

Techniques of Maximizing FPGA Design Performance

Hierarchical Block-Based Design

- As FPGA Designs Become Larger, New Techniques Needed to Reduce Design Cycle Time
- Hierarchical Block-Based Design Flow Referred to as LogicLock[™] Design Flow
 - Facilitates Team-Based Design
 - Allows Easier Module Reuse
 - Used for Incremental Recompiles

Design Flows

Old Design Flow

Design Integrate **Optimize** Verify

LogicLock Design Flow

LogicLock Design Flow

Partition Design

Synthesize Modules

Optimize Modules

Integrate Modules

LogicLock Design Flow

Partition Design

Synthesize Modules

Optimize Modules

Integrate Modules

Design Partitioning

- Need to Partition Design into Modules
- For Optimal Results, Designs Must Be Partitioned Correctly
- Should Be Done Early in Design Cycle

Defining Partitions

- Start with Design Block Diagram
- Maintain Offchip I/O Interface Modules
- Identify Different Clock Domains
- Divide Based on Functionality

Defining Partitions

- If Using Team-Based Design, Divide by Engineer
 - Generally Corresponds to Functionality
- Balance Size of Partitions
 - To Ensure that Small Modules Are Optimized with Other Modules
 - Requires Estimating Size of Modules
 - Designer's Expertise
 - Previous Similar Designs Done by Engineer
 - Calculations on Functional Data

Partition Boundaries

- Register Input & Output Boundaries
 - May Be Larger Routing Delay Between
 Partitions Depending on Location on FPGA
 - Register-to-Register Paths with Large Routing
 & Combinatorial Delay Will Hurt f_{MAX}

Partition Boundaries

- Minimize the Data Path between Modules
 - Clearly Define Data Path & Distribution of Common Data
 - Best to Have Partitions after Contracting vs.
 Expanding Math Functions

Partition Boundaries

- Resources with Flexible Locations Should Be At Partition Edges
 - DSP Blocks or RAM Blocks Often Have Fixed Locations & Are Less Flexible
 - Flexible Resources (Logic Elements) Can
 Reduce Routing Delay as They Can Be Placed
 at Physical Edge of Partition If Necessary

Initial Floorplanning

Designers Can Perform
 Initial Floorplanning Based
 on Partition Estimates

LogicLock Design Flow

Synthesize Modules

- Each Partition Will Have Separate Atom Netlist (EDF or VQM file)
 - Atom Netlist Defines Logic in Terms of FPGA
 Primitives
- Can Choose to Have Separate Synthesis Projects for Partitions or Use LogicLock Flow Developed by Major Synthesis Tools

Synthesize Modules

Synthesis Tools

- LeonardoSpectrum™ Tool
 - Initial Project Can Be Split into Separate EDIF Files
 - TCL Flow for Incremental Changes
- Synplify®
 - MultiPoint difference-based incremental synthesis produces separate VQM files
- FPGA Compiler II
 - BLIS Flow Splits Initial Projects & Regenerates EDIF Files for Incremental File Changes
- Quartus[®] II
 - Separate Projects for Each Partition to Generate VQM Files

Preserving Changes

- Whole Design Characterized Somewhere in Atom Netlist
 - Preserves Nodes & Node Names
- Can Generate a Quartus II VQM File to Preserve Changes
 - If Altera Megafunctions Used
 - Megafunctions Only Synthesized in Quartus II
 - If Quartus II Netlist Optimization Options Used

LogicLock Design Flow

Optimize Independent Modules

- Use the Quartus II Software to Optimize Each Module Independently
- Quartus II Has Virtual I/O Feature to Allowing Accurate Timing Analysis

Optimize Independent Modules

- Create Separate Quartus II Projects for Each Module
- Perform Design Analysis
 - Quartus II Timing Analysis
 - New Timing Closure Floorplan
- Optimize If Necessary

Design Analysis

- Timing Closure
 Floorplan Provides
 Number of Features
 for Graphical Analysis
 - Viewing Critical Paths
 - Connectivity between Modules
 - Physical Delay Estimates
- Closely Integrated with Static Timing Analysis Results

Optimization Methods

- Optimize Design If Necessary Using Quartus II Options
- All Optimization Methods Available for Lower-Level Modules
 - Netlist Optimizations
 - Options to Optimize Design after Synthesis & before Place & Route
 - Can Be Used Regardless of Synthesis Tool
 - LogicLock Assignments
 - Location Assignments

Module Placement Preservation

- Lock Down Placement of Module Using LogicLock Regions
- Performance Preserved in Top Level Design
- Design Information Stored in Atom Netlist
 - VQM or EDIF File
- Placement Information Stored in Quartus II Constraint File
 - ESF File

LogicLock Region

- Contiguous, Rectangular Block of Device Resources
- Design Nodes or Entities Assigned to LogicLock Regions
- LogicLock Regions
 - Can Be Hierarchical
 - Do Not Have to Have Fixed Size or Location
 - Can Maintain Relative
 Placement of Nodes
 within Them

LogicLock Design Flow

Integrate Modules

- Import Each Module into Top Level
- Requires Files for Each Module
 - Atom Netlist (EDIF or VQM)
 - Placement Constraint
 File (ESF File)

Integrate Modules

Performance of Each Module Preserved because Relative Locations of Nodes Maintained

Summary

- Hierarchical Block-Based Design Effective Technique to Reduce Design Cycle Time
- LogicLock Design Flow Allows Method to Preserve Performance of Design Modules

