

SOPC

WORLD
2003

Timing-Driven Design for
Optimal Area & Performance

October 2003

P 20 YEARS of
—

Synplicity m °

Simply Better Results

INMOVATION

Agenda

m Synplicity Overview
® Synplicity’s Solutions
m Identify Demo

< — 20 YEARS of
—
Synplicity m

INNOVATION

Synplicity, Inc.

mEDA software company founded in 1994

mUnique company philosophy
— Best results don’t have to come from hard to use tools
— Flexible and easy to work with company
— Dedicated to providing the best technical support

mFPGA expertise
— Synthesis
— Physical Synthesis
— Debug

Simply Better Results”

INNOVATION

< >
Synplicity

Top Ranking in Customer Satisfaction

Novas Software
*Get2Chip
q Synplicity
Verplex Systems
Synopsys
Nassda
Mentor Graphics
*0-In Design Automation
Cadence Design Systems
Denali Software
Verisity
Industry Average
*Forte Design Systems
*Sequence Design
Agilent EEsof EDA
*Ansoft
*Tera Systems
*TransEDA
*TannerEDA
*Magma Design Automation, Inc
*Analog Design Automation
*Axis Systems, Inc.
*Barcelona Design
*CoWare
Exemplar Logic
*Summit Design
*Synchronicity
*Monterey Design Systems, Inc.
« *Aldec Corporation
— *Aptix
Synplicity

Simply Better Results

84%
82%
79%
79%
78%
77% ELECTRUNI: ENGIMEERING
74%
71%
70% | |} _)
70%
69% C ustomer
69% . .
64% Satisfaction
61%
60% June 2003
60%
60%
59%
53%
5501;/" Base = # who have purchased or
500/: used a product from the vendor
50%
500/: *base too small (20 or fewer
49% responses); interpret data with caution
44%,
42%
35%
34% 20 YEARS of
25%

INMOVATION

Synplicity’s Design Solutions

< >

Synplicity

Simply Better Results

\

@ Synplify® & Synplify Pro®

Synthesis | Advanced FPGA Synthesis
SOLUTIONS

© Synplify ASIC®
\ High Performance ASIC Synthesis
= O Certify®

ASIC RTL Prototyping Software

Verification .
SOLUTIONS 74

C |dentify™
g RTL Debugger
, ~ Fortify
PhYSlcaI f Family of Power Products
Implementatlon
SOLUTIONS

Ampllfy Physical Optimizer™
Physical Synthesis for FPGAs

20 YEARS of

/AVOTS RYA,

INMOVATION

Top FPGA Design Challenges

As described by today’s FPGA designers

m Achieving Performance Goals
m Timing Closure

m Productivity

m Debug

m Prototyping

< — 20 YEARS of
— >

Synplicity /AVO[S RYAN,

INMOVATION

||||||||||||||

Achieving Performance Goals
(Synplify & Synplify Pro)

P 20 YEARS of
—
Synplicity m .

INMOVATION

|||||||||||||

Performance Goals

mSynplify (Mappers) are architecture aware

mOptimizations are performed based on timing
constraints

—Hierarchical boundary optimization

mBEST algorithms extract high level
components

—RAM’s, FSM’s, wide muxes, adders/multipliers,
etc.

—Technology-specific optimizations made after

extraction
S
Synplicity

20 YEARS of

ALTERAY

INNOVATION

Set Proper Timing Constraints

mSynplify and Synplify Pro are timing
driven

— Optimization decisions are made based
on the timing constraints

— Not simply optimizing for performance
or area

— Saves on device cost by using the
smallest part while meeting your timing

mForward annotation to P&R

— Timing information is forward annotated
to Quartus place & route

— More detailed and accurate timing
<> constraints yield the best results2o vears o«
Synplicity

INNOVATION

Basic Clock Options

= Frequency / Period SCOPE®
— Enter one (displayed in bold)
— Others are automatically derived (regular font)

m Clock Group
— Default clock group: default clkgroup

— Only paths between clock domain from the same clock group
are analyzed

m Use real constraints for your design — don’t over
constrain

m To optimize strictly for area set frequency to 1MHz

Enabled Clock Fr?:ﬂ'i'_li?w P:_::;d Clock Group CID:::STSE CIE:;:;::: all I]utj.;n:;rc 13 R(Dn":}ﬂ 12::;:'
3 = clk3 100 10.000:01 a0 2 -
4 ™ clkd §3.333 12.000 01 a0 ™
[+ [\ Clocks £ Inputsiodtputs A Registers 4 Muli-Cycle Paths A False Pathe A Afrbutes 4 Other 7 4]
« - 20 YEARS of
= /AVO[S RYAN
Synplicity

INNOVATION

Simply Better Results

Advanced Clock Options

m Rise, Fall, Duty Cycle
— Use Clock Rise/Fall to specify rising and falling edges
e duty cycle automatically derived

— OR Specify the clock cycle as a % of the clock period

e rise reset to 0, fall automatically derived
— Default is Rise=0, Fall=period/2, Duty Cycle=50%
m Route

— Use to shrink the effective clock period without affecting
the clock constraint forward-annotated to Quartus P&R

m Virtual Clock
— Use for external clock signals clocking top-level ports

20 YEARS of

Synplicity
Simply Better Results INMOVATION

IP Support

m Altera Clearbox support allows
Synplify to perform realistic timing
analysis, optimizations, and reporting

— Synplify Pro only

m Mixed language support
— Synplify Pro only

< - 20 YEARS of
—

Synplicity

Simply Better Results

NNNNNNNNNN

Forward Annotation to Quartus

m Timing constraints forward annotated to
Quartus Place & Route
— Frequency
— Duty Cycle
— 1/O Delay
— Multi-Cycle Paths
— False Paths & max_delay path
— Clock Relationships
— Pin Assignments

m Accomplished through .vgm & .tcl

20 YEARS of

INNOVATION

< >
Synplicity

Timing Closure
(Amplify Physical Optimizer)

< - 20 YEARS of
——

Synplicity /AVO[S RYAN,

INMOVATION

|||||||||||||

20 YEARS of

AL

INMOVATION

Routing Governs Performance

m -
= -
ooc
=1 =
ooc
=1 =
= EE
m -
=1 =
ooc
=1 =
ooc

N

DO DDDOCmmo
gooOoe0oooooooont

oo R [=]=l=]=\=]=]=]=]
= B £ e i) i B e e o Ee
00 QOO0 0 0 O 00000000 0 O OO0
000000\ 00 000000000000 0000
[[[e o e [e o e o e] e e o o o [[e [o o [e [

mﬁi NI AEEEEENEN N ENENEENNOnADnEE

—] 1 | e R Co\CIC O O OO CICICICIC O O I
— OoOopogNOO0Oo00oOO0o0ooooooooooc
—— | N [I

— ooohohoiERE 0 o0 ooooooooas 0 o aE

Y
[=f = =] = OO OIN O O OOOOOOOoOoOoOooooc
sl=l= =l=]=p._ " f=l=l=] == ===l =R == =]

(TSI DR DO OO DO D000 0 O OO0
P00 0N OO0 00000 0000

.................................

= Must incorporate physical information into synthesis

m The larger the design, the larger the problem

Synplicity
Simply Better Results

_):

Amplify Physical Synthesis

File Edit Yew Project Run HDL Analyst Tools Options Window Help
o

= Simultaneous ST O SO

= amplify2

e rea | Area Use | AreaUse(%
p I a ce m e nt a n d = {%} EP15GX25CFCET2 N-,gm :20 :n 2 :% =l =IIIIIIﬂ]ﬂ\l{n&%&gw\l!g%lmWll%ﬂl!llmﬂ]\!dll&&%ﬂ%ﬂ]}@yww%%ww

Il

+ Il Regions B o 1. 149 11%
@ Unassigned Bin

optimization T

= Integrated
Design
Planning guides
physical :

]

)

Il

il
Errbpae e
SESSEEESEE EEEEEEEEEEEE§

00,

(A

e A P e e

< Instances ()
+ {1 REGS (REG_FILE
[[n 4 I UC_ALU ALU) Ar
+ {1 SPECIALREGS(: o
+- L Dmus [Data_us) Fan T e D 5
P I
+ FrgmCri [Prgm REsET P £ o] PortaReglsngr) —SE—— D poungh kT
B FonCon P roose ooty - o Lowe S i P | I e
+- 41 DECODE (NS_De RS R o rosam ST sz o=)| I -
+ 4 ROM (NS_ROM), R - " L——{owa oy sy bl o | o sl
o g 10, bt o) | (e e il | o [e |
_buif (10) i v roRTo ALer e - -
o P o I — v ST ey Bt
fimitives Pigncit . & - e = ¥
e suorma L

B ramaTAL

FsEen

Ports (5) i ira | ey e
Hets (39) " L_A_MMBEW:H SRECIAL REGS
RE5_FILE ?—. ALuE_sEDa) it me RO " =

performance an col I P | B e e
average of 20%

1 -
000

< | 253 >
- et bt 8 [eight_bi e
over synthesis AT e K K T e
Drag ower rgn2 (Stratix Region)
20 YEARS of
I —l
=

Synplicity

Simply Better Results

INMOVATION

When To Use Amplify

mFor fast timing closure
m\When you need the highest possible performance
mNeed to reduce a speed-grade for cost

m\When the majority of delay is in routing

20 YEARS of

INNOVATION

< >
Synplicity

Amplify — Interactive Flow

e

WW\M

et e s e e e e e e e = e e e e e e e e e e

wmnnnnnnnnnnnSnnnnnnnnnnnnnnnnnnnnnnEnnnnnnnnnsnnnnnnnnnnn.

|®m\\\w\\\w\\\\§§ 27 N\%% ___“ :;_%__,/:/%/////

Ao

RTL Block Diagram Created

Identify Critical Paths

Physical Constraints
Feedback on Region Utilization

\ sl

i

i i,
il

D o

Rule Errors

ign

and Des
Physical Synthesis

Physically
Opt

RO

imized

Placement

Netlist

20 YEARS of

Quartus P&R

i
INNOVATION

Synplicity

Simply Better Results

Types of Physical Constraints

m Module Level Physical Constraints
— Logical module
— Use when critical paths are within logical modules

m Detailed Level Physical Constraints
— Point to point critical path

— Use when critical paths cross module boundaries
OR

— When meeting timing within a module becomes
critical

20 YEARS of

INNOVATION

< >
Synplicity

Benefits of Physical Synthesis

BSynthesis with physical constraints provides
— Simultaneous placement and logic optimization
— Placement based optimization

— Register replication for high fanout nets across region
boundaries

— Register tunneling across boundaries

— Replication and re-assignment of registers that drive
primary |/Os

— Placement of logic constrained to regions

20 YEARS of

INNOVATION

< >
Synplicity

Value of Using the Best Synthesis

mSaves you money

20% premium
for 12%-15%

$100/chip $120/chip $144/chip Performance

Savings are huge for volume applications

mMakes your products more competitive

— Better performing chips make a better product

— Reaching timing goals quickly gets you to market sooner
5 20 YEARS of

Synplicity /AVO[S RYAN,

INNOVATION

Design Productivity
(Synplify & Synplify Pro)

nnnnnnnnnnnnnn

20 YEAR
I TIOMN

Core Synthesis Technology

s BEST - Behavior Extracting Synthesis Technology”
— Infers and optimizes behavior from RTL
— Optimizes across hierarchical module boundaries
— Integrated physical synthesis algorithms
— Multi-million gate capacity
— Extremely FAST - Unparalleled runtimes

Beha\V Synplicity’s approach
RTL
Gates\ Others approach
5 _ - _ _ > 20 YEARS of
Compile Optimize Physical Synthesis Map m-m

Synplicity
Simply Better Results

INMOVATION

Managing Complex Designs

MultiPoint™

= A Powerful Synthesis Flow for
— Incremental design using Synplify Pro or Amplify
— Unlimited gate capacity
— Minimal scripting effort
— No compromise Quality of Results

— Altera Logic Lock flov Q
>

LogiclLock"

20 YEARS of

INMOVATION

< >
Synplicity

MultiPoint Flow

TOP

< >
Synplicity

Simply Better Results

: v
S

First Run

Summary of Compile Points

MName Jtartus Eeason

I Mapped o database
i Mapped o database
top Mapped o database

Second Run

Summary of Compile Points

Name Status Feazon

D Femapped Dezign changed
A nchanged S

top Unchatged -

Enabled Pl Type
"2 weark 2, locked
"2 ek D locked
Iritialize Constraints Select File Type I
—Select the type of SCOPE file pou want to create
. . " Top Level " Block Level ' Compile Paint
Define compile
points and compile
point constraints
EI@ top [project]
-3 congtraint
..... ﬂ tDpst
----- B 4_cp.sdc [module 4] ok |[Coedl] __Heo
=24 verilog
..... 'a'_ll‘ll)
..... B H-Ey A
----- Cow {4 mapped.srd
----- D {4} model.srd
----- top.w) ttlard
----- bl compile_pt [top) -3 D
----- mapped. srd
) A | [madel. srd
Project View | . tsrd 20 YEARS of
=i top =
----- mapped.srd m
""" mode.sid INNOVATION
----- il.srd

MultiPoint Synthesis

Difference Based Incremental Synthesis

Re-synthesize a locked Compile Point module for:
mA logic change in your RTL code

mChanges to constraints
» Timing constraints change in the .sdc or Project View

* Project settings change
« FSM Compiler or Explorer
* Retiming
* Pipelining
mRe-synthesis is not based on time stamp

20 YEARS of

INNOVATION

< >
Synplicity

Debug
(Identify)

_):

|||||||||||||

20 YEARS of

/AVOTS RYA,

INMOVATION

Evolution of Hardware Debug

_ Embedded :
Identify HDL Analyzer : ;
(Simulator-Like) . ;- :

Embedded
Logic Analyzer

SignalTap
(Logic Analyzer-Like)

Logic Analyzer

of
—r T [

INNOVATION

< >
Synplicity

Identify RTL Debugger

m Debug and
instrument FPGA
directly in RTL code

m Provides internal
visibility in the target
system at full speed

m Trigger on Data Path
and Control Path

m Standard VCD
Output for Waveform
Display

5

Synplicity

Simply Better Results

Identify Debugger =10l
File Edit Debug ‘Window Help
w | [! P4 | =1 (=2 | s
=2 d 3¢ | EHEH) B AEHAEE =
Complex Counter Mode:levents j Value:|1
o ROOT (hus_dema) \ s
& wvard_xfer_inst (word_xfer) 38 alW§yS@ { focurr state? B0l o reql or regZ) —J
o word_xfer_cntrl_inst (weord_xfer_c 39 begin
& ltsr_inst (Ifsr) 40 grantl <= 1'b0:
always_90 41 t2 ¢= 1'b0:;
& sbweays_120 ok :
‘ alweays_129 4z
B bk _xfer_inst (hlock _xfer) 43 case (#€curr state? BO01ly crsynopsvys parallel_case
0 bl Dt (bl xfer_cntrl) 44 st_idlel: begin
EEf ar =))
‘always 35 45 if{{ reql == 1'bl) && { regd == 1'bl)3
‘ alvways_85 -) 46 fenext state? 'b01 (= =t_grant?;
Bl @ rom_inst (wh_rom) 47 else if { reql == 1'b1)
B ram1_inst (wh_ram1)]
Bl— ram2_inst (wh_ram2) 48 Gonext state? b0l ¢= =t grantl:
49 el=ze if { regd == 1'bl }
50 donext state? B0l = =t grantz;
51 else
@ g2 donent stated B0l .= =t idlel;
53 end
54 =t_idle?: begin
55 if{{ reql == 1'bl) && (reg2 == 1'bl })
= 13 donext state? B0l = =t grantl: ILI
«| i Hl < | »
Windows NT -]

INFO: 05 =
INFO: OS5 wersion B

5.0
INFO: Using instrumentation in "C:~Documents and Settings-caslis-My Documents<Identify-bus demo-syn_ar

b
INF(Q: Writing channel (0.

CEE.

JEE.E.E.X.X. X"

C:sDocunent= and Settlngs/caslls/DesktDpS run —countermode events —counterval 1 —triggertime mniddle J

C:sDocunent= and Settlngs/caslls/DesktDpS =top enable —-ptres 1 ~arb_inst-always 38-case_43-if 45 arb.v

46

INFO sarb_instsalways_38-ca=e 43-1f_4G-arb. v: 46

enabled for pattern tres 1

C:-Docunents and Settings-caslis-Desktop? run —countermode events —counterval 1 —triggertime middle LI

arb.w

20 YEARS of

/AVOTS RYA,

INMOVATION

Design Flow with Identify

I - Identify ;‘ e
= Read RTL into Identify ‘
Instrumentor =

= Compile and map |dentify Sy“""@’"‘p"e
output in Synplify E— -
m FPGA Place & Route 4
Quartus P&R

m Use Identify Debugger to B3
view data in FPGA I |

Identify Debugger
o /ANO[S RYA\,

INMOVATION

0 YEARS of
_)[

llllllllllllll

nstrumenting for Debug

Identify Instrumentor i] 9
File Edit Actions Window Help

nSed|e|RBEEESR| @

& ROOT rhus_dema) = 74
o wvord_xfer_inst (wor

o weord _xfer_crirl_inst 75 if { dfreg? == 1'bl

@ blk_xfer_inst (block @ 76 fonext state <= st_grant2:

= g
& slways_132 @ 77 else if (Hgregl == 1'B1l)

‘E|WEYS_141 @ 78 denext state <= st_grantl:
@ shways_150
‘ alvways_159 79 else

drgrant? <= 1'bl;

Add Signal

Visibility\

blk_xfer_crirl_inst (il =] 20 donext state <= st_idlel:
. El hiter) a1 e
g2 endcase

83 end
84

& rom_inst (wh_rom)
o rami_inst (wh_ram1}
o ram2_inst (wh_rama)

alway=@{ posedge d&oclk or posedge foreset)

D - a7 i g S0
es I g n ag Sgoury Sample and trigger 1
Sample only
&3 Else Trigger anly

H i e ra rc h y :S 5 SECUXT Mot instumented

o _’IT 4 % |'|LI

INFO: Set instrumentation directory to "C:-Documents and Settings-caslis My DDc:uments/Identify/hus_demo/s;l

I I vn_arh"
C C:/Documents and Settings-caslissDesktop? breakpoints add ~arb inst-always 38-case_43-1f_757arb. w:76
INFO: Current area estimates: Logic: 341 logic elements. Buffer: 1024 bits
INFOQ: ~arb inst-always_38-case 43-1f 75 arb. w:76 added

C:sDocunents and Settings-caslis-Desktops breakpoints add ~arb_inst-always_38-cases 43-1f_75-if_77~-arb.v: 8

n]
Scriptin ;
INFO: Current area estimates: Logic: 348 logic element=, Buifer: 1152 bits

INFO: ~arb inst-always 38-case 43-1f 75-1f 77-arb.+:80 added
C:sDocunents and Settings-caslis-Desktops hd

Interface =
« Id tf I t t 20 YEARS of
< > entify Instrumentor

Synplicity /AVO[S RYAN,

Simply Better Results INMNOVATION

Debugging Data From FPGA

Identify Debugger =10

Actual data from Sed| %o HEEf B REEEE =

F PGA Complex Counter Mode: | events j Value:|1
\ ~ ROOT (bus_dema) - > d

inist (word xfer) =1 38 alway=@ { fdcurr state? DOl or reql or req?)
fer 39 begin
me 40 grantl <= 1'hb0;
n t2 ¢= 1'b0;
Click to enable R Jas 2
. o blk_xfer_inzt (hlock_xfer) 43 casze (€¥curr state? P01y - synopsys parallel case
trlggers — v bk xfer critrl |n31 (hlk_xfer_crtrl) a4 =t_idlel: begin
o S — 45 if{{ reql == 1'b1) && (reqg2 == 1'El))
Galw_favs_ss > @ 46 donert state? b0l = =t grantz:
@ rominst (wh_rom) 47 else if { reql == 1'bl)
o raml_inst Cwh_ram1) 3
& ram2_inst Cwh_ram2) 48 donext state? D0l o= =t grantl;
Automate Debugger . cise 3t (reqz =+ 1'b1)
- - =4 fenext state? DOl ¢= st grant2:
with Script o
@ 52 fonext stated B0l ¢= =t_idlel:
53 end
G4 =t_idle?: begin
13 if{{ regl == 1'b1 } && { req2 == 1'Lbl })
[4 | 1 fenext stated D01l ¢= zt_grantl: lﬂ
[=
= | | < | »
K N
- m) 05 = VWindows HT -]
= INFO: 0S5 wersicon = 5.0
K INFO: Using instrumentation in "C: - Documents and Settings-caslis My Documents Identifv-bus demossyn_ar
[4 B"
= C:sDocument=s and Settlngs/caslls/DesktDpS Trun —l:Dunterdee events —counterval 1 —triggertime middle
" INFO: Writing channel (0..17): SEH R R KRR
- C:sDocument=s and Settlngs/caslls/DesktDpS =top enable —-ptree 1 ~arb inst-alwvays 38-ca=s=e 43-1if_ 45-arb.w
= (46
- INFO: sarb_instsalways 38 ca=e_43-1if 45-arb.w:d6 enabled for pattern tree 1
C:s/Documents and Settings-caslis-Desktop$ run —countermode events —counterval 1 —triggertime niddle ;I

arb.y

20 YEARS of

Identlfy Debugger

INMOVATION

Synplicity

Simply Better Results

RTL Display of Triggers and

Sampled Data

m Full support of
symbolic values

m Control Path triggers

as breakpoints

m Data Path triggers
as watch points

m Configurable
counters and state
machine triggering

S5

Synplicity

Simply Better Resul

46
47

43
49

50
51
52
53
54

55
56

57
58
59

60
61
b2
63

Control Path

@ Trigger

Sampled Data
« From Chip

casze | @curr StatESt_idlezj 1=

when =st_idlel =:

@grant?’'l’ <= '0';

if (@reql'0' = '1') and (@regz'l’ =
@next statest_idled .= =t_grant?:
elsif { @regl' U’ = '1') then
@next statest_1dled .- =t_grantl:
elsif { @reg2’'l’ = '1') then
@ne=t statest_i1dled .- st_grant?:
else
@next =statest_1dlel .- =t_idlel;
end if;

when =st_idle? =»
if { @reql’ 0 = '1') and (@regqz’'l’ =
@next statest_idleZ (- =t_grantl;

elsif (@regl'0' = '1') then

Yt statest_1dleZ .- =t_grantl:
Data Path 20 YEARS of

INMOVATION

Setting Triggers on Data Path

ex : PROCESS (a, b) BEGIN
CASE IS
WHEN read state
IF b = “100110” TH
o <= “1107;

Watchpoint Setup il

Setup the first value only to watch a walue in a pattern bree on zignal
"next_state" or both walues to watch a tranzition from the first o the second in a
pattern tree:

First walue Second wvalue [optional]

END IF; [ree e
WHEN OTHERS => e
o <= “000”; —=
END CASE;
END PROCESS;
<« — 20 YEARS of
Syply NOERA.

Simply Better Resul s INMNOVATION

Setting Triggers on Control Path

ex : PROCESS (a, b) BEGIN

CASE a IS
\\\\\\\\\ WHEN read state =>
1

IF b = “100110” THEN

a == read_state

a == read_state 2/ o <= “110”;
&& END IF;
b==00110” WHEN OTHERS =>

® o <= “000”;
a !=read_state END CASE;

END PROCESS;

<« - 20 YEARS of
— >

Synplicity /AVO[S RYAN,

Simply Better Resul INMNOVATION

Intelligent In-Circuit Emulator (lICE)

= Inserted logic used by Instrumentor & Debugger
m Uses dedicated JTAG pins or user-selected pins

= Includes controller, triggering logic, & data storage

buffer
A p— ‘
ICE =
Control/Data —4j
Y :E—F
Comm Addr Trigger
Controller| | Logic Logic Probe
Data Control/Data Sample
J TAG Multiplexer Buffer
< | | | | | | | | | | | | | | | | 20 YEARS of
/AVO[S RYAN
Synplicity

Simply Better Results

INNOVATION

Triggering Logic and Buffer

HDL ‘
Signals ' Circular Sample Buffer in HW
: Trigger State
Log-g Machine/
: gic
Trlggers Counter

m Trigger values changed dynamically from debugger
m Trigger halts sampling, Not hardware

m Triggers pipelined, only 2 gate delay 20 YEARS of

INNOVATION

< >
Synplicity

Customer Success

Foundry Networks

“In just our first six weeks with the product, we used
it to find and fix bugs in three of our designs. In
each case the process was completed within a
day. It would have taken 10 to 20 times longer
using traditional test-bench methods.”

-Richard Grenier
Director of ASIC Development

20 YEARS of

ALTERAY

INNOVATION

< >
Synplicity

Multi-FPGA Prototyping
(Certify)

nnnnnnnnnnnnnnn

20 YEAR

INMOVATION

Higher Speed & Lower Cost using
FPGA Prototypes
A

$1,000

$750

$500

Cost ($000)

$250

< >
Synplicity

Emulation
O
Hardware-
accelerated .
simulation Certify
Cycle- O enabled
HDL based ® / prototypes

>

1 10 100 1,000 10,000 100,000
106 10-5 10-4 10-3 10-2 10-1 Chip=1

20 YEARS of

Performance (K Cycles/Sec) /NOTSRYA,

INNOVATION

Prototyping Challenges

m ASIC RTL Code
— Gated Clocks
— DesignWarem

m Performance

— Video and signal processing applications
m Partitioning

— Pin utilization

20 YEARS of

INMOVATION

< >
Synplicity

FPGA-Based ASIC Prototypes

BH Certify - d:\celine\training\certify\certify_3.1\labs\work\lab2_par* - Board “board1™

File Edit Wiew Project Bun Cettify ‘Window Help

PORBESHIS » 1500 » 020+ (29901

ing 140 Use | Arealse | Amea Use(%)

ame
o BE svstem o 1 20 273 10593 57%
Eh > 8% FPGAe {88 U2 20 222 12841 63%

= koS asi
= . I
= Calculate | & &/ rovo [F“J -
T pssign {F RoVIRI 7
Show insts. ' 0 rovem
[+ Ik Rove le
N | Basic | Kl L4
~Wiew Selection Optiohs—— Visible Ports
System - e RC
| = U | c=n
MNew Yiew | Clone VjewI Dielete V\ewl [Velete Devicel ||| [Rewa
4| | v[]| | visible Ports
ArealDs f, Traces f 4 _I—/I
@ dheelinghtr... E d:\elinestra I@ top:[.. | E Impact Anal...
Instance: RC¥3 of type RCVER Area: 2804 Assigns uz =W B NCTY ’_,_ 7

< >
Synplicity

Simply Better Results

m Highest performing
ASIC prototypes for
— Functional verification

— HW/SW co-verification

= Automatic RTL
partitioning, 1/O0
sharing, and more

m Supports all
prototyping hardware
including off-the-shelf
boards

m Adopted by Philips,
Tl, LSl Logic and
OtherS 20 YEARS of

INMOVATION

Summary

m The Market Leader in FPGA FPGA Synthesis
synthesis & physical synthesis o, SOurce: DataQusst

— Best Quality of Results
— Unmatched Productivity

m A Leader in EDA innovation
— First in FPGA physical synthesis

— Innovative, at-speed, RT-Level debug
technology

— Unique multi-FPGA prototyping system

m Top-ranked customer service and
technical support

B Synplicity
B Mentor

] Synopsys
B Other

20 YEARS of

INNOVATION

< >
Synplicity

< >
Synplzczty

Simply Better Res

END

	Timing-Driven Design for Optimal Area & Performance
	Agenda
	Synplicity, Inc.
	Top Ranking in Customer Satisfaction
	Synplicity’s Design Solutions
	Top FPGA Design Challenges
	Achieving Performance Goals(Synplify & Synplify Pro)
	Performance Goals
	Set Proper Timing Constraints
	Basic Clock Options
	Advanced Clock Options
	IP Support
	Forward Annotation to Quartus
	Timing Closure(Amplify Physical Optimizer)
	Routing Governs Performance
	Amplify Physical Synthesis
	When To Use Amplify
	Amplify ? Interactive Flow
	Types of Physical Constraints
	Benefits of Physical Synthesis
	Value of Using the Best Synthesis
	Design Productivity(Synplify & Synplify Pro)
	Core Synthesis Technology
	Managing Complex Designs
	MultiPoint Synthesis
	Debug(Identify)
	Evolution of Hardware Debug
	Identify RTL Debugger
	Design Flow with Identify
	Instrumenting for Debug
	Debugging Data From FPGA
	RTL Display of Triggers and Sampled Data
	Setting Triggers on Data Path
	Setting Triggers on Control Path
	Intelligent In-Circuit Emulator (IICE™)
	Triggering Logic and Buffer
	Customer Success
	Multi-FPGA Prototyping(Certify)
	Higher Speed & Lower Cost using FPGA Prototypes
	Prototyping Challenges
	FPGA-Based ASIC Prototypes
	Summary

