20 YEARS of







# DDR SDRAM Interface in Stratix/GX and Cyclone

MJL Technology. LD Team 1
Presented by Si-Yeon, Choi



#### **Agenda**

- DDR SDRAM Memory Overview
- Stratix & Stratix GX DDR SDRAM Support
- Cyclone Support
- IP Support
- FAQ
- References





#### **DDR SDRAM Memory Overview**

- Data is sent at double data rate
- Commands and addresses are output at single data rate
- A strobe is normally sent along with the data
  - Strobe is center-aligned when writing to the memory
  - Strobe is edge-aligned when reading from the memory





#### **DDR vs SDR Functionality**

| PARAMETER          | SDR         | DDR                    | NOTES                                               |
|--------------------|-------------|------------------------|-----------------------------------------------------|
| DQM                | Yes         | No                     | Used for write data mask and read OE                |
| DM (Data Mask)     | No          | Yes                    | Replaces DQM, used to mask write data only          |
| DQS (Data Strobe)  | No          | Yes                    | New, used to capture data                           |
| DK# (System Clock) | No          | Yes                    | New, DDR utilizes differential clocks               |
| Vref               | No          | Yes                    | Reference Voltage For Differential inputs (1/2 VDD) |
| VDD and VDDQ       | 3.3 V       | 2.5V                   | Reduced Supply and power for DDR                    |
| Signal Interface   | LVTTL       | SSTL_2                 | DDR utilizes differential I/O                       |
| Output Drive       | Fixed       | Variable               | X16 DDR devices offer a reduced drive option        |
| Data Rate          | 1x Clock    | 2x Clock               | Data transfer is twice the clock rate for DDR       |
| Architecture       | Synchronous | Source-<br>Synchronous | DDR utilizes a bidirectional data strobe            |





### **Generic Memory Array**







#### Stratix and Stratix GX Support

- Device Support Overview
- Sampling Window Calculation
- Software Support and Implementation
- Timing Analysis in Quartus II
- Round Trip Delay
- Characterization Data Summary
- Board Guidelines
- Non-dedicated DQS Circuitry Support





#### **Dedicated DQS Support Summary**

| Device                           | Package                       | Number of<br>X8 DQ/DQS<br>groups | Number of<br>X16 DQ/DQS<br>groups | Number of<br>X32 DQ/DQS<br>groups |
|----------------------------------|-------------------------------|----------------------------------|-----------------------------------|-----------------------------------|
| EP1S10                           | 672-pin BGA<br>672-pin FBGA   | 12                               | 0                                 | 0                                 |
|                                  | 484-pin FBGA<br>780-pin FBGA  | 16                               | 0                                 | 4                                 |
| EP1S20                           | 484-pin FBGA                  | 18                               | 7                                 | 4                                 |
|                                  | 672-pin BGA<br>672-pin FBGA   | 16                               | 7                                 | 4                                 |
|                                  | 780-pin FBGA                  | 20                               | 7                                 | 4                                 |
| EP1S25                           | 672-pin BGA<br>672-pin FBGA   | 16                               | 8                                 | 4                                 |
|                                  | 780-pin FBGA<br>1020-pin FBGA | 20                               | 8                                 | 4                                 |
| EP1S30/ EP1S40<br>EP1S60/ EP1S80 | All packages                  | 20                               | 8                                 | 4                                 |





#### **Device Support Overview**

- Dedicated DQS phase shift circuitry applies to top and bottom I/Os only
  - There are 2 DLLs per device
  - Up to 20 DQ/DQS groups in x8 mode
    - 8 DQ/DQS group in x16 mode, 4 in x32 mode
    - Up to 5 DQ/DQS x8 group per I/O bank
    - x8: 1 DQS 8 DQ pins, x16: 1DQS 16 DQ pins, x32: 1 DQS 32 DQ pins
    - Not the same definition as memory vendor x16 and x32 mode!

| Speed Grade            | C5  | C6  | <b>C</b> 7 |
|------------------------|-----|-----|------------|
| SDRAM Support<br>(MHz) | 200 | 167 | 134        |





#### **Device Support Overview (cont'd)**

- DDR SDRAM support on side I/Os
  - Need a different scheme that does not use the DQS Phase Shift Circuitry
  - Crucial when top/bottom I/Os are used for PCI
  - Or if many DDR devices are used instead of DIMM modules
  - Limited by either the side I/Os clock Fmax (150 MHz on C5 Flip-Chip devices) or by the scheme's robustness itself





### **PLL and Bank Diagram**







### Input DDR I/O Path Configuration







#### **DDR Memory Interface Read Operation**







### **Output DDR I/O Path Configuration**







#### **DDR Memory Interface Write Operation**







#### **Bidirectional DDR I/O Path**







#### **DQS Phase Shift Circuitry**

- Self-Compensated Delay Chain (DLL) Generates Shift on Data Read
  - Only 2 available per device (one on top, one on bottom)
  - 90 Degrees for DDR SDRAM, 72 Degrees for FCRAM
- Drive Associated Data (DQ) Pins
  - Uses Balanced, Local Clock Network
  - DQS bus only goes to the IOE clock ports
- Needs to have 256 clock cycles to initialize







#### Software implementation

| Signals | Megafunction  | Comments                                               |
|---------|---------------|--------------------------------------------------------|
| DQS     | altdqs        | New in Quartus II 3.0 (only for Stratix and StratixGX) |
| DQ      | altddio_bidir | No change in Quartus II 3.0                            |
| DM*     | altddio_out   | No change in Quartus II 3.0                            |

<sup>\*</sup>DM pins are only used in DDR SDRAM and RLDRAM (not in DDR FCRAM)

## Available under I/O in the Megawizard Plug-In Manager





#### MegaWizard for DQS Pins







#### MegaWizard for DQ Pins







#### MegaWizard for DM Pins







#### **DDR SDRAM I/O Interface Example**





Design available on the web!



#### **Design Example Details**

- Left side of the megafunctions block serves as the write side; right side as the read side
- DQS "write" signal is generated with the system clock
- DQ and DM "write" signals are generated using the -90° shifted clock
  - Double registers to switch clock domain from system clock to -90° shifted clock domain
- DQ "read" signals are captured in the LE with a resync\_clock before going to the system clock domain
  - Phase for resync\_clock may vary
  - resync\_clock is optional (dependent on your RTD)





#### **Design Example Features**

- DQS Frequency is 2X input clock
  - Details how an extra input clock is needed
- DQS signal is inverted before going to the DQ IOE inclock port
  - Needed for the interface or else last data is not captured
- Placeholder for resync clock
  - If you need one... (optional)
- datain\_h port of the altdqs not connected to VCC
  - Provides better write preamble time
  - Recommended but not a must





#### **Timing Analysis in Quartus II**

#### Read Side

- Done with respect to the non-shifted DQS signal (as it is at the FPGA pin)
  - DQS gets extra delay due to 90° shifting, while DQ goes straight to the IOE registers
- Expect negative setup and positive hold time

#### Write Side

- Done with respect to input clock to the PLL
  - PLL is in normal mode
- Possibility of negative tco on the DQ pins
  - DQ pins are clocked 90° ahead





#### Logic options to the DQ/DQS pins

- DQS Frequency the frequency of your DDR SDRAM device
- DQS Phase Shift either 72 or 90 degrees
- DQS Input reference clock the input clock to be used for your DQS Phase Shift circuitry
- Make sure to add an inverter between the combout port of the dqs\_ddrio module and the inclock port of the dq\_ddrio module
- VREF Constraints Quartus II only allows a maximum of 20 outputs or bidirectional pins per dedicated VREF pin.
- On-Chip Termination





#### **Round Trip Delay – Why?**

- Skew between DQS and System clock unknown
  - Skew between DQS and CK: tDQSCK
  - DQS position may vary from burst to burst
- Need to calculate min and max timing round trip delay to get the safe resynchronization window from IOE to LE





#### **Round Trip Delay - Illustration**



INNOVATION

#### **Round Trip Delay - Effects**

- First calculate min and max delay
- Then find out the data valid overlap (resynch window) and make sure it's big enough for resynchronization
- If there's a clock edge in the resynch window, use it.
- Else, use an extra PLL output (phase shifted)







#### **Round Trip Delay Calculator**

- In the form of a spreadsheet
  - Serves as a guideline only, not a hard rule
- Preliminary release
  - Have not been correlated with characterization data
- You need to know:
  - The board traces length and skew
  - Quartus reported tco for DQS (TCO TAN)
  - Quartus reported IOE to LE delay (DQS TAN)
- Also shows where the signals are with respect with the system clock
- Once finalized, the calculator may be incorporated inside the Quartus II software





#### **Address Timing Margin**







### **Write Timing Margin**



Tdqss = (Tco\_clk + Tft\_clk) - (Tco\_dqs + Tft\_dqs + Tdelay\_dqsclk)





### **Read Timing Margin**



#### **Characterization Data Summary**

- Characterization is finished
  - Altera IP core used as the controller
- Shows Stratix C5 devices can interface with 200 MHz DDR SDRAM DIMM
  - Only Micron DIMM passes all patterns at worst conditions (has strongest drive)
  - On-Chip Termination is not used
  - Current setting of Stratix device is set to Min
  - Still investigating worst case pattern with Infineon and Samsung 200 MHz operation
- Reports are available in Molson





#### **Board Guidelines**

- Micron website as a source
- Details are in Stratix DDR SDRAM 166 MHz Characterization Report
- More guidelines can be found in DDR Memory Controller User Guide Appendix C
- Some simple rules
  - Matched length between Address and Control signals; DQ, DM and DQS signals; CK and CK# signals
  - DQ, DQS, CLK routed at least 30 mil away from other signals (to reduce cross talk)
  - DQ, DQS, and DM should not share R-pack series resistors (to reduce cross talk between signals)
  - One 0.1uF Cap Per Two Termination Resistors
    - Each Cap Two Vias
  - Use precision resistors (within 1-2 %)





#### **VREF and VTT Guidelines**

#### VTT

Use An Integrated VTT Regulator Specially Designed for DDR VTT

#### VREF

- Can use Voltage Divider
- Routed at least 20mm (~800 mil) away from other signals
- Routed over a reference plane
- Shield Vref with Vss on one side, and with VDDQ on the other side to maintain symmetry in the presence of noise





### Non-dedicated DQS Circuitry Support

- Static PLL
  - Use an extra PLL output that mimics DQS coming into the FPGA
- Dynamic PLL
  - Use calibration sequence to pick a phase to capture data
- Matching Trace Length
  - DQS Phase Shift is taken care of on the board trace





# Non-Dedicated DQS support - Static PLL scheme

#### Advantages:

- Easy to implement
- No extra logic needed
- Fmax limited by PVT variations

#### Disadvantage:

May miss data sampling window if PVT variations are too large

#### Status

- Paper Calculation ready (133 MHz Fmax in C5)
- Need to do H/W proof-of-concept





## Non-Dedicated DQS support - Dynamic PLL scheme

#### Advantages:

- Can achieve better Fmax
- Much less dependency on speed grade

#### Disadvantages:

- Additional 'refresh-like' down time impacts efficiency
- LE count increased for the calibration circuitry

#### Status

- Paper Calculation ready (150 MHz Fmax buffer limit)
- IP is underway
- Option to train on DQS removes main disadvantages





# Non-Dedicated DQS support - Matching Trace Length scheme

#### Advantage:

DQS is still used, so DQ-DQS relationship is still maintained

#### Disadvantages:

- Cannot simply reconfigure the FPGA if you need to run at a different speed
- Need to make sure the board process variations are not too large
- Need to ensure DQ and DQS skew inside FPGA is not too large

#### Status:

Still under study, no paper calculation yet





## **Cyclone Support**

- Device Support Overview
- Characterization update





## **Device Support Summary**

| Device | Package              | Number of DQ/DQS groups |
|--------|----------------------|-------------------------|
| EP1C3  | 100-pin TQFP         | 3                       |
|        | 144-pin TQFP         | 4                       |
| EP1C4  | 324-pin FineLine BGA | 8                       |
|        | 400-pin FineLine BGA | 8                       |
| EP1C6  | 144-pin TQFP         | 4                       |
|        | 240-pin PQFP         | 4                       |
|        | 256-pin FineLine BGA | 4                       |
| EP1C12 | 240-pin PQFP         | 4                       |
|        | 256-pin FineLine BGA | 4                       |
|        | 324-pin FineLine BGA | 8                       |
| EP1C20 | 324-pin FineLine BGA | 8                       |
|        | 400-pin FineLine BGA | 8                       |





## **Device Support Overview**

- Up to 8 DQS/DQ groups in x8 mode (2 per bank)
  - X8 mode means 1 DQS per 8 DQ pins
  - X16 and X32 are currently not supported
  - Configuration pins uses 2.5V when Bank 1 and/or Bank 3 are used
- DQS Phase Shift achieved using a programmable delay chain
  - Each DQS can work at different frequency
- DDR I/O interface implemented in the LEs
- Target F<sub>max</sub> is 133 MHz





## Device Support Overview (cont'd)

- DQS signals can be routed into the FPGA
  - Each DQS signal uses a global clock net line
  - Limited to 48-bit interface due to lack of global clock net resources
    - 6 global clock nets are used for DQS
    - 2 global clock nets are used for the system clock and -90° shifted clock
    - All other logic in the design must use either the system clock or the -90°shifted clock
  - 64-bit support under study
    - Mention any opportunity to the factory





# Cyclone vs. Stratix DDR SDRAM Interface

- DQS signal can go to the core and not just IOEs
- Used up a global clock net
- Up to 48-bit interface only
- DDR I/Os are implemented in the LEs
- DQS Phase shift uses programmable delay chains
- DQS Phase shift not limited to top/bottom banks
- Each DQS can work at different frequencies
- Target is 133 MHz instead of 200 MHz
- Each bank has a maximum of 2 DQ/DQS groups
- Only x8 is supported, no x16 or x32 support currently (x8, x16, x32: 1DQS per 8, 16, or 32 DQ pins respectively)





## Characterization update

- To be finished by WW32
- Designs to be characterized:
  - 16 bit interface at 133 MHz
  - 32 bit interface at 133 MHz
  - 48 bit interface at 133 MHz
  - Multiple DIMMs





## **IP Support**

- DDR SDRAM Controller Megacore
  - Version 1.2.0 available on the website
    - 200 MHz support with CAS latency=3
    - Cyclone support
  - Version 2.0.0 in Q4 2003
    - To include Stratix non-DQS mode implementations
- RLDRAM II Controller Megacore
  - In Concept Phase
- Cores from AMPP Partners
  - DDR SDRAM cores from DCM Technologies and Northwest Logic





### Advantages of using the MegaCore

- Easily implemented
  - 5 MegaWizard pages
- Design constraints are provided
  - Encourage customer to use the MegaWizard, even if it is only for the constraints
- The only way to get LE placement constraints for critical paths in Cyclone





## **DDR SDRAM Controller MegaWizard**







#### **FAQs**

- Error on DQ pins being too close to VREF
  - Check the VREF/pad placement guidelines in AN201
  - If in compliance, use the "Output Enable Group" option
- When DQS frequency != input clock frequency
  - Remember that DQS inclock must come from an input pin
- Can I just connect dqs\_datain\_h of the altdqs megafunction to VCC?
  - Yes. Having the unregistered OE signal connected to dqs\_datain\_h port helps with the write preamble time (timing simulation only, not in silicon)





### FAQs (cont'd)

- Does simulation show the DQS phase shift?
  - Yes, both functional and timing simulation show the 72° or 90° shift
- What if I have a 9:1 (DQ:DQS) relationship?
  - Quartus will create a x16 mode, where the seven extra DQ pins are not connected to the DQS bus (can be used as regular I/O)
- Not getting the last data (simulation and silicon)
  - Remember to invert the DQS signal coming in





### FAQs (cont'd)

#### Can I use OCT?

- Maybe. Depending on the interface, you may violate the current limit set for any ten adjacent pins in Stratix
- If you are interfacing with a 200 MHz DDR SDRAM, Altera recommends setting the SSTL-2 current setting to MIN and OCT cannot be used with this current setting
- Does DQS have to be a bidirectional pin?
  - Yes, if for some reason you only need it for reading (in case of RLDRAM), you can tie the OE to GND. Do not tie outclock to GND in Quartus II 3.0!







#### References



## References (www.altera.com)

- Quartus II Design Example: DDR SDRAM I/O Interface
  - http://www.altera.com/support/examples/quartus/q-ddr.html
- DDR SDRAM Controller
  - http://www.altera.com/products/ip/iup/memory/m-dcm-ddr\_sdram.html
- Stratix Hand Book
  - http://www.altera.com/literature/lit-stx.html
- Double Data Rate I/O Signaling in Stratix & Stratix GX Devices(Altera DataSheet)
  - AN212.pdf / AN201.pdf / Startix\_handbook.pdf
- External Memory Device Interfaces in Stratix Devices
  - http://www.altera.com/products/devices/stratix/features/stxext\_mem\_int.html





20 YEARS of



