

Developing Custom
Instructions &
Peripherals for
Embedded Processing

Developing Custom
Instructions &
Peripherals for
Embedded Processing

AgendaAgenda
Embedded Systems
MP3 Player Demonstration
SOPC Builder & Avalon™ Switch Fabric
Custom Peripherals
Developing Custom Instructions for the
Nios® Embedded Processor
Applications & Examples

What Is an Embedded System?What Is an Embedded System?
Special Purpose Computer
Consists of Both Hardware & Software
− Usually Contains At Least One Microprocessor
− May Utilize An Operating System
− All I/O Is Task-Specific

Employs Several Function-Specific Blocks
Used Where Full-Size Computers Are
− Too Big
− Too Expensive
− Too Generic in Purpose

Traditional Design MethodTraditional Design Method
Typical Order of Steps

1. Select System Controller (Processor)
2. Select Available Peripherals
3. Define Custom Logic
4. Adapt to Bus Standard
5. Develop Decode Logic
6. Multiplex Data Paths
7. Design Arbitration Logic
8. Create Interrupt Scheme
9. Develop Timing Logic

System ImplementationSystem Implementation

D
ata

A
ddress

Address
Decoder

Processor
(Bus Master)

32-Bit
Interrupt

Controller

A
ddress

D
ata

Ethernet
(Bus Master)

32-Bit

Slave 3
16-Bit

Slave 1
8-Bit

Slave 5
64-Bit

Slave 4
32-Bit

Slave 2
32-Bit

Arbiter

Width-Match Width-MatchWidth-MatchWidth-Match Width-Match

What If…What If…

Width-Match

Interrupt
Controller

Address
Decoder

Arbiter

Width-Match

Arbiter

Width-Match

Arbiter

Width-Match

Arbiter

Width-Match

Arbiter

SOPC Builder-
Generated
Avalon™

Switch Fabric

Wait-State
Generation

Data
Multiplexing

Processor
(Bus Master)

32-Bit

Ethernet
(Bus Master)

32-Bit

Slave 1
8-Bit

Slave 2
32-Bit

Slave 3
16-Bit

Slave 4
32-Bit

Slave 5
64-Bit

What If…What If…
Typical Order of Steps

1. Select System Controller (Processor)
2. Select Available Peripherals
3. Define Custom Logic
4. Adapt to Bus Standard
5. Develop Decode Logic
6. Multiplex Data Paths
7. Design Arbitration Logic
8. Create Interrupt Scheme
9. Develop Timing Logic

Build MP3 PlayerBuild MP3 Player

DemonstrationDemonstration

What Did We Just Do?What Did We Just Do?

The Power of SOPC BuilderThe Power of SOPC Builder

MP3 Components NeededMP3 Components Needed
Complete MP3 Player System

Address
Decoder

Interrupt
Controller

Processor Math Co-
Processor

External
Memory

On-Chip
ROM Timer

PIOUART Pulse Width
Modulator

The Nios MicroprocessorThe Nios Microprocessor
Soft-Core Microprocessor from Altera®

Features
− Basic RISC Processor
− Harvard Architecture
− Multi-Stage Pipeline
− 16-or 32-Bit Data Path
− 16-Bit Instruction
− 64 Prioritized Interrupts
− Custom Instructions

Optimized for Altera FPGAs

SOPC Builder-Ready IPSOPC Builder-Ready IP
SOPC Builder-Ready Certification Requirements
− Avalon / AHB Compatible Interface
− OpenCore® Evaluation Support
− Evidence of Functional System Verification
− Successful Generation & Compilation of SOPC Builder System
− Plug-&-Play Compatibility with SOPC Builder

Examples of What’s Available
− Processors
− PCI, Ethernet & Communication Cores
− Memory & Memory Controllers
− USB, I2C, SPI

It’s Also Easy to Create Your Own

Custom PWM PeripheralCustom PWM Peripheral
Audio PWM
Verilog HDL
Avalon Interface
− Use Only Needed

Signals
− Provides Access to:

Period
Pulse Width

External Interface
− PLL Clock Input
− PWM Output

bus_clk
reset_n
pwm_select
write_n
address
write_data[15..0]

pwm_clk pwm_out

pwm_irq

Avalon_PWM

Custom Instruction: fmulCustom Instruction: fmul
Function Replaced with Hardware

>> 14

>> 14
Data_B[31..0]

0x00002000

Data_A[31..0]

Result[31..0]

0x00002000

MP3 Player ResultMP3 Player Result
Custom

Instruction
“fmul”

SOPC Builder
Generated

Avalon Switch
Fabric

Address
Decoder

Interrupt
Controller

Data
Multiplexing

Wait-State
Generation

SOPC Builder Creates
All the Interconnect

On-Chip
ROM

External
Memory Timer UARTPIO Pulse Width

Modulator

Nios® Soft
Processor

What Can SOPC
Builder Do for
My System?

What Can SOPC
Builder Do for
My System?

A Closer Look at the ToolA Closer Look at the Tool

How SOPC Builder HelpsHow SOPC Builder Helps
Automates Block-Based Design
− System Definition

− Component Integration

− System Verification

− Software Generation

Fast & Easy

Supports Design Reuse
− Third-Party Intellectual Property (IP) Cores

− Internally Developed Peripherals

IP

Software

Testbench

User Logic

SOPC Builder – System IntegrationSOPC Builder – System Integration

Single Master
− Multiple Slaves

Multi-Master
− Slave-Side Arbitration
− Optimize for Throughput
− Patch Panel Selection

Automatic Generation
− Datapath Logic
− Chip Selects
− Arbitration Logic
− Timing

Compile Software
Libraries

Slave Side ArbitrationSlave Side Arbitration
Bus Arbitration Slave Side Arbitration

Arbiter
Slave 2
(UART)

Arbiter

Higher System Throughput & Efficiency

Master 1
(CPU)

Master 2
(DMA)

Arbiter

Master 1
(CPU)

Master 2
(DMA)

Slave 1
(Memory)

Slave 1
(Memory)

Slave 2
(UART)

Dynamic Bus SizingDynamic Bus Sizing
Narrow Slave
− Can be Translated to Master’s Width
− Or Upper Bits Can Be Masked
− Your Choice – Transparent to Master

Master 1
(CPU)

32

Slave 1
8 Base: 0xAA

+0x1: 0xBB
+0x2: 0xCC
+0x3: 0xDD

Memory Address Alignment
Read from Base = 0xDDCCBBAA
Register Address Alignment
Read from Base = 0x000000AAA

va
lo

n
B

us
 F

ab
ric

Done Automatically
by SOPC Builder!

SOPC Builder - System VerificationSOPC Builder - System Verification
Automated Simulation Generation
− Generate Complete System Simulation Model
− Generate Testbenches
− Setup Project Environment

Immediate Simulation of Hardware & Software

SOPC Builder Software SupportSOPC Builder Software Support
Software Development Kit (SDK)
Automatically Generates
− Headers (INC)

Memory Map
Register Declarations

− Libraries (LIB)
Runtime

− Source (SRC)
Supplied by Peripherals
Examples for Processor

Uses Software Compilers
− Compile Runtime Libraries
− Generate Memory Contents
− Hardware & Software Simulation

Advanced Software Components
− Network Protocol Library
− RTOS Components

Nios Processor in SOPC BuilderNios Processor in SOPC Builder
Allows You to Create A Custom Instruction

Extend the Nios
Instruction Set with
Custom Hardware

Nios Soft
Processor

Custom
Instruction

“fmul”

SOPC Builder
Generated

Avalon Switch
Fabric

Address
Decoder

Interrupt
Controller

Data
Multiplexing

Wait-State
Generation

On-Chip
ROM

External
Memory Timer UARTPIO Pulse Width

Modulator

Custom Instruction - PerformanceCustom Instruction - Performance
Replace Library Call with Custom Instruction

#define mad_f_mul (x ,y) nm_fmul (x, y)

Dramatically Accelerate Software Algorithms

n + 100293,000CPU with fmul
(Remove Hardware Multiplier)

n1,279,000CPU with Hardware Multiplier

Number of
Logic Elements

Used

Number of Cycles to
Complete

mad_synth_frame()

Category

Entire Function Sees 4x
Improvement Just from fmul

Acceleration

Run MP3 DemoRun MP3 Demo

System Created in MinutesSystem Created in Minutes

How Does It Work?How Does It Work?

Looking Under the HoodLooking Under the Hood

Avalon Switch FabricAvalon Switch Fabric
Avalon – SOPC Interface Standard
− Backbone of SOPC Builder
− Easy to Use Interface
− Parameterized
− Optimized for Altera FPGAs
− Introduced in Fall 2000

Native Bus for Nios Processor

− Has Since Expanded
Altera & AMPPSM IP Cores
Customer-Defined Peripherals
100+ Cores Planned for 2003

Bus Interface StandardsBus Interface Standards
Why Bus Standards Are Used
− Flexibility

Provides Wide Range of Capabilities in One Package
Guarantees Compatibility

− Bus Designed to Handle All Contingencies
Pitfalls of Typical Bus Standards
− Must Be Complex to Support Everything
− Even Small Peripherals Must Fully Comply

Sledgehammer Is Used
for Every Size Nail

Avalon Switch Fabric Is DifferentAvalon Switch Fabric Is Different
Fabric Custom-Generated for Peripherals
− Contingencies on per-Peripheral Basis
− System Is Not Burdened by Bus Complexity

SOPC Builder Automatically Generates
− Arbitration
− Address Decoding
− Data Path Multiplexing
− Bus Sizing
− Wait-State Generation
− Interrupts

Traditional Bus Master / SlaveTraditional Bus Master / Slave
Must Comply Fully to Chosen
Bus Standard
− Bus Standard Adds Complexity
− Consumes Resources
− Designed in Reverse

Design Starts at Bus Interface
Back-End Adapted to Comply

User Logic

Bus Master
Interface

System Bus Logic

User Logic

Register File

Bus Slave
Interface

Result = Non-Optimal
Implementation

Traditionally Designed SystemTraditionally Designed System

D
ata

A
ddress

Address
Decoder

Processor
(Bus Master) Interrupt

Controller

A
ddress

D
ata

Ethernet
(Bus Master)

Slave 5
64-Bit

Slave 2
32-Bit

Arbiter

Slave 1
8-Bit

Bus Interface

Slave 2
32-Bit

Bus Interface

Slave 3
16-Bit

Bus Interface

Slave 4
32-Bit

Bus Interface

Slave 5
64-Bit

Bus Interface

Bus MasterBus Master

Designed
Manually

Large Amount of
Engineering Overhead!

Avalon SlaveAvalon Slave
No Need to Worry about Bus Interface
Use Interface Optimal for Nature of Peripheral
Implement Only Signals Needed
Avalon Switch Fabric Adapts
to Peripherals
Timing Automatically Handled
Fabric Created for You
Arbiters Generated for You

Avalon Switch Fabric

User
Logic

Register File

Concentrate Effort on
Peripheral Functionality!

Avalon SystemAvalon System

Width-Match

Interrupt
Controller

Address
Decoder

Arbiter

Width-Match

Arbiter

Width-Match

Arbiter

Width-Match

Arbiter

Width-Match

Arbiter

SOPC Builder-
Generated Avalon

Switch Fabric
Wait-State
Generation

Data
Multiplexing

Processor
(Bus Master)

32-Bit

Ethernet
(Bus Master)

32-Bit

Slave 1
8-Bit

Slave 2
32-Bit

Slave 3
16-Bit

Slave 4
32-Bit

Slave 5
64-Bit

Designer Only Needs to
Worry About Peripherals

Example Avalon PeripheralsExample Avalon Peripherals
Master Peripheral that Can
Write & Read

Read-Only Slave Peripheral
with waitrequest

clk
address

read_n
chipselect

readdata
waitrequest Pe

rip
he

ra
l

Sl
av

e
Po

rt

Pe
rip

he
ra

l

clk
address

M
as

te
r P

or
t

A
va

lo
n

Sw
itc

h
Fa

br
icwrite_n

waitrequest

writedata

read_n
readdata

Example Avalon PeripheralsExample Avalon Peripherals

clk
address

read_n
chipselect

readdata
waitrequest Pe

rip
he

ra
l

Sl
av

e
Po

rt

clk
write_n

writedata

Pe
rip

he
ra

l
Sl

av
e

Po
rt

Pe
rip

he
ra

l
clk
address

M
as

te
r P

or
t

A
va

lo
n

Sw
itc

h
Fa

br
ic

write_n

waitrequest

writedata

read_n
readdata

M
ul

ti-
Po

rt
 P

er
ip

he
ra

l
M

as
te

r P
or

t
M

as
te

r P
or

t clk
address

waitrequest
read_n
readdata

Master Peripheral that Can
Write & Read

Read-Only Slave Peripheral
with waitrequest

Read-Only Master Port
(e.g., - Status Check Port)

Write-Only Slave Peripheral
(e.g., FIFO Write Port)

Creating Custom
Peripherals
Creating Custom
Peripherals

How Do I Develop My Own
Hardware for Use in SOPC
Builder?

How Do I Develop My Own
Hardware for Use in SOPC
Builder?

Reasons for Custom HardwareReasons for Custom Hardware
Acceleration
− Replace Software with

Hardware

Proprietary Functions
− Algorithms
− Product Differentiation
− Design Reuse

Availability
− No Such Ready-Made IP

Creating an Avalon SlaveCreating an Avalon Slave
Pulse Width Modulator

Avalon PWM Peripheral

wr_data
wr_n & cs

rd_data

Register

d
en

q
Counter

pwm_out

pulse_width

PWM

Compare

Adding Avalon Interface
Consists of Only Adding a

Register

Creating an Avalon SlaveCreating an Avalon Slave
PWM Peripheral
− Verilog HDL
− Only 9 Ports

Dynamic Bus Sizing
− You Pick Data Width
− Avalon Switch Fabric

Adapts
− Register vs. Memory

Creating an Avalon MasterCreating an Avalon Master
Example
− POR Controller

State Machine
Avalon Interface

− Bring Up System
Simple & Easy
− Avalon Master
− 4-State FSM

A
va

lo
n

In
te

rf
ac

e clk
address

writedata

readdata
write_n

read_n
I am a custom-
themed graphic

Begin

Init_Regs

Test_Mem

Release
Reset

POR Controller

Interface to User LogicInterface to User Logic
Publish Custom Hardware As
SOPC Builder Component
Choose Interface Type:

-Register Slave
-Memory Slave
-Avalon Master

Add Design Files that Describe
User Logic
Automatically Define Port Table
from Design Files
Make Port Changes or Enter Ports
Manually

Interface to User LogicInterface to User Logic
Specify Timing
Requirements
− Setup
− Hold
− Wait States

Units
− Time
− Clock Cycles

Creating Custom
Instructions for Nios
Creating Custom
Instructions for Nios

Augmenting Your Embedded
Processor’s Instruction Set
Augmenting Your Embedded
Processor’s Instruction Set

Custom Instruction - DefinitionCustom Instruction - Definition
Dramatically Accelerates
Software Algorithms Using
Hardware
Extends Nios Instruction Set
− Up to Five Instructions

SOPC Builder Development
Tool
− Automatically Adds User

Logic to Nios ALU
− Assigns Op-Code
− Generates C- &

Assembly- Macros

Nios Processor

fmul

Custom Instruction - SoftwareCustom Instruction - Software
C Code Macros (include excalibur.h)
− nm_<macro_name> (dataa, datab)
− nm_<macro_name>_pfx (prefix, dataa, datab)

Assembly Code
− Use Opcodes or Assembly Macro

Makes Your Custom Instruction Look
Like a Normal C Function Call

Custom Instruction - IntegrationCustom Instruction - Integration
Import “fmul” into Nios CPU

Which One Do I Use?Which One Do I Use?
Custom Instruction
− Used for Low-Clock

Cycle Calculations
− Provides Quick Access

to Inputs/Output
− Accessed Only by CPU
− Stalls CPU

Custom Peripheral
− Used for Labor-

Intensive Operations
− Accessible through the

Avalon Bus
− Accessible by Other

Masters (i.e., DMA)
− CPU Independent

Applications & ExamplesApplications & Examples

Real Customer DesignsReal Customer Designs

Example 1: SOPC RealityExample 1: SOPC Reality
Top

Bottom

Example 1: SOPC RealityExample 1: SOPC Reality
The Accordion Stackup

Example 1: SOPC RealityExample 1: SOPC Reality

Example 1: SOPC RealityExample 1: SOPC Reality

Example 2: Digital Imaging EquipmentExample 2: Digital Imaging Equipment
Application
− Quality & Assurance

During System Production
Function
− Intercept Digital-

Image Data Stream
− Display Image on

VGA Monitor
− Verify Image Integrity

No Need for Processor

Digital
Image Input

Image
Processing

Intermediate
Digital Data

Image Output

Further
Processing

Image
Integrity
Check

Example 2: Digital Imaging EquipmentExample 2: Digital Imaging Equipment

VGA
DAC

SDRAM

FPGAFPGA

Digital
Image
Input

Example 2: Digital Imaging EquipmentExample 2: Digital Imaging Equipment

Output
DMA

Input
DMA

SDRAM
Controller

Control
Master

VGA
Controller

FPGAFPGA

VGA
DAC

Digital
Image
Input

SDRAM

Capture
Peripheral

Standard SOPC Builder Peripheral
Available Component

Example 2: Digital Imaging EquipmentExample 2: Digital Imaging Equipment

A
valon

8-Bit Parallel Data Input

Clock

SYNC

CaptureCapture
PeripheralPeripheral

FIFO

Streaming Read
Avalon Slave

8-Bit Parallel Data Input

Clock

SYNC

DATA VALID

Example 2: Digital Imaging EquipmentExample 2: Digital Imaging Equipment
FPGAFPGA

Control
Master

Image
Rendering
For VGA

SDRAM

SDRAM
Controller

VGA
Controller

Output
DMA

Input
DMA

Digital
Image
Input

Capture
Peripheral

VGA
DAC

Example 2: Digital Imaging Equipment

SDRAM
Controller

Control
Master

Output
DMA

NiosNios
CPUCPU

FPGAFPGA

Example 2: Digital Imaging Equipment

Host
PC
Via
LAN

Ethernet
Interface

SDRAM

Digital
Image
Input

Capture
Peripheral

Input
DMA

Example 3: Mandelbrot AlgorithmExample 3: Mandelbrot Algorithm

int float_mandelbrot(float cr, float ci, int max_iter)
{

float xsqr=0.0, ysqr=0.0, x=0.0, y=0.0;
int iter=0;
while(((xsqr + ysqr) < 4.0) && (iter < max_iter))
{

xsqr = x * x;
ysqr = y * y;
y = (2 * x * y) + ci;
x = xsqr - ysqr + cr;
iter++;

}
return(iter);

}

Example 3: OptimizationsExample 3: Optimizations
Floating-Point Software in FPU
Co-Processor
Floating-Point Software in Integer Software
Integer Software Done in Hardware
Add DMA Transfer to Hardware
Acceleration
Parallelize Subsections of Display
Simplify Control Master

Example 3: MandelbrotExample 3: Mandelbrot

DemonstrationDemonstration

ConclusionConclusion
Altera Delivers System-Level Integration
Solutions
− SOPC Builder
− Avalon
− Nios

SOPC Builder Accelerates Embedded
System Design
− Design Customization & IP Re-Use
− Hardware Acceleration
− Rapid Software Development

	Developing Custom Instructions & Peripherals for Embedded Processing
	Agenda
	What Is an Embedded System?
	Traditional Design Method
	System Implementation
	What If…
	What If…
	Build MP3 Player
	What Did We Just Do?
	MP3 Components Needed
	The Nios Microprocessor
	SOPC Builder-Ready IP
	Custom PWM Peripheral
	Custom Instruction: fmul
	MP3 Player Result
	What Can SOPC Builder Do forMy System?
	How SOPC Builder Helps
	SOPC Builder ? System Integration
	Slave Side Arbitration
	Dynamic Bus Sizing
	SOPC Builder - System Verification
	SOPC Builder Software Support
	Nios Processor in SOPC Builder
	Custom Instruction - Performance
	Run MP3 Demo
	How Does It Work?
	Bus Interface Standards
	Avalon Switch Fabric Is Different
	Traditional Bus Master / Slave
	Avalon Slave
	Avalon System
	Example Avalon Peripherals
	Example Avalon Peripherals
	Creating Custom Peripherals
	Reasons for Custom Hardware
	Creating an Avalon Slave
	Creating an Avalon Slave
	Creating an Avalon Master
	Interface to User Logic
	Interface to User Logic
	Creating Custom Instructions for Nios
	Custom Instruction - Definition
	Custom Instruction - Software
	Custom Instruction - Integration
	Which One Do I Use?
	Applications & Examples
	Example 1: SOPC Reality
	Example 1: SOPC Reality
	Example 1: SOPC Reality
	Example 1: SOPC Reality
	Example 2: Digital Imaging Equipment
	Example 2: Digital Imaging Equipment
	Example 3: Mandelbrot Algorithm
	Example 3: Optimizations
	Example 3: Mandelbrot
	Conclusion

