

Optimal Management of System Clock Networks

Introduction

- System Clock Management Is More Challenging
 - No Longer One Synchronous Clock per System or Card
 - Must Design Source-Synchronous or CDR Interfaces with Multiple Clock Domains
- Higher Clock Speeds Increase Importance of Timing & Jitter Analysis

Agenda

- Examine Communications Line Card Design Examples
 - Identify & Solve Clocking Challenges
- Examine System Clocking Schemes
- Jitter Discussion

Line Card Example

FPGA Takes on Central Interface Role

Line Card Example (Con't)

FPGA Takes on Central Interface Role

Stratix Clocking Solutions

- Stratix[™] Device Incorporates up to 48 Clock Trees
- Implement FIFOs with TriMatrix™ Memory

System Clock Schemes

- Source-Synchronous Interface
 - SFI-4 (SERDES-to-Framer Interface Level 4)
 - HyperTransport™ Technology
- Dynamic Phase Alignment (DPA)
 - SPI-4.2 (System Physical Interface Level 4.2)
- Clock-Data Recovery
 - XAUI (10 Gigabit Attachment Unit Interface)

Source-Synchronous Clocking

- Clock Signal Transmitted with Data
- Board Skew Reduces System Performance

Source-Synchronous Benefits

- Source-Synchronous Clocking EnablesData Transfer at High Speeds
 - Performance No Longer Limited by t_{CO},
 t_{PD} & t_{SU}
 - Maximum Performance Factors
 - Edge Rate of Driver
 - Skew between Data Signals & Clock Signals

Source-Synchronous Drawbacks

- Every Chip-to-Chip Data Transfer Introduces New Clock Domain
 - Receiver Must Manage Multiple Clock Domains
- Performance Affected by Board Skew
 - Skew Reduction Complicates Board Design

Source-Synchronous Interfaces

Transmission Line Type	Channel Data Rate	Clock
HyperTransport	1.6 Gbps	800 MHz
SFI-4	622 - 700+ MBPS	622 - 700+ MHz
SPI-4	622 - 832 MBPS	311 - 416 MHz
RapidIO	2.0 Gbps	1.0 GHz

Need for DPA

- In Clock-Forwarding System, Clock-Data Skew Reduces Performance
- SPI-4.2
 - Sample Timing Budget Allocates 150 ps for Skew: ~1 Inch.
 - Meeting Skew Spec May Require Vias
 - Connector Adds More Skew

Dynamic Phase Alignment

- Receiver Self-Corrects for System Skew
 - Individual Adjustment for Each Channel
- May Align At Power-Up or Continuously
- Two Basic Approaches
 - Vary Delay of Data into Capture Register
 - Vary Delay/Phase of Clock Driving Capture Register
- Varying Clock Phase Is Best to Avoid PVT Effects

Stratix GX Solution

- DPA Implemented In Hard Circuitry
- Truly Dynamically Adjustable

Fast PLL Outputs 8 Phases of Data-Rate Clock

Dynamic Phase Selector Chooses Appropriate Phase Based on Input Data

DPA Applications

- SPI 4.2 Specification Includes DPA Option
- Other Source-Synchronous Interfaces Can Benefit
 - HyperTransport
 - RapidIO
 - Proprietary

Clock Data Recovery (CDR)

Reference Clock Is Used

Trace Lengths Need Not Match

Each Source & Destination May Have Individual

Clock

Stratix GX CDR Implementation

- Clock Encoded into Data Stream
- PLL Recovers Clock from Data Transitions

Implements All Blocks Needed for XAUI PHY

CDR Benefits

- Receiver Recovers Individual Clocks from Each Incoming Data Channel
 - Each Channel Can Have Phase Variation
- Transmitters Can Operate on Multiple Crystals
 - Each Channel Can Have Limited Frequency Variation

CDR Drawbacks

- Encoding Schemes Used to Ensure Maximum Run Length
 - Transitions Required for Clock Recovery
 - Some Data Channel Bandwidth Used to Encode the Data
 - 3.125-Gbit Bandwidth Used for 2.50-Gbit Data
- Data Buffering Required to Accommodate Frequency Variation
- Channel-to-Channel Alignment Logic Required

CDR Application: XAUI

- 10 Gigabit Attachment Unit Interface (XAUI)
- IEEE Specification 802.3
- Versatile Standard:
 - Chip-to-Chip via PCB
 - Board-to-Board via Backplane

XAUI Implementation

Blue Boxes Ideally Implemented in Hard Logic in FPGA for Maximum Performance

PLL Jitter Characteristics

Jitter Classes

- Random
 - Probabilistic Timing Variations
 - Caused by Random Thermal Effects
- Deterministic
 - Repeatable Timing Variations
 - Caused by Specific Issues
 - Signal Modulation, Crosstalk

Total Jitter = Random + Deterministic

Jitter Transfer Definition

- Input Jitter May Be Reduced or Amplified
- Transfer Curve Shows Performance
 - > 0 dB: Amplification
 - < 0 dB: Reduction</p>
- Deterministic & Random Jitter Transfer May Be Different

Deterministic Jitter Transfer

- PLL Can Reduce Deterministic Jitter
- Delay-Locked Loop (DLL) Amplifies Deterministic Jitter

Random Jitter Transfer

PLL Reduces Random Jitter

PLL Input Clock

PLL Output Clock

Jitter Summary

- Jitter Limits System Performance
- Use PLL To Reduce Jitter & Enhance System Timing Margin

Summary

- Advanced Systems Present Difficult Clock-Management Challenges
- Use Source-Synchronous, DPA, or CDR
 Interfaces to Achieve High-System Data Rates
- Consider Jitter Effect On System

