output port is
omitted). If the module contains no path delays, then all primitivesthat drive the specified
output port are annotated (or all primitives that drive any output port if the output port is
omitted).

SETUP is matched to $setup and $setuphold:

SDF Verilog
(SETUPd (posedge clk) (5)) $setup(d, posedge clk, 0);
(SETUPd (posedge clk) (5)) $setuphol d(posedge clk, d, 0, 0);

HOLD is matched to $hold and $setuphold:

SDF Verilog
(HOLD d (posedge clk) (5)) $hold(posedge clk, d, 0);
(HOLD d (posedge clk) (5)) $setuphold(posedge clk, d, 0, 0);

SETUPHOLD is matched to $setup, $hold, and $setuphold:

SDF Verilog

(SETUPHOLD d (posedge clk) (5) (5)) $setup(d, posedge clk, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $hold(posedge clk, d, 0);

(SETUPHOLD d (posedge clk) (5) (5)) $setuphold(posedge clk, d, 0, 0);

RECOVERY is matched to $recovery:

SDF Verilog

(RECOVERY (negedge reset) (posedge clk) (5)) $recovery(negedge reset, posedge clk, 0);

REMOVAL is matched to $removal:

SDF Verilog

(REMOVAL (negedge reset) (posedge clk) (5)) $removal (negedge reset, posedge clk, 0);

ModelSim User’'s Manual

Verilog SDF

RECREM is matched to $recovery, $removal, and $recrem:

SDF

Verilog

(RECREM (negedge reset) (posedge clk) (5) (5))

$recovery(negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5))

$removal (negedge reset, posedge clk, 0);

(RECREM (negedge reset) (posedge clk) (5) (5))

$recrem(negedge reset, posedge clk, 0);

SKEW is matched to $skew:

SDF

Verilog

(SKEW (posedge clk1) (posedge clk2) (5))

$skew(posedge clkl, posedge clk2, 0);

WIDTH is matched to $width:

SDF

Verilog

(WIDTH (posedge clk) (5))

$width(posedge clk, 0);

PERIOD is matched to $period:

SDF

Verilog

(PERIOD (posedge clk) (5))

$period(posedge clk, 0);

NOCHANGE is matched to $nochange:

SDF

Verilog

(NOCHANGE (negedge write) addr (5) (5))

$nochange(negedge write, addr, 0, 0);

Optional edge specifications

Timing check ports and path delay input ports can have optional edge specifications. The
annotator uses the following rules to match edges:

« A match occursif the SDF port does not have an edge.

« A match occursif the specify port does not have an edge.

» A match occursif the SDF port edge isidentical to the specify port edge.

» A match occursif explicit edge transitionsin the specify port edge overlap with the SDF

port edge.

These rules alow SDF annotation to take place even if there is a difference between the
number of edge-specific constructs in the SDF file and the Verilog specify block. For
example, the Verilog specify block may contain separate setup timing checks for afalling

UM-241

ModelSim User's Manual

UM-242 8 - Standard Delay Format (SDF) Timing Annotation

and rising edge on data with respect to clock, while the SDF file may contain only asingle
setup check for both edges:

SDF Verilog
(SETUP data (posedge clock) (5)) $setup(posedge data, posedge clk, 0);
(SETUP data (posedge clock) (5)) $setup(negedge data, posedge clk, 0);

Inthis case, the cell accommodates more accurate data than can be supplied by thetool that
created the SDF file, and both timing checks correctly receive the same value. Likewise,
the SDF file may contain more accurate data than the model can accommodate.

SDF Verilog

(SETUP (posedge data) (posedge clock) (4)) $setup(data, posedge clk, 0);
(SETUP (negedge data) (posedge clock) (6)) $setup(data, posedge clk, 0);

Inthis case, both SDF constructs are matched and the timing check receivesthe value from
the last one encountered.

Timing check edge specifiers can also use explicit edge transitions instead of posedge and
negedge. However, the SDF fileis limited to posedge and negedge. The explicit edge
specifiersare 01, 0x, 10, 1x, X0, and x1. The set of [01, 0x, x1] is equivaent to posedge,
while the set of [10, 1x, x0Q] is equivalent to negedge. A match occursif any of the explicit
edges in the specify port match any of the explicit edgesimplied by the SDF port. For
example,

SDF Verilog

(SETUP data (posedge clock) (5)) $setup(data, edge]01, 0x] clk, 0);

Optional conditions

Timing check ports and path delays can have optional conditions. The annotator uses the
following rules to match conditions:

* A match occursif the SDF does not have a condition.

» A match occurs for atiming check if the SDF port condition is semantically equivalent
to the specify port condition.

» A match occursfor apath delay if the SDF condition islexically identical to the specify
condition.

Timing check conditions are limited to very simple conditions, therefore the annotator can
match the expressions based on semantics. For example,

SDF

Verilog

(SETUP data (COND (reset!=1) (posedge clock)) (5)) | $setup(data, posedge clk & & & (reset==0), 0);

ModelSim User’'s Manual

Verilog SDF UM-243

The conditions are semantically equivalent and a match occurs. In contrast, path delay
conditions may be complicated and semantically equivalent conditions may not match. For
example,

SDF Verilog

(COND (r1]|r2) (IOPATH clk q (5))) | if (r1]|r2) (clk =>q) =5; // matches

(COND (r1 || r2) (IOPATH clk q (5))) | if (r2|Ir2) (clk => q) = 5; // does not match

The annotator does not match the second condition above because the order of r1 andr2 are
reversed.

Rounded timing values

The SDF TIMESCALE construct specifies time units of valuesin the SDF file. The
annotator rounds timing values from the SDF file to the time precision of the module that
isannotated. For example, if the SDF TIMESCALE is 1Insand avalue of .016 is annotated
to apath delay in amodule having atime precision of 10ps (from the timescale directive),
then the path delay receives a value of 20ps. The SDF value of 16psis rounded to 20ps.
Interconnect delays are rounded to the time precision of the module that contains the
annotated MIPD.

ModelSim User's Manual

UM-244 8 - Standard Delay Format (SDF) Timing Annotation

SDF for Mixed VHDL and Verilog Designs

Annotation of amixed VHDL and Verilog designisvery flexible. VHDL VITAL cellsand
Verilog cells can be annotated from the same SDFfile. Thisflexibility isavailable only by
using the simulator’s SDF command-line options. The Verilog $sdf _annotate system task
can annotate Verilog cells only. See the veim command (CR-168) for more information on
SDF command-line options.

Interconnect delays

ModelSim User’'s Manual

An interconnect delay represents the delay from the output of one device to the input of
another. With Verilog designs, Model Sm can model single interconnect delays or
multisource interconnect delays. See "Arguments, Verilog" (CR-174) under the veim
command for more information on the relevant command-line switches.

Per VHDL VITAL '95, thereis no convenient way to handle interconnect delays from
multiple outputsto asingle input. Interconnect delay is modeled in the receiving device as
asingledelay from an input port to an internal node. (The nodeisexplicitly declared.) The
default isto usethe value of the maximum encountered delay in the SDFfile. Alternatively,
you can choose the minimum or latest val ue of the multiple delayswith the vsim command
(CR-168) -multisour ce_delay option.

-mul ti source_del ay mn|nax|| atest

Timing checksare performed on the interconnect delayed versions of input ports. Thismay
result in misleading timing constraint violations, because the ports may satisfy the
constraint while the delayed versions may not. If the smulator seems to report incorrect
violations, be sure to account for the effect of interconnect delays.

Troubleshooting UM-245

Troubleshooting

Specifying the wrong instance

By far, the most common mistakein SDF annotation is to specify thewrong instanceto the
simulator’s SDF options. The most common case is to leave off the instance altogether,
which is the same as selecting the top-level design unit. Thisis generally wrong because
the instance paths in the SDF are relative to the ASIC or FPGA model, which is usually
instantiated under atop-level testbench. See "Instance specification” (UM-234) for an
example.

A common example for both VHDL and Verilog test benches is provided below. For
simplicity, the test benches do nothing more than instantiate a model that has no ports.

VHDL testbench

entity testbench is end

architecture only of testbench is
conmponent nyasic
end conponent;

begi n
dut : nyasic;

end;

Verilog testbench

nodul e testbench
nyasi c dut();
endnodul e

The name of the model is myasic and the instance label is dut. For either testbench, an
appropriate simulator invocation might be:

vsi m - sdf max /testbench/ dut =nyasi c. sdf testbench

Optionally, you can leave off the name of the top-level:

vsi m - sdf max /dut =nmyasic. sdf testbench

The important thing is to select the instance for which the SDF isintended. If the model is
deep within the design hierarchy, an easy way to find the instance name is to first invoke
the simulator without SDF options, open the structure window, navigate to the model
instance, select it, and enter the environment command (CR-70). This command displays
the instance name that should be used in the SDF command-line option.

ModelSim User’'s Manual

UM-246 8 - Standard Delay Format (SDF) Timing Annotation

Mistaking a component or module name for an instance label

Another common error isto specify the component or modul e name rather than theinstance
label. For example, the following invocation iswrong for the above testbenches:

vsi m - sdf max /testbench/ nyasi c=nyasi c. sdf testbench

This results in the following error message:

ERROR: nyasi c. sdf:
The design does not have an instance named '/testbench/ nyasic’.

Forgetting to specify the instance

If you leave off the instance altogether, then the simulator issues a message for each
instance path in the SDF that is not found in the design. For example,

vsi m - sdf max nyasi c. sdf testbench

Resultsin:

ERROR: nyasi c. sdf:
Failed to find I NSTANCE ' /testbench/ul’

ERROR: nyasi c. sdf:
Failed to find I NSTANCE ' /testbench/u2’

ERROR: nyasi c. sdf:
Failed to find I NSTANCE ' /testbench/u3’

ERROR: nyasi c. sdf:
Failed to find I NSTANCE ' /testbench/ u4’

ERROR: nyasi c. sdf:
Failed to find I NSTANCE ' /testbench/ u5’

WARNI NG nyasi c. sdf :
This file is probably applied to the wong instance.

WARNI NG nyasi c. sdf :
I gnoring subsequent mssing instances fromthis file.

After annotation is done, the simulator issues a summary of how many instances were not
found and possibly a suggestion for a qualifying instance:

WARNI NG nyasi c. sdf :
Failed to find any of the 358 instances fromthis file.

WARNI NG nyasi c. sdf :
Try instance '/testbench/dut’ - it contains all instance paths fromthis
file.

The simulator recommends an instance only if the file was applied to the top-level and a
qualifying instance is found one level down.

Also see "Resolving errors' (UM-237) for specific VHDL VITAL SDF troubleshooting.

ModelSim User’'s Manual

UM-247

9 - Value Change Dump (VCD) Files

Chapter contents

ModelSim VCD commandsand VCDtasks UM-248
CreatingaVvCDfile UM-249
Flow for four-stateVCD file UM-249
A VCD filefromsourcetooutput. UM-250
VHDL sourcecode UM-250
VCD simulator commands UM-250
vChoutput UM-251

This chapter explains Model Technology's Verilog VCD implementation for ModelSm.

The VCD fileformat is specified in the |EEE 1364 standard. It isan ASCI| file containing
header information, variable definitions, and variable value changes. VCD isin common
use for Verilog designs, and is controlled by VCD system task callsin the Verilog source
code. Model Sm provides simulator command equivalents for these system tasks and
extends VCD support to VHDL designs; the Model Sm commands can be used on either
VHDL or Verilog designs.

P Note: If you need vendor-specific ASIC design-flow documentation that incorporates
VCD, please contact your ASIC vendor.

ModelSim User's Manual

UM-248 9 - Value Change Dump (VCD) Files

ModelSim VCD commands and VCD tasks

ModelSim User’'s Manual

ModelSim VCD commands map to IEEE Std 1364 VCD system tasks and appear in the
VCD file along with the results of those commands. The table below maps the VCD

commands to their associated tasks.

VCD commands

VCD system tasks

ved add (CR-119) $dumpvars
vcd checkpoint (CR-120) $dumpal
ved file (CR-122) A $dumpfile
ved flush (CR-124) $dumpflush
ved limit (CR-125) $dumplimit
ved off (CR-126) $dumpoff
ved on (CR-127) $dumpon

ModelSmversions 5.5 and later support multiple VCD files. This functionality is an
extension of the IEEE Std 1364 specification. The tasks behave the same as the |IEEE
equivalent tasks such as $dumpfile, $dumpvar, etc. The differenceis that $fdumpfile can
be called multiple times to create more than one V CD file, and the remaining tasks require

afilename argument to associate their actions with a specific file.

VCD commands

VCD system tasks

vcd add (CR-119) -file <fil ename> $fdumpvars
ved checkpoint (CR-120) <fi | ename> $fdumpall
ved files (CR-123) <fi | enane> A $fdumpfile
ved flush (CR-124) <fi | enane> $fdumpflush
ved limit (CR-125) <fi | enane> $fdumplimit
ved off (CR-126) <fi | ename> $fdumpoff
ved on (CR-127) <fi | enane> $fdumpon

A mportant: Note that two commands (vcd file and ved files) are available to specify a
filename and state mapping for aVCD file. Vcd file allows for only one VCD file and
existsfor backwards compatibility with Model Sim versionsprior to 5.5. Vcd filesallows
for creation of multiple VCD files and is the preferred command to usein ModelSim

versions 5.5 and | ater.

Creating a VCD file UM-249

Creating a VCD file

Model Sim produces a four-state VCD file with variable changesin 0, 1, X, and z with no
strength information. The output will also contain port driver changes unless filtered out
with optional command-line arguments.

The commands shown below are documented in detail in the Model S m Command
Reference.

Flow for four-state VCD file
First, compile and load the design:

% cd ~/ nodel t ech/ exanpl es
% vlib work

% vl og counter.v tcounter.v
% vsi mtest_counter

Next, with the design loaded, specify the VCD file name with the ved file command (CR-
122)and add items to the file with the ved add command (CR-119):

VSI M 1>vcd file nyvedfile.ved
VSIM 2>vecd add /test_counter/dut/*
VSI M 3>run

VSIM 4>quit -f

There will now be aVCD file in the working directory.

ModelSim User's Manual

UM-250 9 - Value Change Dump (VCD) Files

A VCD file from source to output

The following example shows the VHDL source, a set of simulator commands, and the
resulting VCD output.
VHDL source code

The design is asimple shifter device represented by the following VHDL source code:

l'ibrary | EEE;
use | EEE. STD_LOGQ C_1164. al | ;

entity SH FTER_MOD is
port (CLK, RESET, data_in : IN STD_LOG C;
Q : INOUT STD LOG C VECTOR(8 downto 0))
END SHI FTER_MDD ;

architecture RTL of SHI FTER_ MDD is

begi n
process (CLK, RESET)
begin
if (RESET = '1') then
Q <= (others =>"'0") ;
elsif (CLK event and CLK = '1') then
Q<= QQleft - 1 downto 0) & data_in ;
end if ;
end process ;
end ;

VCD simulator commands

At simulator time zero, the designer executes the following commands and quits the
simulator at time 1200:

vced files output.ved
vced add -r *

force reset 1 0
force data_in 0 0
force clk 0 0

run 100

force clk 1 0, 0 50 -repeat 100
run 100

vcd of f

force reset 0 0
force data_in 1 0
run 100

vcd on

run 850

force reset 1 0

run 50

vcd checkpoi nt

ModelSim User’'s Manual

A VCD file from source to output UM-251

VCD output

TheVCD file created as aresult of the preceding scenario would be called output.ved. The
following pages show how it would look.

VCD output
$comrent (0}
File created using the follow ng 0(
comand: 0)
ved files output.ved 0*
$dat e 0+
Fri Jan 12 09:07:17 2000 0,
$end $end
$version #100
Model Sim EE/ PLUS 5. 4 1!
$end #150
$timescal e 0!
1ns #200
$end 1!
$scope nodul e shifter_nod $end $dunpof f
$var wire 1! clk $end x!
$var wire 1 " reset $end X"
$var wire 1 # data_in $end X#
$var wire 1 $ g [8] $end x$
$var wire 1 %q [7] $end X%
$var wire 1 & g [6] $end X&
$var wire 1 ' g [5] $end X’
$var wire 1 (g [4] $end x(
$var wire 1) g [3] $end X)
$var wire 1 * g [2] $end X*
$var wire 1 + g [1] $end X+
$var wire 1, g [0] $end X,
$upscope $end $end
$enddefinitions $end #300
#0 $dunpon
$dunpvar s 1!
0! 0"
1" 1#
o# 0%
0$ 0%
0%
0&

ModelSim User's Manual

UM-252 9 - Value Change Dump (VCD) Files

0& #1000
(0} 1!

o(1%

0) #1050
0* 0!

0+ #1100
1, 1!
$end 1%
#350 #1150
0! 0
#400 1"

1! 0%

1+ 0%
#450 0&

0! 0’
#500 0(

1! 0)

1* 0*
#550 0+

0! 0
#600 #1200
1! 1!

1) $dunpal |
#650 1!

0! 1"
#700 1#

1! 0%

1(0%
#750 0&

0! 0’
#800 0(

1! 0)

1’ 0*
#850 0+

0! 0
#900 $end
1!

1&

#950

0!

ModelSim User’'s Manual

UM-253

10 - Tcl and macros

Chapter contents

Tcl featureswithin ModlSm. UM-2%4
Tcl References. UM-2%4
Tclcommands. UM-255
Tcl commandsyntax UM-256
if commandsyntax UM-258
setcommandsyntax UM-259
Command substitution UM-260
Command separator UM-260
Multiple-linecommands UM-260
Evaluationorder UM-260
Tcl relational expressionevauation UM-260
Variable substitution UM-261
Systemcommands. UM-261
Listprocessng. UM-262
ModelSim Tcl commands UM-262
ModelSim Tcl timecommands UM-263
Tclexamples UM-265
Macros (DOfiles) UM-269

Thischapter providesan overview of Tcl (tool command language) asused with Model Sm.
Macrosin Model Sm are simply Tcl scripts that contain Model Sim and, optionally, Tcl
commands.

Tcl isascripting language for controlling and extending M odel Sm. Within Model Smyou
can devel op implementations from Tcl scripts without the use of C code. Because Tcl is
interpreted, development is rapid; you can generate and execute Tcl scripts on the fly
without stopping to recompile or restart ModelSm. In addition, if Model Sm does not
provide the command you need, you can use Tcl to create your own commands.

ModelSim User's Manual

UM-254 10 - Tcl and macros

Tcl features within ModelSim

Using Tcl with Model S m gives you these features:

» command history (like that in C shells)

« full expression evaluation and support for all C-language operators
« afull range of math and trig functions

« support of lists and arrays

* regular expression pattern matching

* procedures

« the ability to define your own commands

» command substitution (that is, commands may be nested)

* robust scripting language for macros

Tcl References

ModelSim User’'s Manual

Two books about Tcl are Tcl and the Tk Toolkit by John K. Ousterhout, published by
Addison-Wesley Publishing Company, Inc., and Practical Programming in Tcl and Tk by
Brent Welch published by Prentice Hall. Y ou can also consult the following online
references:

e Select Help > Tcl Man Pages (Main window).

« The Model Technology web site listsavariety of Tcl resources:
www.model.com/resources/tcltk.asp

http://www.model.com/resources/tcltk.asp

Tcl commands UM-255

Tcl commands

For complete information on Tcl commands, select Help > Tcl Man Pages (Main
window). Also see "Preference variables located in Tcl files' (um-287) for information on
Tcl variables.

Model Sm command names that conflict with Tcl commands have been renamed or have
been replaced by Tcl commands. See the list below:

Previous ModelSim Command changed to (or replaced by)

command

continue run (Cr-107) with the -continue option

format list | wave write format (CR-188) with either list or wave specified

if replaced by the Tcl if command, see "if command syntax™ (UM-
258) for more information

list add list (CR-32)

nolist | nowave delete (CR-61) with either list or wave specified

set replaced by the Tcl set command, see "set command syntax"
(UM-259) for more information

source VSour ce (CR-180)

wave add wave (CR-35)

ModelSim User's Manual

UM-256 10 - Tcl and macros

Tcl command syntax

Thefollowing eleven rules define the syntax and semantics of the Tcl language. Additional
details on if command syntax (uM-258) and set command syntax (UM-259) follow.

1 A Tcl script isastring containing one or more commands. Semi-colons and newlinesare

command separators unless quoted as described below. Close brackets (']") are
command terminators during command substitution (see below) unless quoted.

2 A command isevaluated in two steps. First, the Tcl interpreter breaks the command into

ModelSim User’'s Manual

words and performs substitutions as described bel ow. These substitutions are performed
inthe sameway for all commands. Thefirst word isused to locate acommand procedure
to carry out the command, then all of the words of the command are passed to the
command procedure. The command procedure is free to interpret each of itswordsin
any way it likes, such as an integer, variable name, list, or Tcl script. Different
commands interpret their words differently.

Words of acommand are separated by white space (except for newlines, which are
command separators).

If the first character of aword is double-quote (*"") then the word is terminated by the
next double-quote character. If semi-colons, close brackets, or white space characters
(including newlines) appear between the quotes then they are treated as ordinary
characters and included in the word. Command substitution, variable substitution, and
backsl ash substitution are performed on the characters between the quotes as described
below. The double-quotes are not retained as part of the word.

If the first character of aword isan open brace ("{") then the word is terminated by the
matching close brace ("}"). Braces nest within the word: for each additional open brace
there must be an additional close brace (however, if an open brace or close brace within
theword is quoted with abackslash then it is not counted in locating the matching close
brace). No substitutions are performed on the characters between the braces except for
backslash-newline substitutions described below, nor do semi-colons, newlines, close
brackets, or white space receive any special interpretation. The word will consist of
exactly the characters between the outer braces, not including the braces themselves.

If aword contains an open bracket ("[") then Tcl performs command substitution. To do
thisitinvokesthe Tcl interpreter recursively to processthe charactersfollowing the open
bracket asa Tcl script. The script may contain any number of commands and must be
terminated by a close bracket ("]"). The result of the script (i.e. the result of itslast
command) is substituted into the word in place of the brackets and al of the characters
between them. There may be any number of command substitutions in a single word.
Command substitution is not performed on words enclosed in braces.

Tcl command syntax UM-257

7 If aword containsadollar-sign ("$") then Tcl performs variable substitution: the dollar-
sign and the following characters are replaced in the word by the value of avariable.
Variabl e substitution may take any of the following forms:

$nanme

Nameis the name of a scalar variable; the name isterminated by any character that isn't a
letter, digit, or underscore.

$nane(i ndex)

Name gives the name of an array variable and index gives the name of an element within
that array. Name must contain only letters, digits, and underscores. Command
substitutions, variable substitutions, and backslash substitutions are performed on the
characters of index.

${ nane}

Nameisthe name of ascalar variable. It may contain any characters whatsoever except for
close braces.

There may be any number of variable substitutions in asingle word. Variable substitution
is not performed on words enclosed in braces.

8 If abackslash ("\") appearswithin aword then backs ash substitution occurs. In all cases
but those described bel ow the backslash is dropped and the following character istreated
asan ordinary character and included in the word. Thisallows characters such as double
quotes, closebrackets, and dollar signsto beincluded in wordswithout triggering special
processing. The following table lists the backsl ash sequences that are handled specially,
along with the value that replaces each sequence.

\a Audible aert (bell) (0x7).
\b Backspace (0x8).

\f Form feed (Oxc).

\n Newline (Oxa).

\r Carriage-return (Oxd).

\t Tab (0x9).

\v Vertical tab (0xb).

\ <newl i ne>whi t eSpace A single space character replaces the backslash, newline, and all
spaces and tabs after the newline. This backslash sequenceis
uniquein that it isreplaced in a separate pre-pass before the
command isactually parsed. Thismeansthat it will be replaced
even whenit occurs between braces, and the resulting space will
be treated as aword separator if it isn't in braces or quotes.

\\ Backslash ("\").

ModelSim User's Manual

UM-258 10 - Tcl and macros

\ 000 The digits ooo (one, two, or three of them) give the octal value
of the character.

\ xhh The hexadecimal digits hh give the hexadecimal value of the
character. Any number of digits may be present.

Backslash substitution is not performed on words enclosed in braces, except for backslash-
newline as described above.

9 If ahash character ("#') appears at a point where Tcl is expecting the first character of
thefirst word of acommand, then the hash character and the charactersthat follow it, up
through the next newline, are treated as acomment and ignored. The comment character
only has significance when it appears at the beginning of a command.

10 Each character is processed exactly once by the Tcl interpreter as part of creating the
words of acommand. For example, if variable substitution occurs then no further
substitutions are performed on the value of the variable; the value isinserted into the
word verbatim. If command substitution occurs then the nested command is processed
entirely by therecursive call to the Tcl interpreter; no substitutions are performed before
making the recursive call and no additional substitutions are performed on the result of
the nested script.

11 Substitutions do not affect the word boundaries of a command. For example, during
variable substitution the entire value of the variable becomes part of asingle word, even
if the variable's value contains spaces.

if command syntax

The Tcl if command executes scripts conditionally. Note that in the syntax below the "?"
indicates an optional argument.

Syntax
if exprl ?then? bodyl elseif expr2 ?then? body2 elseif ... ?else? ?bodyN?

Description

Theif command evaluates exprl as an expression. The value of the expression must be a
boolean (a numeric value, where 0 isfalse and anything else istrue, or a string value such
astrue or yesfor true and false or no for false); if it istrue then body1 is executed by
passing it to the Tcl interpreter. Otherwise expr2 is evaluated as an expression and if it is
true then body?2 is executed, and so on. If none of the expressions evaluates to true then
bodyN is executed. The then and else arguments are optional "noise words" to make the
command easier to read. There may be any number of elseif clauses, including zero. BodyN
may also be omitted aslong as else is omitted too. The return value from the command is
theresult of the body script that was executed, or an empty string if none of the expressions
was non-zero and there was no bodyN.

ModelSim User’'s Manual

Tcl command syntax UM-259

set command syntax

The Tcl set command reads and writes variables. Note that in the syntax below the "?"
indicates an optional argument.

Syntax

set varNanme ?val ue?

Description

Returnsthe value of variable varName. If valueis specified, then setsthe value of varName
to value, creating anew variable if one doesn't already exist, and returnsits value. If

var Name contains an open parenthesis and ends with a close parenthesis, then it refersto
an array element: the characters before the first open parenthesis are the name of the array,
and the characters between the parentheses are the index within the array. Otherwise
varName refersto a scalar variable. Normally, varName is unqualified (does not include
the names of any containing namespaces), and the variable of that name in the current
namespace is read or written. If varName includes namespace qualifiers (in the array name
if it refersto an array element), the variable in the specified namespace is read or written.

If no procedure is active, then varName refers to a namespace variable (global variableif
the current namespace is the global namespace). If a procedure is active, then varName
refersto a parameter or local variable of the procedure unless the global command was
invoked to declare varName to be global, or unlessa Tcl variable command was invoked
to declare varName to be a namespace variable.

Command substitution
Placing acommand in square brackets|[] will cause that command to be evaluated first and
its results returned in place of the command. An exampleis:

set a 25

set b 11

set ¢ 3

echo "the result is [expr ($a + $b)/$c]"
will output:

"the result is 12"

Thisfeature allows VHDL variables and signals, and Verilog nets and registers to be
accessed using:

[exam ne -<radi x> nane]

The %name substitution is no longer supported. Everywhere %name could be used, you
now can use [examine -value -<radix> name] which allows the flexibility of specifying
command options. The radix specification isoptional.

ModelSim User's Manual

UM-260 10 - Tcl and macros

Command separator

A semicolon character (;) works as a separator for multiple commands on the sameline. It
isnot required at the end of alinein a command sequence.

Multiple-line commands

With Tcl, multiple-line commands can be used within macros and on the command line.
The command line prompt will change (asin a C shell) until the multiple-linecommand is
complete.

In the example below, note the way the opening brace’{’ is at the end of theif and else
lines. Thisisimportant because otherwise the Tcl scanner won't know that there is more
coming in the command and will try to execute what it has up to that point, which won't be
what you intend.

if { [exa sig_a] == "0011zz"} {
echo "Signal value matches"
do nmacro_1. do

} else {
echo "Signal value fails"
do nacro_2.do }

Evaluation order

Animportant thing to remember when using Tcl isthat anything put in curly brackets{} is
not evaluated immediately. Thisisimportant for if-then-else, procedures, loops, and so
forth.

Tcl relational expression evaluation

ModelSim User’'s Manual

When you are comparing values, the following hints may be useful:

* Tcl stores all values as strings, and will convert certain strings to numeric values when
appropriate. If you want aliteral to be treated as a numeric value, don't quote it.

if {[exa var_1] == 345}...
The following will also work:
if {[exa var_1] == "345"}...

» However, if aliteral cannot be represented as a number, you must quote it, or Tcl will
give you an error. For instance:

if {[exa var_2] == 001z}...
will give an error.
if {[exa var_2] == "001z"}...
will work okay.
» Don't quote single characters in single quotes:
if {[exa var_3] =="'X1}...
will give an error
if {[exa var_3] == "X"}...
will work okay.

Tcl command syntax UM-261

« For the equal operator, you must use the C operator "==" . For not-equal, you must use
the C operator "!=".
Variable substitution
When a$<var_name> is encountered, the Tcl parser will look for variablesthat have been

defined either by Model Sm or by you, and substitute the value of the variable.

P Note: Tcl is case sensitive for variable names.

To access environment variables, use the construct:

$env(<var _nane>)
echo My user nane is $env(USER)

Environment variables can aso be set using the env array:
set env(SHELL) /bin/csh

See "Simulator state variables" (Um-289) for more information about Model S m-defined
variables.

System commands

To pass commands to the DOS window, use the Tcl exec command:

echo The date is [exec date]

ModelSim User's Manual

UM-262 10 - Tcl and macros

List processing

InTcl a"list" isaset of stringsin curly braces separated by spaces. Several Tcl commands

are available for creating

lists, indexing into lists, appending to lists, getting the length of

lists and shifting lists. These commands are:

Command syntax

Description

lappend var_namevallval2 ...

appendsvall, val2, etc. to list var_name

lindex list_name index

returns the index-th element of list_name; the first element is0

linsert list_nameindex vallval? ...

insertsvall, val2, etc. just before the index-th element of list_name

list vall, val2...

returnsa Tcl list consisting of vall, val2, etc.

Ilength list_name

returns the number of elementsin list_name

Irange list_name first last

returnsasublist of list_name, from index first to index last; first or
last may be "end", which refersto the last element in the list

Ireplacelist_namefirst last val 1, val2, ...

replaces elements first through last with vall, val 2, etc.

Two other commands, Isear ch and Isort, are also available for list manipulation. See the
Tcl man pages (Help > Tcl Man Pages) for more information on these commands.

ModelSim Tcl commands

These additional commands enhance the interface between Tcl and ModelSm. Only brief
descriptions are provided here; for more information and command syntax see the

"Commands' (CR-25).

Command Description

alias (CR-39) creates anew Tcl procedure that eval uates the specified commands;
used to create a user-defined alias

find (CR-74) locates incrTcl classes and objects

Ishift (CR-83) takesaTcl list asargument and shiftsit in-place one place to thel eft,

eliminating the Oth element

Isublist (CR-84)

returns a sublist of the specified Tcl list that matches the specified
Tcl glob pattern

pr oj ect (CR-96)

echoes to the Main window the current names and values of all
environment variables

ModelSim User’'s Manual

ModelSim Tcl time commands

Conversions

Relations

ModelSim Tcl time commands UM-263

ModelSm Tcl time commands make simulator-time-based values available for use within

other Tcl procedures.

Time values may optionally contain a units specifier where the intervening spaceis also
optional. If the space is present, the value must be quoted (e.g. 10ns, "10 ns"). Time values
without units are taken to bein the UserTimeScal e. Return values are alwaysin the current
Time Scale Units. All timevaluesare converted to a64-bit integer valuein the current Time
Scale. This means that values smaller than the current Time Scale will be truncated to O.

Command Description

intToTime <intHi32> <intLo32> | convertstwo 32-bit pieces (high and low
order) into a 64-bit quantity (Timein
ModelSm s a 64-hit integer)

Real ToTime <real> converts a<real> number to a 64-bit integer
in the current Time Scale

scaleTime <time> <scal eFactor> returnsthe value of <time> multiplied by the
<scaleFactor> integer

Command Description

eqTime <time> <time> evaluates for equal

neqTime <time> <time> evaluates for not equal

gtTime <time> <time> evaluates for greater than
gteTime <time> <time> evaluates for greater than or equal
[tTime <time> <time> evauates for less than

[teTime <time> <time> evaluates for less than or equal

All relation operations return 1 or O for true or false respectively and are suitable return

valuesfor TCL conditional expressions. For example,
if {[eqTinme $Now 1750ns]} ({

} .

ModelSim User's Manual

UM-264 10 - Tcl and macros

Arithmetic

Command Description
addTime <time> <time> add time

divTime <time> <time> 64-bit integer divide
mul Time <time> <time> 64-hit integer multiply
subTime <time> <time> subtract time

ModelSim User’'s Manual

Tcl examples UM-265

Tcl examples

Example 1

The following Tcl/Model Sm example for UNIX shows how you can access system
information and transfer it into VHDL variables or signals and Verilog nets or registers.
When aparticular HDL source breakpoint occurs, aTcl function is called that gets the date
and time and depositsit into aVHDL signal of type STRING. If a particular environment
variable (DO_ECHO) is set, the function al so echoes the new date and time to the transcript
file by examining the VHDL variable.

P Note: In aWindows environment, the Tcl exec command shown below will execute
compiled files only, not system commands.

(in VHDL source):

signal datine : string(lto 28) :=" ";# 28 spaces

(on VSIM command line or in macro):

proc set_date {} {
gl obal env
set do_the_echo [set env(DO_ECHO)]
set s [exec date]
force -deposit datinme $s
if {do_the_echo} {
echo "New tinme is [exam ne -value datine]"
}
}

bp src/waveadd. vhd 133 {set_date; continue}
--sets the breakpoint to call set_date

Thisis an example of using the Tcl while loop to copy alist from variable ato variable b,
reversing the order of the elements along the way:

set b ""
set i [expr[llength $a]-1]
while {$i >= 0} {
| append b [lindex $a $i]
incr i -1

}

This example uses the Tcl for command to copy alist from variable ato variable b,
reversing the order of the elements along the way:

set b ""

for {set i [expr [Ilength $a] -1]} {$i >= 0} {incr i -1} {
| append b [lindex $a $i]

}

This example uses the Tcl foreach command to copy alist from variable ato variable b,
reversing the order of the elements along the way (the foreach command iterates over al
of the elements of alist):

set b ""
foreach i $a {
set b [linsert $b 0 $i]

}

ModelSim User's Manual

UM-266 10 - Tcl and macros

Example 2

ModelSim User’'s Manual

Thisexample showsalist reversal asabove, thistime aborting on aparticular element using
the Tcl break command:

set b ""
foreach i $a {
if {$i = "ZZZ"} break
set b [linsert $b 0 $i]
}
Thisexampleisalist reversal that skips a particular element by using the Tcl continue
command:
set b ""
foreach i $a {
if {$i = "ZZz"} continue
set b [linsert $b 0 $i]
}
The last example is of the Tcl switch command:
switch $x {
a {incr t1}
b {incr t2}
c {incr t3}
}

This next example shows a complete Tcl script that restores multiple Wave windows to
their state in aprevious simulation, including signal s listed, geometry, and screen position.
It al so adds buttons to the Main window toolbar to ease management of thewavefiles. This
example worksin ModelSm SE only.

##
##
##

##
##

##
##

##
##

##
##

##
##
##
##

##
##
##
##

This file contains procedures to manage multiple wave files.
Source this file fromthe comrand |ine or as a startup script.
source <path>/wave_ngr.tcl

add_wave_buttons
Add wave nanagenent buttons to the main tool bar (new, save and | oad)

new_wave
Di al og box creates a new wave wi ndow with the user provided nane

naned_wave <nane>
Creates a new wave window with the specified title

save_wave <file-root>
Saves nane, w ndow | ocation and contents for all open

wave w ndows
Creates <file-root><n>.do file for each wi ndow where <n> is 1
to the nunber of windows. Default file-root is "wave". Also
creates wi ndowSet.do file that contains title and geonetry info.

| oad_wave <file-root>
Opens and | oads wave wi ndows for all files matching <file-root><n>.do
where <n> are the nunbers from1-9. Default <file-root> is "wave".
Al so runs wi ndowSet.do file if it exists.

Tcl examples UM-267

Add wave nanagement buttons to the main tool bar

proc add_wave_buttons {} {

_add_nenu main controls right System\Venu SystenmW ndowFranme {Load Waves}
| oad_wave

_add_nenu main controls right SystemVenu SystenW ndowrFranme {Save Waves}
save_wave

_add_nenu main controls right System\Venu SystenmW ndowFranme {New \Wave}
new_wave

}
Sinple D al og requests nane of new wave wi ndow. Defaults to Wave<n>

proc new wave {} {
gl obal dial og_pronpt vsinPriv
set defaul t Name "Wave[llength $vsinPriv(WaveW ndows)]"
set dial og_pronpt(result) $defaul t Name
set wi ndowNanme [CetValue . "Create Naned Wave W ndow "]

Debug
puts "W ndow nanme: $w ndowNane\ n";
if {$wi ndowName == "{}"} {
set w ndowName ""
}
if {$wi ndowNane != ""} {
naned_wave $w ndowNane
} else {
named_wave $def aul t Narme
}

}
Creates a new wave wi ndow with the provided name (defaults to "Wave")

proc named_wave {{nane "Wave"}} {
gl obal vsinPriv
Vi ew - new wave
set newMave [lindex $vsinPriv(WaveW ndows) [expr [Ilength \
$vsi mPri v(WaveW ndows)] - 1]]
wmtitle $newwave $nane

}

Wites out format of all wave wi ndows, stores geonetry and title info in
wi ndowSet.do file. Renpves any extra files with the sane fileroot.
Default file nane is wave<n> starting from 1.

proc save_wave {{fileroot "wave"}} {

gl obal vsinPriv

set n1

set fileld [open wi ndowSet_$fileroot.do w 755]

foreach w $vsi nPriv(WaveW ndows) {
echo "Saving: [wntitle $w"
set filenane $fileroot$n. do
wite format wave -wi ndow $w $fil enane
puts $fileld "wntitle $w\"[wntitle $nj\""
puts $fileld "wmgeonetry $w [wm geonetry $w "
puts $fileld "ntiGid_colconfig $w.grid name -width \
[miGid_colcget $w.grid nane -width]"
puts $fileld "ntiGid_colconfig $w.grid value -width \
[miGid_colcget $w.grid value -width]"
flush $fileld
incr n

ModelSim User's Manual

UM-268 10 - Tcl and macros

if {![catch {glob $fileroot\[$n-9\].do}]} {
foreach f [Isort [glob $fileroot\[$n-9\].do]] {
echo "Renoving: $f"
exec rm $f

}

Provide file root argunment and | oad_wave restores all saved w dows.
Default file root is "wave".

proc | oad_wave {{fileroot "wave"}} {

gl obal vsinPriv

foreach f [Isort [glob $fileroot\[1-9\].do]] {
echo "Loadi ng: $f"
Vi ew - new wave
do $f

}

if {[file exists windowSet_$fileroot.do]} {
do wi ndowSet _$fil eroot. do

}

ModelSim User’'s Manual

Macros (DO files) UM-269

Macros (DO files)

Model Sm macros (also called DO files) are simply scripts that contain Model Sm and,
optionally, Tcl commands. Y ou invoke these scripts with the M acro > Execute Macro
(Main window) menu selection or the do command (CR-64).

Creating DO files

Y ou can create DO files, like any other Tcl script, by typing the required commandsin any
editor and saving the file. Alternatively, you can save the Main window transcript to aDO
file (see "Saving the Main window transcript file" (UM-125)).

The following isasimple DO file that was saved from the Main window transcript. It is
used in the dataset exercisein the ModelSm Tutoria. This DO file adds several signalsto
the Wave window, provides stimulus to those signal's, and then advances the simulation.

add wave |d
add wave rst
add wave cl k
add wave d

add wave q
force -freeze clk 0 0, 1 {50 ns} -r 100
force rst 1
force rst 0 10
force Id 0O
force d 1010
run 1700

force Id 1

run 100

force Id 0

run 400

force rst 1
run 200

force rst 0 10
run 1500

Using Parameters with DO files

Y ou can increase the flexibility of DO files using parameters. Parameters specify values
that are passed to the corresponding parameters $1 through $9 in the macro file. For
example,

do testfile design.vhd 127
If the macro filetestfile contains the line bp $1 $2, this command would place a breakpoint
in the source file named design.vhd at line 127.

There isno limit on the number of parameters that can be passed to macros, but only nine
values are visible at one time. Y ou can use the shift command (CR-111) to see the other
parameters.

ModelSim User's Manual

UM-270 10 - Tcl and macros

Useful commands for handling breakpoints and errors

If you are executing a macro when your simulation hits a breakpoint or causes arun-time
error, Model Sm interrupts the macro and returns control to the command line. The
following commands may be useful for handling such events. (Any other legal command
may be executed as well.)

command result

run (Cr-107) -continue | continue asif the breakpoint had not been executed, completes the run (Cr-107) that
was interrupted

onbreak (CR-92) specify acommand to run when you hit a breakpoint within a macro

onElabError (CR-93) specify acommand to run when an error is encountered during elaboration
onerror (CR-94) specify acommand to run when an error is encountered within a macro

status (CR-113) get atraceback of nested macro calls when amacro is interrupted

abort (CR-31) terminate a macro once the macro has been interrupted or paused

pause (CR-95) cause the macro to be interrupted, the macro can be resumed by entering aresume

command (CR-106) viathe command line

P Note: You canalso setthe OnErrorDefaultAction Tcl variable (see " Preference variables
located in Tcl files' (UM-287)) in the pref.tcl file to dictate what action Model Sm takes
when an error occurs.

Error action in DO files

If acommand in a macro returns an error, Model Sm does the following:

1 If anonerror (CR-94) command has been set in the macro script, Model S m executes that
command.

2 If no onerror command has been specified in the script, ModelSm checks the
OnErrorDefaultAction Tcl variable. If the variable is defined, it will be invoked.

3 If neither 1 or 2 istrue, the macro aborts.

ModelSim User’'s Manual

Macros (DO files) UM-271

Using the Tcl source command with DO files

Either the do command or Tcl source command can execute a DO file, but they behave
differently.

With the sour ce command, the DO file is executed exactly asif the commandsin it were
typed in by hand at the prompt. Each time a breakpoint is hit the Source window is updated
to show the breakpoint. This behavior could be inconvenient with alarge DO file
containing many breakpoints.

When ado command is interrupted by an error or breakpoint, it does not update any
windows, and keepsthe DO file "locked". This keeps the Source window from flashing,
scrolling, and moving the arrow when a complex DO file is executed. Typically an
onbreak resume command is used to keep the macro running as it hits breakpoints. Add
an onbreak abort command to the DO fileif you want to exit the macro and update the
Source window.

See also

See the do command (CR-64).

ModelSim User's Manual

UM-272

ModelSim User’s Manual

UM-273

A - ModelSim Variables

Appendix contents

Variable settingsreport UM-274
Persond preferences UM-274
Returning to the origina ModelSimdefaults UM-274
Environment variables. UM-275
Preference variableslocated in INI files UM-278
[Library] library pathvariables UM-278
[vcom] VHDL compiler control variables UM-278
[vlog] Verilog compiler control variables. UM-279
[vsim] simulator control variables UM-280
Setting variablesin INI files UM-283
Commonly used INI variables UM-284
Commonly used INI variables UM-284
Preference variableslocated in Tcl files UM-287
Variableprecedence UM-288
Simulator statevariables UM-289

This appendix documents the following types of Model Sm variables:

 environment variables
Variables referenced and set according to operating system conventions. Environment
variables prepare the Model Sm environment prior to simulation.

« ModelSim preference variables
Variables used to control compiler or simulator functions and modify the appearance of
the ModelSm GUI.

e smulator statevariables
Variables that provide feedback on the state of the current simulation.

ModelSim User's Manual

UM-274 A - ModelSim Variables

Variable settings report

Thereport command (CR-102) returnsalist of current settingsfor either the simul ator state,
or simulator control variables. Use the following commands at either the Model Sm or
VSIM prompt:

report sinulator state
report sinmulator control

Personal preferences

There are several preferences stored by Model Sm on a personal basis, independent of
modelsim.ini or modelsim.tcl files. These preferences are stored in the Windows Registry
under HKEY_CURRENT_USER\Softwaré\M odel Technology Incorporated\Model Sm.

« cwd
History of the last five working directories (pwd). This history appearsin the Main
window File menu.

e phst
Project History

* pinit
Project Initialization state (one of: Welcome | OpenL ast | NoWelcome). This determines
whether the Welcome To Model Sm dialog box appears when you invoke the tool.

* printersetup
All setup parameters related to Printing (i.e., current printer, etc.)

The HKEY_CURRENT_USER key is unique for each user Login on Windows NT.

Returning to the original ModelSim defaults

ModelSim User’'s Manual

If you would like to return Model Sm'sinterface to its original state, simply rename or
delete the existing modelsim.tcl and modelsim.ini files. Model Smwill use pref.tcl for GUI
preferences and make acopy of <install_dir>/modeltech/modelsim.ini to use the next time
ModelSmisinvoked without an existing project (if you start a new project the new MPF
file will use the settings in the new modelsim.ini file).

Environment variables UM-275

Environment variables

Before compiling or simulating, several environment variables may be set to provide the
functions described in the table below. The variables are in the autoexec.bat file on
Windows 95/98 machines, and set through the System control panel on NT machines. The
LM_LICENSE_FILE variableisrequired, all others are optional.

ModelSim Environment Variables

Variable Description

DOPATH used by Model Smto search for simulator command files (do files); consists of a
colon-separated (semi-colon for Windows) list of paths to directories; optional;
this variable can be overridden by the DOPATH .tcl file variable

EDITOR specifies the editor to invoke with the edit command (CR-68)

HOME used by ModelSmto look for an optional graphical preference file and optional

location map file; see: "Preference variables located in INI files' (um-278) and
"http://www.model .com/resources/pref_variables/frameset.htm." (UM-299)

LM_LICENSE_FILE

used by the Model Sm license file manager to find the location of the licensefile;
may be a colon-separated (semi-colon for Windows) set of paths, including paths
to other vendor license files; REQUIRED

MODEL_TECH

set by al Model Smtools to the directory in which the binary executables reside;
YOU SHOULD NOT SET THISVARIABLE

MODEL_TECH_TCL

used by ModelSmto find Tcl librariesfor: Tcl/Tk 8.0, Tix, and vsim; may also be
used to specify a startup DO file; defaults to /modeltech/../tcl; may be set to an
alternate path

MGC_LOCATION_MAP

used by Model Sm toolsto find source files based on easily reallocated "soft"
paths; optional; see: "http://www.model.com/resources/pref_variables/
frameset.htm." (UM-299); also see the Tcl variables: SourceDir and SourceMap

MODELSIM

used by all ModelSmtooals to find the modelsim.ini file; consists of a path

including the file name; optional. An alternative use of thisvariableisto set it to
the path of aproject file (<Project_Root_Dir>/<Project Name>.mpf). Thisallows
you to use project settings with command line tools. However, if you do this, the
.mpf filewill replace modelsim.ini astheinitialization filefor all Model Smtools.

MODELSIM_TCL

used by ModelSm to look for an optional graphical preferencefile; can be a
semi-colon (Windows) separated list of file paths

MTI_TF_LIMIT

limits the size of the VSOUT temp file (generated by the Model Sm kernel); the
value of the variableisthe size of k-bytes; TMPDIR (below) controlsthe location
of thisfile, STDOUT controls the name; default = 10, 0 = no limit

MTI_USELIB_DIR

specifies the directory into which object libraries are compiled when using the
-compile_uselibs argument to the vliog command (CR-162)

ModelSim User's Manual

UM-276 A - ModelSim Variables

Variable Description

PLIOBJS used by ModelSmto search for PLI object files for loading; consists of a
space-separated list of file or path names; optional

STDOUT the VSOUT temp file (generated by the simulator kernel) is deleted when the
simulator exits; the file is not deleted if you specify afilename for VSOUT with
STDOUT,; specifying aname and location (use TMPDIR) for the VSOUT filewill
also help you locate and delete the file in event of a crash (an unnamed VSOUT
fileis not deleted after a crash either)

TMP specifies the path to atempnam() generated file (VSOUT) containing all stdout
from the simulation kernel; optional

Creating environment variables in Windows

In addition to the predefined variabl es shown above, you can define your own environment
variables. This example shows a user-defined library path variable that can be referenced
by the vmap command to add library mapping to the modelsim.ini file.

Using Windows 95/98/Me
Open and edit the autoexec.bat file by adding thisline:
set MY_PATH=\t enp\ wor k

Restart Windows to initialize the new variable.

Using Windows NT/2000

Right-click the My Computer icon and select Properties, then select the Environment tab
(in Windows 2000 sel ect the Advanced tab and then Environment V ariables). Add the new
variable with this data—VariableeMY_PATH and Vaue\temp\work.

Click Set and Apply toinitialize the variable (you don't need to restart NT).

Library mapping with environment variables

Oncethe MY_PATH variableis set, you can use it with the vmap command (CR-167) to
add library mappings to the current modelsim.ini file.

If you' re using the vmap command from DOS prompt type:
vmap MY_VI TAL %W_PATH%

If you're using vmap from ModelSm/VSIM prompt type:
vmap MY_VI TAL \ $MY_PATH

If you used DOS vmap, this line will be added to the modelsim.ini:
MY_VI TAL = c:\tenp\work

If vmap is used from the Model SmvV SIM prompt, the modelsim.ini file will be modified
with thisline:

MY_VI TAL = $MY_PATH

ModelSim User’'s Manual

Environment variables UM-277

You can easily add additional hierarchy to the path. For example,

vmap MORE_VI TAL %W_PATH% nor e_pat h\ and_nor e_pat h
vmap MORE_VI TAL \ $MY_PATH nor e_pat h\ and_nor e_pat h

The"$" character in the examples aboveis Tcl syntax that precedes avariable. The "\"
character is an escape character that keeps the variable from being evaluated during the
execution of vmap.

Referencing environment variables within ModelSim

There are two ways to reference environment variables within Model Sm. Environment
variables are allowed in aFIL E variable being opened in VHDL. For example,

entity test is end
use std.textio.all

architecture only of test is

begi n
process
FILE in_file : text is in "$ENV_VAR NAMVE";
begi n
wai t ;
end process;
end;

Environment variables may also be referenced from the Model Sm command line or in
macros using the Tcl env array mechanism:

echo "$env(ENV_VAR NAME) "

Removing temp files (VSOUT)

The VSOUT temp file is the communi cation mechanism between the simulator kernel and
theModelSm GUI. In normal circumstancesthe file is deleted when the simulator exits. If
Model Sm crashes, however, the temp file must be deleted manually. Specifying the

location of the temp file with TMPDIR (above) will help you locate and remove thefile.

P Note: Thereisone environment variable, MODEL_TECH, that you cannot — and
should not — set. MODEL _TECH isaspecial variable set by Model Technology
software. Its value is the name of the directory from which the vcom compiler or vsim
simulator wasinvoked. MODEL _TECH isused by the other Model Technology tools
to find thelibraries.

ModelSim User's Manual

UM-278 A - ModelSim Variables

Preference variables located in INI files

ModelSminitialization (INI) files contain control variables that specify reference library
paths and compiler and simulator settings. See " System initialization" (UM-27) for more
details on how these variables are | oaded.

The following tables list the variables by section, and in order of their appearance within

the INI file:

INI file sections

[Library] library path variables (Um-278)

[vcom] VHDL compiler control variables (Um-278)

[vlog] Verilog compiler control variables (UM-279)

[vsim] simulator control variables (UM-280)

[Library] library path variables

Variable name

Value range

Purpose

environment variables is/modeltech/../std

ieee any valid path; may include sets the path to the library containing |EEE and
environment variables Synopsys arithmetic packages; the default is/
modeltech/../ieee
std any valid path; may include setsthepathtothe VHDL STD library; the default

std_developerskit

any valid path; may include

/modeltech/../std_developerskit

sets the path to the libraries for MGC standard
environment variables developer’ s kit; the default is

environment variables

.Iverilog

Synopsys any valid path; may include sets the path to the accelerated arithmetic
environment variables packages; the default is/modeltech/../synopsys
verilog any valid path; may include sets the path to the library containing VHDL/

Verilog type mappings; the default is /modeltech/

[vcom] VHDL compiler control variables

ModelSim User’'s Manual

checking; checks only signals used (read) by a
process

Variable name Value Purpose Default
range
CheckSynthesis 0,1 if 1, turns on limited synthesis rule compliance off (0)

Preference variables located in INI files UM-279

Variable name Value Purpose Default
range
Explicit 0,1 if 1, turns on resolving of ambiguous function on (1)

overloading in favor of the "explicit" function
declaration (not the one automatically created by
the compiler for each type declaration)

IgnoreVitalErrors 0,1 if 1, ignores VITAL compliance checking errors off (0)

NoCaseStaticError 0,1 if 1, changes case statement static errorstowarnings | off (0)

NoDebug 0,1 if 1, turns off inclusion of debugging info within off (0)
design units

NoOthersStaticError 0,1 if 1, disables errors caused by aggregates that are off (0)
not locally static

NoVital 0,1 if 1, turns off acceleration of the VITAL packages off (0)

NoVital Check 01 if 1, turns off VITAL compliance checking off (0)

Optimize 1164 0,1 if O, turnsoff optimization for IEEE std_logic 1164 on (1)
package

Quiet 01 if 1, turns off "loading..." messages off (0)

RequireConfigForAllDefault 0,1 if 1, instructs the compiler not to generate a default off (0)

Binding binding during compilation

Show_source 0,1 if 1, shows source line containing error off (0)

Show_VitalCheckswWarnings 01 if 0, turns off VITAL compliance-check warnings on (1)

Show_Warningl 0,1 if 0, turns off unbound-component warnings on (1)

Show_Warning2 0,1 if 0, turns off process-without-a-wait-statement on (1)
warnings

Show_Warning3 0,1 if 0, turns off null-range warnings on (1)

Show_Warning4 0,1 if 0, turns off no-space-in-time-literal warnings on (1)

Show_Warning5 0,1 if 0, turnsoff multiple-drivers-on-unresolved-signal on (1)
warnings

VHDL93 0,1 if 1, turnson VHDL-1993 off (0)

[vlog] Verilog compiler control variables

Variable name Value Purpose Default
range
Hazard 0,1 if 1, turnson Verilog hazard checking (order- off (0)
dependent accessing of global vars)

ModelSim User's Manual

UM-280 A - ModelSim Variables

ModelSim User’'s Manual

Variable name Value Purpose Default
range
Incremental 0,1 if 1, turns on incremental compilation of modules off (0)
NoDebug 0,1 if 1, turns off inclusion of debugging info within off (0)
design units
Quiet 0,1 if 1, turns off "loading..." messages off (0)
Show_Lint 01 if 1, turnson lint-style checking off (0)
Show_source 0,1 if 1, shows source line containing error off (0)
[vsim] simulator control variables
Variable name Value range Purpose Default
AssertFile any valid alternative file for storing assertion transcript
filename messages
AssertionFormat See purpose setsthe messageto display after abreak on | "** %S:
assertion; message formats include: %R\n Time:
%S - severity level %T
%R - report message [teration:
%T - time of assertion %D%I\n"
%D - delta
%I - instance or region pathname (if
available)
%% - print '%' character
BreakOnAssertion 0-4 defines severity of assertion that causes a 3
simulation break (0= note, 1 =warning, 2 =
error, 3 =failure, 4 =fatal)
CommandHistory any valid sets the name of afilein which to storethe | commented
filename Main window command history out (;)
ConcurrentFileLimit any positive controls the number of VHDL files open 40
integer concurrently; this number should be less
than the current limit setting for max file
descriptors; 0 = unlimited
DatasetSeparator any single the dataset separator for fully-rooted
character contexts, for example sim:/top; must not be
the same character as PathSeparator
DefaultForceKind freeze, drive, or defines the kind of force used when not drivefor
deposit otherwise specified resolved
signals,
freeze for
unresolved
signals

Preference variables located in INI files

UM-281

Variable name Value range Purpose Default
DefaultRadix symbolic, binary, | any radix may be specified asanumber or | symbolic
octal, decimal, name (i.e., binary can be specified asbinary
unsigned, or 2)
hexadecimal,
ascii
DefaultRestartOptions one or more of: sets default behavior for the restart commented
-force, command out (;)
-nobreakpoint,
-nolist, -nolog,
-nowave
DelayFileOpen 0,1 if 1, open VHDL8T7 fileson first read or off (0)
write, else open files when elaborated
GenerateFormat Any non-quoted | control the format of a generate statement %s__%d
string containing | label (don't quote it)
at aminimum a
%sfollowed by a
%d
IgnoreError 0,1 if 1, ignore assertion errors off (0)
IgnoreFailure 01 if 1, ignore assertion failures off (0)
IgnoreNote 0,1 if 1, ignore assertion notes off (0)
IgnoreéWarning 01 if 1, ignore assertion warnings off (0)
IterationLimit positive integer limit on simulation kernel iterationsduring | 5000
onetime delta
License any single if set, controls ModelSim licensefile search all
<license_option> | search; license optionsinclude: licenses
nomgc - excludes MGC licenses
nomti - excludes MTI licenses
nogueue - do not wait in license queueif no
licenses are available
plus - only use PLUS license
vlog - only use VLOG license
vhdl - only use VHDL license
viewsim - accepts a simulation license
rather than being queued for a viewer
license
see also the veim command (CR-168)
<license_option>
NolndexCheck 0,1 if set to 1, run time index checks are 0

disabled

ModelSim User's Manual

UM-282 A - ModelSim Variables

Variable name Value range Purpose Default
NumericStdNoWarnings 0,1 if 1, warnings generated within the off (0)
accelerated numeric_std and numeric_bit
packages are suppressed
PathSeparator any single used for hierarchical path names; must not | /
character be the same character as DatasetSeparator
RangeCheck 0,1 if set to 1, enables run time range checking | O
Resolution fs, ps, ns, us, ms, | simulator resolution; thisvaluemust beless | ps
or sec with than or equal to the UserTimeUnit specified
optional prefix of | below; NOTE - if your delaysaretruncated,
1, 10, or 100 set the resol ution smaller; no space between
value and units (i.e., 10fs, not 10 fs)
RunLength positive integer default simulation length in units specified | 100
by the UserTimeUnit variable
Startup =do<DO specifies the Model Sm startup macro; see | commented
filename>; any the do command (CR-64) out (;)
valid macro (do)
file
StdArithNoWarnings 01 if 1, warnings generated within the off (0)
accelerated Synopsys std_arith packages
are suppressed
TranscriptFile any valid file for saving command transcript; transcript
filename environment variables may be included in
the path name
UnbufferedOutput 0,1 controls VHDL and Verilog filesopenfor | O
write; 0 = Buffered, 1 = Unbuffered
UserTimeUnit fs, ps, ns, us, ms, | specifies the default unitsto use for the ns
sec, or default "<timesteps> [<time_units>]" argument to
the run command (CR-107); NOTE - the
value of this variable must be set equal to,
or larger than, the current simulator
resolution specified by the Resolution
variable shown above
Veriuser oneor morevalid | list of dynamically loadable objects for commented
shared objects Verilog PLI/VPI applications; see"Verilog | out (;)
PLI/VPI" (UM-86)
WaveSignalNameWidth 0, positive controls the number of visible hierarchical | O
integer regions of asignal name showninthe Wave

ModelSim User’'s Manual

window (Um-178); the default value of zero
displays the full name, a setting of one or
above displays the corresponding level(s)
of hierarchy

Preference variables located in INI files UM-283

Variable name Value range Purpose Default
WLFCompress 0,1 turnsWLF file compression on (1) or off (0) | 1
WL FDeleteOnQuit 0,1 specifies whether a WLF file should be 0

deleted when the simulation ends; if set to
0, thefileis not deleted; if set to 1, thefile
isdeleted

WLFSaveAllRegions 0,1 specifies whether to save all design 0
hierarchy in the WLF file (1) or only
regions containing logged signals (0)

WLFSizeLimit 0-nMB WLFfilesizelimit; limitsWLFfileby size | O
(asclosely as possible) to the specified
number of megabytes; if both size and time
limits are specified the most restrictiveis
used; setting to O resultsin no limit

WLFTimeLimit 0-n WLF file time limit; limits WLF file by 0
time (asclosely as possible) to the specified
amount of time. If both time and size limits
are specified the most restrictive is used;
setting to O resultsin no limit

Spaces in path names

For the Src_Filesand Work_L ibsvariables, each element inthelistisenclosed within curly
braces ({}). This allows spaces inside elements (since Windows allows spaces inside path
names). For example a source filelist might look like:

Src_Fil es = { SMODELSI M_PROQJECT/ count er . v} { $MODELSI M PROJECT/tb counter. v}

Where the file th counter.v contains a space character between the "b" and "c".

Setting variables in INI files

Edit the initialization file directly with any text editor to change or add avariable. The
syntax for variablesin thefileis:

<vari abl e> = <val ue>

Comments within the file are preceded with asemicolon (;).

P Note: The vmap command (CR-167) automatically modifies library mappingsin the
current INI file.

ModelSim User's Manual

UM-284 A - ModelSim Variables

Commonly used INI variables

ModelSim User’'s Manual

Severa of the more commonly used modelsim.ini variables are further explained below.

Environment variables

Y ou can use environment variablesin your initialization files. Use adollar sign ($) before
the environment variable name.

Examples

[Li brary]
work = $HOVE/ work_lib
test_lib = ./$TESTNUM wor k

[vsinm

I gnoreNot e = $| GNORE_ASSERTS

I gnor eWar ni ng = $lI GNORE_ASSERTS
I gnoreError = 0

IgnoreFailure = 0

Tip:
Thereis one environment variable, MODEL_TECH, that you cannot — and should not
— set. MODEL_TECH isaspecial variable set by Model Technology software. Itsvalue
is the name of the directory from which the VCOM compiler or VSIM simulator was
invoked. MODEL_TECH isused by the other Model Technology toolsto find the
libraries.

Hierarchical library mapping

By adding an "others" clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSmtools don’t find a mapping in the modelsim.ini file, then they
will search just the library section of the initialization file specified by the "others" clause.

Examples
[Li brary]
asic_lib = /caelasic_lib
work = ny_work
others = /install_dir/nodel tech/ nodel si mi ni

Tip:
Sincethefilereferred to by the "others' clause may itself contain an "others' clause, you
can use this feature to chain a set of hierarchical INI filesfor library mappings.

Creating a transcript file

A feature in the system initialization file allows you to keep arecord of everything that
occursin the transcript: error messages, assertions, commands, command outputs, etc. To
do this, set the value for the TranscriptFile line in the modelsim.ini file to the name of the
file in which you would like to record the Model Sm history.

; Save the command wi ndow contents to this file
TranscriptFile = trnscrpt

Preference variables located in INI files

Using a startup file

The system initialization file allows you to specify acommand or ado file that isto be
executed after the design isloaded. For example:

; VSIM Startup comrand

Startup = do mnystartup. do
The line shown above instructs Model Sm to execute the commands in the macro file
named mystartup.do.

; VSIM Startup conmrand

Startup = run -all

The line shown above instructs VSIM to run until there are no events schedul ed.
See the do command (CR-64) for additional information on creating do files.

Turning off assertion messages

Y ou can turn off assertion messages from your VHDL code by setting a switch in the
modelsim.ini file. This option was added because some utility packages print a huge
number of warnings.

[vsinm
I gnoreNote = 1

IgnoreWarning = 1
I gnoreError =1
lgnoreFailure = 1

Messages may also be turned off with Tcl variables; see "Preference variables located in
Tcl files' (UM-287).

Turning off warnings from arithmetic packages

Y ou can disable warnings from the synopsys and numeric standard packages by adding the
following lines to the [vsim] section of the modelsim.ini file.

[vsini

Nurreri cSt dNoWarnings = 1

St dAri t hNowWarnings = 1

Warnings may also be turned off with Tcl variables; see "Preference variables located in
Tcl files' (UM-287).

Force command defaults

The for ce command has -freeze, -drive, and -deposit options. When none of theseis
specified, then -fr eezeisassumed for unresolved signalsand -driveisassumed for resolved
signals. Thisisdesigned to provide compatibility with forcefiles. But if you prefer -fr eeze
as the default for both resolved and unresolved signals, you can change the defaults in the
modelsim.ini file.
[vsim
Default Force Kind

; The choices are freeze, drive, or deposit
Def aul t ForceKind = freeze

UM-285

ModelSim User's Manual

UM-286 A - ModelSim Variables

ModelSim User’'s Manual

Restart command defaults

Therestart command has -for ce, -nobreakpoint, -nolist, -nolog, and -nowave options.
Y ou can set any of these as defaults by entering the following line in the modelsim.ini file:

Def aul t Restart Opti ons = <opti ons>

where <opt i ons> can be oneor more of -force, -nobreakpoint, -nolist, -nolog, and -nowave.
Example: Def aul t Restart Opti ons = -nolog -force

Note: Y ou can also set these defaultsin the modelsim.tcl file. The Tcl file settingswill override
the..ini file settings.

VHDL93
Y ou can make the VHDL 93 standard the default by including the following linein the INI
file

[vcom
; Turn on VHDL-1993 as the default. Default is off (VHDL-1987).
VHDLO3 = 1

Opening VHDL files

Y ou can delay the opening of VHDL fileswith anentry intheINI fileif youwish. Normally
VHDL filesare opened when thefile declaration iselaborated. If the DelayFileOpen option
is enabled, then the file is not opened until the first read or write to that file.

[vsin
Del ayFil eCpen = 1

Preference variables located in Tcl files UM-287

Preference variables located in Tcl files

ModelSm Tcl preference variables give you control over fonts, colors, prompts, window

positions and other simulator window characteristics. Preference files, which contain Tcl

commandsthat set preferencevariables, are |oaded before any windows are created, and so
will affect all windows. For complete documentation on Tcl preference variables, see the
following URL :

http://www.model.com/resources/pref variables/frameset.htm

When ModelSmisinvoked for the first time, default preferences are loaded from the
pref.tcl file. (See " System initialization” (UM-27) for more details.) Customized variable
settings may be set from within the ModelSm GUI (Options > Edit Preferences (Main
window)) or by directly editing the preferencefile.

The default file for customized preferencesis modelsim.tcl. When Model Sim starts it
searches for amodelsim.tcl file as follows:

e use MODELSIM_TCL (uM-275) environment variableif it exists (if MODELSIM_TCL
isalist of files, each fileisloaded in the order that it appearsin the list); else

* use./modelsim.tcl; else
* use $(HOME)/modelsim.tcl if it exists

If your preference file is not named modelsim.tcl, or if the fileis not located in the
directories mentioned above, you must refer to it with the MODELSIM_TCL environment
variable.

User-defined variables

Temporary, user-defined variables can be created with the Tcl set command. Like
simulator variables, user-defined variables are preceded by a dollar sign when referenced.
To create a variable with the set command:

set userl 7
Y ou can use the variable in acommand like:

echo "userl = S$userl"

More preferences

Additional compiler and simulator preferences may be set in the modelsim.ini file; see
"Preference variables located in INI files' (uM-278).

ModelSim User's Manual

http://www.model.com/resources/pref_variables/frameset.htm

UM-288 A - ModelSim Variables

Variable precedence

Notethat some variablescan be setina.tcl fileor a.ini file. A variable setin a.tcl filetakes
precedent over the same variable set in a.ini file. For example, assume you have the
following linein your modelsim.ini file:

TranscriptFile = transcript

And assume you have the following line in your modelsim.tcl file:
set PrefMain(file) {}

In this case the setting in the modelsim.tcl file will override that in the modelsim.ini file,
and atranscript file will not be produced.

ModelSim User’'s Manual

Simulator state variables

Simulator state variables

Unlike other variables that must be explicitly set, simulator state variables return avalue
relative to the current ssmulation. Simulator state variables can be useful in commands,
especialy when used within Model Sm DO files (macros).

Variable Result
argc returns the total number of parameters passed to the current macro
architecture returns the name of the top-level architecture currently being

simulated; for a configuration or Verilog module, this variable
returns an empty string

configuration

returns the name of the top-level configuration currently being
simulated; returns an empty string if no configuration

delta returns the number of the current simulator iteration

entity returns the name of the top-level VHDL entity or Verilog module
currently being simulated

library returns the library name for the current region

MacroNestingL evel

returns the current depth of macro call nesting

n representsamacro parameter, wheren can be an integer intherange
1-9

Now returns the current simulation time expressed in the current time
resolution (e.g., 1000 ns)

now returns the current simulation time as an absolute number of time
steps (e.g., 1000)

resolution returns the current simulation time resolution

Referencing simulator state variables

Variablevalues may be referenced in simulator commands by preceding the variable name
with a$ sign. For example, to use the now and resolution variables in an echo command

type:

echo "The time is $now $resol ution.”

Depending on the current simulator state, this command could result in:
The time is 12390 10ps.

If you do not want the dollar sign to denote a simulator variable, precede it with a"\". For
example, \$now will not be interpreted as the current simulator time.

UM-289

ModelSim User's Manual

UM-290 A - ModelSim Variables

Special considerations for $now

ModelSim User’'s Manual

The $now variable is set within Model Sim by a procedure that converts the current
simulator time to user-time units, as specified in the -t argument to vsim command (CR-
168). When no multiplier is specified with the time unit (e.g, 1ps), the procedure formats
$now without atime unit. For example:

Model Si nm> vsim -t 1ps

VSIM > echo $now
0

However, when amultiplier is specified (e.g, 10ps), it's difficult to know how it should
behave for a given simulation time. For example, if the current simulation time is 500ps,
and resolution is 10ps, should $now be 50 or 500 or 500ps? To remove any ambiguity
Model Sim prints the 3rd alternative. For example:

Mobdel Si n> vsim -t 10ps

VSIM > echo $now
0 ps

For the when command (CR-181), specia processing is performed on comparisons
involving the $now variable. If you specify "when { $now = 100} ...", the simulator will stop
at time 100, regardless of the multiplier applied to the time unit.

UM-291

B - ModelSim Shortcuts

Appendix contents

Wave window mouse and keyboard shortcuts. UM-291
List window keyboard shortcuts UM-292
Command shortcuts UM-293
Command history shortcuts UM-293
Mouse and keyboard shortcutsin Main and Sourcewindows. . . UM-293
Right mouse button UM-2%4

This appendix is a collection of the keyboard and command shortcuts availablein the
ModelSm GUI.

Wave window mouse and keyboard shortcuts

The following mouse actions and keystrokes can be used in the Wave window.

Mouse action Result

< control - left-button - click on a scroll arrow > scrolls window to very top or
bottom(vertical scroll) or far left or
right (horizontal scroll)

Keystroke Action

il or + zoomin

oOor- zoom out

forF zoom full; mouse pointer must be over the the cursor or
waveform panes

| or L zoom last

rorR Zoom range

<arrow up> scroll waveform display up by selecting the item above the

currently selected item

<arrow down> scroll waveform display down by selecting the item below the
currently selected item

<arrow left> scroll waveform display left

ModelSim User's Manual

UM-292 B - ModelSim Shortcuts

Keystroke

Action

<arrow right>

scroll waveform display right

<page up> scroll waveform display up by a page

<page down> scroll waveform display down by a page

<tab> search forward (right) to the next transition on the selected
signal - finds the next edge

<shift-tab> search backward (left) to the previous transition on the selected
signal - finds the previous edge

<control-f> open the find dialog box; searches within the specified field in

the pathname pane for text strings

List window keyboard shortcuts

Using the following keys when the mouse cursor is within the List window will cause the
indicated actions:

Key Action

<arrow up> scroll listing up (selects and highlights the line above the
currently selected line)

<arrow down> scroll listing down (selects and highlights the line below the
currently selected line)

<arrow left> scroll listing left

<arrow right>

scroll listing right

<page up> scroll listing up by page

<page down> scroll listing down by page

<tab> searches forward (down) to the next transition on the selected
signa

<shift-tab> searchesbackward (up) to the previoustransition on the sel ected
signal (does not function on HP workstations)

<control-f> opens the find dialog box; finds the specified item label within

thelist display

ModelSim User’'s Manual

Command shortcuts UM-293

Command shortcuts
Y ou may abbreviate command syntax, but there's a catch — the minimum characters

required to execute a command are those that make it unique. Remember, as we add new
commands some of the old shortcuts may not work.

Command history shortcuts

The simulator command history may be reviewed, or commands may be reused, with these
shortcuts at the Model SV SIM prompt:

Shortcut Description

up and down arrows scrolls through the command history with the keyboard arrows

click on prompt |eft-click once on a previous ModelSim or VSIM prompt in the
transcript to copy the command typed at that prompt tothe active
cursor

hi story shows the last few commands (up to 50 are kept)

Mouse and keyboard shortcuts in Main and Source win-
dows
The following mouse actions and special keystrokes can be used to edit commands in the

entry region of the Main window. They can also be used in editing thefile displayed in the
Source window and all Notepad windows (enter the notepad command within ModelSm

to open the Notepad editor).
Keystrokes Result
< left | right - arrow > move the cursor left | right one character
< up | down - arrow > scroll through command history (in Source
window, move cursor one line up | down)
< control > < |eft | right - arrow > move cursor |eft | right one word

<shift > <left [right |up |down - arrow > | extend selection of text

< control > < shift > <left|right - arrow > | extend selection of text by word

< up | down - arrow > scroll through command history (in Source

window, moves cursor one line up | down)
< control > < up | down > move cursor up | down one paragraph
<at> activate or inactivate menu bar mode
<dt><F4> close active window

ModelSim User's Manual

UM-294 B - ModelSim Shortcuts

Keystrokes Result

< backspace > delete character to the left

< home > move cursor to the beginning of the line
<end > move cursor to the end of theline

< control > < home >

move cursor to the beginning of the text

< control > < end >

move cursor to the end of the text

< esc> cancel

<control - a> select the entire content of the widget

< control - ¢ > copy the selection

<control - f > find

<F3> find next

< control - k > delete from the cursor to the end of theline
< control - s> save

< control -t > reversethe order of thetwo charactersto the

right of the cursor

< control - u> deleteline

< control - v > paste from the clipboard

< control - x > cut the selection

<F8> search for the most recent command that
matches the characters typed

<F9> run simulation

<F10> continue simulation

<Fl1> single-step

<F12> step-over

The Main window allows insertions or pastes only after the prompt; therefore, you don’t
need to set the cursor when copying strings to the command line.

Right mouse button

The right mouse button provides shortcut menus in the Main and Wave windows. In the
Source window, the button gives you feedback on any HDL item under the cursor. See
Chapter 7 - Graphic Interface for menu descriptions.

ModelSim User’'s Manual

UM-295

C - Tips and Techniques

Appendix contents

Running command-line and batch-mode simulations. UM-296
Source code securityand-nodebug UM-296
Saving and viewing waveformsinbatchmode UM-298
Setting up librariesfor groupuse UM-298
Detecting infinite zero-delay loops UM-299
Performance affected by scheduled eventsbeing cancelled . . . UM-300
Modelingmemory invVHDL UM-301
Setting up aList trigger with Expression Builder UM-305

This appendix contains various tips and techniques collected from several parts of the
manual and from answersto questionsreceived by tech support. Y our suggestions, tips, and
techniques for this section would be appreciated.

ModelSim User's Manual

UM-296 C - Tips and Techniques

Running command-line and batch-mode simulations

ModelSim User’'s Manual

Thetypical method of running Model Smisinteractive: you push buttons and/or pull down
menusin aseries of windowsinthe GUI (graphic user interface). But there are really three
specific modes of Model Sm operation: GUI, command line, and batch. Here are their
characteristics:

* GUI mode
Thisisthe usual interactive mode; it has graphical windows, push-buttons, menus, and a
command line in the text window. This is the default mode.

* Command-line mode - running vsim.exe
This an operational mode that has only an interactive command line; no interactive
windows are opened. To run vsim in this manner, invoke it with the -c option asthe first
argument from the DOS prompt in Windows 95/98/2000/NT.

Theresulting transcript fileis created in such away that the transcript can be re-executed
without change if you desire. Everything except the explicit commands you enter will
begin with aleading comment character (#).

« Batch mode - running veim.exe
Batch mode is an operational mode that provides neither an interactive command line,
nor interactive windows.

In aWindows environment, vsim is run from a Windows 95/98/2000/NT DOS prompt
and standard input and output are re-directed to and from files. An exampleis:

C.\nodel tech> vsiment arch <infile >outfile

where infile contains:

force reset 0
force clk 0, 0 1 50 -rep 100
run 10000

Source code security and -nodebug UM-297

Source code security and -nodebug

The -nodebug option on both vcom (CR-129) and vlog (CR-162) hides internal model data.
This allows amodel supplier to provide pre-compiled libraries without providing source
code and without revealing internal model variables and structure.

P Note: Model Sm's-nodebug compiler option provides protection for proprietary model
information. The Verilog protect compiler directive provides similar protection, but
uses a Cadence encryption algorithm that is unavailable to Model Technology.

If adesign unit is compiled with -nodebug the Source window will not display the design
unit’s source code, the Structure window will not display the internal structure, the Signals
window will not display internal signals (it still displays ports), the Process window will
not display internal processes, and the Variableswindow will not display internal variables.
In addition, none of the hidden objects may be accessed through the Dataflow window or
with Model Sim commands.

Even with the data hiding of -nodebug, there remains some visibility into models compiled
with -nodebug. The names of all design units comprising your model are visible in the
library, and you may invoke vsim (CR-168) directly on any of these design unitsand see the
ports. For thisreason it isimportant to compile all design units with -nodebug.

Design units or modules compiled with -nodebug can only instantiate design units or
modules that are also compiled -nodebug

ModelSim User's Manual

UM-298 C - Tips and Techniques

Saving and viewing waveforms in batch mode

You can run vsim as a batch job, but view the resulting waveforms later.

1 When you invoke vsim thefirst time, use the -wlf option to rename the wave log format
(WLF) file, and redirect stdin to invoke the batch mode. The command should look like
this:

vsim-w f wavesavl. W f counter < conmand.do

Within your command.do file, use the log command (CR-81) to save the waveforms you

want to look at later, run the simulation, and quit.

When vsim runs in batch mode, it does not write to the screen, and can be runin the
background.

2 When you return to work the next day after running several batch jobs, you can start up
vsim in its viewing mode with this command and the appropriate .wif files:

vsim -view wavesavl. W f

Now you will be able to use the Waveform and List windows normally.

Setting up libraries for group use

ModelSim User’'s Manual

By adding an “others’ clause to your modelsim.ini file, you can have a hierarchy of library
mappings. If the ModelSmtools don’t find a mapping in the modelsim.ini file, then they
will search the library section of the initialization file specified by the “ others’ clause. For
example:

[Iibrary]

asic_lib = /caelasic_lib

work = ny_work

others = /usr/nodel tech/ nodel simi ni

Detecting infinite zero-delay loops UM-299

Detecting infinite zero-delay loops

Simulations use steps that advance simulated time, and steps that do not advance simulated
time. Steps that do not advance simulated time are called "deltacycles'. Deltacyclesare
used when signal assignments are made with zero time delay.

If alarge number of delta cycles occur without advancing time, it is usually a symptom of
an infinite zero-delay loop in the design. In order to detect the presence of these loops,
Model Sm defines alimit, the “iteration_limit", on the number of successive delta cycles
that can occur. When theiteration limit is exceeded, vsim stopsthe simulation and givesa
warning message.

Theiteration_limit default value is1000.When you get an iteration_limit warning, first
increase the iteration limit and try to continue simulation. Y ou can set theiteration_limit
from the Options> Simulation menu, or by modifying the modelsim.ini file.See " Projects
and systemiinitialization" (Um-15) for moreinformation on modifying the modelsim.ini file.

If the problem persists, |ook for zero-delay loops. Run the simulation and look at the source
code when the error occurs. Use the step button to step through the code and see which
signals or variables are continuously oscillating. Two common causes are aloop that has
no exit, or a series of gates with zero delay where the outputs are connected back to the
inputs.

http://www.model .com/resources/pref variables/frameset.htm.

ModelSim User's Manual

http://www.model.com/resources/pref_variables/frameset.htm

UM-300 C - Tips and Techniques

Performance affected by scheduled events being cancelled

ModelSim User’'s Manual

Performance will suffer if events are scheduled far into the future but then cancelled before
they take effect. This situation will act like amemory leak and slow down simulation.

In VHDL this situation can occur several ways. The most common are waits with time-out
clauses and projected wave forms in signal assignments.

The following code shows await with atime-out:

signals synch : bit :="'0";

p: process
begi n

wait for 10 ms until synch = 1;
end process;

synch <= not synch after 10 ns;

At time 0 p makes an event for time 10ms. When synch goesto 1 at 10 ns, the event a 10
ms is marked as cancelled but not deleted, and a new event is scheduled at 10ms + 10ns.
The cancelled events are not reclaimed until time 10msis reached and the cancelled event
isprocessed. Asaresult there will be 500000 (10ms/20ns) cancelled but undeleted events.
Once 10ms is reached memory will no longer increase because we will be reclaiming
events as fast as we add them.

For projected wave forms the following would behave the same way:

signals synch : bit :='0";

p: process(synch)
begi n

output <= '0", "1 after 10ms;
end process;

synch <= not synch after 10 ns;

Modeling memory in VHDL UM-301

Modeling memory in VHDL

AsaVHDL user, you might be tempted to model a memory using signals. Two common
simulator problems are the likely result:

* You may get a"memory allocation error" message, which typically means the simulator
ran out of memory and failed to allocate more storage.

« Or, you may get very long load, elaboration or run times.

These problems are usually explained by the fact that signals consume a substantial amount
of memory (many dozens of bytes per bit), al of which needs to be loaded or initialized
before your simulation starts.

A simple alternative implementation provides some excellent performance benefits:

« storage required to model the memory can be reduced by 1-2 orders of magnitude
* dtartup and run times are reduced

« associated memory allocation errors are eliminated

Thetrick isto model memory using variablesinstead of signals.

In the example below, we illustrate three aternative architectures for entity "memory".
Architecture "style 87_bad" uses avhdl signal to store the ram data. Architecture
"style 87" usesvariablesin the "memory" process, and architecture "style 93" uses
variablesin the architecture.

For large memories, architecture "style 87 bad" runs many times longer than the other
two, and uses much more memory. This style should be avoided.

Both architectures"style 87" and "style 93" work with equal efficiently. You'll find some
additional flexibility with the VHDL 1993 style, however, because the ram storage can be
shared between multiple processes. For example, asecond processis shown that initializes
the memory; you could add other processes to create a multi-ported memory.

To implement this model, you will need functions that convert vectors to integers. To use
it you will probably need to convert integers to vectors.

Example functions are provided below in package "conversions'.

use std.standard. all;
library ieee;

use ieee.std_l ogic_1164.all;
use work.conversions.all;

entity menory is
generic(add_bits : integer := 12;

data_bits : integer := 32);
port(add_in : in std_ulogic_vector(add_bits-1 downto 0);
data_in : in std_ulogic_vector(data_bits-1 downto 0);
data_out : out std_ul ogic_vector(data_bits-1 downto 0);
cs, mwite : in std_ulogic;
do_init : in std_ulogic);
subtype word is std_ul ogic_vector(data_bits-1 downto 0);
constant nwords : integer := 2 ** add_bits;

type ramtype is array(0 to nwords-1) of word;
end;

architecture style_93 of menory is

ModelSim User's Manual

UM-302 C - Tips and Techniques

shared variable ram: ramtype;
begi n
menory:
process (cs)
vari abl e address : natural;
begin
if rising_edge(cs) then
address := sulv_to_natural (add_in);
if (mwrite ='1") then
ram(address) := data_in;
dat a_out <= ram(address);
el se
data_out <= ram(address);
end if;
end if;
end process nenory;
-- illustrates a second process using the shared variable
initialize:
process (do_init)
vari abl e address : natural;
begi n
if rising_edge(do_init) then
for address in O to nwords-1 | oop
ran{address) := data_in;
end | oop;
end if;
end process initialize;
end architecture style_93;

architecture style_87 of nmenory is
begi n

nmenory:

process (cs)

variable ram: ramtype;
vari abl e address : natural;
begi n
if rising_edge(cs) then
address := sulv_to_natural (add_in);
if (mrite ='1") then
ran{address) := data_in;
data_out <= ran(address);
el se
dat a_out <= ran(address);
end if;
end if;
end process;
end style_87;

architecture bad_style_87 of nenory is

nmenory:
process (cs)
vari abl e address : natural := 0;
begi n
if rising_edge(cs) then

ModelSim User’'s Manual

Modeling memory in VHDL

address := sulv_to_natural (add_in);
if (mrite ='1") then
ram(address) <= data_in
data_out <= data_in;
el se
dat a_out <= ram(address);
end if;
end if;
end process;
end bad_styl e_87

use std. standard. al |
library ieee;
use ieee.std_|logic_1164. all

package conversions is
function sulv_to_natural (x : std_ul ogic_vector) return
nat ur al
function natural _to_sulv(n, bits : natural) return
std_ul ogi c_vector;
end conversions;

package body conversions is

function sulv_to_natural (x : std_ulogic_vector) return
natural is

variable n : natural :=0
variable failure : boolean := fal se
begi n

assert (x'high - x'low + 1) <= 31
report "Range of sulv_to_natural argunment exceeds
natural range"
severity error

for i in x'range |oop
n:=n=*32
case x(i) is
when '1" | "H =>n :=n + 1,
when '0" | 'L => null;
when ot hers => failure := true
end case
end | oop

assert not failure
report "sulv_to_natural cannot convert indefinite
std_ul ogi c_vector"
severity error

if failure then
return O
el se
return n
end if;
end sulv_to_natural

function natural _to_sulv(n, bits : natural) return
std_ul ogi c_vector is
variable x : std_ul ogic_vector(bits-1 downto 0) :=
(others => '0");
variable tenmpn : natural := n;
begi n

UM-303

ModelSim User's Manual

UM-304 C - Tips and Techniques

for i in x'reverse_range |oop
if (tenpn nod 2) = 1 then
x(i) :="1";
end if;
tempn : = tenmpn / 2;
end | oop;
return x;

end natural _to_sulv;

end conversi ons;

ModelSim User’'s Manual

Setting up a List trigger with Expression Builder UM-305

Setting up a List trigger with Expression Builder

This example shows you how to set a List window trigger based on a gating expression
created with the Model Sm Expression Builder.

If you want to look at a set of signal values ONLY during the simulation cycles during
which an enable signal rises, you would need to use the List window Trigger Gating
feature. The gating feature suppresses all display lines except those for which a specified
gating function evaluates to true.

Select Prop > Display Props (List window) to access the Triggers tab.

|1:-.__1'Hudif_l,l Dizplay Properties [list]

—Deltas:
{* Expand Deltaz " Collapse Deltas ™ MoDeltas

— Trigger On:
¥ Signals Strobe Period: |0 ns
[T Stabe First Strobe at: [0 ns

— I'rigger Gating:
Ilze Expreszion Builder

[T Expression

E xpression: I

On Duration: IEI hs

Ok Cancel Apply

Check the Trigger Gating: Expression check box. Then click on Use Expression
Builder. Select the signal in the List window that you want to be the enable signal by

ModelSim User's Manual

UM-306 C - Tips and Techniques

ModelSim User’'s Manual

clicking on its name in the header area of the List window. Then click Insert Selected
Signal and 'rising in the Expression Builder.

|55 'Expression Builder

’7 E sprezsion

— Exprezsion Builder
Inzert Selected Signal | [| ==
'riging 'falling el I I=
AMD| OR] 1 b »= £
=0R| SLL b z 4= +
SEL| SR H L * d %
Clear Save Test | Ok | Cancel

Click OK to close the Expression Builder. Y ou should see the name of the signal plus
"'rising" added to the Expression entry box of the Modify Display Properties dialog box.
(Leave the On Duration field zero for now.) Click the OK button.

If you already have simulation datain the List window, the display should immediately
switch to showing only those cycles for which the gating signal isrising. If that isn't quite
what you want, you can go back to the expression builder and play with it until you get it
the way you want it.

If you want the enable signal to work like a"One-Shot" that would display all values for
the next, say 10 ns, after the rising edge of enable, then set the On Duration value to 10
ns. Otherwise, leaveit at zero, and select Apply again. When everything is correct, click
OK to close the Modify Display Properties dialog box.

When you save the List window configuration, the list gating parameters will be saved as
well, and can be set up again by reading in that macro. Y ou can take alook at the macro to
see how the gating can be set up using macro commands.

Index

UM-307

CR = Command Reference, UM = User’s Manual
Symbols

+delay_mode_distributed UM-65
+delay_mode_path UM-65
+delay_mode_unit UM-65
+delay_mode zero UM-65
+incdir+ UM-65
+libext+ UM-66
+librescan UM-66
+maxdelays UM-65
+mindelays UM-65
+nolibcell UM-67
+nowarn UM-66
+typdelays UM-65
.50, shared object file

loading PL1/VPI applications UM-89
+define+ UM-65
"delayed CR-21

A

abort command CR-31
Absolute time CR-14
ACC routines UM-97
Accelerated packages UM-41
add list command CR-32
add wave command CR-35
alias command CR-39
architecture simulator state variable UM-289
argc simulator state variable UM-289
Arrays
indexes CR-11
dlices CR-11
AssertFile .ini file variable UM-280
AssertionFormat .ini file variable UM-280
Assertions
selecting severity that stops simulation UM-227

B

Bad magic number error message UM-104
balloon dialog

toggling on/off UM-198
Base (radix)

specifying in List window UM-146
batch_mode command CR-40
Batch-mode simulations UM-296

stopping simulation CR-183
bd (breakpoint delete) command CR-41
bookmark add wave command CR-42
bookmark delete wave command CR-43
bookmark goto wave command CR-44
bookmark list wave command CR-45
bookmarks UM-203
bp (breakpoint) command CR-46
Break

on assertion UM-227

on signal value CR-181
BreakOnAssertion .ini file variable UM-280
Breakpoints

continuing simulation after CR-107

deleting CR-41, UM-168

enabling and disabling UM-169

listing CR-46

setting CR-46, UM-168

signal breakpoints (when statements) UM-160

time-based UM-160

Time-based breakpointsin when statements CR-183

viewing in the Source window UM-163
Busses, user-defined UM-121

C

case choice

must be locally static CR-130
Case sensitivity

VHDL vs. Verilog CR-11
cd (change directory) command CR-49
Cell libraries UM-75
change command CR-50
CheckSynthesis .ini file variable UM-278
Command reference UM-13
CommandHistory .ini file variable UM-280
Command-line mode UM-296
commands

abort CR-31

add list CR-32

add wave CR-35

alias CR-39

batch_mode CR-40

bd (breakpoint delete) CR-41

bookmark add wave CR-42

bookmark delete wave CR-43

bookmark goto wave CR-44

ModelSim User’s Manual

UM-308 Index

bookmark list wave CR-45 searchlog CR-109

bp (breakpoint) CR-46 shift CR-111

cd (change directory) CR-49 show CR-112

change CR-50 status CR-113
configure CR-51 step CR-114

dataset alias CR-54 stop CR-115

dataset clear CR-55 system UM-261
dataset close CR-56 tb (traceback) CR-116
dataset info CR-57 transcript CR-117
dataset list CR-58 TreeUpdate CR-189
dataset open CR-59 tssi2mti CR-118
dataset rename CR-60 variablesreferenced in CR-14
delete CR-61 ved add CR-119
describe CR-62 vcd checkpoint CR-120
disablebp CR-63 ved comment CR-121
do CR-64 vcd file CR-122
drivers CR-65 vcd files CR-123
dumplog64 CR-66 ved flush CR-124

echo CR-67 ved limit CR-125

edit CR-68 ved off CR-126
enablebp CR-69 ved on CR-127
environment CR-70 vcom CR-129

examine CR-71 vdel CR-134

exit CR-73 vdir CR-135

find CR-74 vgencomp CR-136
force CR-76 view CR-138

graphic interface commands UM-232 virtual count CR-139
help CR-79 virtual define CR-140
history CR-80 virtual delete CR-141
log CR-81 virtual describe CR-142
Ishift CR-83 virtual expand CR-143
Isublist CR-84 virtual function CR-144
modelsim CR-85 virtual hide CR-147
noforce CR-86 virtual log CR-148
nolog CR-87 virtual nohide CR-150
notation conventions CR-6 virtual nolog CR-151
notepad CR-89 virtual region CR-153
noview CR-90 virtual save CR-154
nowhen CR-91 virtual show CR-155
onbreak CR-92 virtual signa CR-156
onElabError CR-93 virtual type CR-159
onerror CR-94 vlib CR-161

pause CR-95 vliog CR-162

pwd CR-98 vmake CR-166

quietly CR-99 vmap CR-167

quit CR-100 vsim CR-168

radix CR-101 VSIM Tcl commands UM-262
report CR-102 vsimDate CR-179
restart CR-104 vsimld CR-179

resume CR-106 vsmVersion CR-179
run CR-107 WaveA ctivateNextPane CR-189

ModelSim User’'s Manual

WaveRestoreCursors CR-189
WaveRestoreZoom CR-189
when CR-181
where CR-185
wlif2log CR-186
write format CR-188
writelist CR-190
write preferences CR-191
write report CR-192
write transcript CR-193
writetssi CR-194
write wave CR-196
Comment charactersin VSIM commands CR-6
compare simulations UM-103
Compiler directives UM-84
|EEE Std 1364-2000 UM-84
XL compatible compiler directives UM-85
Compiling
locating source errors UM-212
range checking in VHDL CR-132, UM-45
setting default options UM-213
Setting options in projects UM-25
setting order in projects UM-24
Verilog CR-162, UM-61
incremental compilation UM-62
XL "uselib compiler directive UM-67
XL competible options UM-65
VHDL CR-129, UM-45
at a specified line number (-line <number>)
CR-130
selected design units (-just eapbc) CR-130
standard package (-s) CR-132
with the graphic interface UM-211
with VITAL packages UM-53
concatenation
directives CR-17
of signals CR-17, CR-156
ConcurrentFileLimit .ini file variable UM-280
configuration simulator state variable UM-289
Configurations
simulating CR-168
configure command CR-51
Constants
displaying values of CR-62, CR-71
constants
used in case statements CR-130
context menus
described UM-120
Library page UM-35
Signal window UM-160
Structure pages UM-106

UM-309

convert real to time UM-57
convert time to real UM-56
Cursors
link to Dataflow window UM-135
Wave window UM-200
Customizing
via preference variables UM-287

D

dataset alias command CR-54
Dataset Browser UM-108
dataset clear command CR-55
dataset close command CR-56
dataset info command CR-57
dataset list command CR-58
dataset open command CR-59
dataset rename command CR-60
datasets UM-103
managing UM-108
restrict dataset prefix display UM-109
simulator time resolution UM-104
specifying with the environment command CR-70
DatasetSeparator .ini file variable UM-280
Declarations
hiding implicit with explicit declarations CR-133
Default compile options UM-213
Default editor
changing UM-275
DefaultForceKind .ini file variable UM-280
DefaultRadix .ini file variable UM-281
DefaultRestartOptions variable UM-281, UM-286
Defaults
restoring UM-274
window arrangement UM-120
Delay
detecting infinite zero-delay loops UM-299
interconnect CR-171, CR-175, UM-72
modes for Verilog models UM-75
SDF files UM-233
specifying stimulus delay UM-159
DelayFileOpen .ini file variable UM-281
delete command CR-61
deleting library contents UM-34
Delta
collapse deltasin the List window UM-143
hide deltasin the List window CR-52, UM-143
referencing simulator iteration
asasimulator state variable UM-289
Delta cycles UM-299

ModelSim User’s Manual

UM-310 Index

deltasmulator state variable UM-289
Dependent design units UM-45
describe command CR-62
Descriptions of HDL items UM-170
Design hierarchy
viewing in Structure window UM-172
Design library
assigning alogical name UM-37
creating UM-33
for VHDL design units UM-45
mapping search rules UM-38
resource type UM-32
working type UM-32
Design units UM-32
adding Verilog unitsto alibrary CR-162
report of units smulated CR-192
viewing hierarchy UM-121
Directories
mapping libraries CR-167
moving libraries UM-39
disablebp command CR-63
DLL files
loading UM-89
do command CR-64
DO files (macros)
error handling UM-270
executing at startup UM-275, UM-282
passing parameters to UM-269
Tcl source command UM-271
Do files (macros) CR-64
DOPATH environment variable UM-275
drivers command CR-65
dumplog64 command CR-66

E

echo command CR-67
edit command CR-68
Editing
in notepad windows UM-133, UM-293
in the Main window UM-133, UM-293
in the Source window UM-133, UM-293
Editor
changing default UM-275
EDITOR environment variable UM-275
enablebp command CR-69
encryption
securing pre-compiled libraries UM-297
ENDFILE function UM-50
ENDLINE function UM-50

ModelSim User’'s Manual

Entities
selecting for smulation CR-177
entity simulator state variable UM-289
Environment
displaying or changing pathname CR-70
environment command CR-70
Environment variables UM-275
accessed during startup UM-28
referencing from Model Sim command line UM-277
referencing with VHDL FILE variable UM-277
setting in Windows UM-276
specify transcript file location with TranscriptFile
UM-282
specifying library locations in modelsim.ini file
UM-278
specifying UNIX editor CR-68
using in pathnames CR-10
variable substitution using Tcl UM-261
Error messages
bad magic number UM-104
Errors
during compilation, locating UM-212
onerror command CR-94
Event order
issues between simuators UM-70
event order
changing in Verilog CR-162
examine command CR-71
exit command CR-73
Explicit .ini file variable UM-279
Expression Builder UM-230
Expression_format CR-16
extended identifiers CR-15
syntax in commands CR-11

F

-f UM-65

file-line breakpoints UM-168

find command CR-74

Finding
acursor in the Wave window UM-201
amarker in the List window UM-149
names and values UM-119

force command CR-76
defaults UM-285

format file
Wave window UM-181

format list CR-188

format wave CR-188

G

GenerateFormat .ini file variable UM-281
Generics
assigning or overriding valueswith -g and -G CR-
169
examining generic values CR-71
get_resolution() VHDL function UM-54
Graphic interface UM-115—7?
GUI_expression_format CR-16
GUI expression builder UM-230
syntax CR-19

H

Hazard .ini file variable (VLOG) UM-279
Hazards
event order issues UM-71
HDL item UM-14
help command CR-79
Hierarchy
referencing signalsin UM-55
viewing signal names without UM-197
history command CR-80
History shortcuts CR-7, UM-293
HOME environment variable UM-275

ieee.ini file variable UM-278
|EEE libraries UM-41
|EEE Std 1076 UM-12, UM-43
|EEE Std 1364 UM-12, UM-59
ieee_synopsis library UM-41
IgnoreError .ini file variable UM-281
IgnoreFailure .ini file variable UM-281
IgnoreNote .ini file variable UM-281
IgnoreVitalErrors .ini file variable UM-279
IgnoreWarning .ini file variable UM-281
Implicit operator, hiding with vcom -explicit CR-133
Incremental compilation

automatic UM-63

manua UM-63

with Verilog UM-62
index checking UM-45
Indexing signals, memories and nets CR-11
init_signal_spy UM-55
init_usertfs function UM-87
initial dialog box

turning on/off UM-274
Initialization sequence UM-29
Instantiation label UM-173

UM-311

Interconnect delays CR-175, UM-72, UM-244

internal signals
addingto aVCD file CR-119
Iteration_limit

detecting infinite zero-delay |oops UM-299
IterationLimit .ini file variable UM-281

K

Keyboard shortcuts

List window UM-150, UM-292
Main window UM-133, UM-293

Source window UM-293

Wave window UM-205, UM-291

L

Libraries

alternate |EEE libraries UM-41
creating design libraries CR-161, UM-33

design library types UM-32
design units UM-32

ieee numeric UM-41
ieee_numeric library UM-41
ieee_synopsis UM-41

including precompiled modules UM-223

listing contents CR-135

lock file, unlocking CR-131, CR-163

mapping

from the command line UM-38

from the GUI UM-37
hierarchically UM-284
search rules UM-38
modelsim_lib UM-54
moving UM-39
naming UM-37
predefined UM-40

refreshing library images CR-132, CR-164, UM-41

resource libraries UM-32
setting up for groups UM-298
std UM-40

verilog UM-64

VHDL library clause UM-40
working libraries UM-32

working with contents of UM-34
library simulator state variable UM-289

Licensing

ModelSim User’s Manual

UM-312

Index

License variablein .ini file UM-281
List window UM-139
adding itemsto CR-32
LM_LICENSE_FILE environment variable UM-275
L ocating source errors during compilation UM-212
log command CR-81
Logfile
log command CR-81
nolog command CR-87
overview UM-103
QuickSim Il format CR-186
redirecting with -| CR-170
virtual log command CR-148
virtual nolog command CR-151
Ishift command CR-83
Isublist command CR-84

M

MacroNestingL evel simulator state variable UM-289
Macros (DO files)
creating from a saved transcript UM-125
depth of nesting, simulator state variable UM-289
DO files (macros) UM-269
error handling UM-270
executing CR-64
executing at breakpoints CR-47
forcing signals, nets, or registers CR-76
parameter as a simulator state variable (n) UM-289
parameter total asasimulator state variable UM-289
passing parametersto CR-64, UM-269
relative directories CR-64
shifting parameter values CR-111
startup macros UM-285
Main window UM-123
Mapping libraries
from the command line UM-38
hierarchically UM-284
math_complex package UM-41
math_real package UM-41
Memory
modeling in VHDL UM-301
Menus
Dataflow window UM-136
List window UM-140
Main window UM-126
Process window UM-153
Signals window UM-156
Source window UM-164
Structure window UM-173

ModelSim User’'s Manual

tearing off or pinning menus UM-120
Variables window UM-176
Wave window UM-182
Messages
bad magic number UM-104
echoing CR-67
redirecting UM-282
turning off assertion messages UM-285
turning off warnings from arithmetic packages UM-
285
MGC_LOCATION_MAP variable UM-275
mnemonics
assigning to signal values CR-159
MODEL_TECH environment variable UM-275
MODEL_TECH_TCL environment variable UM-275
Modeling memory in VHDL UM-301
modelsim command CR-85
Model Sim commands CR-25—CR-187
commentsin commands CR-6
MODELSIM environment variable UM-275
modelsim.ini
default to VHDL 93 UM-286
hierarchia library mapping UM-284
opening VHDL files UM-286
setting restart command defaults UM-286
to specify a startup file UM-285
turning off arithmetic warnings UM-285
turning off assertion messages UM-285
using environment variables in UM-284
using to create a transcript file UM-284
using to define force command default UM-285
using to delay file opening UM-286
modelsim.tcl file UM-287
modelsim_lib UM-54
MODELSIM_TCL environment variable UM-275
Mouse shortcuts
Main window UM-133, UM-293
Source window UM-293
Wave window UM-205, UM-291
MPF file
loading from the command line UM-26
MTI_TF_LIMIT environment variable UM-275
Multiple drivers on unresolved signal UM-214
multiple simulations UM-103
multi-source interconnect delays CR-175

N

n simulator state variable UM-289
Name case sensitivity

VHDL vs. Verilog CR-11
Names
aternative signal namesin the List window (-label)
CR-33
aternative signal names in the Wave window (-la-
bel) CR-36
Negative pulses
driving an error state CR-176, UM-74
negative timing checks UM-80
Nets
adding to the Wave and List windows UM-159
applying stimulusto CR-76
displaying drivers of CR-65
displaying valuesin Signals window UM-155
examining values CR-71
forcing signal and net values UM-158
saving values as binary log file UM-159
viewing waveforms UM-178
Next and previous edges, finding UM-205, UM-292
No spacein timeliteral UM-214
NoCaseStaticError .ini file variable UM-279
NoDebug .ini file variable (VCOM) UM-279
NoDebug .ini file variable (VLOG) UM-280
noforce command CR-86
NolndexCheck .ini file variable UM-281
nolog command CR-87
NoOthersStaticError .ini file variable UM-279
notepad command CR-89
Notepad windows, text editing UM-133, UM-293
noview command CR-90
NoVitd .ini file variable UM-279
NoVitalCheck .ini file variable UM-279
Now simulator state variable UM-289
now simulator state variable UM-289
special considerations UM-290
nowhen command CR-91
numeric_bit package UM-41
numeric_std package UM-41
NumericStdNoWarnings .ini file variable UM-282

O

onbreak command CR-92
onElabError command CR-93
onerror command CR-94
Optimize for std_logic_1164 UM-215
Optimize 1164 .ini file variable UM-279
order of event
changing in Verilog CR-162
order of events

UM-313

issues UM-70

P

Packages
standard UM-40
textio UM-40
util UM-54
vital_memory UM-41
Parameters, using with macros UM-269
pathnames
dealing with spaces CR-9
Pathnamesin VSIM commands CR-10
PathSeparator .ini file variable UM-282
pause command CR-95
PLI
specifying which apps to load UM-87
Veriuser entry UM-87
PLI/VPI UM-86
tracing UM-100
PLIOBJS environment variable UM-87, UM-276
Popup
toggling Waveform popup on/off UM-179, UM-
198
Postscript
saving awaveform in UM-206
Precedence
of variables UM-288
pref.tcl file UM-287
Preference variables
editing UM-287
located in .ini files UM-278
located in Tcl files UM-287
Process window UM-152
Process without await statement UM-214
Processes
displayed in Dataflow window UM-135
values and pathnames in Variables window UM-
175
Programming Language I nterface UM-86
projects
accessing from the command line UM-26
adding filesto UM-21
changing compile order UM-24
compiling the files UM-22
creating UM-19
customizing settings UM-24
differencesin 5.5 UM-17
loading adesign UM-23
MODELSIM environment variable UM-275

ModelSim User’s Manual

UM-314

Index

override mapping for work directory with vcom CR-
132
override mapping for work directory with viog CR-
164
overview UM-16
setting compiler optionsin UM-25
propagation
preventing X propagation CR-171
"protect compiler directive UM-297
Pulse error state CR-176, UM-74
pwd command CR-98

Q

QuickSim Il logfile format CR-186
Quiet .ini filevariable
VCOM UM-279
VLOG UM-280
quietly command CR-99
quit command CR-100

R

-R UM-67
Radix
changing in Signals, Variables, Dataflow, List, and
Wave windows CR-101
of signals being examined CR-71
of signalsin Wave window CR-37
specifying in List window UM-146
specifying in Signals window UM-158
user-defined character strings CR-159
radix command CR-101
range checking UM-45
disabling CR-131
enabling CR-132
RangeCheck .ini file variable UM-282
real type
converting to time UM-57
Reconstruct RTL-level design busses UM-111
Records
changing values of UM-175
Redirecting messages
TranscriptFile UM-282
Refreshing library images CR-132, CR-164, UM-41
Register variables
adding to the Wave and List windows UM-159
displaying values in Signals window UM-155
saving values as binary log file UM-159
viewing waveforms UM-178

ModelSim User’'s Manual

report command CR-102
RequireConfigForAllDefaultBinding variable UM-279
Resolution UM-46, UM-54

specifying with -t argument CR-171
Resolution .ini file variable UM-282
resolution simulator state variable UM-289
Resource library UM-32
Restart UM-129, UM-131, UM-188
restart command CR-104

defaults UM-286
Restoring defaults UM-274
Results

saving simulations UM-103
resume command CR-106
run command CR-107
RunLength .ini file variable UM-282

S

Saving and viewing waveforms UM-103
SDF
errors and warnings UM-235
instance specification UM-234
interconnect delays UM-244
mixed VHDL and Verilog designs UM-244
specification with the GUI UM-235
troubleshooting UM-245
Verilog
$sdf _annotate system task UM-238
optional conditions UM-242
optional edge specifications UM-241
rounded timing values UM-243
SDF to Verilog construct matching UM-239
VHDL
Resolving errors UM-237
SDF to VHDL generic matching UM-236
Searching
List window
signal values, transitions, and names UM-149
values and names UM-119
Verilog libraries UM-64
waveform
signal values, edges and names UM-170, UM-
174, UM-199
searchlog command CR-109
sequencing
differencesin event order UM-70
Shared objects
loading FLI applications
see Model Sim FL1 Reference manual

loading PL1/VPI applications UM-89
shift command CR-111
Shortcuts
command history CR-7, UM-293
command line caveat CR-7, UM-293
List window UM-150, UM-292
Main window UM-293
Main windows UM-133
Source window UM-293
text editing UM-133, UM-293
Wave window UM-205, UM-291
show command CR-112
Show source lines with errors UM-214
Show_source .ini file variable
VCOM UM-279
VLOG UM-280
Show_VitalChecksWarning .ini file variable UM-279
Show_Warningl .ini file variable UM-279
Show_Warning?2 .ini file variable UM-279
Show_Warning3 .ini file variable UM-279
Show_Warning4 .ini file variable UM-279
Show_Warning5 .ini file variable UM-279
signal breakpoints UM-160
Signal names
viewing without hierarchy UM-197
Signal spy UM-55
Signal transitions
searching for UM-201
Signals
adding to aWLF file UM-159
adding to the Wave and List windows UM-159
alternative namesin the List window (-label) CR-33
alternative namesin the Wave window (-label) CR-
36
applying stimulusto CR-76, UM-158
combining into a user-defined bus UM-121
creating asignal log file CR-81
displaying drivers of CR-65
displaying environment of CR-70
displaying values in Signals window UM-155
examining values CR-71
finding CR-74
indexing arrays CR-11
pathnamesin VSIM commands CR-10
referencing in the hierarchy UM-55
replacing values of with text CR-159
saving values as binary log file UM-159
selecting signal typesto view UM-157
specifying force time CR-77
specifying radix of in List window CR-33
specifying radix of in Wave window CR-37

UM-315

specifying radix of signal to examine CR-71
viewing waveforms UM-178
Signals window UM-155
Simulating
applying stimulus to signals and nets UM-158
command-line mode UM-296
comparing simulations UM-103
saving ssmulations CR-81, CR-172, UM-103, UM-
298
saving waveform as a Postscript file UM-206
setting default run length UM-227
setting iteration limit UM-227
setting time resolution UM-219
specifying design unit CR-168
specifying the time unit for delays CR-14
stepping through a simulation CR-114
stopping simulation in batch mode CR-183
Verilog UM-69
delay modes UM-75
event order issues UM-70
hazard detection UM-71
resolution limit UM-70
XL compatible simulator options UM-71
VHDL UM-46
viewing resultsin List window UM-139
with the graphic interface UM-217
with VITAL packages UM-53
Simulations
saving results UM-103
simulator resolution
returning asarea UM-54
when comparing datasets UM-104
simulator time resolution (vsim -t) CR-171
simulator version CR-172, CR-179
simultaneous eventsin Verilog
changing order CR-162
sizetf callback function UM-94
so, shared object file
loading PLI/VPI applications UM-89
software version UM-130
Sorting
sorting HDL itemsin VSIM windows UM-120
Source code
source code security UM-297
Source directory, setting from source window UM-164
spaces in pathnames CR-9
Specify path delays CR-176, UM-74
Standards supported UM-12
Startup
alternate to startup.do (vsim -do) CR-169
environment variables access during UM-28

ModelSim User’s Manual

UM-316 Index

files accessed during UM-27
macro in the modelsim.ini file UM-282
using a startup file UM-285
Startup .ini file variable UM-282
Startup macros UM-285
Status bar
Main window UM-133
status command CR-113
std .ini file variable UM-278
std_developerskit .ini file variable UM-278
std_logic_arith package UM-41
std_logic_signed package UM-41
std_logic_unsigned package UM-41
StdArithNoWarnings .ini file variable UM-282
STDOUT environment variable UM-276
step command CR-114
Stimulus
applying to signals and nets UM-158
stop command CR-115
Structure window UM-172
synopsys .ini file variable UM-278
system calls
VCD UM-248
Verilog UM-77
System commands UM-261
System initialization UM-27
system tasks
VCD UM-248
Verilog UM-77

T

tab stops
in the Source window UM-171
tb command CR-116
Tcl UM-253—UM-264
command separator UM-260
command substitution UM-259
command syntax UM-256
evaluation order UM-260
Man Pagesin Help menu UM-130
preference variables UM-287
relational expression evaluation UM-260
variable substitution UM-261
VSIM Tcl commands UM-262
Text and command syntax UM-14
Text editing UM-133, UM-293
TextlO package
aternative I/O files UM-51
containing hexadecimal numbers UM-50

ModelSim User’'s Manual

dangling pointers UM-50
ENDFILE function UM-50
ENDLINE function UM-50
file declaration UM-47
implementation issues UM-49
providing stimulus UM-51
standard input UM-48
standard output UM-48
WRITE procedure UM-49
WRITE_STRING procedure UM-49
TF routines UM-98
TFMPC
disabling warning CR-175
Time
simulation time units CR-14
timeresolution asasimulator state variable UM-289
Time resolution
inVerilog UM-70
setting
with vsim command CR-171, UM-46
setting in the GUI UM-219
time type
converting to real UM-56
Time-based breakpoints UM-160
timescale directive warning
disabling CR-175
Timing
annotation UM-233
handling negative timing constraints UM-80
to_real VHDL function UM-56
to_time VHDL function UM-57
toggling Waveform popup on/off UM-179, UM-198
Toolbar
Main window UM-131
Wave window UM-186
Tracing HDL items with the Dataflow window UM-137
transcript command CR-117
Transcript file
redirecting with -1 CR-170
saving UM-125, UM-284
TranscriptFile variable in .ini file UM-282
Tree windows
VHDL and Verilog itemsin UM-121
viewing the design hierarchy UM-121
TreeUpdate command CR-189
Triggers, setting in the List window UM-143, UM-305
TSCALE
disabling warning CR-175
TSSI CR-194
tssi2mti command CR-118

type

converting real to time UM-57
converting timeto real UM-56

U

-u UM-66
Unbound Component UM-214
UnbufferedOutput .ini file variable UM-282
Use 1076-1993 language standard UM-213
Use clause

specifying alibrary UM-40
Use explicit declarations only UM-214
User-defined bus UM-110, UM-121
UserTimeUnit .ini file variable UM-282
util package UM-54

Vv

-v CR-164, UM-66
Values
describe HDL items CR-62
examine HDL item values CR-71
of HDL items UM-170
replacing signal values with strings CR-159
Variable settings report CR-14
Variables
environment variables UM-275
LM_LICENSE FILE UM-275
loading order at Model Sim startup UM-27
personal preferences UM-274
precedence between .ini and .tcl UM-288
setting environment variables UM-275
simulator state variables
current settings report UM-274
iteration number UM-289
name of entity or module as avariable UM-289
resolution UM-289
simulation time UM-289
Variables window UM-175
Variables, HDL
changing value of on command line CR-50
changing value of with the GUI UM-175
describing CR-62
examining values CR-71
Variables, Tcl CR-14
ved add command CR-119
ved checkpoint command CR-120
vced comment command CR-121
vcd file command CR-122
VCD files UM-247

UM-317

adding internal signals CR-119
adding items to the file CR-119
converting to WLF files CR-128
creating CR-119, UM-249
dumping variable values CR-120
flushing the buffer contents CR-124
from VHDL source to VCD output UM-250
inserting comments CR-121
specifying maximum file size CR-125
specifying name of CR-123
specifying the file name CR-122
turn off VCD dumping CR-126
turn on VCD dumping CR-127
VCD system tasks UM-248
viewing files from another tool CR-128
ved files command CR-123
ved flush command CR-124
ved limit command CR-125
ved off command CR-126
ved on command CR-127
ved2wlf command CR-128
vcom command CR-129
vdel command CR-134
vdir command CR-135
Verilog
ACC routines UM-97
cell libraries UM-75
compiler directives UM-84
compiling and linking PL1 applications UM-89
compiling design units UM-61
compiling with XL "uselib compiler directive UM-
67
creating a design library UM-61
library usage UM-64
SDF annotation UM-238
sdf _annotate system task UM-238
simulating UM-69
delay modes UM-75
event order issues UM-70
XL compatible options UM-71
simulation hazard detection UM-71
simulation resolution limit UM-70
source code viewing UM-163
standards UM-12
system tasks UM-77
TF routines UM-98
XL compatible compiler options UM-65
XL compatible routines UM-100
XL compatible system tasks UM-80
verilog .ini file variable UM-278
Verilog PLI/VPI UM-86—UM-101

ModelSim User’s Manual

UM-318

ModelSi

Index

64-bit support in the PLI UM-100
compiling and linking PLI/VPI applications UM-89
debugging PL1/VPI code UM-100
PLI callback reason argument UM-93
PL1 support for VHDL objects UM-96
registering PLI applications UM-86
registering VPI applications UM-88
specifying the PLI/VPI file to load UM-90
Verilog Procedural Interface UM-86
Verilog XL
differencesin event order UM-70
Veriuser .ini file variable UM-87, UM-282
version
obtaining via Help menu UM-130
obtaining with vsim command CR-172
obtaining with vsim<info> commands CR-179
vgencomp command CR-136
VHDL
delay file opening UM-286
dependency checking UM-45
field naming syntax CR-11
file opening delay UM-286
library clause UM-40
object support in PLI UM-96
simulating UM-46
source code viewing UM-163
standards UM-12
VITAL package UM-41
VHDL utilities UM-54, UM-55
get_resolution() UM-54
to_real() UM-56
to_time() UM-57
VHDL93.ini file variable UM-279
view command CR-138
Viewing
design hierarchy UM-121
library contents UM-34
waveforms CR-172
Viewing and saving waveforms UM-103
virtual count commands CR-139
virtual define command CR-140
virtual delete command CR-141
virtual describe command CR-142
virtual expand commands CR-143
virtual function command CR-144
virtual hide command CR-147, UM-111
virtual log command CR-148
virtual nohide command CR-150
virtual nolog command CR-151
Virtual objects UM-110
virtual functions UM-111

m User’s Manual

virtual regions UM-112
virtual signals UM-110
virtual types UM-112
virtual region command CR-153, UM-112
Virtual regions
reconstruct the RTL Hierarchy in gate level design
UM-112
virtua save command CR-154, UM-111
virtual show command CR-155
virtual signa command CR-156, UM-110
Virtual signals
reconstruct RTL-level design busses UM-111
reconstruct the original RTL hierarchy UM-111
virtual hide command UM-111
virtual type command CR-159
VITAL
compiling and simulating with accelerated VITAL
packages UM-53
obtaining the specification and source code UM-52
VITAL 2000 library UM-41
VITAL packages UM-52
vlib command CR-161
vlog command CR-162
vmake command CR-166
vmap command CR-167
VPI
registering applications UM-88
VPI/PLI UM-86
compiling and linking applications UM-89
VSIM build date and version CR-179
vsim command CR-168

W

Warnings
disabling individual compiler warnings CR-131
disabling specific warning messages CR-164, CR-
175
turning off warnings from arithmetic packages UM-
285
wave
adding CR-35
Wave format file UM-181
Wave log format (WLF) file CR-172, UM-103
of binary signal values CR-81
Wave window UM-178
toggling Waveform popup on/off UM-179, UM-
198
WaveA ctivateNextPane command CR-189
Waveform logfile

log command CR-81
overview UM-103
Waveform popup UM-179, UM-198
Waveforms UM-103
saving and viewing CR-81, UM-104
saving and viewing in batch mode UM-298
viewing UM-178
WaveRestoreCursors command CR-189
WaveRestoreZoom command CR-189
WaveSignalNameWidth .ini file variable UM-282
Welcome dialog
turning on/off UM-274
when command CR-181
when statement
setting signal breskpoints UM-160
time-based breakpoints CR-183
where command CR-185
Wildcard characters
for pattern matching in simulator commands CR-13
Windows
finding HDL item names UM-119
opening from command line CR-138
opening with the GUI UM-128
searching for HDL item values UM-119
Dataflow window
tracing signals and nets UM-137
List window UM-139
adding HDL items UM-144
adding signals with a WLF file UM-159
examining simulation results UM-148
formatting HDL items UM-145
locating time markers UM-119
output file CR-190
saving the format of CR-188
saving to afile UM-150
setting display properties UM-142
setting triggers UM-143, UM-305
Main window UM-123
status bar UM-133
text editing UM-133, UM-293
time and delta display UM-133
toolbar UM-131
Process window UM-152
displaying active processes UM-152
specifying next process to be executed UM-152
viewing processing in the region UM-152
saving position and size UM-120
Signals window UM-155
VHDL and Verilog items viewed in UM-155
Source window
Setting tab stops UM-171

UM-319

text editing UM-133, UM-293
Structure window UM-172
HDL itemsviewed in UM-172
instance names UM-173
selecting itemsto view in Signals window UM-
155
VHDL and Verilog items viewed in UM-172
viewing design hierarchy UM-172
Variables window UM-175
displaying values UM-175
VHDL and Verilog items viewed in UM-175
Wave window UM-178
adding HDL items UM-181
adding signals with aWLF file UM-159
changing display range (zoom) UM-201
changing path elements CR-53, UM-282
cursor measurements UM-201
locating time cursors UM-119
saving format file UM-181
setting display properties UM-197
using time cursors UM-200
zoom options UM-202
zooming UM-201
WLF files
adding itemsto UM-159
creating from VCD CR-128
limiting size CR-172
log command CR-81
overview UM-104
saving UM-104
specifying name CR-172
using in batch mode UM-298
wlf2log command CR-186
Work library UM-32
workspace UM-124
write format command CR-188
write list command CR-190
write preferences command CR-191
write report command CR-192
write transcript command CR-193
write tssi command CR-194
write wave command CR-196

X

X propagation
preventing CR-171

ModelSim User’s Manual

UM-320 Index

Y

-y CR-164, UM-66

Z

Zero-delay loop, detecting infinite UM-299
Zero-delay oscillation UM-299
Zoom
from Wave toolbar buttons UM-202
from Zoom menu UM-201
options UM-202
saving range with bookmarks UM-203
with the mouse UM-202

ModelSim User’'s Manual

	Bookcase
	User’s Manual
	Table of Contents
	1 - Introduction
	Standards supported
	Assumptions
	Sections in this document
	Command reference
	What is an "HDL item"
	Text conventions

	2 - Projects and system initialization
	Introduction
	How do projects differ in version 5.5?

	Getting started with projects
	Step 1 — Create a new project
	Step 2 — Add files to the project
	Step 3 — Compile the files
	Step 4 — Simulate a design
	Other project operations

	Customizing project settings
	Changing compile order
	Grouping files
	Setting compiler options

	Accessing projects from the command line
	System initialization
	Files accessed during startup
	Environment variables accessed during startup
	Initialization sequence

	3 - Design libraries
	Design library contents
	Design library types
	Working with design libraries
	Managing library contents
	Assigning a logical name to a design library
	Moving a library

	Specifying the resource libraries
	Predefined libraries
	Alternate IEEE libraries supplied
	VITAL 2000 library
	Regenerating your design libraries

	Importing FPGA libraries

	4 - VHDL Simulation
	Compiling VHDL designs
	Invoking the VHDL compiler
	Dependency checking
	Range and index checking

	Simulating VHDL designs
	Invoking the simulator from the Main window

	Using the TextIO package
	Syntax for file declaration
	Using STD_INPUT and STD_OUTPUT within ModelSim

	TextIO implementation issues
	Reading and writing hexadecimal numbers
	Dangling pointers
	The ENDLINE function
	The ENDFILE function
	Using alternative input/output files
	Providing stimulus

	Obtaining the VITAL specification and source code
	VITAL packages
	ModelSim VITAL compliance
	VITAL compliance checking

	Compiling and Simulating with accelerated VITAL packages
	Util package
	get_resolution()
	init_signal_spy()
	to_real()
	to_time()

	5 - Verilog Simulation
	Compilation
	Incremental compilation
	Library usage
	Verilog-XL compatible compiler options
	Verilog-XL `uselib compiler directive

	Simulation
	Simulation resolution limit
	Event order issues
	Verilog-XL compatible simulator options

	Cell Libraries
	Delay modes

	System Tasks
	IEEE Std 1364 system tasks
	Verilog-XL compatible system tasks
	$init_signal_spy

	Compiler Directives
	IEEE Std 1364 compiler directives
	Verilog-XL compatible compiler directives

	Verilog PLI/VPI
	Registering PLI applications
	Registering VPI applications
	Compiling and linking PLI/VPI applications
	The PLI callback reason argument
	The sizetf callback function
	PLI object handles
	Third party PLI applications
	Support for VHDL objects
	IEEE Std 1364 ACC routines
	IEEE Std 1364 TF routines
	Verilog-XL compatible routines
	64-bit support in the PLI
	PLI/VPI tracing

	6 - WLF files (datasets) and virtuals
	WLF files (datasets)
	Saving a simulation to a WLF file
	Opening datasets
	Viewing dataset structure
	Managing datasets
	Using datasets with ModelSim commands
	Restricting the dataset prefix display

	Virtual Objects (User-defined buses, and more)
	Virtual signals
	Virtual functions
	Virtual regions
	Virtual types

	Dataset, WLF file, and virtual commands

	7 - Graphic Interface
	Window overview
	Common window features
	Quick access toolbars
	Drag and Drop
	Command history
	Automatic window updating
	Finding names, and locating cursors
	Sorting HDL items
	Saving window layout
	Context menus
	Menu tear off
	Combining signals into a user-defined bus
	Tree window hierarchical view

	Main window
	Workspace
	Transcript
	The Main window menu bar
	The Main window toolbar
	The Main window status bar
	Mouse and keyboard shortcuts

	Dataflow window
	Link to active cursor in Wave window
	Dataflow window menu bar
	Tracing HDL items with the Dataflow window
	Saving the Dataflow window as a Postscript file

	List window
	HDL items you can view
	The List window menu bar
	Setting List window display properties
	Adding HDL items to the List window
	Editing and formatting HDL items in the List window
	Examining simulation results with the List window
	Finding items by name in the List window
	Setting time markers in the List window
	List window keyboard shortcuts
	Saving List window data to a file

	Process window
	The Process window menu bar

	Signals window
	The Signals window menu bar
	Selecting HDL item types to view
	Forcing signal and net values
	Adding HDL items to the Wave and List windows or a WLF file
	Finding HDL items in the Signals window
	Setting signal breakpoints
	Defining clock signals

	Source window
	The Source window menu bar
	The Source window toolbar
	Setting file-line breakpoints
	Editing the source file in the Source window
	Checking HDL item values and descriptions
	Finding and replacing in the Source window
	Setting tab stops in the Source window

	Structure window
	The Structure window menu bar
	Finding items in the Structure window

	Variables window
	The Variables window menu bar

	Wave window
	Pathname pane
	Values pane
	Waveform pane
	Cursor panes
	HDL items you can view
	Adding HDL items in the Wave window
	The Wave window menu bar
	The Wave window toolbar
	Using Dividers
	Splitting Wave window panes
	Combining items in the Wave window
	Editing and formatting HDL items in the Wave window
	Setting Wave window display properties
	Setting signal breakpoints
	Finding items by name or value in the Wave window
	Using time cursors in the Wave window
	Finding a cursor
	Making cursor measurements
	Zooming - changing the waveform display range
	Saving zoom range and scroll position with bookmarks
	Wave window mouse and keyboard shortcuts
	Saving waveforms

	Compiling with the graphic interface
	Locating source errors during compilation
	Setting default compile options

	Simulating with the graphic interface
	Design selection tab
	VHDL settings tab
	Verilog settings tab
	Libraries settings tab
	SDF settings tab
	SDF options
	Setting default simulation options

	ModelSim tools
	The GUI Expression Builder

	Graphic interface commands

	8 - Standard Delay Format (SDF) Timing Annotation
	Specifying SDF files for simulation
	Instance specification
	SDF specification with the GUI
	Errors and warnings

	VHDL VITAL SDF
	SDF to VHDL generic matching
	Resolving errors

	Verilog SDF
	The $sdf_annotate system task
	SDF to Verilog construct matching
	Optional edge specifications
	Optional conditions
	Rounded timing values

	SDF for Mixed VHDL and Verilog Designs
	Interconnect delays
	Troubleshooting
	Mistaking a component or module name for an instance label
	Forgetting to specify the instance

	9 - Value Change Dump (VCD) Files
	ModelSim VCD commands and VCD tasks
	Creating a VCD file
	Flow for four-state VCD file

	A VCD file from source to output
	VCD simulator commands
	VCD output

	10 - Tcl and macros
	Tcl features within ModelSim
	Tcl References
	Tcl commands
	Tcl command syntax
	if command syntax
	set command syntax
	Command substitution
	Command separator
	Multiple-line commands
	Evaluation order
	Tcl relational expression evaluation
	Variable substitution
	System commands

	List processing
	ModelSim Tcl commands
	ModelSim Tcl time commands
	Conversions
	Relations
	Arithmetic

	Tcl examples
	Example 2

	Macros (DO files)
	Using Parameters with DO files

	A - ModelSim Variables
	Variable settings report
	Personal preferences
	Returning to the original ModelSim defaults
	Environment variables
	Creating environment variables in Windows
	Referencing environment variables within ModelSim
	Removing temp files (VSOUT)

	Preference variables located in INI files
	[Library] library path variables
	[vcom] VHDL compiler control variables
	[vlog] Verilog compiler control variables
	[vsim] simulator control variables
	Setting variables in INI files
	Commonly used INI variables

	Preference variables located in Tcl files
	User-defined variables
	More preferences

	Variable precedence
	Simulator state variables
	Referencing simulator state variables
	Special considerations for $now

	B - ModelSim Shortcuts
	Wave window mouse and keyboard shortcuts
	List window keyboard shortcuts
	Command shortcuts
	Command history shortcuts
	Mouse and keyboard shortcuts in Main and Source windows
	Right mouse button

	C - Tips and Techniques
	Running command-line and batch-mode simulations
	Source code security and -nodebug
	Saving and viewing waveforms in batch mode
	Setting up libraries for group use
	Detecting infinite zero-delay loops
	Performance affected by scheduled events being cancelled
	Modeling memory in VHDL
	Setting up a List trigger with Expression Builder

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

