
報告人：國科會晶片系統設計中心 周育德 工程師
電 話：(03)5773693 ext. 148
傳 真：(03)5783372
Email : steven@cic.edu.tw

July 2001

Altera PC
CIC

Course Outline - 1

Introduction to PLD
Altera Device Families
Design Flow & Altera Tools
Getting Started
Graphic Design Entry
Text Editor Design Entry
Waveform Design Entry

Course Outline - 2

Design Implementation
Project Verfication

• Functional Simulation
• Timing Analysis
• Timing Simulation

Device Programming
Summary & Getting Help

Introduction to PLD

PLD : Programmable Logic Device
SPLD : Small/Simple Programmable Logic Device
CPLD : Complex Programmable Logic Device
FPGA : Field Programmable Gate Array

PLD Gate Array Cell-Based IC Full Custom IC

ASIC

Logic

Standard Logic

CPLDSPLD FPGA

Main Features

Field-programmable
Reprogrammable
In-circuit design verification
Rapid prototyping
Fast time-to-market
No IC-test & NRE cost
H/W emulation instead of S/W simulation
Good software
...

Programmability

Why programmable? Why reprogrammable?
• Logic is implemented by programming the “configuration memory”
• Various configuration memory technologies

– One-Time Programmable: anti-fuse, EPROM
– Reprogrammable: EPROM, EEPROM, Flash & SRAM

configuratio
n

memory

M

Programmable Combinational
Logic

Product Term-based Building Block
* 2-level logic
* High fan-in

Look-up Table-based Building Block
* 4 to 5 inputs, fine grain architecture
* ROM-like

LUT
(Look-Up Table)

configuratio
n

memory

M

Programmable Register

M
M

PR

CLR

D

EN

Q

1
M
M

M

M
M

M

M
M

output select

preset select

clear select

edge control

enable select

clock select

* Typical register controls: clock, enable, preset/clear, ...

Programmable Interconnect

logic block

switching
element

switching
element

switching
element

switching
element

logic cells

logic cells

logic cells

logic cells

Typical routing resources: switching elements, local/global lines, clock buffers...

Programmable I/O

pull-down
control

Vcc

M

M

pull-up
control

PAD

Gnd

PR

CLR

D Q
M

M

output
select

slew-rate
controlM

output enable

M

M

M

M

PR

CLR

DQ

input select

Typical I/O controls: direction, I/O registers, 3-state, slew rate, ...

Field-Programmability

Why filed-programmable?
• You can verify your designs at any time by configuring the FPGA/CPLD devices on

board via the download cable or hardware programmer

download cable

programmer & adapter

FPGA
or

CPLD

output display

FPGA
CPLD

a
b

z

01011...

Rapid Prototyping

Reduce system prototyping time :
• You can see the “real” things

– In-circuit design verification
• Quick delivery instead of IC manufacture
• No test development, no re-spin potential (i.e. no NRE cost)
• Satisfied for educational purposes

Fast time-to-market

FPGA
or

CPLD

0. Design, simulation, & compilation
1. Downloading configuration bitstream

2. Entering input data 3. Obtaining output data
4. Analysis

Design
Feasibility

Detailed
Design

Prototyping

Test &
Debug

IC
Manufacture

Products

FPGA/CPLD is on the board!

Software Environment

Various design entries and interfaces
• HDL: Verilog, VHDL, ABEL, ...
• Graphic: Viewlogic, OrCAD, Cadence, ...

Primitives & macrofunctions provided
• Primitive gates, arithmetic modules, flip-flops, counters, I/O elements, ...

Constraint-driven compilation/implementation
• Logic fitting, partition, placement & routing (P&R)

Simulation netlist generation
• Functional simulation & timing simulation netlist extraction

Programmer/download program

FPGA/CPLD Benefits

High-
Density
PLDs

√
√
√
√ √

√ √
√ √
√ √
√ √

√ √

Gate Arrays

√
√
√
√

√

√

Cell-Based
ICs

√
√
√ √

√

Full-Custom
ICs

√ √
√ √
√ √

√

Speed
Integration Density
High-Volume device cost
Low-volume device cost

Time to Market
Risk Reduction
Future Modification
Development Tool

Educational Purpose

√ Good
√√ Excellent

Altera & CIC

Altera
• One of the world leaders in high-performance & high-density PLDs & associated

CAE tools
• Supports university program in Taiwan via CIC

From CIC, you can apply:
• Altera software - it’s free for educational purpose!

PC : MAX+PLUS II (full design environment)
– WS : MAX+PLUS II (full design environment)

Synopsys interface (Cadence & Viewlogic interfaces are optional)
• Altera hardware -
• University Program Design Laboratory Package (since 9709):

• UP1 Education Board
• ByteBlaster download cable
• Student Edition Software

• Of course, CIC is responsible for technical supports
• WWW: http://www.cic.edu.tw/chip_design/design_intr/altera/

CIC

Altera Device Families

I/O

Usable Gates

MAX

MAX 7000B
MAX 7000AE
MAX 7000S
MAX 9000A

FLEX

FLEX 10KE
FLEX 10KA
FLEX 10K
FLEX 6000
FLEX 8000

APEX

APEX 20K
APEX 20KE

Altera Device Families

Altera offers 7 device families

EPROM

EPROM

EEPROM

SRAM

SRAM

EEPROM

SRAM

Device
Family

Reconfigurabl
e Element

Logic Cell
Structure

Usable/Typica
l Gates

SOP

SOP

SOP

LUT

LUT

SOP

LUT

200 ~ 900

800 ~ 3,200

600 ~ 5,000

10,000 ~ 24,000

2,500 ~ 16,000

6,000 ~ 12,000

10,000 ~ 100,000

Classic

MAX 5000

MAX 7000/E/S

FLEX 6000(1)

FLEX 8000A

MAX 9000/A(1)

FLEX 10K/A/B(1)

Family Members

EP610, 910, 1810

EPM5032, 064, 128, 130, 192

EPM7032/V/S, 064/S, 096/S,
EPM7128E/S, 160E/S, 192E/S, 256E/S
EPF6016/A, 024A

EPF8282A, 452A, 636A, 820A, 1188A, 1500A

EPM9320/A, 400/A, 480/A, 560/A

EPF10K10/A, 20/A, 30/A, 40/A, 50/V/A,
EPF10K70/V/A, 100/A, 130/V/A, 250A

Note:
(1) Not all devices are currently available.
(2) Altera plans to ship new MAX7000A family in the near future.

Device Part Numbers
EPM7128STC100-7

• EPM = Family Signature (Erasable Programmable MAX device)
• 7128S = Device type (128 = number of macrocells)
• T = Package type (L = PLCC, T = TQFP...)
• C = Operating temperature (Commercial, Industrial)
• 100 = Pin count (number of pins on the package)
• -7 = Speed Grade in nsec
• Suffix may follow speed grade (for special device features)

Another Example:
• EPM7064SLC44-5

– EPM7064S in a commercial-temp, 44 pin PLCC package with a 5 ns speed
grade

MAX & FLEX Architectures - (1)

Carry
Chain

Look-Up
Table
(LUT)

Clear/
Preset
Logic

Cascade
Chain

D
PRn

CLRn

Q

Carry-In Cascade-In

Carry-Out Cascade-Out

DATA1
DATA2
DATA3
DATA4

LABCTRL1
LABCTRL2

LABCTRL3

LABCTRL4

LE Out

Clock Select

Programmable Register

Product-
Term
Select
Matrix VCC

D

ENA

PRn

CLRn

Q

Clear
Select

Clock/
Enable
Select

Register
Bypass

Global
Clock

Global
Clear

36 Programmable
Interconnect

Signals

16 Expander
Product Terms

Shared Logic
Expanders

Parallel Logic
Expanders
(from other MCs)

to PIA

to I/O
Control
Block

Programmable
Register

MAX architecture

FLEX architecture

MAX & FLEX Architectures - (2)

Choose the appropriate architecture
• Different PLD architectures provide different performance & capacity results for

same application

Course Grain

SOP

EEPROM

Combinational-Intensive Logic
e.g. Large Decoders, State Machines, ...

Feature MAX
Architecture

FLEX
Architecture

Fine Grain

LUT

SRAM

Register-Intensive, Arithmetic Functions
e.g. Adders, Comparators, Counters, ...

Basic Building Block

Logic Cell Structure

Technology

Optimization

MAX 7000 Families

Today’s MAX 7000 family members
• Basic version: for low-density members

– EPM7032/V, 7064, 7096
• E-version: enhanced architecture, for higher-density members

– EPM7128E, 7160E, 7192E, 7256E
• New S-version: enhanced architecture with ISP capability

– EPM7032S, 7064S, 7096S, 7128S, 7160S, 7192S, 7256S

MAX 7000 Devices
Device MCs Gates Speed Grade Package Options I/O Pins

EPM7032
EPM7032V
EPM7064
EPM7096
EPM7128E
EPM7160E
EPM7192E
EPM7256E

EPM7032S
EPM7064S
EPM7096S
EPM7128S
EPM7160S
EPM7192S
EPM7256S

32
32
64
96

128
160
192
256

32
64
96

128
160
192
256

600
600

1,250
1,800
2,500
3,200
3,750
5,000

600
1,250
1,800
2,500
3,200
3,750
5,000

-5,-6,-7,-10,-12,-15
-12,-15,-20
-6,-7,-10,-12,-15
-7,-10,-12,-15
-7,-10,-10P,-12,-15,-20
-10,-10P,-12,-15,-20
-12,-12P,-15,-20
-12,-12P,-15,-20

-5,-6,-7,-10
-6,-7,-10
-6,-7,-10
-7,-10,-15
-7,-10,-15
-7,-10,-15
-7,-10,-12,-15

PLCC44, TQFP44
PLCC44, TQFP44
PLCC44/68/84, PQFP100, TQFP44
PLCC68/84, PQFP100
PLCC84, PQFP100/160
PLCC84, PQFP100/160
PQFP160, PGA160
PQFP160, PGA192, RQFP208

PLCC44, TQFP44
PLCC44/84, PQFP100, TQFP44/100
PLCC84, PQFP100, TQFP100
PLCC84, PQFP100/160, TQFP100
PLCC84, PQFP100/160, TQFP100
PQFP160
PQFP160, RQFP208

36
36
36,52,68
52,64,76
68,84,100
64,84,100
124
132,164

36
36,52,68
52,64,76
68,84,100
64,84,104
124
132,164

MAX 7000 Features

MAX 7000 main features...
• EEPROM-based devices based on Altera’s MAX architecture
• 32 ~ 256 macrocells
• 600 ~ 5,000 usable gates
• Programmable flip-flops with individual clear, preset & clock enable controls
• Configurable expander allowing up to 32 product terms per macrocell
• Programmable power-saving mode in each macrocell
• Programmable security bit
• PCI-compliant -5, -6, -7, -10P, -12P speed grades
• 3.3-V or 5-V operation

– Full 3.3-V EPM7032V
– 3.3-V or 5-V I/O on all devices except 44-pin devices

MAX 7000E/S Features

MAX 7000E (128MCs and up) enhanced features...
• More output enable control signals & more global clocking capabilities
• Fast input registers
• Programmable output slew-rate control
• More interconnect resources

MAX 7000S enhanced features
• Enhanced architecture for all family members
• Open-drain output option for each I/O pin
• In-system programmability (ISP) via standard JTAG interface
• Built-in JTAG boundary-scan test circuitry in EPM7128S or larger devices
• ClockBoost circuitry: a phase-locked loop(PLL) circuit which provides a clock

multiplier
• PCI-compliant -5, -6, -7, -10 speed grades
• Pin-, function- & programming file-compatible with all MAX 7000/E devices

MAX 7000 Architecture

PIA

I/O
Control
Block

I/O
Control
Block

8 to 16
I/O pins

8 to 16
I/O pins

8 to 16

I/O
Control
Block

I/O
Control
Block

8 to 16
I/O pins

8 to 16
I/O pins

GCLK
GCLRn
OE1n
OE2n

Macrocell
s

1 to 8
Macrocell

s
9 to 16

LAB A

8 to
16

16

36

Macrocell
s

17 to 24
Macrocell

s
25 to 32

LAB B

8 to
16

16

36

8 to 16

Macrocell
s

49 to 56
Macrocell

s
57 to 64

LAB D

8 to
16

16

36

8 to 16

Macrocell
s

33 to 40
Macrocell

s
41 to 48

LAB C

8 to
16

16

36

8 to 16

MAX 7000E/S Architecture
GCLK1
GCLk2
OE1

GCLRn

PIA

I/O
Control
Block

I/O
Control
Block

6 to 12
I/O pins

6 to 12
I/O pins

Macrocell
s

1 to 8
Macrocell

s
9 to 16

LAB A

6 to 12

16

36

6 to 12

Macrocell
s

33 to 40
Macrocell

s
41 to 48

LAB C

6 to 12

16

36

6 to 12

I/O
Control
Block

I/O
Control
Block

6 to 12
I/O pins

6 to 12
I/O pins

Macrocell
s

49 to 56
Macrocell

s
57 to 64

LAB D

6 to 12

16

36

6 to 12

Macrocell
s

17 to 24
Macrocell

s
25 to 32

LAB B

6 to 12

16

36

6 to 12

6 to 12

6 to 12 6 to 12

6 to 12

6 Output Enables 6 Output Enables

66

MAX 7000 Macrocell

Product-
Term
Select
Matrix VCC

D

ENA

PRn

CLRn

Q

Clear
Select

Clock/
Enable
Select

Register
Bypass

Global
Clock

Global
Clear

36 Programmable
Interconnect

Signals

16 Expander
Product Terms

Shared Logic
Expanders

Parallel Logic
Expanders
(from other MCs)

to PIA

to I/O
Control
Block

Programmable
Register

MAX 7000E/S Macrocell

Product-
Term
Select
Matrix VCC

D

ENA

PRn

CLRn

Q

Clear
Select

Register
Bypass

Global
Clocks

Global
Clear

36 Programmable
Interconnect

Signals

16 Expander
Product Terms

Shared Logic
Expanders

Parallel Logic
Expanders
(from other MCs)

to PIA

to I/O
Control
Block

Programmable
Register

Fast Input
Select

Clock/
Enable
Select

from
I/O pin

2

Shareable Expanders

Macrocell
Product-Term
Logic

Macrocell
Product-Term
Logic

Product-Term Select Matrix

Parallel Expanders

Macrocell
Product-Term
Logic

Product-
Term
Select
Matrix

Product-
Term
Select
Matrix

to Next Macrocell

from Previous Macrocell

Macrocell
Product-Term
Logic

Macrocell 1
Macrocell 2
Macrocell 3
Macrocell 4
Macrocell 5
Macrocell 6
Macrocell 7
Macrocell 8

Macrocell 9
Macrocell 10
Macrocell 11
Macrocell 12
Macrocell 13
Macrocell 14
Macrocell 15
Macrocell 16

LABCannot borrow any
parallel expanders

Borrow up to 10
parallel expanders
from the first &
second MCs

Borrow up to 5
parallel expanders
from the first MC

Borrow up to 15
parallel expanders
from the 3 MCs
immediately above it

Cannot borrow any
parallel expanders

Borrow up to 10
parallel expanders
from the first &
second MCs

Borrow up to 5
parallel expanders
from the first MC

Borrow up to 15
parallel expanders
from the 3 MCs
immediately above it

MAX 7000 I/O Control Block

VCC

GND

OE1n
OE2n

from MC

to PIA

MAX 7000E/S I/O Control Block

from MC

Fast Input to
MC Register

to PIA

VCC

GND
to Other I/O Pins

PIA
6 Global Output Enables

Slew-Rate Control
Open-Drain Output (MAX 7000S only)

MAX 7000/E/S PIA
(Programmable Interconnect Array)

Macrocell 1

Macrocell 2

Macrocell 16

Destination LAB

Macrocell 1

Macrocell 2

Macrocell n

Source LABs/MCs

Source
Pins

Hard-Wired
Connections

36 Partially-Populated
Multiplexers per LAB

Programmable Interconnect Array

to LAB

MAX Vertical Migration

44-Pin
PLCC

44-Pin
TQFP

48-Pin
0.8-mm

BGA

84-Pin
PLCC

100-Pin
FineLine
BGA™

100-Pin
TQFP

144-Pin
TQFP

168-Pin
0.8-mm

BGA

208-Pin
PQFP

256-Pin
FineLine

BGA

Device

EPM7032

EPM7064

EPM7128

EPM7256

EPM7512

MAX 7000/E/S Device
Programming

Program the device with external hardware
• Use Altera hardware programmer

– MAX 7000/E/S devices can be programmed on PCs with an Altera Logic
Programmer card, the Master Programming Unit (MPU), and the appropriate
device adapter

– You can test the programmed device in Altera’s software environment
• Usr the universal programmer

– Many programming hardware manufacturers provide programming support for
Altera MAX 7000/E/S devices

MAX 7000S ISP

programmer & adapter
CPLD

What’s ISP?

ISP: In-System Programming
• ISP allows devices to be mounted on a PCB before they are programmed

– Offers quick and efficient design iterations
– Eliminates package handling

Mount Unprogrammed

* Eliminates handling of devices
* Prevents bent leads

Program In-System

* Allows generic end-product
inventory

* Specific test protocol or
algorithm can be
programmed during
manufacturing or test flow

Reprogramm in the Field

* No need to return system
for upgrades

* Add enhancements
quickly & easily

MAX 7000S ISP

MAX 7000S ISP
• MAX 7000S devices can be programmed through 4-pin JTAG interface

– By downloading the information via automatic test equipment, embedded
processors, or Altera BitBlaster/ByteBlaster download cable

• MAX 7000S internally generates 12.0-V programming voltage
• Refer to Altera’s Application Brief & Application Note for details

– AB145 : Designing for In-System Programmability in MAX 7000S Devices
– AN039: JTAG Boundary-Scan Testing in Altera Devices

download cable

CPLD

Summary of MAX features

ISP

PCI

MultiVolt I/O

Advanced I/O
Standard Support

Enhanced ISP
Feature Set

FineLine BGA Packages

0.8mm BGA Packages

Jam STAPL

MAX 7000S MAX 7000A MAX 7000B

FLEX 8000A Family

Today’s FLEX 8000A family members

Device LEsGates Speed Grade Package Options I/O Pins

EPF8282A

EPF8282AV

EPF8452A

EPF8636A

EPF8820A

EPF81188A

EPF81500A

208

208

336

504

672

1,008

1,296

2,500

2,500

4,000

6,000

8,000

12,000

16,000

-2,-3,-4

-4

-2,-3,-4

-2,-3,-4

-2,-3,-4

-2,-3,-4

-2,-3,-4

PLCC84, TQFP100

TQFP100

PLCC84, TQFP100, PQFP160, PGA160

PLCC84, PQFP160/208, PGA192

TQFP144, PQFP160/208, PGA192, BGA225

PQFP208/240, PGA232

PQFP240, PGA280, RQFP304

68,78

68,78

68,120

68,118,136

120,152

148,184

181,208

FFs

282

282

452

636

820

1,188

1,500

FLEX 8000A Features

FLEX 8000A main features...
• SRAM-based devices based on Altera’s FLEX architecture
• 282 ~ 1,500 registers
• 2,500 ~ 16,000 usable gates
• Programmable flip-flops with individual clear & preset controls
• Dedicated carry chain & cascade chain
• FastTrack continuous routing structure
• Programmable output slew-rate control
• Supports in-circuit reconfiguration (ICR)
• JTAG boundary-scan test circuitry
• PCI-compliant -2 speed grade
• 3.3-V or 5-V operation

– Full 3.3-V EPF8282AV
– 3.3-V or 5-V I/O for EPF8636A and larger devices

FLEX 8000A Architecture

IOE

IOE

1

8

IOE

IOE

1

8

IOE

IOE

1

8

IOE

IOE

1

8

IOE IOE IOE IOE

IOE IOE IOE IOE

LABLAB

LAB LAB

A1 A2

B1 B2

Logic Element

FLEX 8000A Logic Element

Carry
Chain

Look-Up
Table
(LUT)

Clear/
Preset
Logic

Cascade
Chain

D
PRn

CLRn

Q

Carry-In Cascade-In

Carry-Out Cascade-Out

DATA1
DATA2
DATA3
DATA4

LABCTRL1
LABCTRL2

LABCTRL3

LABCTRL4

LE Out

Clock Select

Programmable Register

Carry Chains
Carry-In

Carry-Out

LUTA1
B1

Carry Chain

Register

LUTA2
B2

Carry Chain

Register

LUTAn
Bn

Carry Chain

Register

S1

S2

Sn

LUT

Carry Chain

Register

LE1

LE2

LEn

LEn+1

Cascade Chains

LUTD[3..0]

LE1

LUTD[7..4]

LE2

LUT

LEn

AND Cascade Chain

LUTD[3..0]

LE1

LUTD[7..4]

LE2

LUT

LEn

OR Cascade Chain

FLEX 8000A Logic Array Block

LE 1

LE 2

LE 3

LE 4

LE 5

LE 6

LE 7

LE 8

2 168

8
4

4

4

4

4

4

4

4

4

4

8 2

4

24

LAB local
Interconnect
(32 channels)

LAB Control
Signals

Carry-In &
Cascade-In
from LAB
on left

Carry-Out &
Cascade-Out
to LAB on right

Column-to-Row
Interconnect

Column FastTrack
Interconnect

Row FastTrack Interconnect

FLEX 8000A FastTrack
Interconnect

Local FastTrack(32 channels)

LE

LAB

Row FastTrack
(168/216 channels)

Column FastTrack
(16 channels)

FLEX 8000A I/O Element

VCC

D

CLRn

Q

6
C

LR
0

C
LR

1/
O

E0
C

LK
0

C
LK

1/
O

E1
O

E2
O

E3
(O

E[
4.

.9
])

Programmable
Inversion

Slew-Rate
Control

(OE[4..9]) are for EPF81500A devices only

6

from Row or Column
Interconnect

to Row or Column
Interconnect

VCC

GND

FLEX 8000A Configuration

Configuration schemes & data source
• Refer to Altera’s Application Notes for details

– AN033: Configuring FLEX 8000 Devices
– AN038: Configuring Multiple FLEX 8000 Devices

AS

APU

APD

PS

PPS

PPA

(Active Serial)

(Active Parallel Up)

(Active Parallel Down)

(Passive Serial)

(Passive Parallel Synchronous)

(Passive Parallel Asynchronous)

Serial configuration EPROM

Parallel EPROM

Parallel EPROM

Serial data path (e.g. serial download cable)

Intelligent host

Intelligent host

Configuration Scheme Data Source

MAX 9000A
Devices

MAX 9000A KEY FEATURE
MAX 9000A main features…

• EEPROM-based devices based on Altera’s MAX architecture
• 320 ~ 560 macrocells
• 6,000 ~ 12,000 usable gates
• Configurable expander allowing up to 32 product terms per macrocell
• FastTrack continuous routing structure
• I /O registers with clock enable & output slew-rate controls on all I/O pins
• Programmable security bit
• 5-V ISP through built-in JTAG interface
• 3.3-V or 5-V I/O operation on all devices

MAX 9000A Family

Feature EPM9320A EPM9400 EPM9560A

Macrocells 320 400 560

Max. # FF 484 580 772

Packages

84 PLCC
208 RQFP
280 PGA
356 BGA

84 PLCC
208 RQFP
240 RQFP

208 RQFP
240 RQFP
304 RQFP
280 PGA
356 BGA

MAX 9000 Architecture

IOC

IOC

IOC

IOC

IOC

IOC

IOC

IOC

LABLAB

LAB LAB

A2A2

Macrocell

IOC IOC IOC IOC

IOC IOC IOC IOC

A2B2

A2A1

A2B1

Up to 10 IOCs
per half column

Up to 8 IOCs
per half row

MAX 9000A Macrocell

This path from P-Term Select
Matrix supports register
packing

LAB Local Array
Global
Clear

Global
Clocks

Shareable
Logic
Expander
s

Local Array
Feedback

To
FastTrack
Interconne
ct

2

Product
-Term
Select
Matrix

QD

EN
CLRN

Clear
Select

Clock/
Enable
Select

Parallel
Expande
rs from
other
macrocel
ls

16 shared expander
product terms

16 local
feedbacks

PRN

33 Row
FastTrack

Interconnect
inputs

MAX 9000A Logic Array Block

Each row signal has
two paths into the
LAB

Each
macrocell can
drive both the
Row and
Column
Interconnect
at the same
time

Macrocell 1
Macrocell 2
Macrocell 3

Macrocell 6
Macrocell 7
Macrocell 8
Macrocell 9
Macrocell 10
Macrocell 11
Macrocell 12
Macrocell 13
Macrocell 14

Macrocell 16

Macrocell 4
Macrocell 5

Macrocell 15

33

DIN1

DIN2

DIN3
DIN4

GCLK1

GCLK2

GCLR

GOE

16 16

4816

4816

16 16

LA
B

Lo
ca

l A
rra

y
Row FastTrack Interconnect

C
olum

n FastTrack Interconnect

To peripheral control bus and
other LABs in the device

Shared Logic Expanders

Local feedback

MAX 9000 FastTrack Interconnect

Row FastTrack
(96 channels)

Column FastTrack
(48 channels)

LAB Local Array (114 Channels)

LE

LAB

MAX 9000 I/O Cell

from Row or Column
FastTrack Interconnect

VCC

8

Slew-Rate
Control

13

to Row or Column
FastTrack Interconnect

D

ENA
CLRn

Q

4

VCC

GND

6

2

OE[7..0]

CLK[3..0]

ENA[5..0]

CLR[1..0]

Peripheral Control Bus[12..0] : OE/ENA[4..0],OE5,OE6,OE7/CLR1,CLR0/ENA5,CLK[3..0]

MAX 9000 Device Programming

Program the device with external hardware
• Use Altera hardware programmer

– MAX 9000 devices can be programmed on PCs with an Altera Logic
Programmer card, the Master Programming Unit (MPU), and the appropriate
device adapter

– You can test the programmed device in Altera’s software environment
• Use the universal programmer

– Many programming hardware manufacturers provide programming support for
Altera MAX 9000 devices

MAX 9000 ISP

programmer & adapter
CPLD

MAX 9000 ISP

MAX 9000 ISP
• MAX 9000 devices can be programmed through 4-pin JTAG interface

– By downloading the information via automatic test equipment, embedded
processors, or Altera BitBlaster/ByteBlaster download cable

• MAX 9000 internally generates 12.0-V programming voltage
• Refer to Altera’s Application Brief & Application Note for details

– AB141 : In-System Programmability in MAX 9000 Devices
– AN039: JTAG Boundary-Scan Testing in Altera Devices

download cable

CPLD

MAX Supports Jam STAPL for ISP

http://www.jamisp.com

JEDEC-Approved Open Standard
Small File Size
Faster Programming Times
Vendor-Independent
Platform-Independent
Supports Existing and Future Products

Jam Player

Main Program

Embedded Programming using Jam
Player

I/O Functions TCK
TMS
TDI

ParserParser

TDO

Message
s &
Export

Generating Programming Signals from the Jam File

ExtractExtract
DataData

CompareCompare
& Export& Export

JamJam

(Programming(Programming
Data &Data &

Algorithm)Algorithm)

MAX Family Slew Rate Control
For designs without the above elements (or during
prototype stages), the board may not be able to support
the fast switching outputs of Altera devices

• Faster switching outputs cause higher transient currents in outputs as they
discharge load capacitance

• These higher currents can cause ground bounce (ringing)

The magnitude of this ringing is V = L di/dt
• where L is the board inductance and di/dt is the rate of current
• For more information about ground bounce, see AN 75: High-Speed Board

Designs (Data Book)

L di/dt

Vth

Ground Bounce

Programmable Speed/ Power Control
MAX devices offer low-power OR high speed operation
through the Turbo Bit logic option
Power dissipation can be reduced by 50% or more
This is controllable for the entire device OR on a
macrocell by macrocell basis

• The user can have a section of the design operating in high performance
(Turbo Bit = on) and in the same device, other sections may be operating in
low power (Turbo Bit = off)

• MAX 7000 devices: macrocells running at low power (Turbo Bit = off) incur
a delay tLPA (8 ns for -5 speed grade) for the tLAD , tLAC , tIC , tACL tEN , tSEXP
parameters

• MAX 9000 devices: macrocells running at low power (Turbo Bit = off) incur
a delay tLPA for the LAB local array delay (tlocal)

FLEX 10K Devices

FLEX 10K Families

Typical
Gates

Features

Registers

Max.
User
I/O

10,000

EPF10K10

EPF10K10A

720

134

20,000

EFP10K20

1,344

189

30,000

EFP10K30

EPF10K30A

1,968

246

40,000

EFP10K40

2,576

189

50,000

EFP10K50
EPF10K50V

3,184

310

70,000

EFP10K70

4,096

358

100,000

EFP10K100

EPF10K100A

5,392

406

130,000

EPF10K130V

7,120

470

250,000

EPF10K250A

Logic
Elements

576 1,152 1,728 2,304 2,880 3,744 4,992 6,656 12,160

RAM Bits 6.144 12,288 12,288 16,384 20,480 18,432 24,576 32,768 40,960

12,624

470

FLEX 10K Features

FLEX 10K/A main features...
• SRAM-based devices based on Altera’s FLEX architecture
• Embedded programmable logic family

– Embedded array for implementing RAMs & specialized logic functions
– Logic array for general logic functions

• High density
– 10,000 ~ 100,000 typical gates (logic & RAMs)
– 720 ~ 5,392 registers
– 6,144 ~ 24,576 RAM bits

• Flexible interconnect
– FastTrack continuous routing structure
– Dedicated carry chain & cascade chain
– Up to 6 global clock & 4 global clear signals

FLEX 10K Features - (2)

FLEX 10K main features... (continued)
• Powerful I/O pins

– Individual tri-state control for each pin
– Programmable output slew-rate control
– Open-drain option on each I/O pin
– Peripheral register

• System-level features
– Supports in-circuit reconfiguration (ICR)
– JTAG boundary-scan test circuitry
– PCI-compliant -3 speed grade
– 3.3-V or 5-V I/O pins on devices in PGA, BGA & 208-pin QFP packages
– ClockLock & ClockBoost option(for EPF10K100GC503-3DX device only)

• Flexible package options
– Pin-compatibility with other FLEX 10K devices in the same packages

Dual-Port RAM
4-Kbit EAB with x16
Width
PCI-Compliant I/O

Embedded
Architecture Evolution

1.0-mm FineLine BGA™ Packages
Requires Half the Board Area
Minimizes Cost

Next-
Generation
Packaging 0.25-µm CMOS SRAM

Five-Layer Metal
2.5-V Core with MultiVolt™ I/O
5.0-V Tolerant Inputs

Advanced Process
Technology

DESIGNED FOR PCI
100-MHz SYSTEM SPEED
150-MHz FIFOs

DESIGNED FOR PCI
100-MHz SYSTEM SPEED
150-MHz FIFOs

BREAKTHROUGH
PERFORMANCE

BREAKTHROUGH
PERFORMANCE

Altera 10KE Device

Flex10KE Family Member

Features EPF10K30E EPF10K50E EPF10K100E EPF10K130E EPF10K200E

Typical
Gates 30,000 50,000 100,000 130,000 200,000

Logic
Elements 1,728 2,880 4,992 6,656 9,984

RAM Bits 24,576 40,960 49,152 65,536 98,304

Registers 1,968 3,184 5,392 7,120 10,448

Max. User I/O 246 310 406 470 470

FLEX 10K Architecture

IOE

IOE

1

8

IOE

IOE

1

8

IOE

IOE

1

8

IOE

IOE

1

8

IOE IOE IOE IOE

IOE IOE IOE IOE

LAB

IOE IOE

IOE IOE

IOE IOE

IOE IOE

Logic Element

EAB

EAB

Logic Array Logic Array
Embedded

Array

What is the EAB?

What is the EAB?
• Larger block of RAM embedded into the PLD
• Can be preloaded with a pattern
• EAB size is flexible - 256x8 / 512x4 / 1024x2 / 2048x1
• You can combine EABs to create larger blocks
• Using RAM does not impact logic capacity

EAB as logic
• EAB is preloadable at configuration time
• You can use EAB to create a large lookup table or ROM
• EAB is the same die size of 16 LEs, however, one EAB can perform complex

functions requiring more than 16 LEs
– Example: 4x4 Multiplier (40 LEs, 43MHz) vs. (1 EAB, 73MHz)

Out
Clock

In Clock

Write
Enable

Write
Pulse
Circui

t

RAM/RO
M

2,048 Bits

256 x
8

512 x
4
1,024 x
2
2,048 x
1

D

11, 10, 9, 8
Address

1, 2, 4, 8
Data In

D

D 1, 2, 4, 8

Data OutD

EAB contains
registers for
incoming and
outgoing
signals

FLEX 10K/V/A EAB

RAM/ROM
4,096 Bits

Clock 2
Clock 2 Enable

256x16
512x8

1024x4
2048x2

Data Out
D
ENAData In D

ENA

Write
Pulse
Circu

it

Write Enable D
ENA

Read Enable D
ENA

Write Address D
ENA

Read Address D
ENA

Clock 1
Clock 1 Enable

10KE EAB

EAB contains
registers for
incoming and
outgoing
signals

FLEX 10K Logic Element

Carry
Chain

Look-Up
Table
(LUT)

Clear/
Preset
Logic

Cascade
Chain

Carry-In Cascade-In

Carry-Out Cascade-Out

DATA1
DATA2
DATA3
DATA4

LABCTRL1
LABCTRL2

LABCTRL3

LABCTRL4

to FastTrack
Interconnect

Clock Select

D/T

ENA

PRn

CLRn

Q

to LAB Local
Interconnect

Programmable Register

Device-Wide Clear

FLEX 10K Register Packing

Carry
Chain

Look-Up
Table
(LUT)

Cascade
Chain

Carry-In Cascade-In

Carry-Out Cascade-Out

DATA1
DATA2
DATA3
DATA4

LABCTRL3

LABCTRL4

to FastTrack
Interconnect

Clock Select

D/T

ENA

PRn

CLRn

Q

to LAB Local
Interconnect

Programmable Register

Clear/
Preset
Logic

LABCTRL1
LABCTRL2

Device-Wide Clear

FLEX 10K Logic Array Block

LE 1

LE 2

LE 3

LE 4

LE 5

LE 6

LE 7

LE 8

2 8

16
6

4

4

4

4

4

4

4

4

4

8
2

4

22/26

LAB local
Interconnect
(30/34 channels)

LAB Control
Signals

Carry-In &
Cascade-In

Carry-Out &
Cascade-Out

Column-to-Row
Interconnect

Column FastTrack
Interconnect

Row FastTrack Interconnect

8

4

16

24

Dedicated Inputs & Global Signals

FLEX 10K FastTrack Interconnect

Local FastTrack(30/34 channels)

LE

LAB

Row FastTrack
(144/216/312 channels)

Column FastTrack
(24 channels)

FLEX 10K I/O Element

from One Row or
Column Channel

VCC

Open-Drain
Output

12

to Row or Column
Interconnect

D

ENA
CLRn

Q

VCC

GND

OE[7..0]

CLK[2..1]

ENA[5..0]

CLRn[1..0]

Peripheral Control Bus[11..0]

Slew-Rate
Control

Programmable
Inversion

from Row or Column
Interconnect

VCC

GND

VCC

CLK[3..2]

from One Row or
Column Channel

Device-Wide
Output Disable

2 Dedicated
Clock Inputs

2

ClockLock Feature

ClockLock: faster system performance
• ClockLock feature incorporates a phase-locked loop (PLL) with a balanced clock

tree to minimize on-device clock delay & skew

Clock

D Q

D Q

ClockLock

Clock
Delay

Clock at Pin ClockLock Clock Clock at Register

Clock at Pin

ClockLock Clock

Clock at Register
Effective clock delay is small.

ClockBoost Feature

ClockBoost: increased system bandwidth & reduced area
• ClockBoost feature provides clock multiplication, which increases clock frequencies

by as much as 4 times the incoming clock rate
• You can distribute a low-speed clock on the PCB with ClockBoost
• ClockBoost allows designers to implement time-domain multiplexed applications.

The same functionality is accomplished with fewer logic resources.

– Note:
(1) Up to now, only EPF10K100-3DX devices support ClockLock & ClockBoost features.
(2) All new FLEX 10KA devices will support ClockBoost option.

FLEX 10K Configuration

Configuration schemes & data source
• Refer to Altera’s Application Notes for details

– AN059: Configuring FLEX 10K Devices
– AN039: JTAG Boundary-Scan Testing in Altera Devices

PS

PPS

PPA

JTAG

(Passive Serial)

(Passive Parallel Synchronous)

(Passive Parallel Asynchronous)

Altera’s EPC1 configuration EPROM, BitBlaster
or ByteBlaster download cable, serial data source
Intelligent host, parallel data source

Intelligent host, parallel data source

JTAG controller

Configuration Scheme Data Source

Configuration Application Notes,
Data Sheets

Application Notes
• AN 33: Configuring FLEX 8000 Devices
• AN 38: Configuring Multiple FLEX 8000 Devices
• AN 87: Configuring FLEX 6000 Devices

Data Sheets
• BitBlaster Serial Download Cable
• ByteBlasterMV Parallel Port Download Cable
• Configuration Devices for FLEX Devices
• Altera Programming Hardware

Altera Architecture Evolution

Classic MAX 5000 MAX 7000/E/S

FLEX 10K/A
FLEX 8000A
FLEX 6000
MAX 9000/A

Global
Interconnect

PIA :
Programmable

Interconnect Array

Enhanced PIA FastTrack
Interconnect

FLEX 6000 Device Family
FLEX 6000 main features

• OptiFLEX™ Architecture
• Gate Count from 10,000 to 24,000 Gates
• 5.0 V, 0.5 m, TLM, SRAM Process

(FLEX6000A 3.3 V, 0.35 m)
• 125-MHz Performance (16-Bit Counter)
• PCI-Compliant
• Pin Migration
• One Output Enable per Pin
• MultiVolt™ I/O
• High-Pin-Count TQFP, PQFP & BGA Packages

Pricing vs. Gate Arrays
Competitive with Gate
Array Unit Cost
Benefits of
Programmable Logic

• Faster to Market
• Low Risk
• No NRE
• No Re-Spin Cost
• Short Lead Times
• Low Inventory Cost

FLEX 6000 Provides Low-Cost Flexibility
Source: Dataquest/Altera

Mid-1999 Price Projections

$0.00

$2.00

$4.00

$6.00

$8.00

$10.00

$12.00

50
K

u
Pr

ic
e

EPF6016
240 Pins

0.5-m Gate
Array

240 Pins

NRE

Appendix: FLEX 6000
Architecture

FastFLEX™ I/O

Interleaved LABs

FastTrack™ Interconnect

3.2 mil (81 µm)

Bond Pads

µPitch™ Technology
Row InterconnectRow Interconnect

Local
Interconnect

Column
Interconnect

FLEX 6000
Die

Local
Interconnect

Column
InterconnectRow InterconnectRow Interconnect

PinPin

PinPin

What is µPitch Technology?
OptiFLEX Leverages Most Advanced Bond Pad Pitch
in the PLD Industry

• FLEX 6000 81 mm
• FLEX 6000A 75 mm

Maximum Die Size Reduction for Lowest Possible Cost

Core Limited

FLEX 6000
µPitch

Core

Bond
Pads

Pad Limited

FLEX 6000 Family
FeatureFeature

Process Geometry

Supply Voltage

Gate Count

Logic Elements

User I/O Pins (Max.)

Package Options*

Availability

EPF6010AEPF6010A

0.5 µ

5.0 V

8,000 -
16,000

1,320

204

144-Pin
TQFP
208-Pin
PQFP
240-Pin
PQFP
256-Pin BGA

Now

EPF6016AEPF6016A

0.35 µ

3.3 V

8,000 -
16,000

1,320

171

100-Pin
BGA*

100-Pin
TQFP

144-Pin
TQFP

208-Pin
PQFP
256-Pin
BGA*

EPF6024AEPF6024A

0.35 µ

3.3 V

12,000 -
24,000

1,960

218

144–Pin
TQFP

208-Pin
PQFP
240-Pin
PQFP
256-Pin BGA
256-pin
BGA*

EPF6016EPF6016

0.35 µ

3.3 V

5,000 -
10,000

880

100

100-Pin
BGA*
100-Pin
TQFP
144-Pin
TQFP
256-Pin
BGA*

Look-Up
Table
(LUT)

Carry
Chain

Cascade
Chain

Carry-In Cascade-In

DATA
1DATA
2DATA
3DATA
4LAB

Clear/
Preset 1LAB

Clear/
Preset 2

Clock
Select

LAB
Clock 1LAB
Clock 2

Carry-Out Cascade-Out

Clear/
Preset
Logic

PRN

CLRN

LE OutD Q

Chip-
Wide
Clear

FLEX 6000 Logic Element

Low Power/
MultiVolt™ Design

Low-Power/MultiVolt Design
Providing 2.5-V Power Supply for FLEX 10KE
Interfacing with Multi-Voltage Systems

2.5-V Power Advantage
0.25-µm Process Reduces Power by 54%
Example

• 50-MHz Design Uses 821 mW in EPF10K30A Device
• Uses 379 mW in EPF10K30E Device

Benefits
• Smaller Power Supply
• Simpler Cooling System
• Less Heat Buildup

Designing for 2.5-V Power Supply

2.5-V Devices Becoming Common
• Memory, Microprocessors

What if FLEX 10KE Device Is Only 2.5-V Device?
• Generate 2.5-V Supply from 3.3-V or 5.0-V Supply

0%

20%

40%

60%

80%

100%

1992 1993 1994 1995 1996 1997 1998 1999 2000 2001
Source: Altera

5.0 V

3.3 V
2.5 V

1.8 V

% of
Design
Starts

Low-Voltage Systems
Become More Prevalent

Voltage Regulator Options
Use Voltage Regulator to Generate 2.5-V Supply

• Linear
• Switching

Selecting a Voltage Regulator
Example: EPF10K200E Design

Linear Regulators
Advantages

• Component Count
• Cost
• Board Area
• No EMI Radiation
• Tight Voltage Regulation

Disadvantages
• Efficiency
• Power Dissipation

Linear Regulator

IN OUT

ADJ

VIN 2.5 V

Linear Regulator

Switching Regulators
Advantages

• Efficiency
• Power Dissipation
• Wide Input-Voltage Range
• High-Current Capability

Disadvantages
• EMI
• More Complex
• Component Count
• Board Area
• Cost

Calculated IOUT = 6.3 A
Linear Solution (LT1580CT)

• Efficiency = 75%

Switching Solution (LTC1649)
• Efficiency ≥ 90 %

Design Requirement

VCCIO Supply Level
VCCINT Supply Level
fMAX

Output Pins
Utilization
Supply Voltages Available on the
Board

Value

3.3 V
2.5 V
100 MHz
350
100%
3.3 V, 5.0
V

EPF10K200E Design Example

Interfacing 2.5-V PLD to System
Most Systems Today Incorporate 5.0-V & 3.3-V Devices
2.5-V FLEX 10KE Device Must Interface to System
2.5-V I/O Standards Incompatible with LVTTL/LVCMOS

What’s The Solution?

5.0-V
Device

FLEX 10KE 3.3-V
Device

2.5-V
Device

FLEX 10KE & Multi-Voltage
Boards

FLEX 10KE Interfaces with Multiple Voltage Levels
• MultiVolt™ I/O Feature
• 2.5-V, 3.3-V, 5.0-V I/O
• 3.3-V PCI

GND

2.5
V

3.3-V Input

GND

3.3
V

FLEX
10KE
Device

Logic

3.3-V
Device

5.0-V
Device

2.5-V & 5.0-V Tolerant
Input Buffers

Min. VOH = VCC –
0.2

5.0-V Input

2.5-V Input

• 3.3-V Outputs Can Drive 3.3-V
or 5.0-V Devices

• Altera Min. VOH (VCC – 0.2 V)
Exceeds 5.0-V TTL or 3.3-V
CMOS/TTL Specifications

3.3-V I/O with 2.5-V Logic

GND

2.5
V

3.3-V Input

GND

2.5
V

FLEX 10KE
Device

Logic

2.5-V
Device

2.5-V Output Can
Drive 2.5-V Devices

2.5-V & 5.0-V Tolerant
Input Buffers

Min. VOH = 2.1 V

5.0-V Input

2.5-V Input

2.5-V I/O with 2.5-V Logic

Turn on MultiVolt™
I/O Setting when
VCCIO Is Not Equal
to VCCINT

Simulating Timing of MultiVolt I/O
Increasing VCCIO Reduces Output Delay
MAX+PLUS® II Accurately Models Timing Effect

FLEX 10KE MultiVolt I/O
Summary

Separate VCC Pins for Logic & I/O Pins
• Logic Driven by VCCINT
• I/O Pins Driven by VCCIO

Connect VCCINT to 2.5-V Supply
Connect VCCIO to 2.5-V or 3.3-V Supply

VCCINT

2.5 V

2.5 V

VCCIO

3.3 V

2.5 V

Drives Driven by

2.5 V 3.3 V 5.0 V 2.5 V 3.3 V 5.0 V

Ok

Ok
Ok Ok Ok Ok Ok

Ok Ok Ok

Device Technology VccINT VccIO Drives(TTL) Driven by

2.5 3.3 5 2.5 3.3 5
FLEX6000 0.5 5 5 Y Y Y

3.3 Y Y Y Y
FLEX6000A 0.35 3.3 3.3 Y Y Y Y Y

2.5 Y Y Y Y
FLEX8000A .6,.5 5 5 Y Y

.6,.5 5 5 Y Y Y
3.3 Y Y Y Y

EPF8282AV .6,.5 3.3 3.3 Y Y Y
FLEX10K 0.5 5 5 Y Y Y

3.3 Y Y Y Y Y
FLEX10A 0.35 3.3 3.3 Y Y Y Y Y

2.5 Y Y Y
EPF10KE 0.22 2.5 3.3 Y Y Y Y

2.5 Y Y

Altera’s Multivolt Offering

Y

Y

Y
Y

Notes :
Multi-Volt ; PCI ; Slew slow rate ; JTAG-BST ==> All

Devices
PLL = Phase Locked Loop (ClockBoost)
ISP = In System Programmability
ICR = In Circuit Reconfiguration
OE = Output Enable

3.3V ISP ICR EAB
Open
Drain GCLK

Dedicated
Input OE

FLEX10K(A) Y Y Y Y 2(+4) 4 ALL
FLEX8K Y Y (+4) 4 10
FLEX6K(A) Y Y (+4) 4 ALL
MAX9000 Y 2 8
MAX7000S Y Y Y 2 6

Device feature summary

Operate in a self-contained environment

MAX+PLUS II Can …(An
Introduction)

MAX+PLUS II Software Products
Fixed-Node Subscription Products

• Windows 95/98 and Windows NT Operating System, require hardware protection
key for node identification

•• FIXEDPCFIXEDPC full featured MAX+PLUS II software with VHDL/Verilog

Floating-Node Subscription Products
• Licensed Using Windows NT and UNIX Servers
•• FLOATPCFLOATPC for Windows 95/98 and Windows NT clients only.
•• FLOATNETFLOATNET for Windows 95/98/NT and UNIX clients.

MAX+PLUS II BASELINEBASELINE Software
• entry-level version of the MAX+PLUS II software which is free of charge.

MAX+plus II
Supported Platforms*

• PC
• UNIX Platform

– Sun SPARCstation
– HP 9000 Series 700/800 workstation
– IBM RISC System /6000 workstation

*Please read the READ.ME file with every release of MAX+plus II

Network licensing supported on both PC and Unix

Design Flow & Altera Tools
FPGA/CPLD Design Flow
• Design Ideas
• Detailed Design
• Functional Simulation
• Synthesis & Implementation
• Timing Simulation
• Device Programming

Altera MAX+PLUS II Development Software
• Design Entry
• Project Processing
• Project Verification
• Device Programming

FPGA/CPLD Design Flow

Detailed
Design

Detailed
Design

Design
Ideas

Design
Ideas

Device
Programming

Device
Programming

Timing
Simulation

Timing
Simulation

Implementation
(P&R)

Implementation
(P&R)

Functional
Simulation

Functional
Simulation

tpd=22.1ns
fmax=47.1MHz

FPGA
CPLD

Design Ideas

What are the main design considerations?
• Design feasibility?
• Design spec?
• Cost?
• FPGA/CPLD or ASIC?
• Which FPGA/CPLD vendor?
• Which device family?
• Development time?

Detailed Design

Choose the design entry method
• Schematic

– Gate level design
– Intuitive & easy to debug

• HDL (Hardware Description Language), e.g. Verilog & VHDL
– Descriptive & portable
– Easy to modify

• Mixed HDL & schematic

Manage the design hierarchy
• Design partitioning

– Chip partitioning
– Logic partitioning

• Use vendor-supplied libraries or parameterized libraries to reduce design time
• Create & manage user-created libraries (circuits)

Functional Simulation

Preparation for simulation
• Generate simulation patterns

– Waveform entry
– HDL testbench

• Generate simulation netlist

Functional simulation
• To verify the functionality of your design only

Simulation results
• Waveform display
• Text output

Challenge
• Sufficient & efficient test patterns

Design Implementation

Implementation flow
• Netlist merging, flattening, data base building
• Design rule checking
• Logic optimization
• Block mapping & placement
• Net routing
• Configuration bitstream generation

Implementation results
• Design error or warnings
• Device utilization
• Timing reports

Challenge
• How to reach high performance & high utilization implementation?

FPGA
CPLD

a
b

z

01011...

Timing Analysis & Simulation

Timing analysis
• Timing analysis is static, i.e., independent of input & output patterns
• To examine the timing constraints
• To show the detailed timing paths
• Can find the critical path

Timing simulation
• To verify both the functionality & timing of the design

tpd=22.1ns
fmax=47.1MHz

Device Programming

Choose the appropriate configuration scheme
• SRAM-based FPGA/CPLD devices

– Downloading the bitstream via a download cable
– Programming onto a non-volatile memory device & attaching it on the circuit

board
• OTP, EPROM, EEPROM or Flash-based FPGA/CPLD devices

– Using hardware programmer
– ISP

Finish the board design
Program the device
Challenge
• Board design
• System considerations

FPGA
CPLD

Altera Design Flow

Operate seamlessly with other EDA tools

MAX+PLUS II

Verilog HDL &
VHDL Design Files

Standard EDA
Simulator

Verilog HDL
VHDL
EDIF
SDF

Standard EDA
HDL Files

Standard EDA
Schematics

EDIF

FLEX
MAX

Classic

MAX+PLUS II
Altera’s Fully-Integrated Development System

Project Verification

MAX+PLUS II
Waveform Editor

MAX+PLUS II
Simulator

MAX+PLUS II
Timing Analyzer

MAX+PLUS II
Simulator

Design Entry

MAX+PLUS II
Text Editor

MAX+PLUS II
Floorplan Editor

MAX+PLUS II
Graphic Editor

MAX+PLUS II
Symbol Editor

MAX+PLUS II
Waveform Editor

Device Programming

MAX+PLUS II
Programmer

Project Processing
MAX+PLUS II Compiler

CNF
Extractor

Database
Builder

Logic
Synthesizer

SNF
Extractor Partitioner Fitter

Netlist
Writer

Design
Doctor Assembler

MAX+PLUS II
Message Processor

&
Hierarchy Display

Design Entry

MAX+PLUS II design entry tools
• Graphic Editor & Symbol Editor

– For schematic designs
• Text Editor

– For AHDL and VHDL designs
– However, VHDL is not covered by this course

• Waveform Editor
• Floorplan Editor
• Hierarchy Display

MAX+PLUS II Design Entry

Project Processing

MAX+PLUS II tools for project processing (implementation)
• MAX+PLUS II Compiler
• MAX+PLUS II Floorplan Editor

– For pin, logic cell location assignments
• Message Processor

– For error detection & location

MAX+PLUS II Project Processing

Project Verification

MAX+PLUS II tools for project verification
• MAX+PLUS II Simulator
• MAX+PLUS II Waveform Editor
• MAX+PLUS II Timing Analyzer

MAX+PLUS II Project
Verification

Device Programming

MAX+PLUS tool for device programming
• MAX+PLUS II Programmer

MAX+PLUS II Features

MAX+PLUS II, Altera’s fully integrated design environment
• Schematic, text (AHDL), waveform design entry & hierarchy display
• Floorplan editing
• DRC, logic synthesis & fitting, timing-driven compilation
• Multi-device partitioning
• Automatic error location
• Functional simulation, timing simulation, and multi-device simulation
• Timing analysis
• Programming file generation & device programming
• EDA interface : industry-standard library support, EDA design entry & output formats

(EDIF, Verilog & VHDL)
• On-line help

Getting Started
System Requirements
Installing MAX+PLUS II
Starting MAX+PLUS II
Entering Authorization Codes
MAX+PLUS II Manager Window
MAX+PLUS II Project
Hierarchy Display

System Requirements

The minimum system requirements
• Pentium- or 486-based PC
• Microsoft Windows NT 3.51 or 4.0, Windows 95, or Windows version 3.1x with

Win32s support
• Microsoft Windows-compatible graphics card & monitor
• Microsoft Window-compatible 2- or 3-button mouse
• CD-ROM drive
• Parallel port

Memory & disk space requirement
• Go to the read.me file for specific information about disk space & memory

requirements in the current version of MAX+PLUS II
– At least 64MB physical RAM is recommended
– Memory requirement depends on the selected device and the design

complexity

Installing MAX+PLUS II

To install MAX+PLUS II from CD-ROM
• Insert MAX+PLUS II CD-ROM into the CD-ROM drive. The installation program is

located at:
<CD-ROM drive>:\pc\maxplus2\install.exe

• Follow the directions provided on-screen
• Window 3.1x users:

– Installation program will install Win32s files if they are not already present

Additional Windows NT installation steps
• You must install Sentinel driver after running the install program

– To detect the key-pro
• (Optional) ByteBlaster and Altera LP6 Logic Programmer Card drivers

– Required only for ByteBlaster or LP6 users

Starting MAX+PLUS II

To start MAX+PLUS II...
• Double click on the MAX+PLUS II icon

Entering the Authorization Code

When starting MAX+PLUS II for the first time
Options -> license setup
• You must enter an authorization code obtained from CIC
• You can use all most MAX+PLUS II features after enter the correct auth-code

MAX+PLUS II Operating Environment
MAX+PLUS II Manager

• Start-up window
Toolbar provides shortcuts for
commonly used functions

Status bar provides a brief description of
selected menu command and toolbar
button

MAX+PLUS II menu
gives you access to all
MAX+PLUS II
functions

Help menu
gives you
access to
on-line
help

Project Directory
and
Project name

MAX+PLUS II Menu

To invoke MAX+PLUS II applications

File Menu

Assign Menu

To specify project assignments & options

Options Menu

To setup user preferences

Help Menu

MAX+PLUS II Help Contents

On-line help
• All of the information necessary to

enter, compile, and verify a design
and to program an Altera device is
available in MAX+PLUS II Help

• Help also provides introductions to
all MAX+PLUS II applications,
design guidelines, pin and logic
cell numbers for each Altera
device package

MAX+PLUS II
Design Methodology

System Production

Design Specification

Design Compilation

Functional Verification

Timing Verification

Device Programming

In-System Verification

Design Modification

Design Entry

Command-
Line
Mode

Design Entry Process
Project Setup/Management
Multiple design entry methods

• MAX+PLUS II
– Graphic design entry
– Text design entry

• AHDL, VHDL, Verilog

– Waveform design entry
• 3rd party EDA tools

– EDIF, OrCAD schematics
• Add flexibility and optimization to the Design entry process by:

– mixing and matching design files
– using LPM and Megafunctions to accelerate design entry

Project Setup/Management
What is a Project?

• A design file
• A project is:

– checked for design entry errors
– compiled
– simulated (functional or with timing)
– analyzed for timing
– used to generate programming file

Projects can be archived
To specify a project

Menu: File -> Project -> Name... (To specify an existing or new design file)
Menu: File -> Project -> Set Project to Current File (To specify the current design file)

Set Up A New Project
Every design must have a project name
Project name must match design file name

Project
Name

Project Directory

Design Entry Files

MAX+PLUS II
Graphic Editor

MAX+PLUS II
Text Editor

MAX+PLUS II
Symbol Editor

MAX+PLUS II
Floorplan Editor

Top-
Level
File

.gdf

Top-level design files
can be .gdf, .tdf, .vhd,
.v, .sch, or .edf

.wdf .vhd .sch .edf

Graphic
File

Waveform
File

Text
File

Graphic
File

Text
File

.v

Text
File

Imported from
other EDA tools

OrCAD

Synopsys,
Synplicity,
Mentor Graphics,
etc...

Generated within
MAX+PLUS II

VHDL

Waveform

Schematic
.tdf

Text
File

AHDL

Verilog

Hierarchy Display

MAX+PLUS II Hierarchy Display
• The Hierarchy Display shows a hierarchy tree that represents the current hierarchy

and allows you to open and close files in the hierarchy
• The hierarchy tree branches show a filename and file icon for each subdesign in the

hierarchy, and it also shows ancillary files associated with the current hierarchy.
• To get a better perspective on your project, you can zoom in and out to different

display scales or switch between vertical or horizontal orientation
• To invoke Hierarchy Display

Menu: MAX+PLUS II -> Hierarchy Display

Hierarchy Display Window

File Icons

Graphic Design Entry
MAX+PLUS II Graphic Editor & Symbol Editor
Basic Knowledge
• Naming Rules
• User Libraries & System Libraries

Creating Graphic Design Files
Examples

Add resource libraries to search list as needed
Draw schematic

• Enter design components (symbols)
• Connect components with net (wires)
• Add labels to key nets signal

– Must label all busses, primary inputs,outputs,bidir
Note: MAX+PLUS II DOES NOT AUTO SAVE

Save and check the design
• The file extension is .gdf
• Correct any errors with the aid of Message Processor

Create symbol or include file for sub-design

Graphic Design Entry Process

Resource Libraries
prim (Altera primitives)

• Basic logic building blocks

mf (Macrofunction)
• 7400 family logic

mega_lpm (LPMs)
• Library of Parameterized Modules (LPMs)
• Megafunctions are high level function module

– busmux, ram elements, fifo’s, etc...

Value added Libraries
MegaCores IP models you can try before purchase (download
from www.altera.com)

– UARTs, FFT, PCI etc…

AMPP (Altera Megafunction Partners Program)
• Partners providing PCI, DSP, µControllers, etc…

Note: For the latest information on MegaCores or Megafunctions,
refer to Altera’s web site www.altera.com

Add User Resource Libraries
Access user created libraries

• Add user library directories
• Set priorities

Select the library
directory
then click on Add

Library search
priority can be
changed.

The Project
directory has the
highest priority,
followed by the
User Libraries, then
by the Altera
Libraries

Open New File & Enter Symbols
Open a new .gdf file in Graphic Editor
Double click in Graphic file to enter symbol

Type in symbol
name or click on
symbol name

Symbol libraries

Symbols in the
selected library

Open new
file

Double click in
Graphic Editor

Graphic Editor Window

Selection tool
Text tool
Orthogonal line tool
Diagonal line tool
Arc tool
Circle tool

Symbol

Bus

Node

INPUT symbols

Zoom
functions

Rubberbanding
functions

OUTPUT symbol

Making Connections
Wire

• Single bit line

Bus
• Multi-bit line

Signal name
• Matching name
• Attached to wire

Bus - Bus signal names
required for LPM module
buses

Wire

Wire to Bus
Connection

Drawing
tool
shortcuts

Graphic Editor Options
Font, Text Size

• Text Control

Line Style
• Select Wire or Bus

Display Assignments
• Turns display on or off

Guideline Control
• Controls grid lines

Rubber-banding
• Wires move with symbols

Generate Symbols and Include Files
Create symbol for higher-level schematic capture
Create include file for AHDL or Verilog function prototype

Create
symbol

Create include file

Symbol Editor
Symbols can be modified with the Symbol Editor

Pin/Node Naming

Pin/node name
• A pin name is enclosed within a pin primitive symbol; a node name is a text block

that is associated with a node line (wire).

Pin/node naming rules
• It can contain up to 32 name characters
• It may not contain blank spaces. Leading or trailing spaces are ignored.
• It must be unique, i.e., no two pins may have the same name in the same design file

at the same hierarchy level.
• Any node that is connected to a bus line must be named
• Node names that are bits of a dual-range bus must be expressed in the format

<name>[<width>][<size>] or <name><width>_<size>. If you name a single node in
this format, it will be interpreted as part of a dual-range bus if another single-range
or dual-range bus in the file uses the same <name>.

Bus Naming

Single-range bus name
• Example: D[3..0] = D3,D2,D1,D0
• The bus identifier can contain up to 32 name characters; the bus width can contain

a maximum of 256 bits. The bus width is a string that defines the number of bits
(i.e., nodes) in a bus and uses the form [<MSB>..<LSB>]. The name of a single
node within the bus can be specified with the identifier followed by the bit number,
either with or without brackets.

Dual-range bus name
• Example: D[3..0][1..0] = D3_1,D3_0,D2_1,D2_0,D1_1,D1_0
• A dual-range bus name uses two bracket-enclosed ranges []: the bus width and the

bus size. Bus widths and sizes can together define a maximum of 256 bits.
Sequential bus name
• Example: A[31..0],B,C[3..0]
• A sequential bus name consists of a series of node names and/or bus names,

separated by commas (,). The first node or bus bit in the series is the MSB, the last
node in the series is the LSB.

Using Buffer Primitives - (1)

Buffer primitives
• Including: CARRY, CASCADE, EXP, GLOBAL, LCELL, OPNDRN, SOFT, TRI
• All buffer primitives except TRI and OPNDRN allow you to control the logic

synthesis process. In most circumstances, you do not need to use these buffers.

GLOBAL primitive
• To indicate that a signal must use a global clock, clear, preset or output enable

signal, instead of signals generated with internal logic or driven by ordinary I/O pins
• A NOT gate may be inserted between the input pin and GLOBAL

TRI primitive
• A active-high tri-state buffer

OPNDRN primitive
• An open-drain buffer, equivalent to a TRI primitive whose output enable input is fed

by an signal, but whose primary input is fed by a GND primitive
• Only supported for the FLEX 10K and MAX 7000S device families

Using Buffer Primitives - (2)

LCELL primitive
• The LCELL buffer allocates a logic cell for the project/ An LCELL buffer always

consumes one logic cell. It’s not removed from a project during logic synthesis.
• Although LCELL primitives can be used to create an intentional delay or

asynchronous pulse
– However, race conditions can occur and create an unreliable circuit because

the delay of these elements varies with temperature, power supply voltage and
device fabrication process

SOFT primitive
• The SOFT buffer specifies that a logic cell may be needed in the project
• During project processing, MAX+PLUS II Compiler examines the logic feeding the

primitive and determines whether a logic cell is needed. If it’s needed, the SOFT
buffer is converted into an LCELL; if not, the SOFT buffer is removed

More on LPM Libraries
Library of Parameterized Modules

• Standard Library of basic and functional elements
• Based on EDIF standard

Advantage of LPMs
• Portability of design
• Architecture independence

MAX+PLUS II and LPMs
• LPM can be used in graphical design and HDL designs
• LPM can be customized via the Megawizard feature

Standard LPM without Megawizard

Using MegaWizard Plug-In Manager
Click on the MegaWizard Plug-In Manager Button

Click on the
MegaWizard
Plug-In Manager

Double click in
Graphic Editor

Accessing the MegaWizard

Select MegaWizard Plug-In Manager

New vs Existing Megafunction
Choose between a new custom megafunction variation or an
existing megafunction variation

New Custom
Megafunction

Edit Existing
Custom
Megafunction

Available Megafunctions & Output
File

Select a function
from the available
megafunction Select a type

of
output file

Select a
directory
and a output
file
name

Customizing the Megafunction

Files generated by the MegaWizard

Design file implemented
in the language you selected
(.tdf, .vhd, or .v)

INC an AHDL include file

CMP a VHDL component
declaration file

SYM a Graphic design
symbol file

Entering Customized Megafunction

Customized megafunction appears
the same way as other symbols in
the Enter symbol window

Double click in
Graphic Editor

Make Changes to Customized
Megafunction

After the changes, MegaWizard will
over-write the source file (tdf, vhd, v),
inc file and cmp file for you.

Double Click symbol
will bring you back
to the MegaWizard
Plug-in Manager

Remember to update the symbol
in your graphic editor

How to Use System Functions?

To get help...
• You can find the detailed

description for each
primitive, macrofunction,
and megafunction in
MAX+PLUS II on-line help

Entering Symbols
Enter a symbol

Menu: Symbol -> Enter Symbol...
(or by double clicking on the empty workspace)

Move/cut/copy/paste symbols
• You can move, cut, copy or paste symbols in the

same way as you did in another Windows-based
software

– Move: click & drag (mouse)
– Cut: Ctrl-X
– Copy: Ctrl-C or Ctrl-Click & drag
– Paste: Ctrl-V
– Undo: Ctrl-Z

Commands regarding the symbol
• Just click the right mouse button on the symbol

Entering I/O Symbol

I/O symbols
• Input pin/port: enter a INPUT symbol
• Output pin/port: enter a OUTPUT symbol
• Bidirectional pin/port: enter a BIDIR symbol

Name the I/O pins/ports
• Double click on the “PIN_NAME” field of the I/O symbol

Pin default value
• The values assigned to unconnected INPUT and BIDIR primitives when the symbol

that represents the current GDF file is used in a higher-level design file
• Default is VCC
• Double click on the

“VCC” field to set
the default value

Save & Check the Design

Save & check the design file with .gdf extension
Correct any errors with the aid of Message Processor

Design File
Name

Project
Directory

Message Processor

Lists all Info, Warning and Error messages
– Info messages are general information
– Warning messages are possible problems
– Error messages indicate Compiler is unable to complete

compilation process
Provides help on the messages
Locates source of message in design file

Messages
Go to next or
previous
message

Information about
message

Locate source
in design file

Example: Multiplier

Design a multiplier with LPM_MULT
• The easiest way to create a multiplier is to use the LPM_MULT function

– Can be unsigned or signed
– Can be pipelined
– Also can create a MAC(Multiplier-Accumulator) circuit

Example: Multiplexer

Design a multiplexer with LPM_MUX
• Use WIRE primitive to rename

a bus or node
• LPM_MUX data input is a dual

range bus

Example: RAM

Design RAM circuit with LPM
• Use LPM_RAM_IO to design RAM with a single input & output port
• Use LPM_RAM_DQ to design RAM with separate input & output ports

Example: Sequencer

Design a sequencer with LPM_COUNTER & LPM_ROM
• ROM data is specified in a Memory Initialization File (.mif) or a Intel-Hex File (.hex)
• This example only sequences through 19 states so the modulus of lpm_counter is

set to 19. It uses a small section of an EAB (19 out of 256-address locations)

Example: Bidirectional Pin

Use TRI & BIDIR pin symbol
• If the TRI symbol feeds to a output or bidirectional pin, it will be implemented as tri-

state buffer in the I/O cell

Example: Tri-State Buses - (1)

Tri-state emulation
• Altera devices do not have internal tri-state buses
• MAX+PLUS II can emulate tri-state buses by using multiplexers and by routing the

bidirectional line outside of the device and then back in through another pin

MAX+PLUS II will automatically convert it into a multiplexer.
If the tri-state buffers feed a pin, a tri-state buffer will be available
after the multiplexer.

Example: Tri-State Buses - (2)

Tri-state buses for bidirectional communication
• When tri-state buses are used to multiplex signals, MAX+PLUS II will convert the

logic to a combinatorial multiplexer
• When tri-state buses are used for bidirectional communication, you can rout this

bidirectional line outside of the device, which uses the tri-states present at the I/O
pins, or you can convert the tri-state bus into a multiplexer

Example: Tri-State Buses - (3)

Rout this bidirectional line outside of the device

Tri-state emulation

Set up a new project
• Same as Graphic Design Entry

Enter text description
• AHDL
• VHDL
• Verilog

Save & check the design
• Similar to Graphic Design Entry
• The file extension is .tdf, .vhd, .v

Text Design Entry

AHDL
Altera Hardware Description Language
High-level hardware behavior description language
Uses Boolean equations, arithmetic operators, truth tables,
conditional statements, etc.
Especially well-suited for large or complex state machines
Text Editor has AHDL Template and Syntax Color
Refer to the Appendix for more info on AHDL

VHDL
VHSIC Hardware Description Language
1987 and 1993 IEEE 1074 standard
High-level hardware behavior description language
Especially well-suited for large or complex designs
Text Editor has VHDL Template and Syntax Color

Verilog
Hardware Description Language
1993 Verilog IEEE 1364 standard
High-level hardware behavior description language
Especially well-suited for large or complex designs
Text Editor has Verilog Template and Syntax Color

AHDL Design Entry
What’s AHDL
AHDL Structure
AHDL Syntax
MAX+PLUS II Text Editor
Creating AHDL design files
Examples

What’s AHDL?

AHDL: Altera Hardware Description Language
• To create MAX+PLUS II text design file (*.tdf)
• High-level, modular hardware description language
• Completely integrated into the MAX+PLUS II system
• Especially well suited for...

– Complex combinational logic
– Group operations
– State machines
– Truth tables
– Parameterized logic

• Easy to learn & debug under MAX+PLUS II system

AHDL Example - (1)
SUBDESIGN 7segment
(i[3..0] : INPUT;

a, b, c, d, e, f, g : OUTPUT;
)
% -a- 0 1 2 3 %
% f| |b 4 5 6 7 %
% -g- 8 9 A b %
% e| |c C d E F %
% -d- %
BEGIN

TABLE
i[3..0] => a, b, c, d, e, f, g;
H"0" => 1, 1, 1, 1, 1, 1, 0;
H"1" => 0, 1, 1, 0, 0, 0, 0;
H"2" => 1, 1, 0, 1, 1, 0, 1;
H"3" => 1, 1, 1, 1, 0, 0, 1;
H"4" => 0, 1, 1, 0, 0, 1, 1;
H"5" => 1, 0, 1, 1, 0, 1, 1;
H"6" => 1, 0, 1, 1, 1, 1, 1;
H"7" => 1, 1, 1, 0, 0, 0, 0;
H"8" => 1, 1, 1, 1, 1, 1, 1;
H"9" => 1, 1, 1, 1, 0, 1, 1;
H"A" => 1, 1, 1, 0, 1, 1, 1;
H"B" => 0, 0, 1, 1, 1, 1, 1;
H"C" => 1, 0, 0, 1, 1, 1, 0;
H"D" => 0, 1, 1, 1, 1, 0, 1;
H"E" => 1, 0, 0, 1, 1, 1, 1;
H"F" => 1, 0, 0, 0, 1, 1, 1;

END TABLE;
END;

AHDL Example - (2)
SUBDESIGN stepper
(clk, reset : INPUT;

ccw, cw : INPUT;
phase[3..0] : OUTPUT;)

VARIABLE
ss: MACHINE OF BITS (phase[3..0])

WITH STATES (s0 = B"0001",
s1 = B"0010",
s2 = B"0100",
s3 = B"1000");

BEGIN
ss.clk = clk;
ss.reset = reset;

TABLE
ss, ccw, cw, => ss;
s0, 1, x => s3;
s0, x, 1 => s1;
s1, 1, x => s0;
s1, x, 1 => s2;
s2, 1, x => s1;
s2, x, 1 => s3;
s3, 1, x => s2;
s3, x, 1 => s0;

END TABLE;
END;

AHDL Structure - (1)

Title statement (optional)
• Comments for the report file generated by MAX+PLUS II Compiler

Include statement (optional)
• To specify an include file

Constant statement (optional)
• To specify a symbolic name that can be substituted for a constant

Define statement (optional)
• To define an evaluated function, which is a mathematical function that returns a

value that is based on optional arguments

Parameters statement (optional)
• To declare one or more parameters that control the implementation of a

parameterized megafunction or macrofunction

AHDL Structure - (2)

Function prototype statement (optional)
• To declare the ports of a logic function and the order in which those ports must be

declared in an in-line reference
• In parameterized functions, it also declares the parameters of the function

Options statement (optional)
• To set the default bit-ordering for the file

Assert statement (optional)
• To allow you to test the validity of an arbitrary expression

Subdesign section (required)
• To declare the input, output, and bidirectional ports of the design file

AHDL Structure - (3)

Variable statement (optional)
• To declare variables that represent and hold internal information

– Instance declaration
– Node declaration
– Register declaration
– State machine declaration
– Machine alias declaration
– If-Generate statement

AHDL Structure - (4)

Logic section (required)
• To define the logical operations of the file

– Defaults statement
– Assert statement
– Boolean equations
– Boolean control equations
– Case statement
– If-Generate statement
– If-Then statement
– Truth table statement
– In-line logic function reference

AHDL Basic Elements - (1)

Numbers in AHDL
• Default is to use decimal numbers
• Binary number syntax: B"<series of 0's, 1's, X's>" (where X = "don't care")
• Octal number syntax: O"<series of digits 0 to 7>" or Q"<series of digits 0 to 7>"
• Hex number syntax: H"<series of digits 0 to F>" or X"<series of digits 0 to F>"

Group
• Sequential group: (a, b, c)
• Single-range group: a[4..1] = (a4, a3, a2, a1)
• Dual-range group: d[2..0][1..0] = (d2_1, d2_0, d1_1, d1_0, d0_1, d0_0)
• Entire range group: a[], d[][]

AHDL Basic Elements - (2)

Arithmetic/Boolean operators & comparators
• +, -, ^(exponent), MOD, DIV, *, LOG2
• !(not), &(and), !&(nand), #(or), !#(nor), $(xor), !$(xnor)
• ==, !=, >, >=, <, <=
• ? (ternary operator, e.g, (a<b) ? 3 : 4)

AHDL Basic Elements - (3)

Primitives
• I/O primitives (ports)

– INPUT, OUTPUT, BIDIR
• Logic primitives

– AND, NAND, OR, NOR, XNOR, XOR, NOT
• Buffer primitives

– CARRY, CASCADE, EXP, GLOBAL, LCELL, OPNDRN, TRI
• Flip-flop & latch primitives

– LATCH, DFF, DFFE, JKFF, JKFFE, SRFF, SRFFE, TFF, TFFE
• VCC & GND primitives

AHDL Basic Elements - (4)

Ports
• Ports of the current file

– port types: INPUT, OUTPUT, BIDIR, MACHINE INPUT, MACHINE OUTPUT
• Ports of instances:

– Commonly used primitive ports names:
.clk = clock input; .ena = latch/clock enable input;
.reset = reset input to a state machine (active-high)
.clrn = clear input (active-low); .prn = preset input (active-low);
.d, .j, .k, .s, .r, .t = data input of D-, JK-, SR, and T-type flip-flop;
.q = output of a flip-flop or latch

Megafunctions/LPMs
Old-style macrofunctions
Parameters

AHDL Syntax - (1)

Title statement
• Documentary comments for the report file generated by the Compiler
• Example:

TITLE "Display Controller";

AHDL Syntax - (2)

Parameters statement
• To declare one or more parameters that control the implementation of a

parameterized megafunction of macrofunction
• Example:

PARAMETERS
(

FILENAME = "myfile.mif",
WIDTH,
AD_WIDTH = 8,
NUMWORDS = 2^AD_WIDTH

);

AHDL Syntax - (3)

Include statement
• To import text from an include file (*.inc) into the current file
• Include files contains function prototype, define, parameters, or constant statements
• Compiler will search directories for include files in the following order:

– Project directory
– User libraries
– Megafunctions/LPMs: \maxplus2\max2lib\mega_lpm
– Macrofunctions: \maxplus2\max2inc

• Example:

INCLUDE "8fadd.inc";

** The content of “8fadd.inc” file is:
FUNCTION 8fadd (cin, a[8..1], b[8..1]) RETURNS (cout, sum[8..1]);

AHDL Syntax - (4)

Constant statement
• To substitute a meaningful symbolic name for a number or an arithmetic expression
• Example:

CONSTANT UPPER_LIMIT = 130;
CONSTANT BAR = 1 + 2 DIV 3 + LOG2(256);

AHDL Syntax - (5)

Define statement
• To define an evaluated function, which is mathematical function that returns a value

that is based on optional arguments
• Example:

DEFINE MAX(a,b) = (a > b) ? a : b;

SUBDESIGN
(

dataa[MAX(WIDTH,0)..0]: INPUT;
datab[MAX(WIDTH,0)..0]: OUTPUT;

)
BEGIN

datab[]=dataa[];
END;

AHDL Syntax - (6)

Function prototype statement
• To provide a shorthand description of a logic function, listing its name and ports
• Example:

% unparameterized function example %
FUNCTION compare (a[3..0], b[3..0])

RETURNS (less, equal, greater);

% parameterized function example %
FUNCTION lpm_add_sub (cin, dataa[LPM_WIDTH-1..0],

datab[LPM_WIDTH-1..0], add_sub)
WITH (LPM_WIDTH, LPM_REPRESENTATION, LPM_DIRECTION,

ADDERTYPE, ONE_INPUT_IS_CONSTANT)
RETURNS (result[LPM_WIDTH-1..0], cout, overflow);

AHDL Syntax - (7)

Options statement
• To specify whether the lowest numbered bit of a group will be the MSB, LSB or

either, depending on its location
• Example:

OPTIONS BIT0 = MSB;

AHDL Syntax - (8)

Assert statement
• To test the validity of any arbitrary expression that uses parameters, numbers,

evaluated functions, or the used or unused status of a port
• Severity level: ERROR, WARNING or INFO
• Example:

ASSERT (WIDTH > 0)
REPORT "Width (%) must be a positive integer" WIDTH
SEVERITY ERROR
HELP_ID INTVALUE; -- for internal Altera use only

AHDL Syntax - (9)

Subdesign section
• To declare the input, output, and bidirectional ports of the TDF
• The port type may be INPUT, OUTPUT, BIDIR, MACHINE INPUT, or MACHINE
OUTPUT

– MACHINE INPUT & MACHINE OUTPUT keywords are used to import and
export state machines between TDFs and other design files. However, they
cannot be used in a top-level TDF.

• Example:

SUBDESIGN top
(

foo, bar, clk1, clk2 : INPUT = VCC;
a0, a1, a2, a3, a4 : OUTPUT;
b[7..0] : BIDIR;

)

AHDL Syntax - (10)

Variable section
• To declare and/or generate any variables used in the logic section
• Example:

VARIABLE
a, b, c : NODE;
temp : halfadd;
ts_node : TRI_STATE_NODE;

IF DEVICE_FAMILY == "FLEX8000" GENERATE
8kadder : flex_adder;
d,e : NODE;

ELSE GENERATE
7kadder : pterm_adder;
f, g : NODE;

END GENERATE;

AHDL Syntax - (11)

Variable section - node declaration
• AHDL supports two types of nodes: NODE & TRI_STATE_NODE
• Example:

SUBDESIGN node_ex
(a, oe : INPUT;

out : OUTPUT;
c : BIDIR;

)
VARIABLE

b : NODE;
t : TRI_STATE_NODE;

BEGIN
b = a;
out = b; % therefore out = a %
t = TRI(a, oe);
t = c; % t is bus of c and tri_stated a %

END;

AHDL Syntax - (12)

Variable section - instance declaration
• Each instance of a particular logic function can be declared as a variable
• Example:

FUNCTION compare (a[3..0], b[3..0])
RETURNS (less, equal, greater);

FUNCTION lpm_add_sub (cin, dataa[LPM_WIDTH-1..0],
datab[LPM_WIDTH-1..0], add_sub)

WITH (LPM_WIDTH, LPM_REPRESENTATION, LPM_DIRECTION,
ADDERTYPE, ONE_INPUT_IS_CONSTANT)

RETURNS (result[LPM_WIDTH-1..0], cout, overflow);

VARIABLE
comp : compare;
adder : lpm_add_sub with (LPM_WIDTH = 8)

comp will have the following ports:
comp.a[], comp.b[], comp.less, comp.equal, comp.greater

adder will have the following ports:
adder.dataa[], adder.datab[], adder.result[]

AHDL Syntax - (13)

Variable section - register declaration
• You can declare registers including D, T, JK, SR flip-flops & latches

– DFF, DFFE, TFF, TFFE, JKFF, JKFFE, SRFF, SRFFE, LATCH
• Example:

VARIABLE
ff : TFF;
a, b : DFF;

ff is a T flip-flop and have the following ports:
ff.t, ff.clk, ff.clrn, ff.prn, ff.q

Since all primitives have only one output, you can use the name of an
instance of a primitive without appending a port name. For example,
“a = b” is equivalent to “a.d = b.q”

AHDL Syntax - (14)

Variable section - state machine declaration
• To create a state machine by declaring its name, states, and, optionally its bits
• Example:

VARIABLE
ss : MACHINE OF BITS (q1, q2, q3)
WITH STATES
(s1 = B"000",
s2 = B"010",
s3 = B"111"

);

Reset state for the state machine

AHDL Syntax - (15)

Variable section - machine alias declaration
• To rename a state machine with a temporary name
• Example:

FUNCTION ss_def (clock, reset, count)
RETURNS (MACHINE ss_out);

VARIABLE
ss : MACHINE;

BEGIN
ss = ss_def (sys_clk, reset, !hold);
IF ss == s0 THEN

:
ELSIF ss == s1 THEN

:
END;

ss_out is a state machine output

AHDL Syntax - (16)

Logic section
• To specify the logical operations of the TDF
• The BEGIN and END keywords enclose the logic section

Boolean equations
• To represent the connection of nodes and the dataflow of inputs and outputs
• Example:

a[] = ((c[] & -B"001101") + e[6..1]) # (p, q, r, s, t, v);
chip_enable = (address[15..0] == H"0370");

Boolean control equations
• Set up the state machine clock, reset, and clock enable signals
• Example:

ss.clk = clk1;
ss.reset = a & b;
ss.ena = clk1ena;

AHDL Syntax - (17)

Case statement
• Example:

CASE f[].q IS
WHEN H"00" =>
addr[] = 0;
s = a & b;

WHEN H"01" =>
count[].d = count[].q + 1;

WHEN H"02", H"03", H"04" =>
f[3..0].d = addr[4..1];

WHEN OTHERS =>
f[].d = f[].q;

END CASE;
To define the default behavior

AHDL Syntax - (18)

Defaults statement
• To specify default values for variables used in truth table, if-then and case

statements
• Example:

BEGIN
DEFAULTS
a = VCC;

END DEFAULTS;

IF y & z THEN
a = GND; % a is active low %

END IF;
END;

Only one Defaults statement is allowed in the Logic Section, and it must
be the first statement after the BEGIN keyword.
Defaults statement can't be used to set a default value of X (don't care)
to a variable.

Active-low variables that are assigned more than once should be
given a default value of VCC

AHDL Syntax - (19)

If-Then statement
• Example:

IF a[] == b[] THEN
c[8..1] = H "77";
addr[3..1] = f[3..1].q;
f[].d = addr[] + 1;

ELSIF g3 $ g4 THEN
f[].d = addr[];

ELSE
d = VCC;

END IF;

AHDL Syntax - (20)

If-Generate statement
• To list a series of behavioral statements that are activated after the positive

evaluation of an arithmetic expression
– Can be used in the logic section or in the variable section
– If-Then statement is evaluated in hardware, whereas If-Generate statement is

evaluated when the design is compiled
• The predefined parameter and evaluated function

– DEVICE_FAMILY: to test the current device family for the project
– USED: to test whether an optional port has been used in the current instance.

• Example:

IF DEVICE_FAMILY == "FLEX8K" GENERATE
c[] = 8kadder(a[], b[], cin);

ELSE GENERATE
c[] = otheradder(a[], b[], cin);

END GENERATE;

AHDL Syntax - (21)

For-Generate statement
• Example:

CONSTANT NUM_OF_ADDERS = 8;
SUBDESIGN 4gentst
(a[NUM_OF_ADDERS..1], b[NUM_OF_ADDERS..1], cin : INPUT;

c[NUM_OF_ADDERS..1], cout : OUTPUT;
)
VARIABLE

carry_out[(NUM_OF_ADDERS+1)..1] : NODE;
BEGIN

carry_out[1] = cin;
FOR i IN 1 TO NUM_OF_ADDERS GENERATE
c[i] = a[i] $ b[i] $ carry_out[i];
carry_out[i+1] = a[i] & b[i] # carry_out[i] & (a[i] $ b[i]);

END GENERATE;
cout = carry_out[NUM_OF_ADDERS+1];

END;

AHDL Syntax - (22)

In-line logic function reference
• A Boolean equation that implements a logic function
• Example:

FUNCTION compare (a[3..0], b[3..0])
RETURNS (less, equal, greater);

FUNCTION lpm_add_sub (cin, dataa[LPM_WIDTH-1..0],
datab[LPM_WIDTH-1..0], add_sub)

WITH (LPM_WIDTH, LPM_REPRESENTATION)
RETURNS (result[LPM_WIDTH-1..0], cout, overflow);

(cw, , ccw) = compare(position[], target[]);

sum[] = lpm_add_sub (.datab[] = b[], .dataa[] = a[])
WITH (LPM_WIDTH = 8)
RETURNS (.result[]);

Positional port association

Named port association

AHDL Syntax - (23)

Truth table statement
• To specify combinational logic or state machine behavior
• Use defaults statement to assign output values in cases when the actual inputs do

not match the input values of the table
• When using X (don't care) characters to specify a bit pattern, you must ensure that

the pattern cannot assume the value of another bit pattern in the truth table. AHDL
assumes that only one condition in a truth table is true at a time.

• Example:

TABLE
a0, f[4..1].q => f[4..1].d, control;

0, B"0000" => B"0001", 1;
0, B"0100" => B"0010", 0;
1, B"0XXX" => B"0100", 0;
X, B"1111" => B"0101", 1;

END TABLE;

AHDL Details

To know more about AHDL
• Refer to Altera’s AHDL manual
• Search relative topics in MAX+PLUS II on-line help

More AHDL examples
• Find AHDL examples under \max2work\ahdl directory

To make writing AHDL code easy
• Use MAX+PLUS II Text Editor to edit your TDFs
• Using LPM

MAX+PLUS II Text Editor

Features of MAX+PLUS II Text Editor
• AHDL templates & examples
• AHDL context-sensitive help
• Syntax coloring
• Error location
• Resource & device assignments

AHDL Templates

AHDL templates make design easier
• You can insert AHDL template into your TDF, then replace placeholder variables in

the templates with your own identifiers and expressions
Menu: Templates -> AHDL Template...

Inserting AHDL Template

Using Syntax Coloring

Syntax Coloring command
• To improve TDF readability & accuracy

Menu: Options -> Syntax Coloring

To customize the color palette
Menu: Options -> Color Palette...

• The AHDL-relative options:
– Comments
– Illegal Characters
– Megafunctions/Macrofunctions
– Reserved Identifiers
– Reserved Keywords
– Strings
– Text

Text Editor with Syntax Coloring

Creating Text Design Files

Open a new design file
Menu: File -> New... -> Text Editor file (.tdf)

Save as a TDF file
Menu: File -> Save As...

Set project to the current TDF file
Menu: File -> Project... -> Set Project to Current File

Edit the TDF
• Turn on syntax coloring option
• Use AHDL Template & on-line help if necessary
• Follow the AHDL style guide mentioned in MAX+PLUS II Help

Save the file & check for basic errors
Menu: File -> Project -> Project Save & Check

Example: Decoder

Design a decoder with...
• If-Then statements
• Case statements
• Table statements
• LPM function: LPM_DECODE

SUBDESIGN decoder
(

code[1..0] : INPUT;
out[3..0] : OUTPUT;

)

BEGIN
CASE code[] IS

WHEN 0 => out[] = B"0001";
WHEN 1 => out[] = B"0010";
WHEN 2 => out[] = B"0100";
WHEN 3 => out[] = B"1000";

END CASE;
END;

SUBDESIGN priority
(

low, middle, high : INPUT;
highest_level[1..0] : OUTPUT;

)
BEGIN

IF high THEN
highest_level[] = 3;

ELSIF middle THEN
highest_level[] = 2;

ELSIF low THEN
highest_level[] = 1;

ELSE
highest_level[] = 0;

END IF;
END;

Example: Counter

Create a counter with DFF/DFFE or LPM_COUNTER
SUBDESIGN ahdlcnt
(

clk, load, ena, clr, d[15..0] : INPUT;
q[15..0] : OUTPUT;

)
VARIABLE

count[15..0] : DFF;
BEGIN

count[].clk = clk;
count[].clrn = !clr;

IF load THEN
count[].d = d[];

ELSIF ena THEN
count[].d = count[].q + 1;

ELSE
count[].d = count[].q;
END IF;

q[] = count[];
END;

INCLUDE "lpm_counter.inc"
SUBDESIGN lpm_cnt
(

clk, load, ena, clr, d[15..0] : INPUT;
q[15..0] : OUTPUT;

)
VARIABLE

my_cntr: lpm_counter WITH (LPM_WIDTH=16);
BEGIN

my_cntr.clock = clk;
my_cntr.aload = load;
my_cntr.cnt_en = ena;
my_cntr.aclr = clr;
my_cntr.data[] = d[];
q[] = my_cntr.q[];

END;

Example: Multiplier

Design a multiplier with LPM_MULT
CONSTANT WIDTH = 4;
INCLUDE "lpm_mult.inc";

SUBDESIGN tmul3t
(
a[WIDTH-1..0] : INPUT;
b[WIDTH-1..0] : INPUT;
out[2*WIDTH-1..0] : OUTPUT;
)

VARIABLE
mult : lpm_mult WITH (LPM_REPRESENTATION="SIGNED",

LPM_WIDTHA=WIDTH, LPM_WIDTHB=WIDTH,
LPM_WIDTHS=WIDTH, LPM_WIDTHP=WIDTH*2);

BEGIN
mult.dataa[] = a[];
mult.datab[] = b[];
out[] = mult.result[];

END;

Example: Multiplexer

Design a multiplexer with LPM_MUX
FUNCTION lpm_mux (data[LPM_SIZE-1..0][LPM_WIDTH-1..0], sel[LPM_WIDTHS-1..0])

WITH (LPM_WIDTH, LPM_SIZE, LPM_WIDTHS, CASCADE_CHAIN)
RETURNS (result[LPM_WIDTH-1..0]);

SUBDESIGN mux
(

a[3..0], b[3..0], c[3..0], d[3..0] : INPUT;
select[1..0] : INPUT;
result[3..0] : OUTPUT;

)

BEGIN
result[3..0] = lpm_mux (a[3..0], b[3..0], c[3..0], d[3..0], select[1..0])

WITH (LPM_WIDTH=4, LPM_SIZE=4, LPM_WIDTHS=2);
END;

Example: RAM

Design RAM circuit with LPM
INCLUDE "lpm_ram_dq.inc";

SUBDESIGN ram_dq
(

clk : INPUT;
we : INPUT;
ram_data[31..0] : INPUT;
ram_add[7..0] : INPUT;
data_out[31..0] : OUTPUT;

)

BEGIN

data_out[31..0] = lpm_ram_dq (ram_data[31..0], ram_add[7..0], we, clk, clk)
WITH (LPM_WIDTH=32, LPM_WIDTHAD=8);

END;

Example: Tri-State Buses

Design tri-state buses with TRI
SUBDESIGN tribus
(

ina[7..0], inb[7..0], inc[7..0], oe_a, oe_b, oe_c, clock : INPUT;
out[7..0] : OUTPUT;

)

VARIABLE
flip[7..0] : DFF;
tri_a[7..0], tri_b[7..0], tri_c[7..0] : TRI;
mid[7..0] : TRI_STATE_NODE;

BEGIN
-- Declare the data inputs to the tri-state buses

tri_a[] = ina[]; tri_b[] = inb[]; tri_c[] = inc[];
-- Declare the output enable inputs to the tri-state buses

tri_a[].oe = oe_a; tri_b[].oe = oe_b; tri_c[].oe = oe_c;
-- Connect the outputs of the tri-state buses together

mid[] = tri_a[]; mid[] = tri_b[]; mid[] = tri_c[];
-- Feed the output pins

flip[].d = mid[]; flip[].clk = clock; out[] = flip[].q;
END;

Example: Moore State Machine

Moore state
machine

• The outputs of a state
machine depend only
the the state

SUBDESIGN moore1
(

clk : INPUT;
reset : INPUT;
y : INPUT;
z : OUTPUT;

)
VARIABLE
ss: MACHINE OF BITS (z)

WITH STATES (s0 = 0, s1 = 1, s2 = 1, s3 = 0);
% current_state =

current_output%
BEGIN

ss.clk = clk;
ss.reset = reset;
TABLE

ss, y => ss;
s0, 0 => s0;
s0, 1 => S2;
s1, 0 => s0;
s1, 1 => s2;
s2, 0 => s2;
s2, 1 => s3;
s3, 0 => s3;
s3, 1 => s1;

END TABLE;
END;

Example: Mealy State Machine

Mealy state machine
• A state machine with

asynchronous output(s)

SUBDESIGN mealy
(

clk : INPUT;
reset : INPUT;
y : INPUT;
z : OUTPUT;

)
VARIABLE

ss: MACHINE WITH STATES (s0, s1, s2, s3);
BEGIN

ss.clk = clk;
ss.reset = reset;
TABLE

ss, y => z, ss;
s0, 0 => 0, s0;
s0, 1 => 1, s1;
s1, 0 => 1, s1;
s1, 1 => 0, s2;
s2, 0 => 0, s2;
s2, 1 => 1, s3;
s3, 0 => 0, s3;
s3, 1 => 1, s0;

END TABLE;
END;

Waveform Design Entry
MAX+PLUS II Waveform Editor
Creating Waveform Files
Examples
Design Entry Summary

MAX+PLUS II Waveform Editor

Features of MAX+PLUS II Waveform Editor
• To serve 2 roles:

– As a design entry tool: to create Altera waveform design files (*.wdf)
– As a tool for entering test vectors & viewing simulation results: simulation

channel files (*.scf)

For design entry
• Waveform design entry is best suited for circuits with well-defined sequential inputs

& outputs, such as state machines, counters, and registers

For design verification
• Waveform Editor is a simulation pattern editor/viewer
• Waveform Editor is fully integrated with MAX+PLUS II Simulator & Programmer to

provide full project verification flow

MAX+PLUS II
Waveform Design Environment

Pop-up menu
(clicking mouse B2/B3)

Zoom
functions

Waveform
values
overwriting
functions

File Menu

Node Menu

To enter the node or group information

Edit Menu

To edit the waveform value

Creating a New Waveform File

Open a new design file
Menu: File -> New... -> Waveform Editor file (.wdf or .scf)

Save as a WDF / SCF file
Menu: File -> Save As... ->

Set project to current file (for WDF file only)
Menu: File -> Project... -> Set Project to Current File

Set the grid size & show the grid
Menu: Options -> Grid Size...
Menu: Options -> Show Grid

• Setting appropriate grid size is helpful for waveform repeating & overwriting count
value operations

Specify the end time
Menu: File -> End Time...

Regarding the grid size & interval...
• In a WDF, the grid size & interval are arbitrary. The time scale indicates only a

sequential order of operations, not a specific response time.
• In a SCF, the grid size & interval are important for timing simulation. MAX+PLUS II

Simulator reflects the real-world timing according to your SCF and the specific
device. Setup & Hold time violation will occur if you enter impractical simulation
patterns.

Setting Waveform Editor Options

Entering Nodes

Insert the node or group for WDF file
Menu: Node -> Insert Node... (or double click on the node name field)

• You can specify the node name, I/O type, node type & default value
– Registered & machine node type must specify a clock signal and optionally

specify reset or preset signal (active high)
– You can specify machine values with the state names instead of logic values

Entering Nodes from SNF

Enter the node or group for SCF file
Menu: Node -> Enter Nodes from SNF...

• SNF: Simulation Netlist File
– Generated by MAX+PLUS II Compiler (discussed later)
– After compilation, you can list the nodes and help you to create the SCF file

Editing Waveforms - (1)

Edit the waveforms
• First select the interval to edit

– Sometimes you may specify new grid size for easy selection
• To create clock-like waveform

Menu: Edit -> Overwrite -> Clock...
• To edit the state machine node values

Menu: Edit -> Overwrite State Name...

Editing Waveforms - (2)

Edit the waveforms
• To edit the node values

Menu: Edit -> Overwrite -> 0 / 1 / X / Z / Invert / Count Value / Group Value
• To stretch / compress the selected signal

Menu: Edit -> Grow or Shrink...

• To align node values or state names to grid if necessary
Menu: Edit -> Align to Grid

Saving & Checking the Design

Save the WDF/SCF file
Menu: File -> Save

Check basic errors for the WDF file
Menu: File -> Project -> Project Save & Check

Waveform File Formats

MAX+PLUS II file formats
• Binary format: WDF & SCF files
• ASCII format (Altera vector file format): TBL & VEC files

– TBL: an ASCII-format table file that records all logic level transitions for nodes
and groups in the current SCF or WDF

– VEC: an ASCII text file used as the input for simulation, functional testing, or
waveform design entry

– Refer to MAX+PLUS II Help for detailed information about vector file format

To create a table file (*.tbl)
Menu: File -> Create Table File...

To import a vector file (*.vec)
Menu: File -> Import Vector File...

WDF Design Guidelines

When design a WDF file...
• WDFs cannot be at intermediate levels of a hierarchy
• Include all possible combinations of input values
• Align all logic level and state name transition
• Assume a 0ns propagation delay for all logic
• Assume a 0.1ns setup time and 0ns hold time for state machine node
• For clarity, Altera recommends that you draw inputs that affect registers only on

falling clock edges
• If a function is cyclical, show the last set of conditions looping back to the first by

repeating the first time-slice at the end of the cycle

Example: Decoder

When design a decoder...
• Use “Overwrite Count Value” to help create all possible combinations of decoder

input values, and then manually edit the output waveforms

Example: Counter

When design a counter
• Use “Overwrite Count Value” command to create a regular counter waveform

Example: State Machine

When design a state machine
• Use “Overwrite State Name” to help create a state machine output

– You can specify machine values with the state names instead of logic values
• Make sure all possible combinations of inputs and states are included

Design
Files

Support
Files

Design Entry Summary

MAX+PLUS II
Graphic Editor

MAX+PLUS II
Text Editor

MAX+PLUS II
Symbol Editor

MAX+PLUS II
Waveform Editor

.gdf

.tdf

.vhd

.sch

.edf

MAX+PLUS II

3rd Party EDA
Tools

.sym

.inc

User
.wdf

.lmf

.v

Design Implementation
MAX+PLUS II Compiler
Preparing for Compilation
Compiling the Project
Analyzing the Compilation Results
Floorplan Editor
Appendix: Interfacing with 3rd-Party Tools

System Production

Design Specification

Design Entry

Simulation

Device Programming

In-System Verification

Design Modification

Compilation

Timing Analysis

Command-
Line
Mode

MAX+PLUS II Compiler Window

Compiler
modules

Message
Processor

To invoke MAX+PLUS II Compiler
Menu: MAX+PLUS II -> Compiler

Output File

MAX+PLUS II Compiler
Process all design files associated with the project

• Files can be created with MAX+PLUS II or 3rd party EDA Tools

Checks for syntax errors and common design pitfalls
Performs logic synthesis and place & route

• According to assignments in .acf file

Generates files for simulation and timing analysis
• Files can be used by MAX+PLUS II or 3rd party EDA Tools

Generates files for programming targeted devices

Compiler Input and Output Files

MAX+PLUS II
Design Files

(.gdf, .tdf, .vhd, .v,
.wdf)

MAX+PLUS II Compiler
Compiler Netlist

Extractor (includes
all netlist readers

Functional, Timing,
or Linked SNF

Extractor
EDIF, VHDL &
Verilog Netlist

Writers

Database
Builder

Partitioner

Design
Doctor

Logic
Synthesizer

Fitter

Assembler

3rd Party EDA
Design Files

(.edf, .sch)
Functional SNF

Files
(.snf)

Timing SNF
Files
(.snf)

Programming
Files

(.pof, .sof, .jed)
3rd Party EDA

Simulation/Timing Files
(.edo, vo, vho, sdo)

Mapping Files
(.lmf)

Assignments
(.acf)

Compiler Input Files
Design files

• MAX+PLUS II
– Graphics file (.gdf), AHDL file (.tdf), VHDL file (.vhd), Verilog (.v), Wavefrom

file (.wdf)
• 3rd Party EDA Tools

– EDIF file (.edf)
• Select Vendor in EDIF Netlist Reader Settings
• Library Mapping File (.lmf) required for vendors not listed

– OrCAD file (.sch)

Assignment and Configuration File (.acf)
• Controls the Compiler’s synthesis and place & route operations
• Automatically generated when user enter assignments
• Automatically updated when user changes assignments or back-annotates

project

Compiler Output Files
Design verification files

• MAX+PLUS II
– Simulation Netlist File (.snf)

• 3rd Party EDA Tools
– VHDL netlist file (.vho)
– EDIF netlist file (.edo)
– Verilog netlist file (.vo)
– Standard Delay Format SDF file (.sdo)

Programming files
• Programmer Object file (.pof)
• SRAM Object file (.sof)
• JEDEC file (.jed)

For EDIF Netlist Input

For EDIF input, the
EDIF Reader Settings
need to be selected

VHDL Netlist Reader Settings

Select VHDL version
and Library names

For EDIF Netlist Output

Need to select vendor in
EDIF Netlist Writer settings

For EDIF output, the
EDIF Netlist Writer needs
to be selected.

Verilog Netlist Writer & Writer
Settings

Select Verilog Netlist
Writer Settings
to adjust Verilog outputs

Select Verilog Netlist
Writer to output Verilog
file for Verilog simulator

VHDL Netlist Writer & Writer
Settings

Select VHDL Netlist
Writer Settings
to adjust the VHDL output

Select VHDL Netlist
Writer to output VHDL
file for VHDL simulator

Imported Design
Top-level Design: can be read in directly

– EDIF Netlist files
– OrCAD schematics

• Refer to MAX+PLUS II Read Me file for the version of 3rd Parties tools it
interface with

Lower-level modules
• EDIF, OrCAD schematics files

– Create symbols or files to instantiate component
• Other proprietary files

– JEDEC, ABEL, PALASM
– Conversion utilities exist in Altera ftp site

Compiler Modules - (1)

Compiler Netlist Extractor
• The Compiler module that converts each design file in a project (or each cell of an

EDIF input file) into a separate binary CNF (Compiler Netlist File)
• The Compiler Netlist Extractor also creates a single HIF that documents the

hierarchical connections between design files
• This module contains a built-in EDIF Netlist Reader, VHDL Netlist Reader, and XNF

Netlist Reader for use with MAX+PLUS II.
• During netlist extraction, this module checks each design file for problems such as

duplicate node names, missing inputs and outputs, and outputs that are tied
together.

• If the project has been compiled before, the Compiler Netlist Extractor creates new
CNFs and a HIF only for those files that have changed since the last compilation,
unless Total Recompile (File menu) is turned on

Compiler Modules - (2)

Database Builder
• The Compiler module that builds a single, fully flattened project database that

integrates all the design files in a project hierarchy
• As it creates the database, the Database Builder examines the logical completeness

and consistency of the project, and checks for boundary connectivity and syntactical
errors (e.g., a node without a source or destination)

Compiler Modules - (3)

Logic Synthesizer
• The Compiler module that synthesizes the logic in a project's design files.
• The Logic Synthesizer calculates Boolean equations for each input to a primitive

and minimizes the logic according to your specifications
• The Logic Synthesizer also synthesizes equations for flip-flops to implement state

registers of state machines
• As part of the logic minimization and optimization process, logic and nodes in the

project may be changed or removed
• Throughout logic synthesis, the Logic Synthesizer detects and reports errors such

as illegal combinatorial feedback and tri-state buffer outputs wired together ("wired
ORs")

Design Doctor Utility
• The Compiler utility that checks each design file in a project for poor design

practices that may cause reliability problems when the project is implemented in one
or more devices

Compiler Modules - (4)

Partitioner
• The Compiler module that partitions the logic in a project among multiple devices

from the same device family
• Partitioning occurs if you have created two or more chips in the project's design files

or if the project cannot fit into a single device
• This module splits the database updated by the Logic Synthesizer into different

parts that correspond to each device
• A project is partitioned along logic cell boundaries, with a minimum number of pins

used for inter-device communication

Compiler Modules - (5)

Fitter
• The Compiler module that fits the logic of a project into one or more devices
• Using the database updated by the Partitioner, the Fitter matches the logic

requirements of the project with the available resources of one or more devices
• It assigns each logic function to the best logic cell location and selects appropriate

interconnection paths and pin assignments
• The Fitter module generates a “fit file”(*.fit) that documents pin, buried logic cell,

chip, clique, and device assignments made by the Fitter module in the last
successful compilation

• Regardless of whether a fit is achieved, the Fitter generates a report file(*.rpt) that
shows how the project is implemented in one or more devices

Compiler Modules - (6)

SNF(Simulation Netlist File) Extractor
• Functional SNF Extractor

– The Compiler module that creates a functional SNF containing the logic
information required for functional simulation.

– Since the functional SNF is created before logic synthesis, partitioning, and
fitting are performed, it includes all nodes in the original design files for the
project

• Timing SNF Extractor
– The Compiler module that creates a timing SNF containing the logic and timing

information required for timing simulation, delay prediction, and timing analysis
– The timing SNF describes a project as a whole. Neither timing simulation nor

functional testing is available for individual devices in a multi-device project.
• Linked SNF Extractor

– The Compiler module that creates a linked SNF containing timing and/or
functional information for several projects

– A linked SNF of a super-project combines the timing and/or functional
information for each project, allowing you to perform a board-level simulation

Compiler Modules - (7)

Netlist Writer
• EDIF Netlist Writer

– The Compiler module that creates one or more EDIF output files(*.edo). It can
also generate one or more optional SDF output files(*.sdo).

– EDIF output Files contain the logic and timing information for the optimized
project and can be used with industry-standard simulators. An EDIF Output
File is generated for each device in a project.

• Verilog Netlist Writer
– The Compiler module that creates one or more Verilog output files(*.vo). It can

also generate one or more optional SDF output files.
• VHDL Netlist Writer

– The Compiler module that creates one or more VHDL output files(*.vho). It can
also generate one or more optional VITAL-compliant SDF output files.

Compiler Modules - (8)

Assembler
• The Compiler module that creates one or more programming files for programming

or configuring the device(s) for a project
• The assembler generates one or more device programming files

– POFs and JEDEC Files are always generated
– SOFs, Hex Files, and TTFs are also generated if the project uses FLEX

devices
– You can generate additional device programming files for use in other

programming environment. For example, you can create SBF and RBF to
configure FLEX devices.

– File format:
• POF: Programming Object File
• SOF: SRAM Object File
• TTF: Tabular Text File
• HEX: Intel-format Hexadecimal File
• SBF: Serial Bitstream File
• RBF: Raw Binary File

Select functional compilation or timing compilation
Assignments
Run the compilation
Consult the report file (.rpt) or the Floorplan Editor for
device utilization summaries and synthesis and place &
route results

Compiling a Project

The Functional Compilation
Process

Compiler Netlist Extractor builds the .cnf netlist
file and checks for syntax errors
Database Builder constructs the node name
database
Functional SNF Extractor build .snf file for
functional simulation

The Timing Compilation Process

Compiler Netlist Extractor and Database Builder
build netlist database and check for syntax errors
Logic Synthesizer performs logic
synthesis/minimization
Design Doctor checks for design violations
Partitioner and Fitter executes place & route
algorithm and builds the .rpt file on device
implementation
Timing SNF Extractor builds .snf file for simulation
and timing analysis
Assembler builds files for programming the device

Compiler Processing Options
Functional

• Compilation generates file for Functional Simulation
– Functional SNF file (.snf)

Timing
• Compilation generates user selectable files for

– Timing Simulation and Timing Analysis
• Timing SNF file (.snf)

– 3rd party EDA Simulation
• Verilog file (.vo)
• VHDL file (.vho)
• SDF file (.sdo)

– Device Programming
• Altera Programmer file (e.g. .pof, .sof)

Compilation Process Settings - (6)

Customize the report file settings

Menu: Processing -> Report File Settings...

Compilation Process Settings - (7)

“Smart Recompile” & “Total Recompile”
• The first time the Compiler processes a project, all design files of that project are

compiled
• Use “Smart Recompile” feature to create an expanded project database that helps

to accelerate subsequent compilations
– Allow you to change physical device resource assignments without rebuilding

the database & resynthesizing the project
• Use “Total Recompile” feature to force the Compile to regenerate database &

resynthesize the project
Menu: Processing -> Smart Recompile
Menu: Processing -> Total Recompile

Assign Menu
• You can specifies optional sections to be included in the report file(*.rpt), which is

created by the Fitter when a project is compiled
– All sections are included by default

Assignments Control
Device FIT

• MAX+PLUS II default settings are designed for maximum fitfit-ability
• Almost all assignments affect fitting

Device Utilization
• Circuit design
• Logic assignment

Performance
• Circuit design
• Logic assignments
• Logic placements

Assignments
Most common Assignments

• Device assignments
• Pin assignments

Other assignments
• Logic options
• architectural features
• Location assignments

– Lab, Row, Column, LC
• Clique
• timing assignments
• Device Option assignments

Making Device Assignment
Select Device

• Specific device
• Auto

– MAX+PLUS II chooses smallest and fastest device the design fits into

Select
device
Family

Auto
device
selection

Specific
device selection

Making Pin Assignment
Highlight node in graphic or text source file

• Assign > Pin/Location/Chip

Floorplan Editor can also be used (discussed later)

Highlight node and
choose Assign
Pin/Location/Chip

Node name automatically
entered in the Node Name
field

Choose pin or LCELL location
then click on Add to enter
assignment
(Note: You must choose a
specific device prior to this
step)

Logic Synthesis Style
The most common way toward adjusting these
assignments is to apply the predefined Logic Synthesis
Style toward the different portion of your design:

• Normal
• Fast
• WYSIWYG

Each of the Logic Synthesis Styles is a collection of both
logic synthesis options and individual architectural
settings

Global Project Logic Synthesis
Style

Choose Assign then Global Project Logic Synthesis
Select from predefined synthesis style

• NORMAL (default), FAST or WYSIWYG

Or create user tailored settings

Assign Logic Synthesis Style
Locally

Select Logic
Synthesis Style

Individual Logic Option Assignment
Provides controls to turn individual architectural features
and synthesis algorithms on or off

Gray or Default (default): set by higher level or global setting
Check or Auto: enable feature
Blank or Ignore: disable feature

Location assignments

Select Pin/Location/Chip ...

Select Location

Clique Assignments

Select Clique

Enter clique name

Click Add to add
assignment, click OK to
close window

Clique assignments tell the compiler to
place the nodes with the same clique assignment
close together inside the device.

Timing Requirements Assignments
FLEX devices only

Specifies desired speed performance
Use after performing timing analysis to improve specific
timing path
Localized control

• Highlight node, pin or logic block
• Choose Assign then Timing Requirements
• Assign desired tpd, tco, tsu, fmax values

Global control
• Choose Assign then Global Project Timing Requirements
• Assign desired tpd, tco, tsu, fmax values

Assignment Recommendation
Start with device and pin assignments. Beware, your pin
assignments might affect performance. Ideally, you should let
MAX+PLUS II choose the pin assignments. If you have pin
assignments, you might want to compile your design once without
your pin assignments to see if they affect your performance.

Compile design. Check device utilization and performance.

If you need to adjust device utilization or performance try the other
assignments. Try the synthesis style assignments first.

Assignments can only be made to “hard” nodes or lower-level
designs that contains hard nodes. Hard nodes are objects that
translate directly into objects in silicon e.g. Flip-flops, LCELLs and
I/O pins

Ignore or Clear Assignments

Ignore Project
Assignments

Clear Project
Assignments

Global Project Device Options Window contains options
related to the operation of the device rather than options
that affect the logic synthesis and place & route of the
design.
For example,
FLEX Device

• configuration scheme
• multi-volt I/O

MAX Device
• Enable JTAG support
• security bit

Global Project Device Options

More Compiler Processing Options
Design Doctor

• Checks for common design errors

Fitter Settings
• Set place & route options

Smart Recompile
• Faster compilation time

Total Recompile
• Recompile every file

Compile the Design

Start Button starts compilation process
Messages are displayed by the Message
Processor
– Info
– Warning
– Error

Start
Compilatio
n

Messages

The Report File

Project summary
– Device assignments
– Error summary
– Device pin-out diagram (useful for PCB layout)

Resource utilization
– Pin
– LCELL
– Equations

Compiler resources
– Compilation time
– Memory usage Open report file by

double clicking on the
rapt icon

Checking the Messages

Check the messages in Message Processor
• In Message Processor window, choose the message and click the HELP on
Message to understand the meaning of the message, its cause and the possible
solutions (suggested actions)

Error location
• In Message Processor window, choose the message and click the Locate button

to locate the source of the message in the original design files
• You can turn on Locate in Floorplan Editor and click Local All

button to find the corresponding nodes in the Floorplan Editor

Help on Message

Checking the Reports

Check the report file
• Use Text Editor or double click the Report File icon
• Device summary, project compilation messages, file hierarchy, resource usage,

routing resources, logic cell interconnections, ...

Viewing Report File

Pin-out file (.pin)
An ASCII file that contains the pin out of your device. It is
created as a pin-out file for a board layout tool.

N.C. = Not Connected.
VCCINT = Dedicated power pin, which MUST be connected to VCC (5.0 volts).
VCCIO = Dedicated power pin, which MUST be connected to VCC (5.0 volts).
GNDINT = Dedicated ground pin or unused dedicated input, which MUST be connected to GND.
GNDIO = Dedicated ground pin, which MUST be connected to GND.
RESERVED = Unused I/O pin, which MUST be left unconnected.
--

CHIP "filter" ASSIGNED TO AN EPF10K10QC208-3
TCK : 1
CONF_DONE : 2
nCEO : 3
TDO : 4
VCCIO : 5
VCCINT : 6
N.C. : 7
N.C. : 8
N.C. : 9
x7 : 10

Floorplan Editor
Graphical user interface for viewing/creating resource
assignments

• Pins
• Logic cells
• Cliques
• Logic options

Drag-and-drop capability for assigning pins/logic cells
Graphical view of current assignments as well as last
compilation results
LAB view or external chip view

Floorplan Views

Current Assignment
Floorplan

(Editable View)

Last Compilation Floorplan
(Read-Only)<design>.fit

<design>.acf
Assign-> Back-Annotate Project

User Assignments

Fitter Results

Floorplan Editor (Read Only)
Last Compilation Floorplan Full Screen LAB View with
Report File Equation Viewer

Fan-in and Fan-
out

Highlighted LCELL

LCELL
equation

Display
control

Floorplan Editor (Read Only)
Last Compilation Floorplan Device View

Pin number

Pin name

Color
Legend
definition

Floorplan Editor (Editable)
Current Assignment view has drag and drop capability
(Note: Auto Device can not be used)

Click on Node ,hold left mouse, drag to location

Floorplan Editor (Editable)

Project Compilation
Recommendations

Use assignments after design analysis to improve fitting or
performance
Use the Report File to find specific information on the
design
Use the Floorplan Editor to see results of Assignments

Report File Equation Viewer

Routing Statistics

Floorplan Editor Utilities Menu

To find text, node, ...
• “Find Text” command: to search the current chip for

the first occurrence of the specified text
• “Find Node” command: to find one or more nodes or

other logic function(s) in the design file or in the
floorplan

To help running timing analysis
• You can specify source and destination nodes in the

floorplan to run timing analysis

Floorplan Editor Utilities Menu

Assigning Logic to Physical
Resources

Use Floorplan Editor to assign logic to physical resources
• You can assign logic to a device, to any row or column within a device, or to a

specific LAB, pin, logic cell, or I/O cell in Floorplan Editor very easily
• To toggle between current assignment & last compilation floorplan

Menu: Layout -> Current Assignments Floorplan
Menu: Layout -> Last Compilation Floorplan

Back-annotate the floorplan for subsequent compilation
• If necessary, you can back-annotate the floorplan to ACF(Assignment &

Configuration File) and it is useful for retaining the current resource and device
assignments for future compilations
Menu: Assign -> Back-Annotate Project...

Current Pin Assignment Floorplan

Current LAB Assignment
Floorplan

Anywhere
on Device

Anywhere
on this
Column

Anywhere
on this
Row

Design
Files

Simulation/
Timing Files

Project Compilation Summary

.gdf

.tdf

.vhd

.sch

.edf

.snf

MAX+PLUS II Compiler
Compiler Netlist

Extractor (includes
all netlist readers

Functional, Timing,
or Linked SNF

Extractor
EDIF, VHDL &
Verilog Netlist

Writers

Database
Builder

Partitioner

Design
Doctor

Logic
Synthesizer

Fitter

Assembler

.edo .vo .vho 3rd Party
EDA Files

Programming
Files

.pof

Report
Files

.rpt

.sdo

.wdf

.v

Project Verification
Project Verification Methodology
MAX+PLUS II Simulator
Functional Simulation
Timing Simulation
Timing Analysis

Project Verification Methodology

.hst .sif .tbl.log

.snf

.tao

MAX+PLUS II
Timing Analyzer

MAX+PLUS II
Simulator

MAX+PLUS II
Waveform Editor

.scf

.tbl

.cm
d

.vec.hex.mif

System Production

Design Specification

Design Entry

Project Compilation

Device Programming

In-System Verification

Design Modification

Simulation
Timing Analysis

Command-
Line
Mode

MAX+PLUS II Simulator

MAX+PLUS II
Waveform Editor

.scf

.snf

MAX+PLUS II
Text Editor

MAX+PLUS II
Simulator

MAX+PLUS II
Compiler

.scf

.vec

MAX+PLUS II
Waveform Editor

MAX+PLUS II Simulation
Create Simulation Stimulus

• Waveform
• Vector

Run Functional Simulation
• Fast compilation
• Logical model only, no logic synthesis
• All nodes are retained and can be simulated
• Outputs are updated without delay

Run Timing Simulation
• Slower compilation
• Timing model: logical & delay model
• Nodes may be synthesized away
• Outputs are updated after delay

Simulation Waveform
Stimulus Waveform

• Waveform Editor File (.scf)
• Control

– Clock: Use built-in clock generator
– Others: Hand drawn with overwrite/copy/paste/repeat

• Data
– Counting patterns: Use built-in binary or gray code generator
– Others: Enter with overwrite/copy/paste/repeat

Reference Compare waveform
• Waveform Editor File (.scf)
• Draw or save previous simulation result as reference waveform
• Use with Compare after new simulation run to verify output

Create Waveform Simulation
Stimulus

Open Waveform Editor
Select Enter Nodes from SNF… from Node
menu
Enter Nodes into Selected Nodes & Groups
field Select

Node

Enter Node into Selected
Nodes & Groups field

Simulator Environment

Grid Control
Snap to Grid

• On: waveforms drawn increments of grid size
• Off: waveforms can be drawn to any size

Set Grid
size

Draw Stimulus Waveform

Highlight portion of waveform to change
Overwrite with desired value (Group value or
single bit) Highlight

waveform

Overwrite value

Overwrite
shortcut

Create Clock Waveform

Snap to Grid On: Clock Period is twice the grid
size
Snap to Grid Off: Clock Period can be any value

Highlight
waveform

Clock
shortcut

Specify clock period

Create Counting Pattern

Make sure your counting frequency matches your
clock frequency

Highlight
waveform

Pattern
shortcut

Specify counting
pattern

Specify
counting
frequency

Grouping Signals and Set Radix

Highlight waveforms to be grouped
– MSB must be the top waveform

Enter Group Name and set Radix Enter Group
Name

Set radix

Save the Waveform Stimulus File

Save the waveform stimulus file with .scf extension
MAX+PLUS II will use Project name as default file
name

Waveform
File Name

Project
Directory

Create Vector Simulation Stimulus

Open Text Editor
Type in vector stimulus
– Clock

– Pattern

– Output

% units default to ns %
START 0 ;
STOP 1000 ;
INTERVAL 100 ;
INPUTS CLOCK ;
PATTERN
0 1 ; % CLOCK ticks every 100 ns %

INPUTS A B ;
PATTERN
0> 0 0
220> 1 0
320> 1 1
570> 0 1
720> 1 1;

OUTPUTS Y1 Y0 ;
PATTERN % check output at every Clock pulse %
= X X
= 0 0
= 0 1
= 1 0
= 1 1;

Save the Vector Stimulus File

Save the vector stimulus file with .vec extension
– You must change the .vec extension since MAX+PLUS

II defaults to .tdf extension for text files

Change the
extension to .vec

Select Simulation Stimulus File

Defaults to .scf file
For vector input stimulus, set Vector Files Input
to .vec file Set to .vec file

Specify Length of Simulation
Specify maximum length of simulation time with End Time

Run Functional Simulation

Click on Start then Open SCF to see result

Output change on clock
edge

Open .scf file

Click on
Start Button

MAX+PLUS II Functional
Simulation

Use to verify operation of design
Advantage over Timing Simulation

• Fast compilation
• All nodes are retained and can be simulated
• Outputs are updated without delay

– Most of the time, this makes figuring out cause and effect much easier

Disadvantages
• Logical model only, no logic synthesis
• No delays in simulation

– Oscillations, glitches and other timing related errors do not show up

Run Timing Simulation

Click on Start then Open SCF to see result

Output change after timing
delay

MAX+PLUS II Timing Simulation

Used to debug timing related errors
Advantages over Functional Simulation
– Simulation of full synthesis result
– Outputs change after timing delay

• Detection of oscillations, glitches and other timing
related errors are possible

Disadvantages
– Longer compilation time
– Combinatorial logic nodes cannot be simulated

• Node may be transformed or removed
– Only “Hard” nodes can be simulated
– Timing delays make debugging more difficult because

cause and effect relationships are harder to locate

Open first channel file
Choose Compare under File menu
Select the name of the second channel file with the
Compare dialog box
Waveforms from the first channel file are drawn in black.
Waveforms from the second channel file are drawn in red
on top of the black waveforms. Deviations of second
channel file can easier be spotted.

Compare Two Simulation Files

Comparing Different Simulations

Project Simulation
Recommendations

Use built-in clock generator to create clock
Use built-in count generator to create test pattern
Use Functional Simulation to verify proper operation
Use Timing Simulation to examine signal delay effects
Use Compare function to verify output
Use the dynamic link (Find Node in Design File) to go to
source file to make any necessary corrections

Simulation Input & Output Files

Specify simulation input and output
files

• You can specify SCF or VEC file as the source of
simulation input vectors
Menu: File -> Inputs/Outputs...

– VEC file will be converted into SCF file by
Simulator

– You can specify a history(*.hst) or log(*.log)
file to record simulation commands and
outputs

• During and after simulation, the simulation results
are written to the SCF file, you can create
another ASCII-format table file
Menu: File -> Create Table File...

– TBL file format is a subset of VEC file
format

– A TBL file can be specified as a vector input
file for another simulation

File Menu

Memory Initialization

Give memory initialization values for functional simulation
• To generate memory initialization values in Simulator

Menu: Initialize -> Initialize Memory...
• You can save the data in the Initialize Memory dialog box to a Hexadecimal File

(*.hex) or Memory Initialization File (*.mif) for future use
Menu: Initialize -> Initialize Memory... -> Export File...

– An MIF is used as an input file for memory initialization in the Compiler and
Simulator. You can also use a Hexadecimal File (.hex) to provide memory
initialization data.

• You can load the memory initialization data for a memory block that is saved in a
HEX or MIF file
Menu: Initialize -> Initialize Memory... -> Import File...

Initialize Menu

Initialize Memory Window

Memory Initialization File Formats
WIDTH = 16;
DEPTH = 256;

ADDRESS_RADIX = HEX;
DATA_RADIX = HEX;

CONTENT BEGIN
0 : 0000;
1 : 0000;
2 : 0000;
3 : 0000;
4 : 0000;
5 : 0000;
6 : 0000;
7 : 0000;
8 : ffff;
9 : ffff;
a : ffff;
b : ffff;
c : ffff;
d : ffff;
e : ffff;
f : ffff;

...
ff : 0000;

END;

:020000000000fe
:020001000000fd
:020002000000fc
:020003000000fb
:020004000000fa
:020005000000f9
:020006000000f8
:020007000000f7
:02000800fffff8
:02000900fffff7
:02000a00fffff6
:02000b00fffff5
:02000c00fffff4
:02000d00fffff3
:02000e00fffff2
:02000f00fffff1
...
:0200ff000000ff
:00000001ff

MIF file example

HEX file example

MIF File Format

To edit a MIF file...
• MIF file is an ASCII text file that specifies the initial content of a memory block

– You can create an MIF in the MAX+PLUS II Text Editor or any ASCII text
editor

– You can also very easily generate an MIF by exporting data from the
Simulator's Initialize Memory dialog box

• Example:DEPTH = 32; % Memory depth and width are required %
WIDTH = 14; % Enter a decimal number %
ADDRESS_RADIX = HEX; % Address and value radixes are optional %
DATA_RADIX = HEX; % Enter BIN, DEC, ,OCT or HEX(default) %

-- Specify values for addresses, which can be single address or range
CONTENT
BEGIN
[0..F] : 3FFF; % Range--Every address from 0 to F = 3FFF %
6 : F; % Single address--Address 6 = F %
8 : F E 5; % Range starting from specific address %

END; % Addr[8]=F, Addr[9]=E, Addr[A]=5 %

Notes for Compiling &
Simulating RAM / ROM - (1)

Remember: MAX+PLUS II Compiler uses MIF or HEX file(s) to
create ROM or RAM initialization circuit in FLEX 10K EAB
• Specify the LPM_FILE parameter to a MIF or HEX file for each RAM and ROM

block
– Memory initialization file is optional for RAM
– Using MIF files is recommended because its file format is simple

If the memory initial file does not exist when MAX+PLUS II
Compiler is generating functional SNF file, you must initialize
the memory by using Initialize Memory command before
starting the functional simulation

• MAX+PLUS II Compiler reports an warning when it can’t read the memory
initialization file when processing Functional SNF Extractor

• However, the memory initialization file must exist when MAX+PLUS II processes
Timing SNF Extractor

Notes for Compiling &
Simulating RAM / ROM - (2)

If you do not have MIF or HEX files, do the following:
• Run MAX+PLUS II Compiler to generate a functional SNF file first
• Then invoke MAX+PLUS II Simulator, use Memory Initialization command to create

memory content for each ROM or RAM block
• Export memory content to a MIF or HEX file

– And now, you can perform functional simulation for your project
• Invoke MAX+PLUS II Compiler again, turn on “Timing SNF Extractor” and start

complete compilation for FLEX 10K devices

Node/Group Initialization

Specify initial logic levels for nodes/
groups

• You can change the initial logic levels of
registered nodes/groups in the SNF file for the
project before you begin simulation
Menu: Initialize -> Initialize Nodes/Groups...

– You can also specify an initial state name
for a group that represents a state
machine.

• By default, all register outputs are initialized to 0
and pin inputs are initialized to the first logic
level provided in the current SCF

Saving Initialization Values

Save the initialization values to SIF file
• You can save current initialized node and group

logic levels and memory values to a Simulation
Initialization File(*.sif)
Menu: Initialize -> Save Initialization As...

• To retrieve initialized node, group, and memory
values stored in a SIF file
Menu: Initialize -> Restore Initialization...

• To reset initial node, group, and memory values to
the values stored in the SNF file
Menu: Initialize -> Reset to Initial SNF Values

– All register outputs are initialized to 0, and pin
inputs are initialized to the first logic level
provided in the current SCF file

Creating Breakpoints

Specify simulation breakpoints
• You can create one or more breakpoints, each

of which consists of one or more node value,
group value, and time conditions
Menu: Options -> Breakpoints...

• Specify breakpoint conditions
– .TIME variable in Node/Group list

represents the simulation time
– Operator:=, !=, >, <, >=, <=, >->

(transition)
– A breakpoint can consist one or more

conditions and must be given a unique
name

Options Menu

Monitoring Options

Setup time & hold time
• You can instruct the Simulator to monitor all simulated nodes and groups for setup

time and hold time violations
– It’s not available in functional simulation mode
– In timing simulation linked simulation mode, setup and hold time violations are

determined by the architecture of the device(s) being simulated
Glitch
• You can instruct the Simulator to monitor the logic levels of all simulated nodes and

groups for glitches or spikes, i.e., two or more logic level changes that occur within a
period less than or equal to the specified time

– It’s not available in functional simulation mode
Oscillation
• The Simulator can monitor all simulated nodes and groups for logic levels that do

not stabilize within the specified time period after the most recent input vector has
been applied

– In functional simulation mode, oscillation option is always on and check only
for nil-period oscillation

Project Simulation Summary
Two types of simulation

• Functional simulation
– No logic synthesis
– No delay model
– All nodes can be simulated

• Timing simulation
– Logic synthesis
– Delay model
– Only hard nodes can be simulated

Two types of stimulus file
• Waveform
• Vector

Simulation result is stored in .scf file

System Production

Design Specification

Design Entry

Project Compilation

Device Programming

In-System Verification

Design Modification

Timing Analysis

Project Simulation

Command-
Line
Mode

MAX+PLUS II Timing Analyzer

.snf

MAX+PLUS II
Timing Analyzer

MAX+PLUS II
Compiler

MAX+PLUS II
Floorplan Editor

MAX+PLUS II
Graphic Editor

MAX+PLUS II
Text Editor

Delay Matrix

Setup/Hold
Matrix

Registered
Performance

Project Timing Analysis
Timing Analyzer is a static timing analyzer
Three forms of timing analysis

• Registered Performance calculates fastest possible internal clock frequency
• Delay Matrix calculates combinatorial delays
• Setup/Hold Matrix calculates setup & hold times for device flip-flops

Source of delay path can be located in
• Design file
• Floorplan Editor

Timing Analysis Source &
Destination

Specify source/destination nodes for timing
analysis

• The Timing Analyzer provides default timing tagging for source
and destination nodes for each analysis mode
Menu: Node -> Timing Analysis Source...
Menu: Node -> Timing Analysis Destination...

• Besides, you can specify timing analysis source & destination
nodes in the Graphic, Waveform or Floorplan Editor (under
Utilities Menu)

Node Menu

D Q Comb D Q

tskew

tdelay

tco
tsu

Dclk Sclk

Calculates maximum internal register frequency
Used to determine if design meets clock
specification

Clock period = tco + delay + tsu + tskew
Note: tskew is added to the clock period if destination

clock edge is earlier than source clock edge

Registered Performance Analysis

Run Registered Performance
Analysis

Click on Start
Source/Destination, Clock period and Frequency of the
longest path are displayed
Click on List Paths to trace delay path

Tracing Delay Path In Floorplan
Editor

Highlight Path of interest
Check Locate in Floorplan Editor
Click on Locate All
Click on show path to display path

Application of Registered
Performance

Use Registered Performance Analysis to see if
design meets clock frequency requirement
What to do if frequency is less than desired
– Use List Path to display the worst case delays
– Use Floorplan Editor to view the entire path

• Are Logic Cells and pins scattered among different
rows?

• Can the Logic Cells benefit from carry/cascade
chains (FLEX) or parallel expanders (MAX)?

– Use Assignments (Clique, Logic Options, etc…) on the
critical path to improve performance

– If still less than desired, consider pipelining technique or
different design implementations where appropriate

Delay Matrix Analysis

Calculates combinatorial logic delays
Typically used to evaluate input pin to output pin
delay
Internal point to point delay analysis is possible
by setting node source and destination for
analysis

Combinatorial
Logic

D Q Comb

Delay Matrix Source and
Destination

Set Source and Destination to be analyzed

Useful Analysis Options

Time Restrictions
– Show All Path
– Show Only Longest Paths
– Show Only Shortest Paths

Cell Width
– Control matrix display

Cut Off I/O Pin Feedback
– See next page

Cut Off Clear & Preset Paths
– No clear or preset delay analysis

List Only Longest Path
– List Path lists only longest path between two points

Cut Off I/O Pin Feedback

D Q D Q

A
B

C

Used to break bi-directional pin from the analysis
When on, paths A and B true C false
When off, path A, B and C are true

Run Delay Matrix Analysis

Select Delay Matrix Analysis and click on Start
button
Matrix shows all paths, longest path, or shortest
path depending on Time Restrictions option
selected
Use List Path to analyze the path of delays

Comb D Q

tsetup, thold

Setup/Hold Matrix calculates setup & hold times for device
flip-flops

Setup
• tsetup = tdata - tclock + tsetup

Hold
• thold = tclock - tdata + thold

Setup/Hold Matrix Analysis

Run Setup/Hold Matrix Analysis
Click on Start button
Setup/Hold times are displayed with respect to the clocks

Saving Timing Analysis Results

Save the current Timing Analyzer results to a TAO File
• Timing Analyzer can save the information in the current timing analysis display to an

ASCII-format Timing Analyzer Output file (*.tao)
Menu: File -> Save Analysis As...

Destination

y3 y4 y5
----------------- ----------------- -----------------

S aclr . . .
o clk 10.8ns 12.7ns 11.7ns
u xin1 . . .
r xin2 . . .
c xin3 . . .
e xin4 . . .

xin5 . . .
xin6 . . .
xin7 . . .
xin8 . . .

Listing & Locating Delay Paths

To trace delay paths or clock paths in the design file
• After you run a timing analysis, you can list selected signal paths and locate them in

the original design file(s) for the project
• Select the matrix cell or clock, click List Paths
• Select one of the delay paths shown in Message Processor, and click Locate to

trace the path in the source file(s)

Listing & Locating Paths

Recommended Verification Flow

Functional simulation
• Perform functional simulation to verify the design functionality

Timing Analysis
• Perform static timing analysis to check overall performance
• Find the delay paths

Timing simulation
• Perform timing simulation to verify real-world design timing & functionality

On-board test
• Program FPGA/CPLD device(s) and test the function & timing in system

Timing Analysis Recommendations
Use Timing Analyzer to locate performance bottleneck
Use Registered Performance Analysis to determine
internal clock frequency performance of the design
Use Show Only Longest Path Time Restrictions in Delay
Matrix to get the longest delay time from input pin to
output pin
Use List Path and Locate in Floorplan Editor to view
worst case paths
Use List Path and Locate to trace through path in design
file
Use assignments and recompile to fine-tune
performance

Project Timing Analysis Summary
Timing Analyzer is a static timing analyzer
Three modes of Timing Analysis

• Registered Performance
• Delay Matrix
• Setup/Hold Matrix

Provides ability to trace path through Floorplan Editor or
design file

Device Programming
Programming Methods
Altera Configuration EPROM Family
Altera Programming Hardware
• PL-ASAP2 Stand-Alone Programmer
• BitBlaster Download Cable
• ByteBlaster Download Cable

FLEX Device Configuration Schemes
MAX+PLUS II Programmer

System Production

Design Specification

Design Entry

Project Compilation

Timing Analysis

In-System Verification

Design Modification

Device
Programming

Project Simulation

Command-
Line
Mode

Altera Provide Method
Altera provide different methods for

• Program Device
– MAX family

• Configure Device
– FLEX family

MAX Device
Use Altera Stand Alone Programmer (ASAP2)

• http://www.altera.com/html/products/asap2.html

Through JTAG port with ByteBlaster
• JTAG for Single Device (MAX or FLEX)
• JTAG Chain for Multiple Device (MAX & FLEX)
• JAM for Single/Multiple Device (MAX & FLEX)

3rd Programmer
• Data I/O

– http://www.data-io.com
• BP MicroSystem

– http://www.bpmicro.com

FLEX Device
Through JTAG port with ByteBlaster

• JTAG for Single Device (FLEX or MAX)
• JTAG Chain for Multiple Device (FLEX & MAX)

Through PS port with ByteBlaster
• FLEX for Single Device
• FLEX Chain for Multiple Device

Serial PROM
• EPC1 (1Mbits, good for 6K/8K/10K)
• EPC1441(441Kbits, good for 6K/8K/10K10, 10K20, 10K30)
• EPC1213 (213Kbits, only for 8K)
• EPC1064 (64Kbits, only for 8K)

Configuration File Sizes

FLEX device configuration file sizes
• Each FLEX device has a different size requirement for its configuration data, based

on the number of SRAM cells in the device
• The following table summarizes the configuration file size required for each FLEX

device
– To calculate the amount of data storage space for multi-device configurations,

simply add the file sizes for each FLEX device in the design
Device

EPF8282A/V
EPF8452A
EPF8636A
EPF8820A
EPF81188A
EPF81500A

Data Size(bits)
40,000
64,000
96,000
128,000
192,000
250,000

Device
EPF10K10
EPF10K20
EPF10K30
EPF10K40
EPF10K50
EPF10K70
EPF10K100

Data Size(bits)
115,000
225,000
368,000
488,000
609,000
881,000

1,172,000

Altera Configuration EPROM
Family

Altera’s serial configuration EPROMs for FLEX devices
• Simple, easy-to-use 4-pin interface to FLEX devices
• Available in OTP packages: 8-pin PDIP, 20-pin PLCC and 32-pin TQFP
• Family member

– EPC1064: 65,536 bit device with 5.0-V operation
– EPC1064V: 65,536 bit device with 3.3-V operation
– EPC1213: 212,942 bit device with 5.0-V operation
– EPC1: 1,046,496 bit device with 5.0-V or 3.3-V operation

Configuration EPROM
Block Diagram - (1)

EPC1064, EPC1213, or EPC1 in FLEX 8000A mode

Configuration EPROM
Block Diagram - (2)

EPC1 in FLEX 10K mode

Internal oscillator

Altera Programming Hardware

Hardware to program and configure Altera devices
• For MAX 7000/E/S, MAX 9000 and Altera configuration EPROM(EPC- series)

devices
– Altera stand-alone programmer: PL-ASAP2 (PC platform)
– 3rd-party universal programmer (PC platform)

• For MAX 7000S and MAX 9000 ISP, FLEX devices downloading
– Altera BitBlaster download cable (RS-232 port)
– Altera ByteBlaster download cable (parallel port of PC)

• Of course, you can use another 3rd-party universal programmer or download cable
to program or configure Altera devices. In this chapter, we discuss Altera
programming hardware only.

Altera Stand-Alone Programmer

PL-ASAP2: Altera stand-alone hardware programmer
• The Altera stand-alone programmer, PL-ASAP2, together with the appropriate

programming adapters, supports device configuration and programming for Altera
devices

– All MAX devices
– Altera serial configuration EPROM: EPC1/V, EPC1064/V, EPC1213

• PL-ASAP2 includes an LP6 Logic Programmer card, an MPU and software
– LP6 card generates programming waveforms and voltages for the MPU
– MPU(Master Programming Unit) connects to LP6 card via a 25-pin ribbon

cable and is used together with an appropriate adapter to program Altera
devices

– Optional FLEX download cable for configuring FLEX devices

Installing LP6 Card, MPU &
Adapter

LP6 Programmer Card

MPU Base Unit

Adapter

Connect the 25-pin flat ribbon cable to the LP6 card

BitBlaster Download Cable

Altera BitBlaster serial download cable
• BitBlaster serial download cable allows PC and workstation users to

– Program MAX 9000, MAX 7000S in-system via a standard RS-232 port
– Configure FLEX devices in circuit via a standard RS-232 port

• BitBlaster provides two download modes
– Passive Serial(PS) mode: used for configuring all FLEX devices
– JTAG mode: industry-standard JTAG implementation for programming or

configuring FLEX 10K, MAX 9000, and MAX 7000S devices
• BitBlaster status lights:

– POWER: indicates a connection to the target system’s power supply
– DONE: indicates device configuration or programming is complete
– BUSY: indicates device configuration or programming is in process
– ERROR: indicates error detection during configuration or programming

Installing BitBlaster

ByteBlaster Download Cable

Altera ByteBlaster parallel port download cable
• ByteBlaster serial download cable allows PC users to

– Program MAX 9000, MAX 7000S in-system via a standard parallel port
– Configure FLEX devices in circuit via a standard parallel port

• ByteBlaster provides two download modes
– Passive Serial(PS) mode: used for configuring all FLEX devices
– JTAG mode: industry-standard JTAG implementation for programming or

configuring FLEX 10K, MAX 9000, and MAX 7000S devices
• ByteBlaster download cable provides a fast and low-cost method for ISP and FLEX

device configuration
• ByteBlaster download cable uses identical 10-pin circuit board connector as the

BitBlaster serial download cable

Installing ByteBlaster

BitBlaster & ByteBlaster
Plug Connections

Pin

1
2
3
4
5
6
7
8
9
10

PS Mode

DCLK
GND
CONF_DONE
VCC
nCONFIG
N.C.
nSTATUS
N.C.
DATA0
GND

JTAG Mode

TCK
GND
TDO
VCC
TMS
N.C.
N.C.
N.C.
TDI
GND

FLEX Device Configuration
Schemes

Passive Serial(PS) configuration with the download cable
• Single-device configuration
• Multiple-devices configuration

JTAG configuration with the download cable
• Available for FLEX 10K and ISP devices only

Serial configuration EPROM configuration
• FLEX 8000A Active Serial(AS) configuration with serial configuration EPROM
• FLEX 10K Passive Serial(PS) configuration with EPC1 configuration EPROM

Parallel EPROM configuration
• FLEX 8000A Active Parallel Up(APU) or Active Parallel Down(APD) configuration
• Not available for FLEX 10K devices

FLEX 8000A Single-
Device PS Configuration
with the Download
Cable

FLEX 8000A Multiple-
Device PS Configuration
with the Download Cable

PS. nCE pin of FLEX 10K device must connect to GND.

FLEX 10K Single-
Device PS
Configuration with the
Download Cable

PS. nCE pin of the lead FLEX 10K
device must connect to GND.

FLEX 10K Multiple-
Device PS Configuration
with the Download Cable

JTAG Configuration
with the Download
Cable

FLEX 8000A Configuration EPROM Configuration (AS
Mode)

Serial configuration EPROM
(e.g. Altera’s EPC1213)AS configuration with automatic

reconfiguration on error (nStatus
pin is connected to OE pin of the
configuration EPROM and when
“Auto-Restart Configuration on
Frame Error” option bit is turned on)

FLEX 8000A Multiple Configuration EPROMs
Configuration

FLEX 8000A Multi-
Device Configuration
EPROM
Configuration

FLEX 10K Configuration EPROM Configuration (PS
Mode)

Altera-supplied serial EPC1 configuration EPROM
(EPC1: 1-Mbit EPROM

FLEX 10K Multi-Device Configuration EPROM
Configuration

FLEX 8000A APU & APD
Configuration

FLEX 8000A Multi-
Device
APU & APD
Configuration

MAX+PLUS II Programmer

To program or configure Altera devices
• After the MAX+PLUS II Compiler has processed a

project, it generates one or more programming files,
which the Programmer uses to program or configure
one or more devices

• The MAX+PLUS II Programmer allows you to
program, verify, examine, blank-check, configure, and
test Altera all MAX and FLEX devices and
configuration EPROM

• With the Programmer and programming hardware--the
Altera MPU, add-on cards, programming adapters, the
FLEX download cable, the BitBlaster, or the
ByteBlaster--you can easily create a working device in
minutes

Device Programming Methodology

.plf

.hex

.pof
MAX+PLUS II
Programmer

Master
Programming
Unit (MPU)

.jed

.sof

Altera
CPLD

.pof

.jed

.ttf.sbf

.scf .vec

BitBlaster
Download

Cable

(PC)

(PC/WS)

ByteBlaster
Download

Cable

(PC)

Programmer Operations

6 operations
• Program : programs data onto a blank MAX device or configuration EPROM
• Verify : verifies contents of a device against current programming data
• Examine : examines a device & stores the data in a temporary buffer
• Blank-Check : examines a device to ensure it is blank
• Test : functionally tests a programmed device
• Configure: downloads configuration data into the SRAM of one or more FLEX

devices

Starting Programming

Program or configure the Altera
device

• Setup the hardware
Menu: Options -> Hardware Setup... -> Auto-
Setup

• Specify the programming file
Menu: File -> Select Programming File...

• Program or configure the device: just click on the
Program or Configure button

Functional Test on Device

Functionally test the Altera device
• You can use an SCF or VEC file, or test vectors

stored in the current programming file, to functionally
test actual device outputs against simulation outputs

– Functional testing is not available for SRAM-
based FLEX devices

– You can only test devices for single-device
projects

– You also cannot test projects that contain
bidirectional buses

• After the device is programmed, select simulation
input file
Menu: File -> Inputs/Outputs

– You can specify an output Programmer Log
File(*.plf) to record the Programmer's activities

• Test the device: click on Test button

Converting or Combining
Programming Files

To convert or combine programming
files

• You can combine and convert one or more
SRAM Object Files(*.sof) into one of the
following file formats, which support different
FLEX device configuration schemes

– Programmer Object File(*.pof)
– Raw Binary File(*.rbf)
– Tabular Text File(*.ttf)
– Serial Bitstream File(*.sbf)
– Hexadecimal (Intel-format) File(*.hex)

Menu: File -> Combine Programming Files...

Configuring Multiple FLEX
Devices

Configure multiple FLEX device with the download cable
• You can configure multiple FLEX devices in a FLEX chain with the download cable

– By typing a command at a DOS command prompt to download configuration
data from an SBF file through the BitBlaster
DOS Prompt: copy <design>.sbf COM1: (or COM2:)

• The SBF file can be created by using “Combine Programming File” command (under File
Menu)

– By creating “multi-device FLEX chain” (under FLEX Menu) and using the
Programmer to download configuration data from SOFs through the BitBlaster,
ByteBlaster, or FLEX download cable

• Multi-device FLEX chain: a series of FLEX devices through which configuration data is passed
from device to device using the sequential Passive Serial configuration scheme

FLEX Menu

Creating Multi-Device FLEX
Chain

To configure multiple FLEX devices in a FLEX chain
• You can specify the order and names of SOFs for multiple FLEX devices in a chain

Menu: FLEX -> Multi-Device FLEX Chain Setup...
• You can save the FLEX chain settings to an Flex Chain File(*.fcf) or restore the

settings from a existing FCF file
Menu: FLEX -> Save FCF...
Menu: FLEX -> Restore FCF...

• To turn on or off multi-device FLEX chain
configuration mode
Menu: FLEX -> Multi-Device FLEX Chain

• Click Configure button on Programmer
to start configuration

Programming Multiple JTAG
Devices

Program or configure multiple JTAG devices with the
download
cable
• You can program or configure one or more MAX 9000, MAX 7000S, FLEX 10K

devices, and other devices that support JTAG programming in a JTAG chain using
the BitBlaster or ByteBlaster

– The JTAG chain can contain any combination of Altera and non-Altera devices
that comply with the IEEE 1149.1 JTAG specification, including some FLEX
8000 devices

– By creating “multi-device JTAG chain” (under JTAG Menu) and using the
Programmer to download configuration data from SOFs through the BitBlaster
or ByteBlaster cable

• Multi-device JTAG chain: a series of devices through which programming and/or configuration
data are passed from device to device via the JTAG boundary-scan test circuitry

JTAG Menu

Creating Multi-Device JTAG
Chain

To program multiple devices in a JTAG chain
• You can select the names and sequence of devices in the JTAG chain, and optional

associated programming files
Menu: JTAG -> Multi-Device JTAG Chain Setup...

• You can save the JTAG chain settings to an JTAG Chain File(*.jcf) or restore the
settings from a existing JCF file
Menu: JTAG -> Save JCF...
Menu: JTAG -> Restore JCF...

• To turn on or off multi-device JTAG
chain programming mode
Menu: JTAG -> Multi-Device JTAG Chain

• Click Configure or Program button
on Programmer to start programming

Details about Device Programming

Please refer to Altera document for details
• Altera Data Book
• Altera Data Sheet

– dsconf_06.pdf: Configuration EPROMs for FLEX Devices
– dsbit03.pdf: BitBlaster Serial Download Cable
– dsbyte01.pdf: ByteBlaster Parallel Port Download Cable

• Altera Application Note & Application Brief
– an033_03.pdf: Configuring FLEX 8000 Devices
– an038_03.pdf: Configuring FLEX 8000 Devices
– an059_01.pdf: Configuring FLEX 10K Devices
– ab141_01.pdf: In-System Programmability in MAX 9000 Devices
– ab145_01.pdf: Designing for In-System Programmability in MAX 7000S Devices
– an039_03.pdf: JTAG Boundary Scan Testing in Altera Devices

CIC technical support: 周育德

• Phone : (03)5773693 ext. 148
• Email : steven@.cic.edu.tw
• News : nsc.cic
• WWW : http://www.cic.edu.tw/chip_design/design_intr/altera/
• ftp-site : ftp://ftp.cic.edu.tw/pub (140.126.24.62) under /pub/doc/manual/Altera

To buy Altera chips, hardware or demo boards:
• Contact Galaxy Far East Corp. 茂綸公司楊樂麗小姐 (03)578-6766 ext. 220

Altera technical support on Internet
• WWW : http://www.altera.com
• FTP : ftp://ftp.altera.com (however, the international access may be slow)

Getting Help

MAX+plus II Lab

Fibonacci Generator

Lab 1 - myor8 I

用基本的邏輯閘兜電路
• File > New (Graphic Editor File - .gdf)
• File > Save As… (myor8.gdf)
• File > Project… > Set Project to Current File
• 繪出下圖

Lab 1 - myor8 II

Save and Check
• File > Project … > Save & Check (Cltr + K)

Generate Symbol
• File > Create Default Symbol

View Symbol
• File > Open (myor8.sym)

Lab 2 - Disbounce I

用Schematic設計防止彈跳電路
• File > New (Graphic Editor File - .gdf)
• File > Save As… (disbounce.gdf)
• File > Project… > Set Project to Current File
• 繪出下頁電路, 請注意LPM_COUNTER的I/O與parameters的設定

• File > Project … > Save & Check (Cltr + K)
• File > Create Default Symbol

Lab 2 - Disbounce II

Lab 3 - 7segment
用AHDL來設計七段
顯示器解碼電路

• File > New
– (Text Editor File -

.tdf)
• File > Save as

– (7segment.tdf)
• 輸入AHDL
• File > Project > Save &

Check (Cltr + K)
• File > Create Default

Symbol

TITLE "SEVEN SEGMENT BCD CODE DECODE";
SUBDESIGN 7SEGMENT
(

DATAIN[3..0] :INPUT;
DISPLAY[6..0] :OUTPUT;

)
BEGIN
TABLE

DATAIN[] => DISPLAY[6..0];
0 => B"1000000";
1 => B"1111001";
2 => B"0100100";
3 => B"0110000";
4 => B"0011001";
5 => B"0010010";
6 => B"0000010";
7 => B"1111000";
8 => B"0000000";
9 => B"0010000";
10 => B"0001000";
11 => B"0000011";
12 => B"1000110";
13 => B"0100001";
14 => B"0000110";
15 => B"0001110";

END TABLE;
END;

Lab 4 - fib_top I

File > New (Graphic Editor File - .gdf)
依據下列數圖完成電路

File > Project > Save & Check (fib_top.v)
• File > New (Graphic Editor File - .gdf)
• File > Save As… (fib_top.gdf)
• File > Project… > Set Project to Current File
• 繪出下頁電路, 請注意LPM的I/O與parameters的設定

• File > Project … > Save & Check (Cltr + K)
• File > Create Default Symbol

Lab 4 - fib_top II

Lab 4 - fib_top III

利用 LPM_ROM 去產生七段顯示器的解碼電路
• LPM_FILE - 7seg.mif

WIDTH = 7;
DEPTH = 16;

ADDRESS_RADIX = HEX;
DATA_RADIX = BIN;

CONTENT BEGIN
0: 1000000;
1: 1111001;
2: 0100100;
3: 0110000;
4: 0011001;
5: 0010010;
6: 0000010;
7: 1011000;
8: 0000000;
9: 0010000;
A: 0001000;
B: 0000011;
C: 1000110;
D: 0100001;
E: 0000110;
F: 0001110;
END;

Lab 4 - fib_top IV

LPM_REG

Lab 4 - fib_top V

LPM_ADD_SUB

Lab 5 - Compile I
MAX+plus II > Compiler
Assign > Device

• EPF10K20RC204-4

Assign > Pin/Location/Chip

Lab 5 - Compile II

Assign > Global Project Logic Synthesis
• Global Project Synthesis Style - FAST
• Optimize - 10 (Speed)

Press “Start”

Lab 6 - Check Report File

Double click the Report File icon
觀察並記錄報告內容

• Total dedicated input pins used:
• Total I/O pins used:
• Total logic cells used:
• Total embedded cells used:
• Total EABs used:
• Memory Bits:
• Average fan-in:
• Total fan-in:

Lab 7 - Check Floorplan

MAX+plus II > Floorplan Editor
與 report file做比對

Lab 8 - Timing Simulation I

Create a SCF file
• File > New (Waveform Editor File -

.scf)

Insert nodes in SCF
• Double click on “name”
• Fill Node Name

– TESTCLK, SEL, RESET,
ENABLE, PREV[7..0], FIB[7..0],
NEXT[7..0], DISPA[6..0],
DISPB[6..0]

Lab 8 - Timing Simulation II
Change Grid Size

• Options > Grid Size (20.0ns)

Set End Time
• File > End Time (5us)

Draw Waveforms
• TESTCLK (clock, period 40ns)
• SEL (0)
• RESET (0ns 0, 120ns 1, 1.0us 0, 1.12ns 1)
• ENABLE (0ns 1, 1.6us 0, 2.0us 1)

Save SCF File
• File > Save as (fib_top.scf)

Run Simulator
• MAX+plus II > Simulator
• Press “Start”
• Press “Open SCF”

Lab 8 - Timing Simulation III

Lab 9 - Timing Analysis I

MAX+plus II > Timing Analyzer
Analysis > Delay Matrix

• Press “Start”

Lab 9 - Timing Analysis II

Analysis > Setup/Hold Matrix
• Press “Start”

Analysis > Registered Performance
• Press “Start”

Lab 10 - Programmer I
連接硬體

• 適當連接 Byteblaster, UP1, Adapter, Parallel Port
開啟 Programmer

• MAX+PLUS II > Programmer
設定 Byteblaster

• Options > Hardware Setup
設定 Multi-Device JTAG Chain

• JTAG > Multi-Device JTAG Chain
• 選定之後會在該選向前出現打勾的符號

設定 Multi-Device JTAG Chain Setup
• JTAG > Multi-Device JTAG Chain Setup…
• Device Name - 10K20
• Programming File Name - fib_top.sof

– 記得要按 Add

Lab 10 - Programmer II
• Click “Detect JTAG Chain Info”, 如果沒有問題, 將出現下面訊息

下載電路
• Click “Configure” in Programmer

Window

操作電路

Pin Assignment
SEL : PIN = 39;
CLK : INPUT_PIN = 91;
KEYIN : PIN = 28;
DISPB6 : OUTPUT_PIN = 24;
DISPB5 : OUTPUT_PIN = 23;
DISPB4 : OUTPUT_PIN = 21;
DISPB2 : OUTPUT_PIN = 19;
DISPB3 : OUTPUT_PIN = 20;
DISPB1 : OUTPUT_PIN = 18;
DISPB0 : OUTPUT_PIN = 17;

DISPA6 : OUTPUT_PIN = 13;
DISPA5 : OUTPUT_PIN = 12;
DISPA4 : OUTPUT_PIN = 11;
DISPA3 : OUTPUT_PIN = 9;
DISPA2 : OUTPUT_PIN = 8;
DISPA1 : OUTPUT_PIN = 7;
DISPA0 : OUTPUT_PIN = 6;
ENABLE : INPUT_PIN = 40;
RESET : INPUT_PIN = 41;

	³ø§i¤H¡G°ê¬ì·|´¹¤ù¨t²Î³]­p¤¤¤ß ©P¨|¼w ¤uµ{®v¹q ¸Ü¡G(03)5773693 ext. 148¶Ç ¯u¡G(03)5783372Email : steven@cic.edu.tw
	Course Outline - 1
	Course Outline - 2
	Introduction to PLD
	Main Features
	Programmability
	Programmable Combinational Logic
	Programmable Register
	Programmable Interconnect
	Programmable I/O
	Field-Programmability
	Rapid Prototyping
	Software Environment
	FPGA/CPLD Benefits
	Altera & CIC
	Altera Device Families
	Altera Device Families
	MAX & FLEX Architectures - (1)
	MAX & FLEX Architectures - (2)
	MAX 7000 Families
	MAX 7000 Devices
	MAX 7000 Features
	MAX 7000E/S Features
	MAX 7000 Architecture
	MAX 7000E/S Architecture
	MAX 7000 Macrocell
	MAX 7000E/S Macrocell
	Shareable Expanders
	Parallel Expanders
	MAX 7000 I/O Control Block
	MAX 7000E/S I/O Control Block
	MAX 7000/E/S PIA(Programmable Interconnect Array)
	MAX 7000/E/S Device Programming
	What¡¦s ISP?
	MAX 7000S ISP
	FLEX 8000A Family
	FLEX 8000A Features
	FLEX 8000A Architecture
	FLEX 8000A Logic Element
	Carry Chains
	Cascade Chains
	FLEX 8000A Logic Array Block
	FLEX 8000A FastTrack Interconnect
	FLEX 8000A I/O Element
	FLEX 8000A Configuration
	MAX 9000 Architecture
	MAX 9000 FastTrack Interconnect
	MAX 9000 I/O Cell
	MAX 9000 Device Programming
	MAX 9000 ISP
	FLEX 10K Families
	FLEX 10K Features
	FLEX 10K Features - (2)
	FLEX 10K Architecture
	What is the EAB?
	FLEX 10K Logic Element
	FLEX 10K Register Packing
	FLEX 10K Logic Array Block
	FLEX 10K FastTrack Interconnect
	FLEX 10K I/O Element
	ClockLock Feature
	ClockBoost Feature
	FLEX 10K Configuration
	Altera Architecture Evolution
	Appendix: FLEX 6000 Architecture
	Design Flow & Altera Tools
	FPGA/CPLD Design Flow
	Design Ideas
	Detailed Design
	Functional Simulation
	Design Implementation
	Timing Analysis & Simulation
	Device Programming
	Altera Design Flow
	MAX+PLUS IIAltera¡¦s Fully-Integrated Development System
	Design Entry
	MAX+PLUS II Design Entry
	Project Processing
	MAX+PLUS II Project Processing
	Project Verification
	MAX+PLUS II Project Verification
	Device Programming
	MAX+PLUS II Features
	Getting Started
	System Requirements
	Installing MAX+PLUS II
	Starting MAX+PLUS II
	Entering the Authorization Code
	MAX+PLUS II Menu
	File Menu
	Assign Menu
	Options Menu
	Help Menu
	MAX+PLUS II Help Contents
	Hierarchy Display
	Hierarchy Display Window
	Graphic Design Entry
	Graphic Design Entry Process
	Graphic Editor Window
	Pin/Node Naming
	Bus Naming
	Using Buffer Primitives - (1)
	Using Buffer Primitives - (2)
	How to Use System Functions?
	Entering Symbols
	Entering I/O Symbol
	Example: Multiplier
	Example: Multiplexer
	Example: RAM
	Example: Sequencer
	Example: Bidirectional Pin
	Example: Tri-State Buses - (1)
	Example: Tri-State Buses - (2)
	Example: Tri-State Buses - (3)
	AHDL Design Entry
	What¡¦s AHDL?
	AHDL Example - (1)
	AHDL Example - (2)
	AHDL Structure - (1)
	AHDL Structure - (2)
	AHDL Structure - (3)
	AHDL Structure - (4)
	AHDL Basic Elements - (1)
	AHDL Basic Elements - (2)
	AHDL Basic Elements - (3)
	AHDL Basic Elements - (4)
	AHDL Syntax - (1)
	AHDL Syntax - (2)
	AHDL Syntax - (3)
	AHDL Syntax - (4)
	AHDL Syntax - (5)
	AHDL Syntax - (6)
	AHDL Syntax - (7)
	AHDL Syntax - (8)
	AHDL Syntax - (9)
	AHDL Syntax - (10)
	AHDL Syntax - (11)
	AHDL Syntax - (12)
	AHDL Syntax - (13)
	AHDL Syntax - (14)
	AHDL Syntax - (15)
	AHDL Syntax - (16)
	AHDL Syntax - (17)
	AHDL Syntax - (18)
	AHDL Syntax - (19)
	AHDL Syntax - (20)
	AHDL Syntax - (21)
	AHDL Syntax - (22)
	AHDL Syntax - (23)
	AHDL Details
	MAX+PLUS II Text Editor
	AHDL Templates
	Inserting AHDL Template
	Using Syntax Coloring
	Text Editor with Syntax Coloring
	Creating Text Design Files
	Example: Decoder
	Example: Counter
	Example: Multiplier
	Example: Multiplexer
	Example: RAM
	Example: Tri-State Buses
	Example: Moore State Machine
	Example: Mealy State Machine
	Waveform Design Entry
	MAX+PLUS II Waveform Editor
	MAX+PLUS IIWaveform Design Environment
	File Menu
	Node Menu
	Edit Menu
	Creating a New Waveform File
	Setting Waveform Editor Options
	Entering Nodes
	Entering Nodes from SNF
	Editing Waveforms - (1)
	Editing Waveforms - (2)
	Saving & Checking the Design
	Waveform File Formats
	WDF Design Guidelines
	Example: Decoder
	Example: Counter
	Example: State Machine
	Design Implementation
	MAX+PLUS II Compiler Window
	Compiler Modules - (1)
	Compiler Modules - (2)
	Compiler Modules - (3)
	Compiler Modules - (4)
	Compiler Modules - (5)
	Compiler Modules - (6)
	Compiler Modules - (7)
	Compiler Modules - (8)
	Assign Menu
	Checking the Messages
	Help on Message
	Checking the Reports
	Viewing Report File
	Report File Equation Viewer
	Routing Statistics
	Floorplan Editor Utilities Menu
	Assigning Logic to Physical Resources
	Current Pin Assignment Floorplan
	Current LAB Assignment Floorplan
	Project Verification
	Project Verification Methodology
	Simulator Environment
	Simulation Input & Output Files
	Memory Initialization
	Initialize Memory Window
	Memory Initialization File Formats
	MIF File Format
	Notes for Compiling &Simulating RAM / ROM - (1)
	Notes for Compiling &Simulating RAM / ROM - (2)
	Node/Group Initialization
	Saving Initialization Values
	Creating Breakpoints
	Monitoring Options
	Timing Analysis Source & Destination
	Saving Timing Analysis Results
	Listing & Locating Delay Paths
	Listing & Locating Paths
	Recommended Verification Flow
	Device Programming
	Configuration File Sizes
	Altera Configuration EPROM Family
	Configuration EPROMBlock Diagram - (1)
	Configuration EPROMBlock Diagram - (2)
	Altera Programming Hardware
	Altera Stand-Alone Programmer
	Installing LP6 Card, MPU & Adapter
	BitBlaster Download Cable
	Installing BitBlaster
	ByteBlaster Download Cable
	Installing ByteBlaster
	BitBlaster & ByteBlasterPlug Connections
	FLEX Device Configuration Schemes
	MAX+PLUS II Programmer
	Device Programming Methodology
	Programmer Operations
	Starting Programming
	Functional Test on Device
	Converting or Combining Programming Files
	Configuring Multiple FLEX Devices
	Creating Multi-Device FLEX Chain
	Programming Multiple JTAG Devices
	Creating Multi-Device JTAG Chain
	Details about Device Programming
	Getting Help
	MAX+plus II Lab
	Lab 1 - myor8 I
	Lab 1 - myor8 II
	Lab 2 - Disbounce I
	Lab 2 - Disbounce II
	Lab 3 - 7segment
	Lab 4 - fib_top I
	Lab 4 - fib_top II
	Lab 4 - fib_top III
	Lab 4 - fib_top IV
	Lab 4 - fib_top V
	Lab 5 - Compile I
	Lab 5 - Compile II
	Lab 6 - Check Report File
	Lab 7 - Check Floorplan
	Lab 8 - Timing Simulation I
	Lab 8 - Timing Simulation II
	Lab 8 - Timing Simulation III
	Lab 9 - Timing Analysis I
	Lab 9 - Timing Analysis II
	Lab 10 - Programmer I
	Lab 10 - Programmer II
	Pin Assignment

