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Microsoft Extensible Firmware Initiative FAT32 File System Specification 
 
IMPORTANT-READ CAREFULLY: This Microsoft Agreement (“Agreement”) is a legal agreement 
between you (either an individual or a single entity) and Microsoft Corporation (“Microsoft”) for the 
version of the Microsoft specification identified above which you are about to download 
(“Specification”). BY DOWNLOADING, COPYING OR OTHERWISE USING THE 
SPECIFICATION, YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF 
YOU DO NOT AGREE TO THE TERMS OF THIS AGREEMENT, DO NOT DOWNLOAD, COPY, 
OR USE THE SPECIFICATION. 
 
The Specification is owned by Microsoft or its suppliers and is protected by copyright laws and 
international copyright treaties, as well as other intellectual property laws and treaties.  
 
1. LIMITED LICENSE AND COVENANT NOT TO SUE.  
 
(a) Provided that you comply with all terms and conditions of this Agreement and subject to 
the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following non-exclusive, 
worldwide, royalty-free, non-transferable, non-sublicenseable license under any copyrights owned 
or licensable by Microsoft without payment of consideration to unaffiliated third parties, to 
reproduce the Specification solely for the purposes of creating portions of products which comply 
with the Specification in unmodified form. 
  
(b) Provided that you comply with all terms and conditions of this Agreement and subject to 
the limitations in Sections 1(c) - (f) below, Microsoft grants to you the following non-exclusive, 
worldwide, royalty-free, non-transferable, non-sublicenseable, reciprocal limited covenant not to 
sue under its Necessary Claims solely to make, have made, use, import, and directly and 
indirectly, offer to sell, sell and otherwise distribute and dispose of portions of products which 
comply with the Specification in unmodified form. 
For purposes of sections (a) and (b) above, the Specification is “unmodified” if there are no 
changes, additions or extensions to the Specification, and “Necessary Claims” means claims of a 
patent or patent application which are (1) owned or licenseable by Microsoft without payment of 
consideration to an unaffiliated third party; and (2) have an effective filing date on or before 
December 31, 2010, that must be infringed in order to make a portion(s) of a product that 
complies with the Specification.  Necessary Claims does not include claims relating to 
semiconductor manufacturing technology or microprocessor circuits or claims not required to be 
infringed in complying with the Specification (even if in the same patent as Necessary Claims). 
 
(c) The foregoing covenant not to sue shall not extend to any part or function of a product  
which (i) is not required to comply with the Specification in unmodified form, or (ii) to which there 
was a commercially reasonable alternative to infringing a Necessary Claim.  
(d) Each of the license and the covenant not to sue described above shall be unavailable to 
you and shall terminate immediately if you or any of your Affiliates (collectively “Covenantee 
Party”) “Initiates” any action for patent infringement against:  (x) Microsoft or any of its Affiliates 
(collectively “Granting Party”), (y) any customers or distributors of the Granting Party, or other 
recipients of a covenant not to sue with respect to the Specification from the Granting Party 
(“Covenantees”); or (z) any customers or distributors of Covenantees (all parties identified in (y) 
and (z) collectively referred to as “Customers”), which action is based on a conformant 
implementation of the Specification.  As used herein, “Affiliate” means any entity which directly or 
indirectly controls, is controlled by, or is under common control with a party; and control shall 
mean the power, whether direct or indirect, to direct or cause the direction of the management or 
policies of any entity whether through the ownership of voting securities, by contract or otherwise. 
“Initiates” means that a Covenantee Party is the first (as between the Granting Party and the 
Covenantee Party) to file or institute any legal or administrative claim or action for patent 
infringement against the Granting Party or any of the Customers. “Initiates” includes any situation 
in which a Covenantee Party files or initiates a legal or administrative claim or action for patent 
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infringement solely as a counterclaim or equivalent in response to a Granting Party first filing or 
instituting a legal or administrative patent infringement claim against such Covenantee Party. 
 
(e) Each of the license and the covenant not to sue described above shall not extend to your 
use of any portion of the Specification for any purpose other than (a) to create portions of an 
operating system (i) only as necessary to adapt such operating system so that it can directly 
interact with a firmware implementation of the Extensible Firmware Initiative Specification v. 1.0 
(“EFI Specification”); (ii) only as necessary to emulate an implementation of the EFI Specification; 
and (b) to create firmware, applications, utilities and/or drivers that will be used and/or licensed 
for only the following purposes:  (i) to install, repair and maintain hardware, firmware and portions 
of operating system software which are utilized in the boot process; (ii) to provide to an operating 
system runtime services that are specified in the EFI Specification; (iii) to diagnose and correct 
failures in the hardware, firmware or operating system software; (iv) to query for identification of a 
computer system (whether by serial numbers, asset tags, user or otherwise); (v) to perform 
inventory of a computer system; and (vi) to manufacture, install and setup any hardware, 
firmware or operating system software.  
 
(f) Microsoft reserves all other rights it may have in the Specification and any intellectual 
property therein.  The furnishing of this document does not give you any license or covenant not 
to sue with respect to any other Microsoft patents, trademarks, copyrights or other intellectual 
property rights.   
 
2. ADDITIONAL LIMITATIONS AND OBLIGATIONS.  
(a)The foregoing license and covenant not to sue is applicable only to the version of the 
Specification which you are about to download.  It does not apply to any additional versions of or 
extensions to the Specification. 
(b)Without prejudice to any other rights, Microsoft may terminate this Agreement if you fail to 
comply with the terms and conditions of this Agreement.  In such event you must destroy all 
copies of the Specification. 
 
3.  INTELLECTUAL PROPERTY RIGHTS. All ownership, title and intellectual property rights 
in and to the Specification are owned by Microsoft or its suppliers.  
 
4. U.S. GOVERNMENT RIGHTS.  Any Specification provided to the U.S. Government pursuant 
to solicitations issued on or after December 1, 1995 is provided with the commercial rights and 
restrictions described elsewhere herein.  Any Specification provided to the U.S. Government 
pursuant to solicitations issued prior to December 1, 1995 is provided with RESTRICTED 
RIGHTS as provided for in FAR, 48 CFR 52.227-14 (JUNE 1987) or DFAR, 48 CFR 252.227-
7013 (OCT 1988), as applicable.  
 
5. EXPORT RESTRICTIONS. Export of the Specification, any part thereof, or any process 
or service that is the direct product of the Specification (the foregoing collectively referred to as 
the “Restricted Components”) from the United States is regulated by the Export Administration 
Regulations (EAR, 15 CFR 730-744) of the U.S. Commerce Department, Bureau of Export 
Administration (“BXA”).  You agree to comply with the EAR in the export or re-export of the 
Restricted Components (i) to any country to which the U.S. has embargoed or restricted the 
export of goods or services, which currently include, but are not necessarily limited to Cuba, Iran, 
Iraq, Libya, North Korea, Sudan, Syria and the Federal Republic of Yugoslavia (including Serbia, 
but not Montenegro), or to any national of any such country, wherever located, who intends to 
transmit or transport the Restricted Components back to such country; (ii) to any person or entity 
who you know or have reason to know will utilize the Restricted Components in the design, 
development or production of nuclear, chemical or biological weapons; or (iii) to any person or 
entity who has been prohibited from participating in U.S. export transactions by any federal 
agency of the U.S. government.  You warrant and represent that neither the BXA nor any other 
U.S. federal agency has suspended, revoked or denied your export privileges.  For additional 
information see http://www.microsoft.com/exporting. 
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6. DISCLAIMER OF  WARRANTIES.  To the maximum extent permitted by applicable law, 
Microsoft and its suppliers provide the Specification (and all intellectual property therein) and any 
(if any) support services related to the Specification (“Support Services”) AS IS AND WITH ALL 
FAULTS, and hereby disclaim all warranties and conditions, either express, implied or statutory, 
including, but not limited to, any (if any) implied warranties or conditions of merchantability, of 
fitness for a particular purpose, of lack of viruses, of accuracy or completeness of responses, of 
results, and of lack of negligence or lack of workmanlike effort, all with regard to the Specification, 
any intellectual property therein and the provision of or failure to provide Support Services.  
ALSO, THERE IS NO WARRANTY OR CONDITION OF TITLE, QUIET ENJOYMENT, QUIET 
POSSESSION, CORRESPONDENCE TO DESCRIPTION OR NON-INFRINGEMENT, WITH 
REGARD TO THE SPECIFICATION AND ANY INTELLECTUAL PROPERTY THEREIN.  THE 
ENTIRE RISK AS TO THE QUALITY OF OR ARISING OUT OF USE OR PERFORMANCE OF 
THE SPECIFICATION, ANY INTELLECTUAL PROPERTY THEREIN, AND SUPPORT 
SERVICES, IF ANY, REMAINS WITH YOU. 
 
7. EXCLUSION OF INCIDENTAL, CONSEQUENTIAL AND CERTAIN OTHER DAMAGES.  
To the maximum extent permitted by applicable law, in no event shall Microsoft or its suppliers be 
liable for any special, incidental, indirect, or consequential damages whatsoever (including, but 
not limited to, damages for loss of profits or confidential or other information, for business 
interruption, for personal injury, for loss of privacy, for failure to meet any duty including of good 
faith or of reasonable care, for negligence, and for any other pecuniary or other loss whatsoever) 
arising out of or in any way related to the use of or inability to use the SPECIFICATION, ANY 
INTELLECTUAL PROPERTY THEREIN, the provision of or failure to provide Support Services, 
or otherwise under or in connection with any provision of this AGREEMENT, even in the event of 
the fault, tort (including negligence), strict liability, breach of contract or breach of warranty of 
Microsoft or any supplier, and even if Microsoft or any supplier has been advised of the possibility 
of such damages.  
 
8. LIMITATION OF LIABILITY AND REMEDIES. Notwithstanding any damages that you 
might incur for any reason whatsoever (including, without limitation, all damages referenced 
above and all direct or general damages), the entire liability of Microsoft and any of its suppliers 
under any provision of this Agreement and your exclusive remedy for all of the foregoing shall be 
limited to the greater of the amount actually paid by you for the Specification or U.S.$5.00.  The 
foregoing limitations, exclusions and disclaimers shall apply to the maximum extent permitted by 
applicable law, even if any remedy fails its essential purpose. 
 
9. APPLICABLE LAW. If you acquired this Specification in the United States, this 
Agreement is governed by the laws of the State of Washington. If you acquired this Specification 
in Canada, unless expressly prohibited by local law, this Agreement is governed by the laws in 
force in the Province of Ontario, Canada; and, in respect of any dispute which may arise 
hereunder, you consent to the jurisdiction of the federal and provincial courts sitting in Toronto, 
Ontario. If this Specification was acquired outside the United States, then local law may apply. 
 
10.QUESTIONS. Should you have any questions concerning this Agreement, or if you desire to 
contact Microsoft for any reason, please contact the Microsoft subsidiary serving your country, or 
write: Microsoft Sales Information Center/One Microsoft Way/Redmond, WA 98052-6399.  
 
11.ENTIRE AGREEMENT.  This Agreement  is the entire agreement between you and Microsoft 
relating to the Specification and the Support Services (if any) and they supersede all prior or 
contemporaneous oral or written communications,  proposals and representations with respect to 
the Specification or any other subject matter covered by this Agreement.  To the extent the terms 
of any Microsoft policies or programs for Support Services conflict with the terms of this 
Agreement, the terms of this Agreement shall control. 
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Si vous avez acquis votre produit Microsoft au CANADA, la garantie limitée suivante vous 
concerne : 
 
RENONCIATION AUX GARANTIES. Dans toute la mesure permise par la législation en vigueur, 
Microsoft et ses fournisseurs fournissent la Specification (et à toute propriété intellectuelle dans 
celle-ci)  et tous (selon le cas) les services d’assistance liés à la Specification (“Services 
d’assistance”) TELS QUELS ET AVEC TOUS LEURS DÉFAUTS, et par les présentes excluent 
toute garantie ou condition, expresse ou implicite, légale ou conventionnelle, écrite ou verbale, y 
compris, mais sans limitation, toute (selon le cas) garantie ou condition implicite ou légale de 
qualité marchande, de conformité à un usage particulier, d’absence de virus, d’exactitude et 
d’intégralité des réponses, de résultats, d’efforts techniques et professionnels et d’absence de 
négligence, le tout relativement à la Specification, à toute propriété intellectuelle dans celle-ci et à 
la prestation ou à la non-prestation des Services d’assistance.  DE PLUS, IL N’Y A AUCUNE 
GARANTIE ET CONDITION DE TITRE, DE JOUISSANCE PAISIBLE, DE POSSESSION 
PAISIBLE, DE SIMILARITÉ À LA DESCRIPTION ET D’ABSENCE DE CONTREFAÇON 
RELATIVEMENT À LA SPÉCIFICATION ET À TOUTE PROPRIÉTÉ INTELLECTUELLE DANS 
CELLE-CI.  VOUS SUPPORTEZ TOUS LES RISQUES DÉCOULANT DE L’UTILISATION ET DE 
LA PERFORMANCE DE LA SPÉCIFICATION ET DE TOUTE PROPRIÉTÉ INTELLECTUELLE 
DANS CELLE-CI  ET CEUX DÉCOULANT DES SERVICES D’ASSISTANCE (S’IL Y A LIEU). 
 
EXCLUSION DES DOMMAGES INDIRECTS, ACCESSOIRES ET AUTRES.  Dans toute la 
mesure permise par la législation en vigueur, Microsoft et ses fournisseurs ne sont en aucun cas 
responsables de tout dommage spécial, indirect, accessoire, moral ou exemplaire quel qu’il soit 
(y compris, mais sans limitation, les dommages entraînés par la perte de bénéfices ou la perte 
d’information confidentielle ou autre, l’interruption des affaires, les préjudices corporels, la perte 
de confidentialité, le défaut de remplir toute obligation y compris les obligations de bonne foi et de 
diligence raisonnable, la négligence et toute autre perte pécuniaire ou autre perte de quelque 
nature que ce soit) découlant de, ou de toute autre manière lié à, l’utilisation ou l’impossibilité 
d’utiliser la Spécification, toute propriété intellectuelle dans celle-ci, la prestation ou la non-
prestation des Services d’assistance ou autrement en vertu de ou relativement à toute disposition 
de cette convention, que ce soit en cas de faute, de délit (y compris la négligence), de 
responsabilité stricte, de manquement à un contrat ou de manquement à une garantie de 
Microsoft ou de l’un de ses fournisseurs, et ce, même si Microsoft ou l’un de ses fournisseurs a 
été avisé de la possibilité de tels dommages. 
 
LIMITATION DE RESPONSABILITÉ ET RECOURS.  Malgré tout dommage que vous pourriez 
encourir pour quelque raison que ce soit (y compris, mais sans limitation, tous les dommages 
mentionnés ci-dessus et tous les dommages directs et généraux), la seule responsabilité de 
Microsoft et de ses fournisseurs en vertu de toute disposition de cette convention et votre unique 
recours en regard de tout ce qui précède sont limités au plus élevé des montants suivants:  soit 
(a) le montant que vous avez payé pour la Spécification, soit (b) un montant équivalant à cinq 
dollars U.S. (5,00 $ U.S.).  Les limitations, exclusions et renonciations ci-dessus s’appliquent 
dans toute la mesure permise par la législation en vigueur, et ce même si leur application a pour 
effet de priver un recours de son essence. 
 
DROITS LIMITÉS DU GOUVERNEMENT AMÉRICAIN 
Tout Produit Logiciel fourni au gouvernement américain conformément à des demandes émises 
le ou après le 1er décembre 1995 est offert avec les restrictions et droits commerciaux décrits 
ailleurs dans la présente convention.  Tout Produit Logiciel fourni au gouvernement américain 
conformément à des demandes émises avant le 1er décembre 1995 est offert avec des DROITS 
LIMITÉS tels que prévus dans le FAR, 48CFR 52.227-14 (juin 1987) ou dans le FAR, 48CFR 
252.227-7013 (octobre 1988), tels qu’applicables. 
Sauf lorsqu’expressément prohibé par la législation locale, la présente  convention est régie par 
les lois en vigueur dans la province d’Ontario, Canada.  Pour tout différend qui pourrait découler 
des présentes, vous acceptez la compétence des tribunaux fédéraux et provinciaux siégeant à 
Toronto, Ontario. 
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Si vous avez des questions concernant cette convention ou si vous désirez communiquer avec 
Microsoft pour quelque raison que ce soit, veuillez contacter la succursale Microsoft desservant 
votre pays, ou écrire à: Microsoft Sales Information Center, One Microsoft Way, Redmond, 
Washington 98052-6399. 
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Notational Conventions in this Document 
 
Numbers that have the characters “0x” at the beginning of them are hexadecimal (base 16) numbers. 
 
Any numbers that do not have the characters “0x” at the beginning are decimal (base 10) numbers. 
 
The code fragments in this document are written in the ‘C’ programming language. Strict typing and 
syntax are not adhered to. 
 
There are several code fragments in this document that freely mix 32-bit and 16-bit data elements. It is 
assumed that you are a programmer who understands how to properly type such operations so that 
data is not lost due to truncation of 32-bit values to 16-bit values. Also take note that all data types are 
UNSIGNED. Do not do FAT computations with signed integer types, because the computations will 
be wrong on some FAT volumes. 
 
General Comments (Applicable to FAT File System All Types) 
All of the FAT file systems were originally developed for the IBM PC machine architecture. The 
importance of this is that FAT file system on disk data structure is all “little endian.” If we look at one 
32-bit FAT entry stored on disk as a series of four 8-bit bytes—the first being byte[0] and the last 
being byte[4]—here is where the 32 bits numbered 00 through 31 are (00 being the least significant 
bit): 
 
byte[3] 3 3 2 2 2 2 2 2

1 0 9 8 7 6 5 4

byte[2] 2 2 2 2 1 1 1 1
3 2 1 0 9 8 7 6

byte[1] 1 1 1 1 1 1 0 0
5 4 3 2 1 0 9 8

byte[0] 0 0 0 0 0 0 0 0
7 6 5 4 3 2 1 0

 
This is important if your machine is a “big endian” machine, because you will have to translate 
between big and little endian as you move data to and from the disk. 
 
A FAT file system volume is composed of four basic regions, which are laid out in this order on the 
volume: 
 0 – Reserved Region 
 1 – FAT Region 
 2 – Root Directory Region (doesn’t exist on FAT32 volumes) 
 3 – File and Directory Data Region 
 
Boot Sector and BPB 
The first important data structure on a FAT volume is called the BPB (BIOS Parameter Block), which 
is located in the first sector of the volume in the Reserved Region. This sector is sometimes called the 
“boot sector” or the “reserved sector” or the “0th sector,” but the important fact is simply that it is the 
first sector of the volume.  
 
This is the first thing about the FAT file system that sometimes causes confusion. In MS-DOS version 
1.x, there was not a BPB in the boot sector. In this first version of the FAT file system, there were 
only two different formats, the one for single-sided and the one for double-sided 360K 5.25-inch 
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floppy disks. The determination of which type was on the disk was done by looking at the first byte of 
the FAT (the low 8 bits of FAT[0]).  
 
This type of media determination was superseded in MS-DOS version 2.x by putting a BPB in the 
boot sector, and the old style of media determination (done by looking at the first byte of the FAT) 
was no longer supported. All FAT volumes must have a BPB in the boot sector.  
 
This brings us to the second point of confusion relating to FAT volume determination: What exactly 
does a BPB look like? The BPB in the boot sector defined for MS-DOS 2.x only allowed for a FAT 
volume with strictly less than 65,536 sectors (32 MB worth of 512-byte sectors). This limitation was 
due to the fact that the “total sectors” field was only a 16-bit field. This limitation was addressed by 
MS-DOS 3.x, where the BPB was modified to include a new 32-bit field for the total sectors value.  
 
The next BPB change occurred with the Microsoft Windows 95 operating system, specifically OEM 
Service Release 2 (OSR2), where the FAT32 type was introduced. FAT16 was limited by the 
maximum size of the FAT and the maximum valid cluster size to no more than a 2 GB volume if the 
disk had 512-byte sectors. FAT32 addressed this limitation on the amount of disk space that one FAT 
volume could occupy so that disks larger than 2 GB only had to have one partition defined.  
 
The FAT32 BPB exactly matches the FAT12/FAT16 BPB up to and including the BPB_TotSec32 
field. They differ starting at offset 36, depending on whether the media type is FAT12/FAT16 or 
FAT32 (see discussion below for determining FAT type). The relevant point here is that the BPB in 
the boot sector of a FAT volume should always be one that has all of the new BPB fields for either the 
FAT12/FAT16 or FAT32 BPB type. Doing it this way ensures the maximum compatibility of the FAT 
volume and ensures that all FAT file system drivers will understand and support the volume properly, 
because it always contains all of the currently defined fields.  
 
NOTE: In the following description, all the fields whose names start with BPB_ are part of the BPB. 
All the fields whose names start with BS_ are part of the boot sector and not really part of the BPB. 
The following shows the start of sector 0 of a FAT volume, which contains the BPB: 
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 Boot Sector and BPB Structure 
Name Offset 

(byte) 
Size 
(bytes) 

Description 

BS_jmpBoot 0 3 Jump instruction to boot code. This field has two allowed forms: 
jmpBoot[0] = 0xEB, jmpBoot[1] = 0x??, jmpBoot[2] = 0x90  
and 
jmpBoot[0] = 0xE9, jmpBoot[1] = 0x??, jmpBoot[2] = 0x?? 
 
0x?? indicates that any 8-bit value is allowed in that byte. What this 
forms is a three-byte Intel x86 unconditional branch (jump) 
instruction that jumps to the start of the operating system bootstrap 
code. This code typically occupies the rest of sector 0 of the volume 
following the BPB and possibly other sectors. Either of these forms 
is acceptable. JmpBoot[0] = 0xEB is the more frequently used 
format. 

BS_OEMName 3 8 “MSWIN4.1” There are many misconceptions about this field. It is 
only a name string. Microsoft operating systems don’t pay any 
attention to this field. Some FAT drivers do. This is the reason that 
the indicated string, “MSWIN4.1”, is the recommended setting, 
because it is the setting least likely to cause compatibility problems. 
If you want to put something else in here, that is your option, but 
the result may be that some FAT drivers might not recognize the 
volume. Typically this is some indication of what system formatted 
the volume. 

BPB_BytsPerSec 11 2 Count of bytes per sector. This value may take on only the 
following values: 512, 1024, 2048 or 4096. If maximum 
compatibility with old implementations is desired, only the value 
512 should be used. There is a lot of FAT code in the world that is 
basically “hard wired” to 512 bytes per sector and doesn’t bother to 
check this field to make sure it is 512. Microsoft operating systems 
will properly support 1024, 2048, and 4096. 
 
Note: Do not misinterpret these statements about maximum 
compatibility. If the media being recorded has a physical sector size 
N, you must use N and this must still be less than or equal to 4096. 
Maximum compatibility is achieved by only using media with 
specific sector sizes. 

BPB_SecPerClus 13 1 Number of sectors per allocation unit. This value must be a power 
of 2 that is greater than 0. The legal values are 1, 2, 4, 8, 16, 32, 64, 
and 128. Note however, that a value should never be used that 
results in a “bytes per cluster” value (BPB_BytsPerSec * 
BPB_SecPerClus) greater than 32K (32 * 1024). There is a 
misconception that values greater than this are OK. Values that 
cause a cluster size greater than 32K bytes do not work properly; do 
not try to define one. Some versions of some systems allow 64K 
bytes per cluster value. Many application setup programs will not 
work correctly on such a FAT volume. 

BPB_RsvdSecCnt 14 2 Number of reserved sectors in the Reserved region of the volume 
starting at the first sector of the volume. This field must not be 0. 
For FAT12 and FAT16 volumes, this value should never be 
anything other than 1. For FAT32 volumes, this value is typically 
32. There is a lot of FAT code in the world “hard wired” to 1 
reserved sector for FAT12 and FAT16 volumes and that doesn’t 
bother to check this field to make sure it is 1. Microsoft operating 
systems will properly support any non-zero value in this field. 
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BPB_NumFATs 16 1 The count of FAT data structures on the volume. This field should 
always contain the value 2 for any FAT volume of any type. 
Although any value greater than or equal to 1 is perfectly valid, 
many software programs and a few operating systems’ FAT file 
system drivers may not function properly if the value is something 
other than 2. All Microsoft file system drivers will support a value 
other than 2, but it is still highly recommended that no value other 
than 2 be used in this field.  
 
The reason the standard value for this field is 2 is to provide redun-
dancy for the FAT data structure so that if a sector goes bad in one 
of the FATs, that data is not lost because it is duplicated in the other 
FAT. On non-disk-based media, such as FLASH memory cards, 
where such redundancy is a useless feature, a value of 1 may be 
used to save the space that a second copy of the FAT uses, but 
some FAT file system drivers might not recognize such a volume 
properly. 

BPB_RootEntCnt 17 2 For FAT12 and FAT16 volumes, this field contains the count of 32-
byte directory entries in the root directory. For FAT32 volumes, 
this field must be set to 0. For FAT12 and FAT16 volumes, this 
value should always specify a count that when multiplied by 32 
results in an even multiple of BPB_BytsPerSec. For maximum 
compatibility, FAT16 volumes should use the value 512. 

BPB_TotSec16 19 2 This field is the old 16-bit total count of sectors on the volume. 
This count includes the count of all sectors in all four regions of the 
volume. This field can be 0; if it is 0, then BPB_TotSec32 must be 
non-zero. For FAT32 volumes, this field must be 0. For FAT12 and 
FAT16 volumes, this field contains the sector count, and 
BPB_TotSec32 is 0 if the total sector count “fits” (is less than 
0x10000). 

BPB_Media 21 1 0xF8 is the standard value for “fixed” (non-removable) media. For 
removable media, 0xF0 is frequently used. The legal values for this 
field are 0xF0, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, and 
0xFF. The only other important point is that whatever value is put 
in here must also be put in the low byte of the FAT[0] entry. This 
dates back to the old MS-DOS 1.x media determination noted 
earlier and is no longer usually used for anything. 

BPB_FATSz16 22 2 This field is the FAT12/FAT16 16-bit count of sectors occupied by 
ONE FAT. On FAT32 volumes this field must be 0, and 
BPB_FATSz32 contains the FAT size count. 

BPB_SecPerTrk 24 2 Sectors per track for interrupt 0x13. This field is only relevant for 
media that have a geometry (volume is broken down into tracks by 
multiple heads and cylinders) and are visible on interrupt 0x13. 
This field contains the “sectors per track” geometry value.  

BPB_NumHeads 26 2 Number of heads for interrupt 0x13. This field is relevant as 
discussed earlier for BPB_SecPerTrk. This field contains the one 
based “count of heads”. For example, on a 1.44 MB 3.5-inch floppy 
drive this value is 2. 

BPB_HiddSec 28 4 Count of hidden sectors preceding the partition that contains this 
FAT volume. This field is generally only relevant for media visible 
on interrupt 0x13. This field should always be zero on media that 
are not partitioned. Exactly what value is appropriate is operating 
system specific. 

BPB_TotSec32  32 4 This field is the new 32-bit total count of sectors on the volume. 
This count includes the count of all sectors in all four regions of the 
volume. This field can be 0; if it is 0, then BPB_TotSec16 must be 
non-zero. For FAT32 volumes, this field must be non-zero. For 
FAT12/FAT16 volumes, this field contains the sector count if 
BPB_TotSec16 is 0 (count is greater than or equal to 0x10000). 
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At this point, the BPB/boot sector for FAT12 and FAT16 differs from the BPB/boot sector for FAT32. 
The first table shows the structure for FAT12 and FAT16 starting at offset 36 of the boot sector. 
 
Fat12 and Fat16 Structure Starting at Offset 36 
Name Offset 

(byte) 
Size 
(bytes) 

Description 

BS_DrvNum 36 1 Int 0x13 drive number (e.g. 0x80). This field supports MS-DOS 
bootstrap and is set to the INT 0x13 drive number of the media 
(0x00 for floppy disks, 0x80 for hard disks).  
NOTE: This field is actually operating system specific. 

BS_Reserved1 37 1 Reserved (used by Windows NT). Code that formats FAT volumes 
should always set this byte to 0. 

BS_BootSig 38 1 Extended boot signature (0x29). This is a signature byte that 
indicates that the following three fields in the boot sector are 
present. 

BS_VolID 39 4 Volume serial number. This field, together with BS_VolLab, 
supports volume tracking on removable media. These values allow 
FAT file system drivers to detect that the wrong disk is inserted in a 
removable drive. This ID is usually generated by simply combining 
the current date and time into a 32-bit value. 

BS_VolLab 43 11 Volume label. This field matches the 11-byte volume label 
recorded in the root directory.  
NOTE: FAT file system drivers should make sure that they update 
this field when the volume label file in the root directory has its 
name changed or created. The setting for this field when there is no 
volume label is the string “NO NAME ”. 

BS_FilSysType 54 8 One of the strings “FAT12 ”, “FAT16 ”, or “FAT ”.  
NOTE: Many people think that the string in this field has 
something to do with the determination of what type of FAT—
FAT12, FAT16, or FAT32—that the volume has. This is not true. 
You will note from its name that this field is not actually part of the 
BPB. This string is informational only and is not used by Microsoft 
file system drivers to determine FAT typ,e because it is frequently 
not set correctly or is not present. See the FAT Type Determination 
section of this document. This string should be set based on the 
FAT type though, because some non-Microsoft FAT file system 
drivers do look at it. 
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Here is the structure for FAT32 starting at offset 36 of the boot sector. 
 
FAT32 Structure Starting at Offset 36 
Name Offset 

(byte) 
Size 
(bytes) 

Description 

BPB_FATSz32 36 4 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. This field is the FAT32 32-bit count of 
sectors occupied by ONE FAT. BPB_FATSz16 must be 0.  

BPB_ExtFlags 40 2 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. 
Bits 0-3 -- Zero-based number of active FAT. Only valid if mirroring 

is disabled. 
Bits 4-6 -- Reserved. 
Bit      7 -- 0 means the FAT is mirrored at runtime into all FATs. 
 -- 1 means only one FAT is active; it is the one referenced 

in bits 0-3. 
Bits 8-15  -- Reserved. 

BPB_FSVer 42 2 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. High byte is major revision number. 
Low byte is minor revision number. This is the version number of 
the FAT32 volume. This supports the ability to extend the FAT32 
media type in the future without worrying about old FAT32 drivers 
mounting the volume. This document defines the version to 0:0.  If 
this field is non-zero, back-level Windows versions will not mount 
the volume.  
NOTE:  Disk utilities should respect this field and not operate on 
volumes with a higher major or minor version number than that for 
which they were designed. FAT32 file system drivers must check 
this field and not mount the volume if it does not contain a version 
number that was defined at the time the driver was written. 

BPB_RootClus 44 4 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. This is set to the cluster number of the 
first cluster of the root directory, usually 2 but not required to be 2.  
NOTE:  Disk utilities that change the location of the root directory 
should make every effort to place the first cluster of the root 
directory in the first non-bad cluster on the drive (i.e., in cluster 2, 
unless it’s marked bad). This is specified so that disk repair utilities 
can easily find the root directory if this field accidentally gets 
zeroed.  

BPB_FSInfo 48 2 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. Sector number of FSINFO structure in the 
reserved area of the FAT32 volume. Usually 1.   
NOTE: There will be a copy of the FSINFO structure in BackupBoot, 
but only the copy pointed to by this field will be kept up to date (i.e., 
both the primary and backup boot record will point to the same 
FSINFO sector). 

BPB_BkBootSec 50 2 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. If non-zero, indicates the sector number 
in the reserved area of the volume of a copy of the boot record. 
Usually 6. No value other than 6 is recommended. 

BPB_Reserved 52 12 This field is only defined for FAT32 media and does not exist on 
FAT12 and FAT16 media. Reserved for future expansion. Code 
that formats FAT32 volumes should always set all of the bytes of 
this field to 0. 

BS_DrvNum 64 1 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 

BS_Reserved1 65 1 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 
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BS_BootSig 66 1 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 

BS_VolID 67 4 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 

BS_VolLab 71 11 This field has the same definition as it does for FAT12 and FAT16 
media. The only difference for FAT32 media is that the field is at a 
different offset in the boot sector. 

BS_FilSysType 82 8 Always set to the string ”FAT32 ”.  Please see the note for this 
field in the FAT12/FAT16 section earlier. This field has nothing to 
do with FAT type determination. 

 
There is one other important note about Sector 0 of a FAT volume. If we consider the contents of the 
sector as a byte array, it must be true that sector[510] equals 0x55, and sector[511] equals 0xAA.  
 
NOTE: Many FAT documents mistakenly say that this 0xAA55 signature occupies the “last 2 bytes 
of the boot sector”. This statement is correct if — and only if — BPB_BytsPerSec is 512. If 
BPB_BytsPerSec is greater than 512, the offsets of these signature bytes do not change (although it is 
perfectly OK for the last two bytes at the end of the boot sector to also contain this signature). 
 
Check your assumptions about the value in the BPB_TotSec16/32 field. Assume we have a disk or 
partition of size in sectors DskSz. If the BPB TotSec field (either BPB_TotSec16 or BPB_TotSec32 
— whichever is non-zero) is less than or equal to DskSz, there is nothing whatsoever wrong with the 
FAT volume. In fact, it is not at all unusual to have a BPB_TotSec16/32 value that is slightly smaller 
than DskSz. It is also perfectly OK for the BPB_TotSec16/32 value to be considerably smaller than 
DskSz.  
 
All this means is that disk space is being wasted. It does not by itself mean that the FAT volume is 
damaged in some way. However, if BPB_TotSec16/32 is larger than DskSz, the volume is seriously 
damaged or malformed because it extends past the end of the media or overlaps data that follows it on 
the disk. Treating a volume for which the BPB_TotSec16/32 value is “too large” for the media or 
partition as valid can lead to catastrophic data loss. 
 
FAT Data Structure 
The next data structure that is important is the FAT itself. What this data structure does is define a 
singly linked list of the “extents” (clusters) of a file. Note at this point that a FAT directory or file 
container is nothing but a regular file that has a special attribute indicating it is a directory. The only 
other special thing about a directory is that the data or contents of the “file” is a series of 32=byte FAT 
directory entries (see discussion below). In all other respects, a directory is just like a file. The FAT 
maps the data region of the volume by cluster number. The first data cluster is cluster 2.  
 
The first sector of cluster 2 (the data region of the disk) is computed using the BPB fields for the 
volume as follows. First, we determine the count of sectors occupied by the root directory: 
 
RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;

 
Note that on a FAT32 volume the BPB_RootEntCnt value is always 0, so on a FAT32 volume 
RootDirSectors is always 0. The 32 in the above is the size of one FAT directory entry in bytes. 
Note also that this computation rounds up. 
 
The start of the data region, the first sector of cluster 2, is computed as follows: 
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If(BPB_FATSz16 != 0)
FATSz = BPB_FATSz16;

Else
FATSz = BPB_FATSz32;

FirstDataSector = BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) + RootDirSectors;

 
NOTE: This sector number is relative to the first sector of the volume that contains the BPB (the 
sector that contains the BPB is sector number 0). This does not necessarily map directly onto the 
drive, because sector 0 of the volume is not necessarily sector 0 of the drive due to partitioning. 
 
Given any valid data cluster number N, the sector number of the first sector of that cluster (again 
relative to sector 0 of the FAT volume) is computed as follows: 
 
FirstSectorofCluster = ((N – 2) * BPB_SecPerClus) + FirstDataSector;

 
NOTE: Because BPB_SecPerClus is restricted to powers of 2 (1,2,4,8,16,32….), this means that 
division and multiplication by BPB_SecPerClus can actually be performed via SHIFT operations on 
2s complement architectures that are usually faster instructions than MULT and DIV instructions. On 
current Intel X86 processors, this is largely irrelevant though because the MULT and DIV machine 
instructions are heavily optimized for multiplication and division by powers of 2. 
 
FAT Type Determination 
There is considerable confusion over exactly how this works, which leads to many “off by 1”, “off by 
2”, “off by 10”, and “massively off” errors. It is really quite simple how this works. The FAT type—
one of FAT12, FAT16, or FAT32—is determined by the count of clusters on the volume and nothing 
else.  
 
Please read everything in this section carefully, all of the words are important. For example, note that 
the statement was “count of clusters.” This is not the same thing as “maximum valid cluster number,” 
because the first data cluster is 2 and not 0 or 1.  
 
To begin, let’s discuss exactly how the “count of clusters” value is determined. This is all done using 
the BPB fields for the volume. First, we determine the count of sectors occupied by the root directory 
as noted earlier. 
 
RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;

 
Note that on a FAT32 volume, the BPB_RootEntCnt value is always 0; so on a FAT32 volume, 
RootDirSectors is always 0.  
 
Next, we determine the count of sectors in the data region of the volume: 
 
If(BPB_FATSz16 != 0)

FATSz = BPB_FATSz16;
Else

FATSz = BPB_FATSz32;

If(BPB_TotSec16 != 0)
TotSec = BPB_TotSec16;

Else
TotSec = BPB_TotSec32;

DataSec = TotSec – (BPB_ResvdSecCnt + (BPB_NumFATs * FATSz) + RootDirSectors);
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Now we determine the count of clusters: 
 
CountofClusters = DataSec / BPB_SecPerClus;

 
Please note that this computation rounds down. 
 
Now we can determine the FAT type. Please note carefully or you will commit an off-by-one error!  
 
In the following example, when it says <, it does not mean <=. Note also that the numbers are correct. 
The first number for FAT12 is 4085; the second number for FAT16 is 65525. These numbers and the 
‘<’ signs are not wrong. 
 
If(CountofClusters < 4085) {
/* Volume is FAT12 */
} else if(CountofClusters < 65525) {

/* Volume is FAT16 */
} else {

/* Volume is FAT32 */
}

 
This is the one and only way that FAT type is determined. There is no such thing as a FAT12 volume 
that has more than 4084 clusters. There is no such thing as a FAT16 volume that has less than 4085 
clusters or more than 65,524 clusters. There is no such thing as a FAT32 volume that has less than 
65,525 clusters. If you try to make a FAT volume that violates this rule, Microsoft operating systems 
will not handle them correctly because they will think the volume has a different type of FAT than 
what you think it does. 
 
NOTE: As is noted numerous times earlier, the world is full of FAT code that is wrong. There is a lot 
of FAT type code that is off by 1 or 2 or 8 or 10 or 16. For this reason, it is highly recommended that 
if you are formatting a FAT volume which has maximum compatibility with all existing FAT code, 
then you should you avoid making volumes of any type that have close to 4,085 or 65,525 clusters. 
Stay at least 16 clusters on each side away from these cut-over cluster counts. 
 
Note also that the CountofClusters value is exactly that—the count of data clusters starting at cluster 
2. The maximum valid cluster number for the volume is CountofClusters + 1, and the “count of 
clusters including the two reserved clusters” is CountofClusters + 2. 
 
There is one more important computation related to the FAT. Given any valid cluster number N, 
where in the FAT(s) is the entry for that cluster number? The only FAT type for which this is complex 
is FAT12. For FAT16 and FAT32, the computation is simple: 
 
If(BPB_FATSz16 != 0)

FATSz = BPB_FATSz16;
Else

FATSz = BPB_FATSz32;

If(FATType == FAT16)
FATOffset = N * 2;

Else if (FATType == FAT32)
FATOffset = N * 4;

ThisFATSecNum = BPB_ResvdSecCnt + (FATOffset / BPB_BytsPerSec);
ThisFATEntOffset = REM(FATOffset / BPB_BytsPerSec);
 
REM(…) is the remainder operator. That means the remainder after division of FATOffset by 
BPB_BytsPerSec. ThisFATSecNum is the sector number of the FAT sector that contains the entry for 
cluster N in the first FAT. If you want the sector number in the second FAT, you add FATSz to 
ThisFATSecNum; for the third FAT, you add 2*FATSz, and so on.  
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You now read sector number ThisFATSecNum (remember this is a sector number relative to sector 0 
of the FAT volume). Assume this is read into an 8-bit byte array named SecBuff. Also assume that the 
type WORD is a 16-bit unsigned and that the type DWORD is a 32-bit unsigned. 
 
If(FATType == FAT16)

FAT16ClusEntryVal = *((WORD *) &SecBuff[ThisFATEntOffset]);
Else

FAT32ClusEntryVal = (*((DWORD *) &SecBuff[ThisFATEntOffset])) & 0x0FFFFFFF;

Fetches the contents of that cluster. To set the contents of this same cluster you do the following: 
 
If(FATType == FAT16)

*((WORD *) &SecBuff[ThisFATEntOffset]) = FAT16ClusEntryVal;
Else {

FAT32ClusEntryVal = FAT32ClusEntryVal & 0x0FFFFFFF;
*((DWORD *) &SecBuff[ThisFATEntOffset]) =

(*((DWORD *) &SecBuff[ThisFATEntOffset])) & 0xF0000000;
*((DWORD *) &SecBuff[ThisFATEntOffset]) =

(*((DWORD *) &SecBuff[ThisFATEntOffset])) | FAT32ClusEntryVal;
}

Note how the FAT32 code above works. A FAT32 FAT entry is actually only a 28-bit entry. The high 
4 bits of a FAT32 FAT entry are reserved. The only time that the high 4 bits of FAT32 FAT entries 
should ever be changed is when the volume is formatted, at which time the whole 32-bit FAT entry 
should be zeroed, including the high 4 bits.  
 
A bit more explanation is in order here, because this point about FAT32 FAT entries seems to cause a 
great deal of confusion. Basically 32-bit FAT entries are not really 32-bit values; they are only 28-bit 
values. For example, all of these 32-bit cluster entry values: 0x10000000, 0xF0000000, and 
0x00000000 all indicate that the cluster is FREE, because you ignore the high 4 bits when you read 
the cluster entry value. If the 32-bit free cluster value is currently 0x30000000 and you want to mark 
this cluster as bad by storing the value 0x0FFFFFF7 in it. Then the 32-bit entry will contain the value 
0x3FFFFFF7 when you are done, because you must preserve the high 4 bits when you write in the 
0x0FFFFFF7 bad cluster mark. 
 
Take note that because the BPB_BytsPerSec value is always divisible by 2 and 4, you never have to 
worry about a FAT16 or FAT32 FAT entry spanning over a sector boundary (this is not true of 
FAT12). 
 
The code for FAT12 is more complicated because there are 1.5 bytes (12-bits) per FAT entry. 
 

if (FATType == FAT12)
FATOffset = N + (N / 2);

/* Multiply by 1.5 without using floating point, the divide by 2 rounds DOWN */

ThisFATSecNum = BPB_ResvdSecCnt + (FATOffset / BPB_BytsPerSec);
ThisFATEntOffset = REM(FATOffset / BPB_BytsPerSec);

 
We now have to check for the sector boundary case: 
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If(ThisFATEntOffset == (BPB_BytsPerSec – 1)) {
/* This cluster access spans a sector boundary in the FAT */
/* There are a number of strategies to handling this. The */
/* easiest is to always load FAT sectors into memory */
/* in pairs if the volume is FAT12 (if you want to load */
/* FAT sector N, you also load FAT sector N+1 immediately */
/* following it in memory unless sector N is the last FAT */
/* sector). It is assumed that this is the strategy used here */
/* which makes this if test for a sector boundary span */
/* unnecessary. */

}

 
We now access the FAT entry as a WORD just as we do for FAT16, but if the cluster number is 
EVEN, we only want the low 12-bits of the 16-bits we fetch; and if the cluster number is ODD, we 
only want the high 12-bits of the 16-bits we fetch. 
 
FAT12ClusEntryVal = *((WORD *) &SecBuff[ThisFATEntOffset]);
If(N & 0x0001)

FAT12ClusEntryVal = FAT12ClusEntryVal >> 4; /* Cluster number is ODD */
Else

FAT12ClusEntryVal = FAT12ClusEntryVal & 0x0FFF; /* Cluster number is EVEN */

Fetches the contents of that cluster. To set the contents of this same cluster you do the following: 
 
If(N & 0x0001) {

FAT12ClusEntryVal = FAT12ClusEntryVal << 4; /* Cluster number is ODD */
*((WORD *) &SecBuff[ThisFATEntOffset]) =

(*((WORD *) &SecBuff[ThisFATEntOffset])) & 0x000F;
} Else {

FAT12ClusEntryVal = FAT12ClusEntryVal & 0x0FFF; /* Cluster number is EVEN */
*((WORD *) &SecBuff[ThisFATEntOffset]) =

(*((WORD *) &SecBuff[ThisFATEntOffset])) & 0xF000;
}
*((WORD *) &SecBuff[ThisFATEntOffset]) =

(*((WORD *) &SecBuff[ThisFATEntOffset])) | FAT12ClusEntryVal;

 
NOTE: It is assumed that the >> operator shifts a bit value of 0 into the high 4 bits and that the << 
operator shifts a bit value of 0 into the low 4 bits. 
 
The way the data of a file is associated with the file is as follows. In the directory entry, the cluster 
number of the first cluster of the file is recorded. The first cluster (extent) of the file is the data 
associated with this first cluster number, and the location of that data on the volume is computed from 
the cluster number as described earlier (computation of FirstSectorofCluster).  
 
Note that a zero-length file—a file that has no data allocated to it—has a first cluster number of 0 
placed in its directory entry. This cluster location in the FAT (see earlier computation of 
ThisFATSecNum and ThisFATEntOffset) contains either an EOC mark (End Of Clusterchain) or the 
cluster number of the next cluster of the file. The EOC value is FAT type dependant (assume 
FATContent is the contents of the cluster entry in the FAT being checked to see whether it is an EOC 
mark): 
 
IsEOF = FALSE;
If(FATType == FAT12) {

If(FATContent >= 0x0FF8)
IsEOF = TRUE;

} else if(FATType == FAT16) {
If(FATContent >= 0xFFF8)

IsEOF = TRUE;
} else if (FATType == FAT32) {

If(FATContent >= 0x0FFFFFF8)
IsEOF = TRUE;

}

 



FAT: General Overview of On-Disk Format—Page 18 

© 2000 Microsoft Corporation. All rights reserved. 18

Note that the cluster number whose cluster entry in the FAT contains the EOC mark is allocated to the 
file and is also the last cluster allocated to the file. Microsoft operating system FAT drivers use the 
EOC value 0x0FFF for FAT12, 0xFFFF for FAT16, and 0x0FFFFFFF for FAT32 when they set the 
contents of a cluster to the EOC mark. There are various disk utilities for Microsoft operating systems 
that use a different value, however. 
 
There is also a special “BAD CLUSTER” mark. Any cluster that contains the “BAD CLUSTER” 
value in its FAT entry is a cluster that should not be placed on the free list because it is prone to disk 
errors. The “BAD CLUSTER” value is 0x0FF7 for FAT12, 0xFFF7 for FAT16, and 0x0FFFFFF7 for 
FAT32. The other relevant note here is that these bad clusters are also lost clusters—clusters that 
appear to be allocated because they contain a non-zero value but which are not part of any files 
allocation chain. Disk repair utilities must recognize lost clusters that contain this special value as bad 
clusters and not change the content of the cluster entry.  
 
NOTE: It is not possible for the bad cluster mark to be an allocatable cluster number on FAT12 and 
FAT16 volumes, but it is feasible for 0x0FFFFFF7 to be an allocatable cluster number on FAT32 
volumes. To avoid possible confusion by disk utilities, no FAT32 volume should ever be configured 
such that 0x0FFFFFF7 is an allocatable cluster number.  
 
The list of free clusters in the FAT is nothing more than the list of all clusters that contain the value 0 
in their FAT cluster entry. Note that this value must be fetched as described earlier as for any other 
FAT entry that is not free. This list of free clusters is not stored anywhere on the volume; it must be 
computed when the volume is mounted by scanning the FAT for entries that contain the value 0. On 
FAT32 volumes, the BPB_FSInfo sector may contain a valid count of free clusters on the volume. See 
the documentation of the FAT32 FSInfo sector. 
 
What are the two reserved clusters at the start of the FAT for? The first reserved cluster, FAT[0], 
contains the BPB_Media byte value in its low 8 bits, and all other bits are set to 1. For example, if the 
BPB_Media value is 0xF8, for FAT12 FAT[0] = 0x0FF8, for FAT16 FAT[0] = 0xFFF8, and for 
FAT32 FAT[0] = 0x0FFFFFF8. The second reserved cluster, FAT[1], is set by FORMAT to the EOC 
mark. On FAT12 volumes, it is not used and is simply always contains an EOC mark. For FAT16 and 
FAT32, the file system driver may use the high two bits of the FAT[1] entry for dirty volume flags (all 
other bits, are always left set to 1). Note that the bit location is different for FAT16 and FAT32, 
because they are the high 2 bits of the entry.  
 
For FAT16: 

ClnShutBitMask = 0x8000;
HrdErrBitMask = 0x4000;

 
For FAT32: 

ClnShutBitMask = 0x08000000;
HrdErrBitMask = 0x04000000;

 
Bit ClnShutBitMask – If bit is 1, volume is “clean”. 

If bit is 0, volume is “dirty”. This indicates that the file system driver did not 
Dismount the volume properly the last time it had the volume mounted. It 
would be a good idea to run a Chkdsk/Scandisk disk repair utility on it, 
because it may be damaged. 

Bit HrdErrBitMask – If this bit is 1, no disk read/write errors were encountered. 
If this bit is 0, the file system driver encountered a disk I/O error on the 
Volume the last time it was mounted, which is an indicator that some sectors 
may have gone bad on the volume. It would be a good idea to run a 
Chkdsk/Scandisk disk repair utility that does surface analysis on it to look 
for new bad sectors. 
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Here are two more important notes about the FAT region of a FAT volume: 

1. The last sector of the FAT is not necessarily all part of the FAT. The FAT stops at the cluster 
number in the last FAT sector that corresponds to the entry for cluster number 
CountofClusters + 1 (see the CountofClusters computation earlier), and this entry is not 
necessarily at the end of the last FAT sector. FAT code should not make any assumptions 
about what the contents of the last FAT sector are after the CountofClusters + 1 entry. FAT 
format code should zero the bytes after this entry though. 

2. The BPB_FATSz16 (BPB_FATSz32 for FAT32 volumes) value may be bigger than it needs 
to be. In other words, there may be totally unused FAT sectors at the end of each FAT in the 
FAT region of the volume. For this reason, the last sector of the FAT is always computed 
using the CountofClusters + 1 value, never from the BPB_FATSz16/32 value. FAT code 
should not make any assumptions about what the contents of these “extra” FAT sectors are. 
FAT format code should zero the contents of these extra FAT sectors though. 

 
FAT Volume Initialization 
At this point, the careful reader should have one very interesting question. Given that the FAT type 
(FAT12, FAT16, or FAT32) is dependant on the number of clusters—and that the sectors available in 
the data area of a FAT volume is dependant on the size of the FAT—when handed an unformatted 
volume that does not yet have a BPB, how do you determine all this and compute the proper values to 
put in BPB_SecPerClus and either BPB_FATSz16 or BPB_FATSz32? The way Microsoft operating 
systems do this is with a fixed value, several tables, and a clever piece of arithmetic.  
 
Microsoft operating systems only do FAT12 on floppy disks. Because there is a limited number of 
floppy formats that all have a fixed size, this is done with a simple table: 
 
“If it is a floppy of this type, then the BPB looks like this.”

 
There is no dynamic computation for FAT12. For the FAT12 formats, all the computation for 
BPB_SecPerClus and BPB_FATSz16 was worked out by hand on a piece of paper and recorded in the 
table (being careful of course that the resultant cluster count was always less than 4085). If your media 
is larger than 4 MB, do not bother with FAT12. Use smaller BPB_SecPerClus values so that the 
volume will be FAT16.  
 
The rest of this section is totally specific to drives that have 512 bytes per sector. You cannot use these 
tables, or the clever arithmetic, with drives that have a different sector size. The “fixed value” is 
simply a volume size that is the “FAT16 to FAT32 cutover value”. Any volume size smaller than this 
is FAT16 and any volume of this size or larger is FAT32. For Windows, this value is 512 MB. Any 
FAT volume smaller than 512 MB is FAT16, and any FAT volume of 512 MB or larger is FAT32.  
 
Please don’t draw an incorrect conclusion here.  
 
There are many FAT16 volumes out there that are larger than 512 MB. There are various ways to 
force the format to be FAT16 rather than the default of FAT32, and there is a great deal of code that 
implements different limits. All we are talking about here is the default cutover value for MS-DOS 
and Windows on volumes that have not yet been formatted. There are two tables—one is for FAT16 
and the other is for FAT32. An entry in these tables is selected based on the size of the volume in 512 
byte sectors (the value that will go in BPB_TotSec16 or BPB_TotSec32), and the value that this table 
sets is the BPB_SecPerClus value.  
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struct DSKSZTOSECPERCLUS {
DWORD DiskSize;
BYTE SecPerClusVal;

};

/*
*This is the table for FAT16 drives. NOTE that this table includes
* entries for disk sizes larger than 512 MB even though typically
* only the entries for disks < 512 MB in size are used.
* The way this table is accessed is to look for the first entry
* in the table for which the disk size is less than or equal
* to the DiskSize field in that table entry. For this table to
* work properly BPB_RsvdSecCnt must be 1, BPB_NumFATs
* must be 2, and BPB_RootEntCnt must be 512. Any of these values
* being different may require the first table entries DiskSize value
* to be changed otherwise the cluster count may be to low for FAT16.

*/
DSKSZTOSECPERCLUS DskTableFAT16 [] = {

{ 8400, 0}, /* disks up to 4.1 MB, the 0 value for SecPerClusVal trips an error */
{ 32680, 2}, /* disks up to 16 MB, 1k cluster */
{ 262144, 4}, /* disks up to 128 MB, 2k cluster */
{ 524288, 8}, /* disks up to 256 MB, 4k cluster */
{ 1048576, 16}, /* disks up to 512 MB, 8k cluster */
/* The entries after this point are not used unless FAT16 is forced */
{ 2097152, 32}, /* disks up to 1 GB, 16k cluster */
{ 4194304, 64}, /* disks up to 2 GB, 32k cluster */
{ 0xFFFFFFFF, 0} /* any disk greater than 2GB, 0 value for SecPerClusVal trips an error */

};

/*
* This is the table for FAT32 drives. NOTE that this table includes
* entries for disk sizes smaller than 512 MB even though typically
* only the entries for disks >= 512 MB in size are used.
* The way this table is accessed is to look for the first entry
* in the table for which the disk size is less than or equal
* to the DiskSize field in that table entry. For this table to
* work properly BPB_RsvdSecCnt must be 32, and BPB_NumFATs
* must be 2. Any of these values being different may require the first
* table entries DiskSize value to be changed otherwise the cluster count
* may be to low for FAT32.
*/

DSKSZTOSECPERCLUS DskTableFAT32 [] = {
{ 66600, 0}, /* disks up to 32.5 MB, the 0 value for SecPerClusVal trips an error */
{ 532480, 1}, /* disks up to 260 MB, .5k cluster */
{ 16777216, 8}, /* disks up to 8 GB, 4k cluster */
{ 33554432, 16}, /* disks up to 16 GB, 8k cluster */
{ 67108864, 32}, /* disks up to 32 GB, 16k cluster */
{ 0xFFFFFFFF, 64}/* disks greater than 32GB, 32k cluster */

};

So given a disk size and a FAT type of FAT16 or FAT32, we now have a BPB_SecPerClus value. The 
only thing we have left is do is to compute how many sectors the FAT takes up so that we can set 
BPB_FATSz16 or BPB_FATSz32. Note that at this point we assume that BPB_RootEntCnt, 
BPB_RsvdSecCnt, and BPB_NumFATs are appropriately set. We also assume that DskSize is the size 
of the volume that we are either going to put in BPB_TotSec32 or BPB_TotSec16. 



FAT: General Overview of On-Disk Format—Page 21 

© 2000 Microsoft Corporation. All rights reserved. 21

RootDirSectors = ((BPB_RootEntCnt * 32) + (BPB_BytsPerSec – 1)) / BPB_BytsPerSec;
TmpVal1 = DskSize – (BPB_ResvdSecCnt + RootDirSectors);
TmpVal2 = (256 * BPB_SecPerClus) + BPB_NumFATs;
If(FATType == FAT32)

TmpVal2 = TmpVal2 / 2;
FATSz = (TMPVal1 + (TmpVal2 – 1)) / TmpVal2;
If(FATType == FAT32) {

BPB_FATSz16 = 0;
BPB_FATSz32 = FATSz;

} else {
BPB_FATSz16 = LOWORD(FATSz);
/* there is no BPB_FATSz32 in a FAT16 BPB */

}

Do not spend too much time trying to figure out why this math works. The basis for the computation 
is complicated; the important point is that this is how Microsoft operating systems do it, and it works. 
Note, however, that this math does not work perfectly. It will occasionally set a FATSz that is up to 
2 sectors too large for FAT16, and occasionally up to 8 sectors too large for FAT32. It will never 
compute a FATSz value that is too small, however. Because it is OK to have a FATSz that is too 
large, at the expense of wasting a few sectors, the fact that this computation is surprisingly simple 
more than makes up for it being off in a safe way in some cases. 
   
FAT32 FSInfo Sector Structure and Backup Boot Sector 
On a FAT32 volume, the FAT can be a large data structure, unlike on FAT16 where it is limited to a 
maximum of 128K worth of sectors and FAT12 where it is limited to a maximum of 6K worth of 
sectors. For this reason, a provision is made to store the “last known” free cluster count on the FAT32 
volume so that it does not have to be computed as soon as an API call is made to ask how much free 
space there is on the volume (like at the end of a directory listing). The FSInfo sector number is the 
value in the BPB_FSInfo field; for Microsoft operating systems it is always set to 1. Here is the 
structure of the FSInfo sector: 
 
FAT32 FSInfo Sector Structure and Backup Boot Sector 

Name Offset 
(byte) 

Size 
(bytes) 

Description 

FSI_LeadSig 0 4 Value 0x41615252. This lead signature is used to validate that this 
is in fact an FSInfo sector. 

FSI_Reserved1 4 480 This field is currently reserved for future expansion. FAT32 format 
code should always initialize all bytes of this field to 0. Bytes in 
this field must currently never be used. 

FSI_StrucSig 484 4 Value 0x61417272. Another signature that is more localized in the 
sector to the location of the fields that are used. 

FSI_Free_Count 488 4 Contains the last known free cluster count on the volume. If the 
value is 0xFFFFFFFF, then the free count is unknown and must be 
computed. Any other value can be used, but is not necessarily 
correct. It should be range checked at least to make sure it is <= 
volume cluster count. 

FSI_Nxt_Free 492 4 This is a hint for the FAT driver. It indicates the cluster number at 
which the driver should start looking for free clusters. Because a 
FAT32 FAT is large, it can be rather time consuming if there are a 
lot of allocated clusters at the start of the FAT and the driver starts 
looking for a free cluster starting at cluster 2. Typically this value is 
set to the last cluster number that the driver allocated. If the value is 
0xFFFFFFFF, then there is no hint and the driver should start 
looking at cluster 2. Any other value can be used, but should be 
checked first to make sure it is a valid cluster number for the 
volume. 

FSI_Reserved2 496 12 This field is currently reserved for future expansion. FAT32 format 
code should always initialize all bytes of this field to 0. Bytes in 
this field must currently never be used.  
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FSI_TrailSig 508 4 Value 0xAA550000. This trail signature is used to validate that this 
is in fact an FSInfo sector. Note that the high 2 bytes of this 
value—which go into the bytes at offsets 510 and 511—match the 
signature bytes used at the same offsets in sector 0. 

 
Another feature on FAT32 volumes that is not present on FAT16/FAT12 is the BPB_BkBootSec field. 
FAT16/FAT12 volumes can be totally lost if the contents of sector 0 of the volume are overwritten or 
sector 0 goes bad and cannot be read. This is a “single point of failure” for FAT16 and FAT12 
volumes. The BPB_BkBootSec field reduces the severity of this problem for FAT32 volumes, because 
starting at that sector number on the volume—6—there is a backup copy of the boot sector 
information including the volume’s BPB.  
 
In the case where the sector 0 information has been accidentally overwritten, all a disk repair utility 
has to do is restore the boot sector(s) from the backup copy. In the case where sector 0 goes bad, this 
allows the volume to be mounted so that the user can access data before replacing the disk.  
 
This second case—sector 0 goes bad—is the reason why no value other than 6 should ever be placed 
in the BPB_BkBootSec field. If sector 0 is unreadable, various operating systems are “hard wired” to 
check for backup boot sector(s) starting at sector 6 of the FAT32 volume. Note that starting at the 
BPB_BkBootSec sector is a complete boot record. The Microsoft FAT32 “boot sector” is actually 
three 512-byte sectors long. There is a copy of all three of these sectors starting at the 
BPB_BkBootSec sector. A copy of the FSInfo sector is also there, even though the BPB_FSInfo field 
in this backup boot sector is set to the same value as is stored in the sector 0 BPB.  
 
NOTE: All 3 of these sectors have the 0xAA55 signature in sector offsets 510 and 511, just like the 
first boot sector does (see the earlier discussion at the end of the BPB structure description). 
 
FAT Directory Structure 
We will first talk about short directory entries and ignore long directory entries for the moment. 
 
A FAT directory is nothing but a “file” composed of a linear list of 32-byte structures. The only 
special directory, which must always be present, is the root directory. For FAT12 and FAT16 media, 
the root directory is located in a fixed location on the disk immediately following the last FAT and is 
of a fixed size in sectors computed from the BPB_RootEntCnt value (see computations for 
RootDirSectors earlier in this document). For FAT12 and FAT16 media, the first sector of the root 
directory is sector number relative to the first sector of the FAT volume: 
 
FirstRootDirSecNum = BPB_ResvdSecCnt + (BPB_NumFATs * BPB_FATSz16);

 
For FAT32, the root directory can be of variable size and is a cluster chain, just like any other 
directory is. The first cluster of the root directory on a FAT32 volume is stored in BPB_RootClus. 
Unlike other directories, the root directory itself on any FAT type does not have any date or time 
stamps, does not have a file name (other than the implied file name “\”), and does not contain “.” and 
“..” files as the first two directory entries in the directory. The only other special aspect of the root 
directory is that it is the only directory on the FAT volume for which it is valid to have a file that has 
only the ATTR_VOLUME_ID attribute bit set (see below). 
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FAT 32 Byte Directory Entry Structure 
Name Offset 

(byte) 
Size 
(bytes) 

Description 

DIR_Name 0 11 Short name. 
DIR_Attr 11 1 File attributes: 

ATTR_READ_ONLY    0x01 
ATTR_HIDDEN  0x02 
ATTR_SYSTEM  0x04 
ATTR_VOLUME_ID  0x08 
ATTR_DIRECTORY 0x10 
ATTR_ARCHIVE   0x20 
ATTR_LONG_NAME  ATTR_READ_ONLY | 

ATTR_HIDDEN | 
ATTR_SYSTEM | 
ATTR_VOLUME_ID 

The upper two bits of the attribute byte are reserved and should 
always be set to 0 when a file is created and never modified or 
looked at after that. 

DIR_NTRes 12 1 Reserved for use by Windows NT. Set value to 0 when a file is 
created and never modify or look at it after that. 

DIR_CrtTimeTenth 13 1 Millisecond stamp at file creation time. This field actually 
contains a count of tenths of a second. The granularity of the 
seconds part of DIR_CrtTime is 2 seconds so this field is a 
count of tenths of a second and its valid value range is 0-199 
inclusive. 

DIR_FstClusHI 20 2 High word of this entry’s first cluster number (always 0 for a 
FAT12 or FAT16 volume). 

DIR_WrtTime 22 2 Time of last write. Note that file creation is considered a write. 
DIR_WrtDate 24 2 Date of last write. Note that file creation is considered a write. 
DIR_FstClusLO 26 2 Low word of this entry’s first cluster number. 
DIR_FileSize 28 4 32-bit DWORD holding this file’s size in bytes. 
 
 
DIR_Name[0] 
Special notes about the first byte (DIR_Name[0]) of a FAT directory entry: 
 
•  If DIR_Name[0] == 0xE5, then the directory entry is free (there is no file or directory name in this 

entry).  
 
•  If DIR_Name[0] == 0x00, then the directory entry is free (same as for 0xE5), and there are no 

allocated directory entries after this one (all of the DIR_Name[0] bytes in all of the entries after 
this one are also set to 0).  

 
The special 0 value, rather than the 0xE5 value, indicates to FAT file system driver code that the 
rest of the entries in this directory do not need to be examined because they are all free.  

 
•  If DIR_Name[0] == 0x05, then the actual file name character for this byte is 0xE5. 0xE5 is 

actually a valid KANJI lead byte value for the character set used in Japan. The special 0x05 value 
is used so that this special file name case for Japan can be handled properly and not cause FAT file 
system code to think that the entry is free.  

 

DIR_CrtTime 14 2 Time file was created. 
DIR_CrtDate 16 2 Date file was created. 
DIR_LstAccDate 18 2 Last access date. Note that there is no last access time, only a 

date. This is the date of last read or write. In the case of a write, 
this should be set to the same date as DIR_WrtDate. 
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The DIR_Name field is actually broken into two parts+ the 8-character main part of the name, and the 
3-character extension. These two parts are “trailing space padded” with bytes of 0x20.  
 
DIR_Name[0] may not equal 0x20. There is an implied ‘.’ character between the main part of the 
name and the extension part of the name that is not present in DIR_Name. Lower case characters are 
not allowed in DIR_Name (what these characters are is country specific).  
 
The following characters are not legal in any bytes of DIR_Name:  
•  Values less than 0x20 except for the special case of 0x05 in DIR_Name[0] described above. 
•  0x22, 0x2A, 0x2B, 0x2C, 0x2E, 0x2F, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x5B, 0x5C, 0x5D, 

and 0x7C.  
 
Here are some examples of how a user-entered name maps into DIR_Name: 
 
“foo.bar” -> “FOO BAR”
“FOO.BAR” -> “FOO BAR”
“Foo.Bar” -> “FOO BAR”
“foo” -> “FOO “
“foo.” -> “FOO “
“PICKLE.A” -> “PICKLE A “
“prettybg.big” -> “PRETTYBGBIG”
“.big” -> illegal, DIR_Name[0] cannot be 0x20

 
In FAT directories all names are unique. Look at the first three examples earlier. Those different 
names all refer to the same file, and there can only be one file with DIR_Name set to “FOO     BAR” 
in any directory. 
 
DIR_Attr specifies attributes of the file: 
 

ATTR_READ_ONLY  Indicates that writes to the file should fail. 
ATTR_HIDDEN  Indicates that normal directory listings should not show this file.  
ATTR_SYSTEM  Indicates that this is an operating system file. 
ATTR_VOLUME_ID  There should only be one “file” on the volume that has this attribute 

set, and that file must be in the root directory. This name of this file is 
actually the label for the volume. DIR_FstClusHI and 
DIR_FstClusLO must always be 0 for the volume label (no data 
clusters are allocated to the volume label file).  

ATTR_DIRECTORY Indicates that this file is actually a container for other files. 
ATTR_ARCHIVE   This attribute supports backup utilities. This bit is set by the FAT file 

system driver when a file is created, renamed, or written to. Backup 
utilities may use this attribute to indicate which files on the volume 
have been modified since the last time that a backup was performed. 

 
Note that the ATTR_LONG_NAME attribute bit combination indicates that the “file” is actually part 
of the long name entry for some other file. See the next section for more information on this attribute 
combination. 
 
When a directory is created, a file with the ATTR_DIRECTORY bit set in its DIR_Attr field, you set 
its DIR_FileSize to 0. DIR_FileSize is not used and is always 0 on a file with the 
ATTR_DIRECTORY attribute (directories are sized by simply following their cluster chains to the 
EOC mark). One cluster is allocated to the directory (unless it is the root directory on a FAT16/FAT12 
volume), and you set DIR_FstClusLO and DIR_FstClusHI to that cluster number and place an EOC 
mark in that clusters entry in the FAT. Next, you initialize all bytes of that cluster to 0. If the directory 
is the root directory, you are done (there are no dot or dotdot entries in the root directory). If the 
directory is not the root directory, you need to create two special entries in the first two 32-byte 
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directory entries of the directory (the first two 32 byte entries in the data region of the cluster you just 
allocated).  
 
The first directory entry has DIR_Name set to:  
“. ”

 
The second has DIR_Name set to:  
“.. ”

 
These are called the dot and dotdot entries. The DIR_FileSize field on both entries is set to 0, and all 
of the date and time fields in both of these entries are set to the same values as they were in the 
directory entry for the directory that you just created. You now set DIR_FstClusLO and 
DIR_FstClusHI for the dot entry (the first entry) to the same values you put in those fields for the 
directories directory entry (the cluster number of the cluster that contains the dot and dotdot entries).  
 
Finally, you set DIR_FstClusLO and DIR_FstClusHI for the dotdot entry (the second entry) to the 
first cluster number of the directory in which you just created the directory (value is 0 if this directory 
is the root directory even for FAT32 volumes).  
 
Here is the summary for the dot and dotdot entries:  
•  The dot entry is a directory that points to itself.  
•  The dotdot entry points to the starting cluster of the parent of this directory (which is 0 if this 

directories parent is the root directory). 
 
Date and Time Formats 
Many FAT file systems do not support Date/Time other than DIR_WrtTime and DIR_WrtDate. For 
this reason, DIR_CrtTimeMil, DIR_CrtTime, DIR_CrtDate, and DIR_LstAccDate are actually 
optional fields. DIR_WrtTime and DIR_WrtDate must be supported, however. If the other date and 
time fields are not supported, they should be set to 0 on file create and ignored on other file 
operations. 
 
Date Format. A FAT directory entry date stamp is a 16-bit field that is basically a date relative to the 
MS-DOS epoch of 01/01/1980. Here is the format (bit 0 is the LSB of the 16-bit word, bit 15 is the 
MSB of the 16-bit word): 
 

Bits 0–4: Day of month, valid value range 1-31 inclusive. 
Bits 5–8: Month of year, 1 = January, valid value range 1–12 inclusive. 
Bits 9–15: Count of years from 1980, valid value range 0–127 inclusive (1980–2107). 

 
Time Format. A FAT directory entry time stamp is a 16-bit field that has a granularity of 2 seconds. 
Here is the format (bit 0 is the LSB of the 16-bit word, bit 15 is the MSB of the 16-bit word). 
 

Bits 0–4: 2-second count, valid value range 0–29 inclusive (0 – 58 seconds). 
Bits 5–10: Minutes, valid value range 0–59 inclusive. 
Bits 11–15: Hours, valid value range 0–23 inclusive. 

 
The valid time range is from Midnight 00:00:00 to 23:59:58. 
 
FAT Long Directory Entries 
In adding long directory entries to the FAT file system it was crucial that their addition to the FAT file 
system's existing design: 
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•  Be essentially transparent on earlier versions of MS-DOS.  The primary goal being that existing 
MS-DOS APIs on previous versions of MS-DOS/Windows do not easily "find" long directory 
entries.  The only MS-DOS APIs that can "find" long directory entries are the FCB-based-find 
APIs when used with a full meta-character matching pattern (i.e. *.*) and full attribute matching 
bits (i.e. matching attributes are FFh).  On post-Windows 95 versions of MS-DOS/Windows, no 
MS-DOS API can accidentally "find" a single long directory entry. 

•  Be located in close physical proximity, on the media, to the short directory entries they are 
associated with.  As will be evident, long directory entries are immediately contiguous to the short 
directory entry they are associated with and their existence imposes an unnoticeable performance 
impact on the file system. 

•  If detected by disk maintenance utilities, they do not jeopardize the integrity of existing file data.  
Disk maintenance utilities typically do not use MS-DOS APIs to access on-media file-system-
specific data structures.  Rather they read physical or logical sector information from the disk and 
judge for themselves what the directory entries contain.  Based on the heuristics employed in the 
utilities, the utility may take various steps to "repair" what it perceives to be "damaged" file-
system-specific data structures.  Long directory entries were added to the FAT file system in such 
a way as to not cause the loss of file data if a disk containing long directory entries was "repaired" 
by a pre-Windows 95-compatible disk utility on a previous version of MS-DOS/Windows. 

 
In order to meet the goals of locality-of-access and transparency, the long directory entry is defined as 
a short directory entry with a special attribute.  As described previously, a long directory entry is just a 
regular directory entry in which the attribute field has a value of: 
 

ATTR_LONG_NAME ATTR_READ_ONLY | 
ATTR_HIDDEN | 
ATTR_SYSTEM | 
ATTR_VOLUME_ID 

 
A mask for determining whether an entry is a long-name sub-component should also be defined: 
 

ATTR_LONG_NAME_MASK ATTR_READ_ONLY | 
ATTR_HIDDEN | 
ATTR_SYSTEM | 
ATTR_VOLUME_ID | 
ATTR_DIRECTORY | 
ATTR_ARCHIVE 
 

When such a directory entry is encountered it is given special treatment by the file system.  It is 
treated as part of a set of directory entries that are associated with a single short directory entry. Each 
long directory entry has the following structure: 
 
FAT Long Directory Entry Structure 
Name Offset  

(byte) 
Size  
(bytes) 

Description 

LDIR_Ord 0 1 The order of this entry in the sequence of long dir entries 
associated with the short dir entry at the end of the long dir set. 
 
If masked with 0x40 (LAST_LONG_ENTRY), this indicates the 
entry is the last long dir entry in a set of long dir entries. All valid 
sets of long dir entries must begin with an entry having this 
mask. 

LDIR_Name1 1 10 Characters 1-5 of the long-name sub-component in this dir entry. 
LDIR_Attr 11 1 Attributes - must be ATTR_LONG_NAME 
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LDIR_Type 12 1 If zero, indicates a directory entry that is a sub-component of a 
long name.  NOTE: Other values reserved for future extensions. 
 
Non-zero implies other dirent types. 

LDIR_Chksum 13 1 Checksum of name in the short dir entry at the end of the long dir 
set. 

LDIR_Name2 14 12 Characters 6-11 of the long-name sub-component in this dir 
entry. 

LDIR_FstClusLO 26 2 Must be ZERO. This is an artifact of the FAT "first cluster" and 
must be zero for compatibility with existing disk utilities.  It's 
meaningless in the context of a long dir entry. 

LDIR_Name3 28 4 Characters 12-13 of the long-name sub-component in this dir 
entry. 

 
Organization and Association of Short & Long Directory Entries 
 
A set of long entries is always associated with a short entry that they always immediately precede.  
Long entries are paired with short entries for one reason: only short directory entries are visible to 
previous versions of MS-DOS/Windows.  Without a short entry to accompany it, a long directory 
entry would be completely invisible on previous versions of MS-DOS/Windows.  A long entry never 
legally exists all by itself.  If long entries are found without being paired with a valid short entry, they 
are termed orphans.  The following figure depicts a set of n long directory entries associated with it's 
single short entry. 
 
Long entries always immediately precede and are physically contiguous with, the short entry they are 
associated with.  The file system makes a few other checks to ensure that a set of long entries is 
actually associated with a short entry. 
 
Sequence Of Long Directory Entries 
Entry Ordinal 
Nth Long entry LAST_LONG_ENTRY (0x40) | N 
… Additional Long Entries … 
1st Long entry 1 
Short Entry Associated With Preceding Long Entries (not applicable) 
 
First, every member of a set of long entries is uniquely numbered and the last member of the set is or'd 
with a flag indicating that it is, in fact, the last member of the set.  The LDIR_Ord field is used to 
make this determination.  The first member of a set has an LDIR_Ord value of one.  The nth long 
member of the set has a value of (n OR LAST_LONG_ENTRY).  Note that the LDIR_Ord field 
cannot have values of 0xE5 or 0x00.  These values have always been used by the file system to 
indicate a "free" directory entry, or the "last" directory entry in a cluster.  Values for LDIR_Ord do not 
take on these two values over their range.  Values for LDIR_Ord must run from 1 to (n OR 
LAST_LONG_ENTRY).  If they do not, the long entries are "damaged" and are treated as orphans by 
the file system. 
 
Second, an 8-bit checksum is computed on the name contained in the short directory entry at the time 
the short and long directory entries are created.  All 11 characters of the name in the short entry are 
used in the checksum calculation.  The check sum is placed in every long entry.  If any of the check 
sums in the set of long entries do not agree with the computed checksum of the name contained in the 
short entry, then the long entries are treated as orphans.  This can occur if a disk containing long and 
short entries is taken to a previous version of MS-DOS/Windows and only the short name of a file or 
directory with a long entries is renamed. 
 
The algorithm, implemented in C, for computing the checksum is: 



FAT: General Overview of On-Disk Format—Page 28 

© 2000 Microsoft Corporation. All rights reserved. 28

//-----------------------------------------------------------------------------
// ChkSum()
// Returns an unsigned byte checksum computed on an unsigned byte
// array. The array must be 11 bytes long and is assumed to contain
// a name stored in the format of a MS-DOS directory entry.
// Passed: pFcbName Pointer to an unsigned byte array assumed to be
// 11 bytes long.
// Returns: Sum An 8-bit unsigned checksum of the array pointed
// to by pFcbName.
//------------------------------------------------------------------------------
unsigned char ChkSum (unsigned char *pFcbName)
{

short FcbNameLen;
unsigned char Sum;

Sum = 0;
for (FcbNameLen=11; FcbNameLen!=0; FcbNameLen--) {

// NOTE: The operation is an unsigned char rotate right
Sum = ((Sum & 1) ? 0x80 : 0) + (Sum >> 1) + *pFcbName++;

}
return (Sum);

}

 
As a consequence of this pairing, the short directory entry serves as the structure that contains fields 
like: last access date, creation time, creation date, first cluster, and size.  It also holds a name that is 
visible on previous versions of MS-DOS/Windows.  The long directory entries are free to contain new 
information and need not replicate information already available in the short entry.  Principally, the 
long entries contain the long name of a file.  The name contained in a short entry which is associated 
with a set of long entries is termed the alias name, or simply alias, of the file. 
 
Storage of a Long-Name Within Long Directory Entries 
 
A long name can consist of more characters than can fit in a single long directory entry.  When this 
occurs the name is stored in more than one long entry.  In any event, the name fields themselves 
within the long entries are disjoint.  The following example is provided to illustrate how a long name 
is stored across several long directory entries.  Names are also NUL terminated and padded with 
0xFFFF characters in order to detect corruption of long name fields by errant disk utilities.  A name 
that fits exactly in a n long directory entries (i.e. is an integer multiple of 13) is not NUL terminated 
and not padded with 0xFFFFs. 
 
Suppose a file is created with the name: "The quick brown.fox".  The following example illustrates 
how the name is packed into long and short directory entries.  Most fields in the directory entries are 
also filled in as well. 
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2nd long entry
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chk-
sum

chk-
sumT h e q u

i c k b r o

w n f o x.

T QH E U I F X~ 1 O

42h

01h

00h

00h

0000h

0000h

0000h

0000h FFFFh FFFFh FFFFh FFFFh FFFFh FFFFh

0Fh

0Fh

20h Rsvd

Last
Access
Date

Last
Time

First
Cluster File Size

NT

Date
ModifiedDate

Time

Modified
LastCreated

Created

 
 



FAT: General Overview of On-Disk Format—Page 29 

© 2000 Microsoft Corporation. All rights reserved. 29

The heuristics used to "auto-generate" a short name from a long name are explained in a later section. 
 
Name Limits and Character Sets 
 
Short Directory Entries 
 
Short names are limited to 8 characters followed by an optional period (.) and extension of up to 3 
characters.  The total path length of a short name cannot exceed 80 characters (64 char path + 3 drive 
letter + 12 for 8.3 name + NUL) including the trailing NUL.  The characters may be any combination 
of letters, digits, or characters with code point values greater than 127.  The following special 
characters are also allowed: 
 

$   %   '   -   _   @   ~    `   !   (    )   {   }  ^  #  & 
 

Names are stored in a short directory entry in the OEM code page that the system is configured for at 
the time the directory entry is created.  Short directory entries remain in OEM for compatibility with 
previous versions of MS-DOS/Windows.  OEM characters are single 8-bit characters or can be DBCS 
character pairs for certain code pages. 
 
Short names passed to the file system are always converted to upper case and their original case value 
is lost.  One problem that is generally true of most OEM code pages is that they map lower to upper 
case extended characters in a non-unique fashion.  That is, they map multiple extended characters to a 
single upper case character.  This creates problems because it does not preserve the information that 
the extended character provides.  This mapping also prevents the creation of some file names that 
would normally differ, but because of the mapping to upper case they become the same file name. 
 
Long Directory Entries 
 
Long names are limited to 255 characters, not including the trailing NUL.  The total path length of a 
long name cannot exceed 260 characters, including the trailing NUL.  The characters may be any 
combination of those defined for short names with the addition of the period (.) character used 
multiple times within the long name.  A space is also a valid character in a long name as it always has 
been for a short name.  However, in short names it typically is not used.  The following six special 
characters are now allowed in a long name.  They are not legal in a short name. 
 

+   ,   ;   =   [   ] 
 
Embedded spaces within a long name are allowed.  Leading and trailing spaces in a long name are 
ignored.  
 
Leading and embedded periods are allowed in a name and are stored in the long name.  Trailing 
periods are ignored. 
 
Long names are stored in long directory entries in UNICODE.  UNICODE characters are 16-bit 
characters.  It is not be possible to store UNICODE in short directory entries since the names stored 
there are 8-bit characters or DBCS characters. 
 
Long names passed to the file system are not converted to upper case and their original case value is 
preserved.  UNICODE solves the case mapping problem prevalent in some OEM code pages by 
always providing a translation for lower case characters to a single, unique upper case character. 
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Name Matching In Short & Long Names 
The names contained in the set of all short directory entries are termed the "short name space".  The 
names contained in the set of all long directory entries are termed the "long name space".  Together, 
they form a single unified name space in which no duplicate names can exist.  That is: any name 
within a specific directory, whether it is a short name or a long name, can occur only once in the name 
space.  Furthermore, although the case of a name is preserved in a long name, no two names can have 
the same name although the names on the media actually differ by case.  That is names like "foobar" 
cannot be created if there is already a short entry with a name of "FOOBAR" or a long name with a 
name of "FooBar". 
 
All types of search operations within the file system (i.e. find, open, create, delete, rename) are case-
insensitive.  An open of "FOOBAR" will open either "FooBar" or "foobar" if one or the other exists.  
A find using "FOOBAR" as a pattern will find the same files mentioned.  The same rules are also true 
for extended characters that are accented. 
 
A short name search operation checks only the names of the short directory entries for a match.  A 
long name search operation checks both the long and short directory entries.  As the file system 
traverses a directory, it caches the long-name sub-components contained in long directory entries.  As 
soon as a short directory entry is encountered that is associated with the cached long name, the long 
name search operation will check the cached long name first and then the short name for a match. 
 
When a character on the media, whether it is stored in the OEM character set or in UNICODE, cannot 
be translated into the appropriate character in the OEM or ANSI code page, it is always "translated" to 
the "_" (underscore) character as it is returned to the user – it is NOT modified on the disk.  This 
character is the same in all OEM code pages and ANSI. 
 
Naming Conventions and Long Names 
An API allows the caller to specify the long name to be assigned to a file or directory.  They do not 
allow the caller to independently specify the short name.  The reason for this prohibition is that the 
short and long names are considered to be a single unified name space.  As should be obvious the file 
system's name space does not support duplicate names.  In other words, a long name for a file may not 
contain the same name, ignoring case, as the short name in a different file.  This restriction is intended 
to prevent confusion among users, and applications, regarding the proper name of a file or directory.  
To make this restriction transparent, whenever a long name is created and the no matching long name 
exists, the short name is automatically generated from the long name in such a way that it does not 
collide with an existing short name. 
 
The technique chosen to auto-generate short names from long names is modeled after Windows NT.  
Auto-generated short names are composed of the basis-name and an optional numeric-tail. 
 
The Basis-Name Generation Algorithm 
 
The basis-name generation algorithm is outlined below.  This is a sample algorithm and serves to 
illustrate how short names can be auto-generated from long names. An implementation should follow 
this basic sequence of steps. 
 
1. The UNICODE name passed to the file system is converted to upper case. 

2. The upper cased UNICODE name is converted to OEM. 
if  (the uppercased UNICODE glyph does not exist as an OEM glyph in the OEM code page) 
 or (the OEM glyph is invalid in an 8.3 name) 
{ 
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 Replace the glyph to an OEM '_' (underscore) character. 
 Set a "lossy conversion" flag. 
} 

3. Strip all leading and embedded spaces from the long name. 

4. Strip all leading periods from the long name. 

5. While  (not at end of the long name) 
 and (char is not a period) 
 and (total chars copied < 8) 
{ 
 Copy characters into primary portion of the basis name 
} 

6. Insert a dot at the end of the primary components of the basis-name iff the basis name has an 
extension after the last period in the name. 

7. Scan for the last embedded period in the long name. 
If (the last embedded period was found) 
{ 
 While  (not at end of the long name) 
  and (total chars copied < 3) 
 { 
  Copy characters into extension portion of the basis name 
 } 
} 

Proceed to numeric-tail generation. 
 
The Numeric-Tail Generation Algorithm 
 
 If   (a "lossy conversion" was not flagged) 

 and (the long name fits within the 8.3 naming conventions) 
 and (the basis-name does not collide with any existing short name) 
{ 
 The short name is only the basis-name without the numeric tail. 
} 
else 
{ 
 Insert a numeric-tail "~n" to the end of the primary name such that the value of the "~n" is 
chosen so that the  
 name thus formed does not collide with any existing short name and that the primary name does 
not exceed eight  characters in length. 
} 

The "~n" string can range from "~1" to "~999999".  The number "n" is chosen so that it is the next 
number in a sequence of files with similar basis-names.  For example, assume the following short 
names existed: LETTER~1.DOC and LETTER~2.DOC.  As expected, the next auto-generated name 
of name of this type would be LETTER~3.DOC.  Assume the following short names existed: 
LETTER~1.DOC, LETTER~3.DOC.  Again, the next auto-generated name of name of this type 
would be LETTER~2.DOC.  However, one absolutely cannot count on this behavior.  In a directory 
with a very large mix of names of this type, the selection algorithm is optimized for speed and may 
select another "n" based on the characteristics of short names that end in "~n" and have similar leading 
name patterns. 
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Effect of Long Directory Entries on Down Level Versions of FAT 
The support of long names is most important on the hard disk, however it will be supported on 
removable media as well.  The implementation provides support for long names without breaking 
compatibility with the existing FAT format.  A disk can be read by a down level system without any 
compatibility problems.  An existing disk does not go through a conversion process before it can start 
using long names.  All of the current files remain unmodified.  The long name directory entries are 
added when a long name is created.  The addition of a long name to an existing file may require the 
8.3 directory entry to be moved if the required adjacent directory entries are not available. 
 
The long name entries are as hidden as hidden or system files are on a down level system.  This is 
enough to keep the casual user from causing problems.  The user can copy the files off using the 8.3 
name, and put new files on without any side effects 
 
The interesting part of this is what happens when the disk is taken to a down level FAT system and the 
directory is changed.  This can affect the long name entries since the down level system ignores these 
long names and will not ensure they are properly associated with the 8.3 names. 
 
A down level system will only see the long name entries when searching for a label.  On a down level 
system, the volume label will be incorrectly reported if the true volume label does not come before all 
of the long name entries in the root directory.  This is because the long name entries also have the 
volume label bit set.  This is unfortunate, but is not a critical problem. 
 
If an attempt is made to remove the volume label, one of the long name directory entries may be 
deleted.  This would be a rare occurrence.  It is easily detected on an aware system.  The long name 
entry will no longer be a valid file entry, since one or more of the long entries is marked as deleted.  If 
the deleted entry is reused, then the attribute byte will not have the proper value for a long name entry.   
 
If a file is renamed on a down level system, then only the short name will be renamed.  The long name 
will not be affected.  Since the long and short names must be kept consistent across the name space, it 
is desirable to have the long name become invalid as a result of this rename.  The checksum of the 8.3 
name that is kept in the long name directory provides the ability to detect this type of change.  This 
checksum will be checked to validate the long name before it is used.  Rename will cause problems 
only if the renamed 8.3 file name happens to have the same checksum.  The checksum algorithm 
chosen has a relatively flat distribution across the short name space. 
 
This rename of the 8.3 name must also not conflict with any of the long names.  Otherwise a down 
level system could create a short name in one file that matches a long name, when case is ignored, in a 
different file.  To prevent this, the automatic creation of an 8.3 name from a long name, that has an 8.3 
format, will directly map the long name to the 8.3 name by converting the characters to upper case. 
 
If the file is deleted, then the long name is simply orphaned.  If a new file is created, the long name 
may be incorrectly associated with the new file name.  As in the case of a rename the checksum of the 
8.3 name will help prevent this incorrect association. 
 
Validating The Contents of a Directory 
These guidelines are provided so that disk maintenance utilities can verify individual directory entries 
for 'correctness' while maintaining compatibility with future enhancements to the directory structure. 
 
1. DO NOT look at the content of directory entry fields marked 'reserved' and assume that, if they 

are any value other than zero, that they are 'bad'. 
2. DO NOT reset the content of directory entry fields marked reserved to zero when they contain 

non-zero values (under the assumption that they are "bad").  Directory entry fields are designated 
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reserved, rather than must-be-zero.  They should be ignored by your application..  These fields are 
intended for future extensions of the file system.  By ignoring them an utility can continue to run 
on future versions of the operating system. 

3. DO use the A_LONG attribute first when determining whether a directory entry is a long 
directory entry or a short directory entry.  The following algorithm is the correct algorithm for 
making this determination: 

 
 if  (((LDIR_attr & ATTR_LONG_NAME_MASK) == ATTR_LONG_NAME) && (LDIR_Ord != 0xE5)) 

{ 
 /*   Found an active long name sub-component.   */ 
} 

 
4. DO use bits 4 and 3 of a short entry together when determining what type of short directory entry 

is being inspected.    The following algorithm is the correct algorithm for making this 
determination: 

 
 if  (((LDIR_attr & ATTR_LONG_NAME_MASK) != ATTR_LONG_NAME) && (LDIR_Ord != 0xE5)) 

{ 
 if        ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == 0x00) 
  /*   Found a file.   */ 
 else if ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == ATTR_DIRECTORY) 
  /*   Found a directory.   */ 
 else if ((DIR_Attr & (ATTR_DIRECTORY | ATTR_VOLUME_ID)) == ATTR_VOLUME_ID) 
  /*   Found a volume label.   */ 
 else 
  /*   Found an invalid directory entry.   */ 
} 

 
5. DO NOT assume that a non-zero value in the "type" field indicates a bad directory entry.  Do not 

force the "type" field to zero. 
6. Use the "checksum" field as a value to validate the directory entry.  The "first cluster" field is 

currently being set to zero, though this might change in future. 
 
Other Notes Relating to FAT Directories 
•  Long File Name directory entries are identical on all FAT types. See the preceeding sections for 

details.  
 
•  DIR_FileSize is a 32-bit field. For FAT32 volumes, your FAT file system driver must not allow a 

cluster chain to be created that is longer than 0x100000000 bytes, and the last byte of the last 
cluster in a chain that long cannot be allocated to the file. This must be done so that no file has a 
file size > 0xFFFFFFFF bytes. This is a fundamental limit of all FAT file systems. The maximum 
allowed file size on a FAT volume is 0xFFFFFFFF (4,294,967,295) bytes. 

 
•  Similarly, a FAT file system driver must not allow a directory (a file that is actually a container for 

other files) to be larger than 65,536 * 32 (2,097,152) bytes.  
 
NOTE: This limit does not apply to the number of files in the directory. This limit is on the size of 
the directory itself and has nothing to do with the content of the directory. There are two reasons 
for this limit: 

 
1. Because FAT directories are not sorted or indexed, it is a bad idea to create huge directories; 

otherwise, operations like creating a new entry (which requires every allocated directory entry 
to be checked to verify that the name doesn’t already exist in the directory) become very slow.  
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2. There are many FAT file system drivers and disk utilities, including Microsoft’s, that expect to 
be able to count the entries in a directory using a 16-bit WORD variable. For this reason, 
directories cannot have more than 16-bits worth of entries. 
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