

PowerGauge with ModelSim

Agenda

- Power Estimation in Altera PLD
- PowerGauge[™] Power Analysis in Quartus[®] II Software
- Quartus[™] II Software/ ModelSim Overview
- Simulating with ModelSim
 - Timing Simulation
- Calculate Power in Quartus II Software

Power Estimation in Altera PLD

Web-Based Power Calculator

- Easy to Use with Click
- Need to Input Value from Report After Compilation In Quartus II
- Support APEX 20KE/C & APEX™ II & Mercury™ Devices (Supporting Stratix™ Devices Soon)

Quartus II Power Calculator

- 1. Must Make Vector
 Wave Form File (*.vwf)
 for Using PowerGauge in
 Quartus II Software
- 2. More Accurate than Web Based Power Calculator
- 3. Support APEX Family
 & Mercury Devices
 (Supporting Stratix
 Devices in Next Version)

PowerGauge in Quartus II

PowerGauge Analysis Software

- Estimates Power Consumption Based on Toggle Rate
 - Toggle Rate Derived from User Generated Simulation Vectors
 - Use Quartus II Simulator
- Provides Support For Multiple I/O Standards
- Supports APEX 20KE & Mercury Families
- Modelsim Can Output .Pwf File That Can Be Read by the Quartus II Simulator

Project >EDA Tool Settings
>Modelsim Settings
Generate Power Input File

Power Analysis in Quartus II

Quartus II/ ModelSim Overview

Basic Simulation Steps

- 1 ⇒ Change Directory
- 2 ⇒ Create Library(s)
- **3** ⇒ Map Library to Physical Directory
- **4** ⇒ Compile Source Code
 - All HDL Code Must Be Compiled
 - Different for Verilog & VHDL
- **5** ⇒ Load Design
- 6 ⇒ Start Simulator

1 ⇒ Change Directory

- UI) From within Main Window:
 File -> Change Directory
- Cmd) From within Main, transcript window:

 ModelSim> cd <drive>:/<directory name>

2 ⇒ Creating ModelSim Library(s)

UI) From within Main Window:

Design -> Create a New Library

Cmd) from within Main, transcript window:

ModelSim> vlib < library name>

3 ⇒ Map Logical Library Name(s)

Syntax: vmap <logical_name> <directory_path>

UI) From within Main Window:

Design -> Browse Libraries

Design -> Create a New Library

Cmd) From within Main, Transcript Window:

ModelSim> vmap my_work c:\my_design\my_lib

Mapping Existing Libraries (UI)

-> vmap lpm_sim c:\QuartusII\library\lpm

Mapping Existing Libraries (UI)

Select A New Library & A Logical Mapping to It & Type Library Name

This Command Creates Library Subdirectory in Local Directory & Then Sets Mapping for It

- -> vlib my_lib
- -> vmap my_lib my_lib

Mapping Libraries (UI)

Use Add Button to Create New Library & Map

4 ⇒ Compile Source Code (VHDL)

- UI) Design -> Compile
- Cmd) vcom -work <library_name> <file1>.vhd <file2>.vhd
 - Files Are Compiled in Order They Appear
 - Compilation Order/Dependencies (Next Slide)
- '87 VHDL is default
 - UI) Use Default Options button to set '93
 - Cmd) Use -93 Option (Must Be First Argument)
- Default Compiles into Library Work
 - Ex. Vcom -93 my_design.vhd

Note: Design Units Must Be Re-Analyzed When Design Units They Reference Are Changed in Library.

4 Compile Source Code (Verilog)

- UI) Design -> Compile
- Cmd) vlog -work <library_name> <file1>.v <file2>.v
 - Files Are Compiled In Order They Appear
 - Order Of Files or Compilation Does Not Matter
- Supports Incremental Compilation
- Default Compiles Into Library Work
 - Ex. vlog my_design.v

Note: Design Units Must Be Re-Analyzed When Design Units They Reference Are Changed in Library.

Compile (UI)

5 ⇒ Load Design

- UI) Design -> Load New Design
- COM) vsim <top_level_design_unit>
- VHDL
 - vsim top_entity top_architecture
 - Simulates Entity/Architecture Pair
 - Can Also Choose A Configuration
- Verilog
 - vsim top_level1 top_level2
 - Simulates Multiple Top Level Modules

Load Design (UI)

6 ⇒ Start Simulator

- UI) Run
- COM) run <time_step> <time_units>
- Advances Simulator Amount of Timesteps Specified

Start Simulator (UI)

Choose Number of Timesteps to Advance Simulator

Restart - Reloads Any
Design Elements that
Have Been Edited &
Resets Simulation Time to
Zero
COM) restart

SOPC WORLD 2 0 0 2

Simulating with Model Sim Timing Simulation

Typical PLD Flow

Timing Simulation Files

- Compile Design in Quartus II to Produce Output Files
- Output Simulation Files from Quartus II
 - VO Verilog Output File (ATOM)
 - VHO VHDL Output File (ATOM)
 - SDO Standard Delay Format (SDF) Output File
 - Annotates the delay for the elements in the output files

Performing Timing Simulation

- 1) EDA Tool Settings to Model Sim Verilog or VHDL
- 2) Compile Design In Quartus II to Produce Output Files
- 3) Create Testbench / Stimulus
 - Can Use Stimulus from RTL Simulation
- 4) Perform Basic Simulation Steps
 - Compile Quartus II Output File
 - Map To ATOM Libraries
 - Include SDO (Output SDF File) When Loading Design

Before Compilation

Project Menu -> EDA Tool Settings

R Guartus - C. Newaurier (Califices)

Edit View Insert Project Processing Tools Window Help

NativeLink

Automatically Starts Model Sim & Compiles the Quartus II Output File after Compilation Is Finished

EDA Tool Settings

use on this project.

Design entry/synthesis

Tool name

<None>

<NONE>

<NONE>

<NONE>

<NONE>

Simulation.

Run this tool automatically after compilation

EDA tools

Tool type

Simulation Timing analysis

Board-level

Resynthesis

Tool type: Tool name:

Tool settings

Formal verification

PowerGauge Options for ModelSim

Turn on Generate Power Input File (*.pwr) option

Libraries for Timing Simulation

- ModelSim Altera OEM
 - Must use Pre-compiled libraries
 Modeltech_ae\altera\vhdl
- ModelSim SE/PE
 - ATOM libraries were located at Quartus\eda\sim_lib
 - Ex) For APEX20KE

Verilog: apex20ke_atoms.v

VHDL: apex20ke_atoms.vhd &

SDF Annotation

Calculate Power in Quartus II

Open Power Input File

Running Simulation with PWF

Select Run Simulation from Processing Menu

Power Report in Quartus II

