Interfacing FPGAs with High Speed Memory Devices #### **Agenda** - Memory Requirements - Memory System Bandwidth - Do I Need External Memory? - Altera[®] External Memory Interface Support - Memory Interface Challenges - Memory Interface Solutions - DRAM - Single Data Rate (SDR), Double Data Rate (DDR), DDRII - FCRAM, RLDRAM - SRAM - Quad Data Rate (QDR)/QDRII SRAM - Zero Bus Turnaround (ZBT)/NoBL SRAM - Signal Timing & Board Design #### **Memory Requirements** #### **Memory System Bandwidth** | Data
Flow | Applications (| Link Rate (Gbps) Read/Write Memory Bandwidth (Gbps) | | Memory
Access | Memory Banks Required | | | |--------------|----------------|--|------------------------|----------------------------|-------------------------|-------------------------|---| | | | | Overhead
40% (Gbps) | DDR
400
SDRAM
x72 | DDR 533
SDRAM
x72 | DDR 533
SDRAM
x72 | | | Simplex | 1G Ethernet | 1.25 | 2.5 | 3.5 | 1 | 1 | 1 | | | 10G Ethernet | 10 | 20 | 2.8 | 2 | 1 | 1 | | | 40G Ethernet | 40 | 80 | 112 | 2 | 1 | 1 | | Duplex | 1G Ethernet | 1.25 | 5 | 7 | 1 | 1 | 1 | | | 10G Ethernet | 10 | 40 | 56 | 3 | 2 | 2 | | | 40G Ethernet | 40 | 160 | 224 | 9 | 7 | 7 | **Memory** #### **Do I Need External Memory?** - Most FPGA Architectures Now Include On-Chip Blocks of SRAM - Fine-Grain (< 1Kb) & Coarse-Grain (> 500Kb) - Densities up to 10Mb - 300+ MHz Performance without Off-Chip Latency - Flexible Depth, Width, & Number - Abundant Routing between Logic & Memory - No off-Chip I/O Placement or Routing Issues | Altera FPGA | Max. Memory Bits | |-------------|------------------| | Stratix™ | 10,118,016 | | Stratix GX | 3,423,744 | | Cyclone™ | 294,912 | #### **FPGAs & External Memory** - Interface to External Memory When Internal FPGA Memory Capacity is Insufficient - FPGA Includes Enhanced I/O Circuitry to Maximize Data Access Performance - Off-the-Shelf, Customizable Controllers Minimize Development Time | Memory Technology | Clock Speed in FPGA | I/O Type | |-------------------------------|---------------------|------------------| | SDR SDRAM (1) | 167 MHz | LVTTL (3.3V) | | DDR SDRAM | 167 MHz | SSTL-2 (2.5V) | | DDR Fast Cycle RAM (FCRAM) | 200 MHz | SSTL-2 (2.5V) | | Reduced Latency DRAM (RLDRAM) | 200 MHz | HSTL (1.8V/1.5V) | | QDR SRAM (2) | 167 MHz | HSTL (1.5V) | | QDRII SRAM | 167 MHz | HSTL (1.5V) | | ZBT (NoBL) SRAM (3) | 200 MHz | LVTTL (3.3V) | (3) Zero Bus Turnaround; No Bus Latency ⁽¹⁾ Synchronous Dynamic Random Access Memory ⁽²⁾ Static Random Access Memory #### **Altera Memory Controller IP** **Memory Module or Device** - Altera Memory Controller MegaCore[®] Functions - Low-Cost, Drop-In Blocks of IP - Hardware-Tested on Internal Test Platform - Fully Supported - Altera Megafunction Partner Program (AMPP) Functions - Fully Customizable through Design Services - Altera® Memory Controller Design Examples - -Free, Open Source ### Memory Interface Solutions #### **SDRAM Overview** | Feature | Description | |-----------------------------|--| | Туре | SDR & DDR/DDRII SDRAM (Commodity) | | | FCRAM & RLDRAM (Low-Latency) | | Clocking | All (Except SDR SDRAM) Require Clocking on Both
Edges of Differential Clock | | Refresh | Requires Periodic Refresh Command to Maintain Contents | | Bank
Management | Memory Is Divided Into Multiple Banks that Require
Manual Opening & Closing | | Initialization | ■ Initialization Command Sequence Required on Power-Up | | Data Strobe
(DQS) Signal | All (Except SDR SDRAM) Use a DQS Signal to Sample
Set of Data Signals | | | DDR SDRAM & FCRAM Use Bi-Directional DQS; RLDRAM Uses DQS for Reads Only | | | RLDRAM Uses Differential DQS | #### **SDRAM Interfacing Requirements** | Issue | FPGA Solution | |---|---| | High-Speed Operation (133/167/200+ MHz) | Current Generation FPGA Supports 167+ MHz Core & I/O Speeds Next Generation Supports 250+ MHz | | DDR Data Generation | Dedicated DDR Registers in I/O Element
(IOE) Eliminate Need for Clock
Doubling of High-Speed Internal Clocks | | Data Strobe (DQS) Signal Alignment | Dedicated Strobe Signal Circuitry for Precise
Alignment Phase Shifting Supports Data Window of Both
DDR SDRAM & FCRAM | | Differential DQS
Signals (RLDRAM) | Use Dedicated I/O Circuitry for DQS & Tie DQSn to VREF through Resistor Can Also Use Standard I/O Signals, Which Support Differential HSTL I/O & Delay Signal on Board | #### **DDR Support in I/O Element** DDR Data Generation without Doubled Clock ATTRA. ## Enhanced Data & Data Strobe Signal Interaction - Optimized Data Strobe (DQS) Pins - Self-Compensated Delay Chain Generates Shift on Data Read - 90 Degrees for DDR SDRAM, 72 Degrees for FCRAM - Drive Associated Data (DQ) Pins - Uses Balanced, Local Clock Network #### **SDRAM Requirements (Cont.)** | Issue | FPGA Solution | |---|--| | Refresh, Initialization & Bank Management | Complex State Machine Logic Handled by
Drop-In IP Cores with SRAM-like Local
Interfaces | | I/O Standards | Multiple I/O Standards Supported by I/O Elements Selectable by I/O Bank | | Difficulty of Board
Design | Board Design Guidelines Based on
Hardware Proven Solutions | | | On-Chip Termination in FPGA Removes
Need for Many External Resistors | ### SDRAM Interfaces in Altera FPGAs | Interfaces | Stratix | Stratix GX | Cyclone | |---|---------------------------------|---------------------------------|--------------------------------| | f _{MAX} for SDRAM
I/F | 167 MHz (200
MHz in –5) | 167 MHz (200
MHz in –5) | 133 MHz | | Dedicated DDR
Registers | Yes | Yes | No | | Dedicated
Strobe Signal
Circuitry | Yes (Up to 160
Data Signals) | Yes (Up to 160
Data Signals) | Yes (Up to 40
Data Signals) | | On-Chip
Termination | Yes | Yes | No | #### **SDRAM Controller IP** | Memory | Device Support | Type | Availability | |----------------|---------------------------------|--|--------------| | SDR
SDRAM | Stratix, Stratix
GX, Cyclone | Free Design
Example | Now | | DDR
SDRAM | Stratix, Stratix
GX, Cyclone | MegaCore [®] & AMPP [™] IP | Now | | DDRII | Next Generation | MegaCore IP | 2003 | | FCRAM
(DDR) | Stratix, Stratix GX | MegaCore & AMPP IP | Now | | RLDRAM | Stratix, Stratix GX | MegaCore | Q1 2003 | ### High-Performance SRAM Overview | Feature | Description | |---------------|--| | Туре | ZBT/NoBL for Higher Utilization of Shared Data Bus QDR/QDRII for High-Performance DDR Access on
Dedicated Read & Write Data Buses | | Clocking | Single-Edge for ZBT, Both Edges for QDR/QDRII | | Control Logic | Much Simpler than SDRAM | ### **SRAM Interfacing Requirements** | Issue | FPGA Solution | |--|--| | High-Speed Operation (200 MHz) | Current Generation FPGA Supports 200 MHz I/O and HSTL Signaling Next Generation Supports 300+ MHz | | DDR Data Generation (QDR/QDRII) | Dedicated DDR Registers in I/O Element Allows
DDR Transfers without Requiring Clock
Doubling | | Bus Contention
(ZBT/NoBL) | ■ Dedicated ZBT Circuitry for Increasing t _{ZX} to Avoid Contention on Read-to-Write Transition | | Tight t _{co} & t _{su} Specifications | ■ Internal Phase-Locked Loops (PLLs) Enable Fast t _{CO} & t _{SU} Clock Shifting Feature Permits Accurate Data Capture on Reads | | Clock Generation | ■ PLL Generates Differential HSTL Clock for Memory Device | #### **ZBT Support in I/O Element** Increase t_{7x} to Avoid Bus Contention #### **SRAM Interfaces in Altera FPGAs** | Interface | Stratix | Stratix GX | |--|---------|------------| | f _{MAX} for SRAM Interface | 200 MHz | 200 MHz | | Dedicated DDR Registers | Yes | Yes | | Dedicated ZBT Circuitry | Yes | Yes | | HSTL I/O Support (Class I & II) | Yes | Yes | | PLLs (for Clock Management & Generation) | 6-12 | 4-8 | #### **SRAM Controller IP** | Memory | Device Support | Type | Availability | |----------|---------------------|------------------------|--------------| | QDR | Stratix, Stratix GX | Free Design
Example | Now | | QDRII | Stratix, Stratix GX | Free Design
Example | Now | | ZBT/NoBL | Stratix, Stratix GX | Free Design
Example | Now | ## Signal Timing & Board Design #### **Board Timing Issues** | Issue | FPGA Resolution | |--|---| | Clock Generation | Use FPGA PLLs to Generate & Distribute Clocks for Greater Control & Simplified Routing | | Clock Skew | Use External Feedback Mode of PLLs to Synchronize Source & Destination Clocks | | t _{CO} , t _{SU} , t _H Violations | Use PLLs to Shift Clock Edges inside FPGA | | t _{ZX} , t _{XZ} Violations (Bus
Contention) | Use Dedicated ZBT Circuitry to Delay t _{zx} of FPGA | | DQS Signal Alignment | Match DQS & DQ Trace Lengths, Then Use Dedicated DQS Delay Circuitry to Provide Appropriate DQS Phase Shift | Altera® Always Recommends Performing Board Timing Analysis for High-Speed Memory Interface Designs #### **Decoupling Guidelines** - Improve Signal Integrity through Decoupling Capacitors - Recommend Using 0.1 & 0.01 µF Capacitors per Power Pin on Low Pin Count Devices - Faster Edge Rates (>100 MHz) May Require 0.001 μF As Well - For High Pin Count Devices, Can Alternate between 0.1 μF & 0.01 μF on Adjacent Power Pins - Hardware Tested on Altera® Internal Memory Test Board - Larger Benefit than Placing Capacitors Farther from Pin #### Other Board Design Guidelines Ensure FPGA I/O Meets JEDEC Spec of 1v/ns with Class 1 & Class 2 Loads for Optimal Signal Integrity Altera FPGAs are Compliant Impedance & Termination Match Lengths Where Possible At a Minimum, Match Address/Control As One Group, Data As Another Match I/O Termination with Trace Impedance Follow Memory Vendor's Guidelines Use On-Chip Termination (TerminatorTM Technology) **External Termination** **Terminator Technology** #### **DIMM Design Guidelines** - Dual In-line Memory Modules (DIMMs) Available For: - SDR & DDR SDRAM - RLDRAM - Ensure FPGA Can Drive Large Capacitive Loads - Altera FPGAs Can Drive Up to 25 pF - Ensure FPGA Can Support 72-Bit Wide DDR I/O Per DIMM - Stratix & Stratix GX Devices Can Support Two 72-Bit DIMMs with Dedicated DDR Circuitry - Can Support Additional DIMMs, But May Require Lower Frequency or Careful Board Design #### For More Information - Visit http://www.altera.com - Intellectual Property - OpenCore® Evaluation Downloads for All Memory Controller IP - Downloads for Memory Controller Free Design Examples - Detailed Test Board Documentation Available on Request #### Literature - AN 212: Implementing Double Data Rate I/O Signaling in Stratix Devices - AN 209: Using Terminator Technology in Stratix Devices - AN 256: Implementing Double Data Rate I/O Signaling in Cyclone Devices