
COPYRIGHT 2001 MICROTRONIX DATACOM LTD

Linux Development Kit For The Nios Embedded Processor

Application Notes VERSION 1.0

Issued: August 3, 2001

Debugging Applications

2

Starting the Debugger

The LDK only supports remote debugging; there is no self-hosted debugger available. Remote
debugging consists of a debugger stub on the target, and a host debugger (with possibly a front-end
such as DDD) on your workstation. The host communicates with the stub via a serial port running at
115,200 baud (8-bits, no parity, no flow control). Four shell-scripts have been provided to help set thing
up for debugging:

GDBlinuxFlash : Host GDB for debugging a flash kernel
GDBlinux : Host GDB for debugging a RAM kernel
DDDlinuxFlash : Host DDD for debugging a flash kernel
DDDlinux : Host DDD for debugging a RAM kernel

A quick explanation of the GDB scripts follows. The DDD scripts differ only in the fact that they start the
DDD front-end for GDB.

The first if-block in the script sets the script variables COM1 and COM2 to the serial port names
depending on the environment. The Cygwin environment lays on top of Windows and defines the
environment variable "niosgnu" whereas this symbol is absent in Linux environments. The if-block also
defines an additional shell variable (GO_CMD) in the script for Flash-debugging. It is set to a null string
in the Cygwin environment.

The next block creates a debugger startup command file that specifies the architecture (nios32), the file
being debugged (linux), the port to use for remote debugging (COM2). The RAM script loads the kernel
and sets a breakpoint at "main" whereas the Flash script will echo what to type to start the kernel. (The
DDDlinuxFlash script will start automatically.) For either the GDB or DDD linuxFlash scripts to stop in
the kernel startup procedure requires that the "#define"d symbol DEBUG_FLASH_KERNEL be non-
zero (e.g. 1) in the file linux/arch/niosnommu/kernel/start.c. If it is changed, a kernel rebuild is
naturally in order.

Next, the script loads the GDB stub into the target using the "nios-run -x" command. Normally, the flash
loader will start linux after a reset: To prevent it from doing so and instead trapping to the GERMS
monitor, you must depress and hold the SW4 button, press and release SW2 (reset), and a moment
later (about 1/2 second), release SW4. The GERMS monitor will now be able to communicate with the
host loader (nios-run): The GDB stub is loaded and started.

You can set breakpoints in the RAM-based kernel as soon as the debugger reports that the kernel is
loaded. For flash-based systems, breakpoints can only be set _after_ the flash-loader loads the kernel
since any breakpoints set _before_ the loader begins will be overwritten. If the kernel has been built
with the DEBUG_FLASH_KERNEL symbol defined as 1 (see above), then the kernel will trap to the
debugger shortly after the flash kernel has been loaded: Breakpoints may be set at this time or any
time that the debugger has control (i.e. The kernel and applications are not running).

Finally, the script starts the host-side GDB debugger.

3

The default host-side debugger is nios-elf-gdb. If you desire, you can also run front-ends for gdb, such
as ddd (http://www.gnu.org/software/ddd/). The DDDlinuxRAM and DDDlinuxFlash scripts are very
similar to their GDBlinux* equivalents. Note, however, that the DDDlinux* scripts start the kernel
running automatically, whereas this must be done manually with the GDBlinux* scripts. The command
to type in the GDB command console will appear in the console window from which the GDBlinux*
script was launched.

4

Preparing Applications for Debugging

There are two steps to preparing an application for debugging. The first is to patch the executable
image with the utility "makeDebuggable" (found in the niosuserland/debug directory). This utility takes
an optional argument of -y (the default) to make the following executable file-list debuggable, or of -n to
"unpatch" the files. These patched executable files may be placed in the ROMFS in flash, however it is
recommended that they instead be placed on an SMB server and mounted. Debugging typically
requires several cycles of testing/rebuilding/reloading, etc. It takes a long time to burn a large ROMFS
into flash.

The second step is to create a symbol file for the debugger to use. Add the following dependency to the
"all" target in the makefile for your application: "app.abself", where "app" is the name of your
executable. Please refer to niosuserland/hello/Makefile for an example.

Once the debugger is loaded and ready, run "nios-run -t" from a command window or run a terminal
emulator (e.g. hyperterminal on Cygwin/Windows) set to 115,200 baud, no parity, 8-bits on com1
(Cygwin/Windows) or /dev/ttyS0 (linux). Start the kernel by typing "cont" (for a RAM-based kernel) or
"jump * &na_flash_kernel" for a flash-based kernel in the debugger console window.

In the niosuserland/debug directory, there is a kernel utility named "debug" that the shell should have
access to: By default, it is added to the /bin directory of the flash ROMFS, however it can live
anywhere. If your executable and/or the "debug" utility are on an SMB server, mount the server.

The debug utility takes an argument of 0, 1, or 2 as follows:
"debug 0" - turn debugging off
"debug 1" - single-shot mode
"debug 2" - continuous mode

Single-shot mode will cause a trap to the debugger, but only once, when any executable patched for
debugging is run. The debug mode is reset when the application traps to the debugger. To debug the
next application, it is required that the debug utility be run again before the application is launched. Any
applications _not_ patched for debugging will have no effect.

Continuous-mode will cause a trap to the debugger whenever any executable patched for debugging is
run until the debugging mode is changed. Unpatched applications have no effect.

Now run your executable, and the host debugger will report "SIGTRAP". At this point, type
"add-symbol-file <app> <text> <data> <bss>" at the debugger console prompt. <app> is the name of
the .abself application file (e.g. hello.abself), and the <text>, <data>, and <bss> parameters are the
addresses of the program sections. These values can be pasted from the terminal emulator. (The
kernel loader prints them out whenever it causes a SIGTRAP.)

At the debugger console, type "step". This will move you from crt0 into __uClibc_main. You can now
either directly set a breakpoint in your application and continue, or continue single-stepping into your
application's "main()".

5

Tips

In some cases, your application may be out of scope to the debugger. The general advice is to "step"
the debugger into __uClibc_main(), then "next" the debugger to the line where "main" is called: This will
prevent you from stepping through things like the stdio initialization. Once you reach the point where
"main" is called, "step" the debugger and you will arrive at "main()" in you application. At this point, the
debugger is aware of your application's files.

Open the register and local variables windows when debugging. Examining a variable may display
unexpected results because the variable may be cached in a register and not yet written to memory.
The optimizer may also reorder operations. Sometimes the best course of action is a judicious
sprinkling of printf statements in your code.

The host-side debugger sometimes has problems with paths to your source files. One way around this
obstacle is to place symbolic links to your source files in the directory where the debugger is started,
typically /opt/uClinux/linux.

It is a good idea to remove all breakpoints before your application terminates. Remember that your
application is transient, and another application may well reuse it's memory. The debugger could then
reinstate the old (now terminated) application's breakpoints in the new application's code space, or
worse, restore the old application's instructions that were replaced with breakpoints.

Finally, check the README file enclosed with your kit for any late-breaking news of changes that have
occurred since this note was published.

