


© 2002

Techniques of 
Maximizing FPGA 
Design Performance

Techniques of 
Maximizing FPGA 
Design Performance



Hierarchical Block-Based DesignHierarchical Block-Based Design
As FPGA Designs Become Larger, New 
Techniques Needed to Reduce Design 
Cycle Time
Hierarchical Block-Based Design Flow 
Referred to as LogicLock™ Design Flow
− Facilitates Team-Based Design
− Allows Easier Module Reuse
− Used for Incremental Recompiles



DesignDesign

Design FlowsDesign Flows
Old Design Flow

Optimize & LockOptimize & Lock
Each ModuleEach Module

LogicLock Design Flow

OptimizeOptimize

IntegrateIntegrate

VerifyVerify

IntegrateIntegrate

Optimize & VerifyOptimize & Verify
SystemSystem



LogicLock Design FlowLogicLock Design Flow

Partition Design

Synthesize Modules

Optimize Modules

Partition Design

Synthesize Modules

Optimize Modules

Integrate ModulesIntegrate Modules



LogicLock Design FlowLogicLock Design Flow

Partition Design

Synthesize Modules

Optimize Modules

Integrate Modules



Design PartitioningDesign Partitioning
Need to Partition 
Design into 
Modules
For Optimal 
Results, Designs 
Must Be Partitioned 
Correctly
Should Be Done 
Early in Design 
Cycle

F

Top

A

B

C
D

E

G



Defining PartitionsDefining Partitions
Start with Design Block Diagram
Maintain Offchip I/O Interface Modules
Identify Different Clock Domains
Divide Based on Functionality

A
G

B
E

D



Defining PartitionsDefining Partitions
If Using Team-Based Design, Divide by 
Engineer
− Generally Corresponds to Functionality

Balance Size of Partitions
− To Ensure that Small Modules Are Optimized 

with Other Modules
− Requires Estimating Size of Modules 

Designer’s Expertise
Previous Similar Designs Done by Engineer
Calculations on Functional Data



Partition BoundariesPartition Boundaries
Register Input & Output Boundaries
− May Be Larger Routing Delay Between 

Partitions Depending on Location on FPGA
− Register-to-Register Paths with Large Routing 

& Combinatorial Delay Will Hurt fMAX



Partition BoundariesPartition Boundaries
Minimize the Data Path between Modules
− Clearly Define Data Path & Distribution of 

Common Data 
− Best to Have Partitions after Contracting vs. 

Expanding Math Functions



Partition BoundariesPartition Boundaries
Resources with Flexible Locations Should 
Be At Partition Edges
− DSP Blocks or RAM Blocks Often Have Fixed 

Locations & Are Less Flexible
− Flexible Resources (Logic Elements) Can 

Reduce Routing Delay as They Can Be Placed 
at Physical Edge of Partition If Necessary



Initial FloorplanningInitial Floorplanning
Designers Can Perform 
Initial Floorplanning Based 
on Partition Estimates

F

Top

A

B

C
D

E

G



LogicLock Design FlowLogicLock Design Flow

Partition Design

Optimize Modules

Integrate Modules

Synthesize Modules



Synthesize Modules Synthesize Modules 
Each Partition Will Have Separate Atom
Netlist (EDF or VQM file)
− Atom Netlist Defines Logic in Terms of FPGA 

Primitives
Can Choose to Have Separate Synthesis 
Projects for Partitions or Use LogicLock
Flow Developed by Major Synthesis Tools



Synthesize ModulesSynthesize Modules
Top

A

B
C

D

E F

G

F

Top

A

B

C
D

E

G

Top.vqm

A.vqm

B.vqm

E.vqm

G.vqm

D.vqm



Synthesis ToolsSynthesis Tools
LeonardoSpectrum™ Tool
− Initial Project Can Be Split into Separate EDIF Files
− TCL Flow for Incremental Changes

Synplify®

− MultiPoint difference-based incremental 
synthesis produces separate VQM files

FPGA Compiler II
− BLIS Flow Splits Initial Projects & Regenerates EDIF 

Files for Incremental File Changes
Quartus® II
− Separate Projects for Each Partition to Generate VQM 

Files



Preserving ChangesPreserving Changes
Whole Design Characterized Somewhere 
in Atom Netlist
− Preserves Nodes & Node Names

Can Generate a Quartus II VQM File to 
Preserve Changes
− If Altera Megafunctions Used

Megafunctions Only Synthesized in Quartus II
− If Quartus II Netlist Optimization Options Used



LogicLock Design FlowLogicLock Design Flow

Partition Design

Integrate Modules

Synthesize Modules

Optimize Modules



Optimize Independent ModulesOptimize Independent Modules
Use the Quartus II Software to Optimize Each Module 
Independently
Quartus II Has Virtual I/O Feature to Allowing Accurate 
Timing Analysis

IN

OUT

OUT

IN



Optimize Independent ModulesOptimize Independent Modules
Create Separate Quartus II Projects for 
Each Module
Perform Design Analysis
− Quartus II Timing Analysis
− New Timing Closure Floorplan

Optimize If Necessary



Design AnalysisDesign Analysis
Timing Closure
Floorplan Provides 
Number of Features 
for Graphical Analysis
− Viewing Critical Paths
− Connectivity between 

Modules
− Physical Delay 

Estimates
Closely Integrated 
with Static Timing 
Analysis Results



Optimization MethodsOptimization Methods
Optimize Design If Necessary Using
Quartus II Options
All Optimization Methods Available for 
Lower-Level Modules
− Netlist Optimizations

Options to Optimize Design after Synthesis & 
before Place & Route
Can Be Used Regardless of Synthesis Tool

− LogicLock Assignments
− Location Assignments



Module Placement PreservationModule Placement Preservation
Lock Down Placement of Module Using LogicLock
Regions
Performance Preserved in Top Level Design
Design Information Stored 
in Atom Netlist
− VQM or EDIF File

Placement Information Stored 
in Quartus II Constraint File
− ESF File



LogicLock RegionLogicLock Region
Contiguous, Rectangular Block of Device Resources
Design Nodes or Entities Assigned to LogicLock Regions
LogicLock Regions
− Can Be Hierarchical
− Do Not Have to Have 

Fixed Size or Location
− Can Maintain Relative 

Placement of Nodes 
within Them



LogicLock Design FlowLogicLock Design Flow

Partition Design

Synthesize Modules

Optimize Modules

Integrate Modules



Integrate ModulesIntegrate Modules
Import Each Module 
into Top Level
Requires Files for 
Each Module
− Atom Netlist (EDIF or 

VQM)
− Placement Constraint 

File (ESF File)
F

Top

A

B

C
D

E

G

A.vqm
A.esf
B.vqm
B.esf

D.vqm
D.esf

E.vqm
E.esf

G.vqm
G.esf

Top.vqm



Integrate ModulesIntegrate Modules
Performance of Each Module Preserved because 
Relative Locations of Nodes Maintained



SummarySummary
Hierarchical Block-Based Design Effective 
Technique to Reduce Design Cycle Time
LogicLock Design Flow Allows Method to 
Preserve Performance of Design Modules


