

3G Modem Chip Rate Processing Design

3G Mobile Infrastructure

BTS Functions in 3G Basestation

3G Chip Rate Design

- 3G Chip Rate Solutions Need to Hit Certain Objectives:
 - Performance (122.8+ MHz)
 - Density (32+ Users per Board)
 - Low Deployment Costs
- Some Companies Migrate from FPGAs to ASICs to Reduce Device Cost, But
 - Difficult to Keep up with Rapidly Evolving Standards
 - Total Cost of ASIC Solutions Not Taken into Account
 - Non-Recurring Engineering Fees (NREs)
 - Development Time
 - Revenue Impact
- Case Study Shows Stratix[™] & HardCopy[™] Devices Meet All Objectives

- Gold Codes Random Noise Codes
- Good Cross-Correlation Properties
- Good Auto-Correlation Properties
- Gold Code Correlator –
 Compares Received
 Samples from Users
 (Handsets) against Locally
 Generated Gold Codes

I²+Q² – Calculate Power (Magnitude) of Correlation Results

- Correlator Calculates
 Weighting Information for Receive Paths
- Information Is Used by Rake Fingers in Despreader

Peak Sort Logic – Selects Strongest Weights from Correlator

3G Chip-Rate Design Case Study in Stratix Devices

Case Study Assumptions

- System Parameters
 - 36 Users/Antenna
 - ~2 Mbps/Antenna
 - 8 Antennae
 - Oversampling: 2
 - Stratix PLD f_{MAX}: 138.24 MHz
- Correlator-Based Functions Consume Most Resources
 - Detailed Look at Following Functions
 - RACH Detection
 - Multipath Estimator

Key Stratix Features Used in BTS

Correlator Architecture

- Distributed Arithmetic
 - Based on Shift Register
 - Most Popular Architecture for Initial 3G Designs
- Two-Dimensional Correlator
 - Based on Block Memory

- Altera Has Done Extensive Research on Correlator Architecture
 - Two-Dimensional Correlator More Efficient for Typical BTS
 - Architecture Details & Comparisons
 - See Article Handout Available with Presentation
- Altera Correlator IP Used in This Case Study
 - Based on Two-Dimensional Correlator Architecture

Correlator Calculations
Correlator IP Parameters
Stratix Block Diagram
Implementation

Serial Correlators Required

Calculating # of Correlators Required

Serial Correlators

37,748,736

Time/Frame Required by 3GPP

10 ms

X

Correlator Clock Frequency

7.14 ns

Symbols in 3GPP Frame

150 (15*10)

Time to Calculate Correlation per Symbol

269.5 ms

Time Required per Symbol by 3GPP to Calculate Correlation

0.667 ms

Parallel Correlators
Required
(Speed up Factor)

4,040 (Round to 2ⁿ⁾

Multipath System Parameters

Multipath Implementation Parameters

Chip-Rate Resources Required

Function	LEs	DSP Blocks	Memory Bits
RACH Detector	15,700	.5*	1,634,000
Multipath Estimator	49,800	.5*	305,000
Despreader	1,800	-	168,000
Spreader	2,600	=	144,000

^{*}DSP Blocks Can be Used for Correlator Function

Stratix Performance Impact

- Achieved 138.24 MHz with Multipath Estimator
 - Significantly above 122.88 MHZ Requirement
- 138.24 MHz is 35% Improvement over APEX™ II
 - Fixed Number of Users
 - 35% Smaller Multipath Estimator
- Another Way to Look at Performance Impact
 - 35% Increase in Performance Leads to 35% More Users for Fixed Resource (i.e., 1S30)

3GPP Case Study

Related Stratix Reference Designs

- Direct Sequence Spread-Spectrum Reference Design
 - Targeted UMTS Specifications
 - 1 Antenna, 4 Users
 - Digital Downconverted/Upconverter
 - Chip-Rate Processing
- Multi-Channel Digital Downconverter Reference Design
 - Targeted UMTS Specifications
- QPSK Single-Channel Modern Reference Design
 - DSP Builder
 - Reed Solomon, Viterbi FEC

Chip Rate Processing Conclusion

- Stratix Devices Meet Objectives
 - ->= 122.88-MHz Performance (138.24 MHz)
 - >= 32 Users/Board (36)
 - Low Cost per User in Stratix (3 1S30 Devices)
 - HardCopy™ Devices Offer Further Cost Reduction
 - No Additional Development Engineering Involvement

Which is not included in Stratix Device?`

- 1. DSP Block
- 2. MegaRAM
- 3. PLL
- 4. ADC

