

How to Implement Digital IF

2002. 11. 6
School of Electronic Engineering
Advanced Wireless Communication Systems Lab.
Won Cheol Lee

Contents

- Background
- SDR for beyond 3G
- What is Digital IF?
- ADC & DAC Technology for Digital IF
- Filtering Technology for Digital IF
- Digital IF based Channelization
- Conclusion

SDR for Beyond 3G

Evolution of Wireless Comm. Systems

Definition of SDR Technology

"The process of managing complexity whilst maximizing flexibility by using the techniques of non real time software engineering in hard real time domain."

Core Technologies for SDR (cont.)

Core Technologies for SDR

Functionalities for SDR-based Handset

Digital Hardware Resources for SDR

"More sophisticated signal processing algorithms must be employed to increase throughput over limited frequency resource"

Generic Structure of SDR Platform

Enhancement of Radio Access by SDR

SDR-based Multimode BS and Handset

ATTERA.

What is Digital IF?

Blocker Rejection and Digital AGC

Analog Processing

Digital Processing

RF Input

Analog SAW filter output

Analog AGC output

Digital filter output

Digital AGC output

Open Digital IF Architecture for BS

Evolution of Digital RF/IF Technique

Advantages of Digital IF

- More digital components in Analog Front End
- More digitally tunable components
- More strong to adjacent co-channel interference
- Easy to adapt sophisticated digital signal processing in IF
 (eg., Adaptive pre-distorter, IF bandpass filtering, etc)
- Easy to upgrade by software to fit released spec.
- More robust to aging problem
- Cost effective by reducing analog components

Components for implementing Digital IF

Analog IF	Digital IF		
Amplifier	Digital Multiplier		
Mixer	Digital Multiplier & LUT		
Local Oscillator	Numerical Oscillator		
Filter	Digital Filter & RAM		
	ADC,DAC		

Characterisitics of Analog-to-Digital Converte

- Sampling Speed
 - As increasing
 - Processing bandwidth is widened
 - Processing gain for baseband is increased
 - Power consumption is increased
 - As decreasing
 - Power consumption is decreased
 - Suitable for handset with using Zero IF technique
- Bit Resolution
 - It determines dynamic range of ADC (N bit ADC ~ 6*N [dB])
 - ENOB(Effective Number of Bits)
 - It is less than 6*N [dB] Dynamic Range due to harmonic noise
- Analog Input Bandwidth
 - It should be greater than Nyquist Freq. for bandpass sampling

Considerations for ADC Circuit Design

- Input center frequency is set to f_{Nvquist} /2 due to mitigate
 - 1/f Noise around DC
 - Image around f_{Nyquist}
- Isolation between analog input and digital circuit
 - Isolation between analog components and digital components
 - Isolation between analog ground and digital ground
- Input Clock for ADC should have
 - Very low noise
 - Be isolated with the clock for digital circuit
 - Be differential clock to alleviate noise

Performance of current and future ADCs

Feature	Performance Range			
	Semiconductor-Based	Superconductor-Based		
Frequency	Up to 200 MHz	Up to > 2 GHz		
Resolution	10 to 14 bits quoted (ENOB typically 2 to 4 less)	14 to 24 bits ENOB		
Spur Free Dynamic Range	60 to 90 dB	100 to 150 dB		
Sensitivity	N/A (normally post LNA)	-120 to -180 dBm		

Characterisitics of Digital-to-Analog Converte

- Sampling Speed
 - determines available output frequency
- SFDR(Spur Free Dynamic Range)
 - determines output dynamic range with considering Harmonic Distortion
- Inverse Sinc Filter
 - is required for the flatness of inband frequency characteristic
- Image Rejection Filter
 - Is required for unintentional harmonic image

Bandpass Sampling Technique (cont.)

Bandpass Sampling

The technique of under-sampling a modulated signal to achieve frequency translation via intentional aliasing.

Sampling Conditions

$$0 < F_{IF} - \frac{BW_I}{2}$$

$$F_{IF} + \frac{BW_I}{2} < \frac{F_S}{2}$$

Bandpass Sampling Technique (cont.)

Frequency Selection Rule

IF frequency in information bandwidth which is occurred from folding can be determined from sampling frequency Fs and center frequency Fa.

If
$$fix\left(\frac{F_a}{F_s/2}\right)$$
 is $\begin{cases} \text{even,} & F_{IF} = rem(F_a, F_S) \\ \text{odd,} & F_{IF} = F_S - rem(F_a, F_S) \end{cases}$

where F_a = input frequency to ADC

 F_{IF} = intermediate frequency

fix(a): truncated portion of argument a

rem(a, b): remainder after division of a by b

Bandpass Sampling Technique

Bandpass Sampling for Multiband Signa

Sampling Condition

Multiband signals resulted from folding effect should not be overlapped each other in information band.

$$|F_{IF_1} - F_{IF_2}| \ge \frac{BW_{I_1} + BW_{I_2}}{2}$$

An Example: IS-95 and W-CDMA

Multimode Input (IS-95, W-CDMA, W-LAN)

- Signals considered here
 - **IS-95**
 - Bandwidth: 1.25 MHz/1FA
 - Chip rate: 1.2288 Mcps
 - W-CDMA
 - Bandwidth : 5 MHz/1FA
 - Chip rate: 3.84 Mcps
 - IEEE 802.11a W-LAN
 - Effective Bandwidth: 16.6MHz
 - Transmission Bandwidth: 20 MHz
- Total information bandwidth: 26.25 MHz

IF Freq. Plan for IS-95, W-CDMA, W-LAN

Conditions

$$0 < F_{lower} - \frac{BW_{lower}}{2} \qquad F_{upper} + \frac{BW_{upper}}{2} < \frac{F_{s}}{2}$$

$$\mid F_{\textit{mid}} - F_{\textit{lower}} \mid \geq \frac{BW_{\textit{mid}} + BW_{\textit{lower}}}{2} \qquad \mid F_{\textit{mid}} - F_{\textit{upper}} \mid \geq \frac{BW_{\textit{mid}} + BW_{\textit{upper}}}{2}$$

Selected IF Frequency Plans

- IF frequency band : 70~130 MHz
- Sampling Frequency : 65 MHz

IF Frequency (MHz)		Digital Frequency (MHz)			
IS-95	W- CDMA	W- LAN	IS-95	W- CDMA	W- LAN
128	123	109	2	7	21
127	122	88	3	8	23
119	125	107	11	5	23
98	104	118	32	26	12
96	126	84	31	4	19
74	126	109	9	4	21

Digital IF Down Conversion

Decimation and Interpolation process

■ Decimation Process N : Decimation ratio

■ Interpolation Process p: Interpolation ratio

Structure of CIC Filter

For Decimation

Decimation Filter using CIC & HB Filter

Efficient FIR Filter Processing (cont.)

Efficient FIR Filter Processing

Digital IF Channelizer

Digital Channel Filter

Analog Channel Filter

Frequency

Conventional Multi-hardware Radio

Software Defined Radio

Functionality of Digital IF Channelizer

Channelizer using Polyphase Filter Bank

The above models are equivalent.

An Example: IS-95 and W-CDMA

- Sampling Frequency: 80 MHz
- FA BW: 5MHz
- IS-95 : FA BW 1.25MHz

Multiband Channelizer for IS-95 & W-CDMA

- Characteristics:
 - Polyphase filter bank structure performed with low processing clock
 - Each communicator is employed for each multi-FA standard.

Conclusions

- For future mobile communication systems, the development of multi-mode and multi-band SDR platform is necessary.
- For multi-mode and multi-band transceiver, the development of Digital IF technology is necessary.
- To realize multi-mode and multi-band SDR-based Digital IF module, reconfigurable RF devices and digital processors with high speed and low power consumption are required.
- More flexible and sophisticated digital signal processing algorithms must be employed onto SDR platform to improve the performance of future mobile communication systems.

