20 YEARS of

Developing Custom Instructions & Peripherals for Embedded Processing

Agenda

- Embedded Systems
- MP3 Player Demonstration
- SOPC Builder & Avalon™ Switch Fabric
- Custom Peripherals
- Developing Custom Instructions for the Nios® Embedded Processor
- Applications & Examples

What Is an Embedded System?

- Special Purpose Computer
- Consists of Both Hardware & Software
 - Usually Contains At Least One Microprocessor
 - May Utilize An Operating System
 - All I/O Is Task-Specific
- Employs Several Function-Specific Blocks
- Used Where Full-Size Computers Are
 - Too Big
 - Too Expensive
 - Too Generic in Purpose

Traditional Design Method

Typical Order of Steps

- 1. Select System Controller (Processor)
- 2. Select Available Peripherals
- 3. Define Custom Logic
- 4. Adapt to Bus Standard
- Develop Decode Logic
- 6. Multiplex Data Paths
- 7. Design Arbitration Logic
- 8. Create Interrupt Scheme
- 9. Develop Timing Logic

System Implementation

What If...

What If...

Typical Order of Steps

- Select System Controller (Processor)
- 2. Select Available Peripherals
- 3. Define Custom Logic
- 4. Adapt to Bus Standard
- 5. Develop Decode Logic
- 6. Multiplex Data Paths
- 7. Design Arbitration Logic
- 8. Create Interrupt Scheme
- 9. Develop Timing Logic

Build MP3 Player

Demonstration

What Did We Just Do?

The Power of SOPC Builder

MP3 Components Needed

Complete MP3 Player System

The Nios Microprocessor

- Soft-Core Microprocessor from Altera®
- Features
 - Basic RISC Processor
 - Harvard Architecture
 - Multi-Stage Pipeline
 - 16-or 32-Bit Data Path
 - 16-Bit Instruction
 - 64 Prioritized Interrupts
 - Custom Instructions
- Optimized for Altera FPGAs

SOPC Builder-Ready IP

- SOPC Builder-Ready Certification Requirements
 - Avalon / AHB Compatible Interface
 - OpenCore® Evaluation Support

- Evidence of Functional System Verification
- Successful Generation & Compilation of SOPC Builder System
- Plug-&-Play Compatibility with SOPC Builder
- Examples of What's Available
 - Processors
 - PCI, Ethernet & Communication Cores
 - Memory & Memory Controllers
 - USB, I2C, SPI

It's Also Easy to Create Your Own

Custom PWM Peripheral

- Audio PWM
- Verilog HDL
- Avalon Interface
 - Use Only NeededSignals
 - Provides Access to:
 - Period
 - Pulse Width
- External Interface
 - PLL Clock Input
 - PWM Output

Custom Instruction: fmul

Function Replaced with Hardware

MP3 Player Result

SOPC Builder Creates All the Interconnect

What Can SOPC Builder Do for My System?

A Closer Look at the Tool

How SOPC Builder Helps

- Automates Block-Based Design
 - System Definition
 - Component Integration
 - System Verification
 - Software Generation
- Fast & Easy
- Supports Design Reuse
 - Third-Party Intellectual Property (IP) Cores
 - Internally Developed Peripherals

SOPC Builder – System Integration

Slave Side Arbitration

Bus Arbitration

Slave Side Arbitration

Higher System Throughput & Efficiency

Dynamic Bus Sizing

- Narrow Slave
 - Can be Translated to Master's Width
 - Or Upper Bits Can Be Masked
 - Your Choice Transparent to Master

Memory Address Alignment

Read from Base = 0xDDCCBBAA

Register Address Alignment

Read from Base = 0×0000000 AA

Done Automatically by SOPC Builder!

SOPC Builder - System Verification

- Automated Simulation Generation
 - Generate Complete System Simulation Model
 - Generate Testbenches
 - Setup Project Environment
- Immediate Simulation of Hardware & Software

SOPC Builder Software Support

- Software Development Kit (SDK) Automatically Generates
 - Headers (INC)
 - Memory Map
 - Register Declarations
 - Libraries (LIB)
 - Runtime
 - Source (SRC)
 - Supplied by Peripherals
 - Examples for Processor
- Uses Software Compilers
 - Compile Runtime Libraries
 - Generate Memory Contents
 - Hardware & Software Simulation
- Advanced Software Components
 - Network Protocol Library
 - RTOS Components

Nios System Settings				
Function	Module	Offset	Address	
Reset Location		0x0		
Vector Table (256 bytes)		0x0		
Program Memory				
Data Memory				
Primary Serial Port (printf, GERMS)				
Auxiliary Serial Port				
System Boot ID: (25 chars max)		iax)		
Software Components				
Use Name		Description		
Altera Plugs TCP/IP Networking Library Lightweight, RTOS-independent ne		dent networ		

Nios Processor in SOPC Builder

Allows You to Create A Custom Instruction

Custom Instruction - Performance

Replace Library Call with Custom Instruction

```
#define mad_f_mul(x,y) nm_fmul(x,y)
```

Dramatically Accelerate Software Algorithms

Category	Number of Cycles to Complete mad_synth_frame()	Number of Logic Elements Used
CPU with Hardware Multiplier	1,279,000	n
CPU with fmul (Remove Hardware Multiplier)	293,000	n + 100

Entire Function Sees 4x
Improvement Just from fmul
Acceleration

Run MP3 Demo

System Created in Minutes

How Does It Work?

Looking Under the Hood

Avalon Switch Fabric

- Avalon SOPC Interface Standard
 - Backbone of SOPC Builder
 - Easy to Use Interface
 - Parameterized
 - Optimized for Altera FPGAs
 - Introduced in Fall 2000
 - Native Bus for Nios Processor
 - Has Since Expanded
 - Altera & AMPPSM IP Cores
 - Customer-Defined Peripherals
 - 100+ Cores Planned for 2003

Bus Interface Standards

- Why Bus Standards Are Used
 - Flexibility
 - Provides Wide Range of Capabilities in One Package
 - Guarantees Compatibility
 - Bus Designed to Handle All Contingencies
- Pitfalls of Typical Bus Standards
 - Must Be Complex to Support Everything
 - Even Small Peripherals Must Fully Comply

Sledgehammer Is Used for Every Size Nail

Avalon Switch Fabric Is Different

- Fabric Custom-Generated for Peripherals
 - Contingencies on per-Peripheral Basis
 - System Is Not Burdened by Bus Complexity
- SOPC Builder Automatically Generates
 - Arbitration
 - Address Decoding
 - Data Path Multiplexing
 - Bus Sizing
 - Wait-State Generation
 - Interrupts

Traditional Bus Master / Slave

- Must Comply Fully to Chosen Bus Standard
 - Bus Standard Adds Complexity
 - Consumes Resources
 - Designed in Reverse
 - Design Starts at Bus Interface
 - Back-End Adapted to Comply

Result = Non-Optimal Implementation

Traditionally Designed System

Large Amount of Engineering Overhead!

Avalon Slave

- No Need to Worry about Bus Interface
- Use Interface Optimal for Nature of Peripheral
- Implement Only Signals Needed
- Avalon Switch Fabric Adapts to Peripherals
- Timing Automatically Handled
- Fabric Created for You
- Arbiters Generated for You

Concentrate Effort on Peripheral Functionality!

Avalon System

Designer Only Needs to Worry About Peripherals

Example Avalon Peripherals

- Master Peripheral that Can Write & Read
- Read-Only Slave Peripheral with waitrequest

Example Avalon Peripherals

Master Peripheral that Can Write & Read

Read-Only Slave Peripheral with waitrequest

Read-Only Master Port (e.g., - Status Check Port) Write-Only Slave Peripheral (e.g., FIFO Write Port)

Creating Custom Peripherals

How Do I Develop My Own Hardware for Use in SOPC Builder?

Reasons for Custom Hardware

- Acceleration
 - Replace Software with Hardware
- Proprietary Functions
 - Algorithms
 - Product Differentiation
 - Design Reuse
- Availability
 - No Such Ready-Made IP

Creating an Avalon Slave

Pulse Width Modulator

Adding Avalon Interface

Creating an Avalon Slave

- PWM Peripheral
 - Verilog HDL
 - Only 9 Ports
- Dynamic Bus Sizing
 - You Pick Data Width
 - Avalon Switch FabricAdapts
 - Register vs. Memory

```
module avalon pwm (
    clk,
    wr data,
    byte n,
    CS,
    wr n,
    addr,
    clr n,
    rd data,
    pwm out
    input clk;
    input [31:0] wr data;
    input [3:0] byte n;
    input cs;
    input wr n;
    input addr;
    input clr n;
    output rd data;
    output pwm out;
```


Creating an Avalon Master

- Example
 - POR Controller
 - State Machine
 - Avalon Interface
 - Bring Up System
- Simple & Easy
 - Avalon Master
 - 4-State FSM

Interface to User Logic

- Publish Custom Hardware As SOPC Builder Component
- Choose Interface Type:
 - -Register Slave
 - -Memory Slave
 - -Avalon Master
- Add Design Files that Describe User Logic
- Automatically Define Port Table from Design Files
- Make Port Changes or Enter Ports Manually

Interface to User Logic

- Specify Timing Requirements
 - Setup
 - Hold
 - Wait States
- Units
 - Time
 - Clock Cycles

Creating Custom Instructions for Nios

Augmenting Your Embedded Processor's Instruction Set

Custom Instruction - Definition

- Dramatically Accelerates
 Software Algorithms Using
 Hardware
- Extends Nios Instruction Set
 - Up to Five Instructions
- SOPC Builder Development Tool
 - Automatically Adds User Logic to Nios ALU
 - Assigns Op-Code
 - Generates C- &Assembly- Macros

Custom Instruction - Software

- C Code Macros (include excalibur.h)
 - nm_<macro_name> (dataa, datab)
 - nm_<macro_name>_pfx (prefix, dataa, datab)
- Assembly Code
 - Use Opcodes or Assembly Macro

```
LD %r1,[%L6] ; Load word at [%L6] into %r1

LD %r0,[%L2] ; Load word at [%L2] into %r0

PFX 1 ; Only needed if using prefix

nm_my_cust_inst %r1 ; Macro calling a Rw opcode, r1 <= r1 "OP" r0

ST [%L4],%r1 ; %L4 is the pointer, %r1 is stored
```

Makes Your Custom Instruction Look Like a Normal C Function Call 20 YEARS of

Custom Instruction - Integration

Import "fmul" into Nios CPU

Which One Do I Use?

- Custom Instruction
 - Used for Low-Clock
 Cycle Calculations
 - Provides Quick Access to Inputs/Output
 - Accessed Only by CPU
 - Stalls CPU

- Custom Peripheral
 - Used for Labor-Intensive Operations
 - Accessible through the Avalon Bus
 - Accessible by Other Masters (i.e., DMA)
 - CPU Independent

Applications & Examples

Real Customer Designs

Top

Bottom

The Accordion Stackup

- Application
 - Quality & Assurance
 During System Production
- Function
 - Intercept Digital Image Data Stream
 - Display Image on VGA Monitor
 - Verify Image Integrity
- No Need for Processor

INNOVATION

Example 3: Mandelbrot Algorithm

```
int float mandelbrot(float cr, float ci, int max iter)
{
      float xsqr=0.0, ysqr=0.0, x=0.0, y=0.0;
      int iter=0;
      while ((xsqr + ysqr) < 4.0) && (iter < max iter))
       {
             xsqr = x * x;
             ysqr = y * y;
             y = (2 * x * y) + ci;
             x = xsqr - ysqr + cr;
             iter++;
      return(iter);
```


Example 3: Optimizations

- Floating-Point Software in FPU Co-Processor
- Floating-Point Software in Integer Software
- Integer Software Done in Hardware
- Add DMA Transfer to Hardware Acceleration
- Parallelize Subsections of Display
- Simplify Control Master

Example 3: Mandelbrot

Demonstration

Conclusion

- Altera Delivers System-Level Integration Solutions
 - SOPC Builder
 - Avalon
 - Nios
- SOPC Builder Accelerates Embedded System Design
 - Design Customization & IP Re-Use
 - Hardware Acceleration
 - Rapid Software Development

20 YEARS of

SOPC WORLD 2003