
Secret Synthesis Recipes for
Performance and Cost

SOPC World
November, 2004

AgendaAgenda

Company Introduction
Recipes for achieving high performance
Recipes for area (cost) saving
Physical Synthesis
DSP Synthesis

Synplicity, Inc.Synplicity, Inc.

A Global EDA company founded in 1994
Unique company philosophy

Best results don’t have to come from hard to use tools
Flexible and easy to work with company
Dedicated to providing the best technical support

The Market Leader in FPGA Synthesis
Innovative Solutions For FPGA Designers

Physical synthesis
Debug
DSP Synthesis

Simply Better Results®

AgendaAgenda

Company Introduction
Recipes for achieving high performance
Recipes for area (cost) saving
Physical Synthesis
DSP Synthesis

Performance TipsPerformance Tips

Out of the box synthesis yields good results
Even when running with default settings, the synthesis algorithms are
very good at making FPGA specific decisions

Applying real constraints will boost performance
Constraints define critical areas for the synthesis algorithms

Setup Tips
Setting up the project correctly can impact performance and area
greatly. Some tips to follow.

Controlling Implementation Tips
After set-up, what can the user do to change the implementation to
reduce Area further and increase performance.

Setup Tip #1 The Optimum ConstraintSetup Tip #1 The Optimum Constraint

Best to exactly constrain Synthesis
Ensure that the most critical path is a “real” path
Ensure that Synplify doesn’t have positive slack on the critical path

If Synplify indicates less than ~10% of cycle time negative slack,
some optimizations may not kick in
Performance will likely degrade if over-constrained by over 15%

Create the right amount of negative slack for
constraining Synthesis and Place & Route

Positive Slack - bad

The Optimum Constraint for Best ResultsThe Optimum Constraint for Best Results

Under Constrained Over Constrained

Optimum

Synplify Constraint
Synplify Fmax
Fitter Fmax

Synplify Constraint

Fm
ax

Setup Tip #2 – Clock ConstraintsSetup Tip #2 – Clock Constraints

Enter all timing constraints
Define real individual clock constraints
If the clocks are unrelated, always put them into
different clock groups

Using the global frequency field can harm results
Only useful for single clock, small benchmarks &
demonstrations

Always specify the correct clock groupings

More Setup TipsMore Setup Tips

I/O Timing
When I/O timing is on

The critical path will likely be through an I/O
Other logic may therefore not be optimal

If I/O timing is not required turn it off
Un-selecting the ‘Use clock period for unconstrained IO’
in the implementation options’
Off by default for new projects

Be sure to specify false and multi-cycle paths
Enables Synplify to focus on real critical paths

Add Clearbox to the Synplify project

Tip #3 – Pipelining & RetimingTip #3 – Pipelining & Retiming

Significant Performance Increase
Up to 50% better timing
Extremely design dependant

Pipelining (a la Synplicity)
Applies to arithmetic datapath

Multipliers, Adders, ROMs
Moves existing registers to balance delays
Timing driven
On by default

Retiming (a la Synplicity)
Applies to the entire design
Moves existing registers to balance delays
Timing driven
Off by default

Tip #4 – State MachinesTip #4 – State Machines

FSM Compiler
ON by default
Extracts and optimizes FSMs
State encoding based on number of states

2-4: sequential / 5-40: onehot / more than 40: gray

FSM Explorer
OFF by default
Timing-driven state encoding

User can force state encoding
syn_encoding attribute on modules or instances

sequential, onehot, gray and even user defined!
Encoding could be viewed as a retiming across the FSM

Output decoding logic vs FSM logic

wait_rden

wait_data

data2a

data2b

data2c

data3a

data3b

data3c

data_d3a

data_d3b

data_d3c

data_done

Tip #5 – Resource AllocationTip #5 – Resource Allocation

Macro block is not always the fastest implementation
A well pipelined LUT mult is faster than a combination of blockmults

Use selected attributes to control resource usage
Multiplier

syn_multstyle {logic | lpm_mult}

RAM
syn_ramstyle {registers | M512 | M4K | M-RAM | block_ram |
no_rw_check}

ROM
syn_romstyle {logic | lpm | block_rom}

Shift Register
syn_srlstyle {registers | altshift_tap}

Tip #6 – Optimization ControlTip #6 – Optimization Control

Power users can control synthesis optimizations
syn_keep (in source code)

Preserves a RTL net throughout synthesis
Prevents LUT packing, replication, removal, etc
Allows –thru constraints

syn_preserve (in source code)
Disables sequential optimizations on FFs
Prevents removal, merging, inverter push-thru,FSM extraction

syn_replicate (in constraint file)
Prevents replication of FFs

syn_maxfan (in constraint file)
Hard fanout limit on module or instances
Triggers replication and buffering

Details and examples in on-line documentation

Formal Verification Tool SupportFormal Verification Tool Support

Enable Verification Mode

VIF (Verification Interface File)
Automatically generated during synthesis
Tool independent ASCII file
Contains information needed by FV/LEC tools
Synplify Pro feature only

Cadence’s Conformal and Prover’s ECheck supported
Script to convert “VIF” to LEC compatible file(s)
available

AgendaAgenda

Company Introduction
Recipes for achieving high performance
Recipes for area (cost) saving
Physical Synthesis
DSP Synthesis

Synthesis For Area (Cost) SavingSynthesis For Area (Cost) Saving

Synplify is truly timing driven
If a path is non-critical, Synplify will try to save area
while maintaining constraints
Only when the path requires performance will Synplify
start to increase area
Performance-upon-demand

Synthesis For AreaSynthesis For Area

Turn resource sharing ON
Use resource allocation attributes

syn_ramstyle
syn_romstyle
syn_multstyle
syn_srlstyle

Explore FSM encodings
FSM Explorer
Use syn_encoding

AgendaAgenda

Company Introduction
Recipes for achieving high performance
Recipes for area (cost) saving
Physical Synthesis
DSP Synthesis

Route Delay Must be Considered During SynthesisRoute Delay Must be Considered During Synthesis

Delay inside
logic block is
25% of total

Routing between
logic blocks is
75% of total

Amplify FPGA - Physical SynthesisAmplify FPGA - Physical Synthesis

RTL Block Diagram Created

Identify Critical Paths

Compile

Physical Synthesis

Quartus P&R

Feedback on Region Utilization
and Design Rule Errors

Physical Constraints

Placement
Physically
Optimized

Netlist

RTL Code

Accurate Timing Correlation is a MustAccurate Timing Correlation is a Must

Estimates must be accurate to ensure
the tool is working on the right paths

Timing Estimation Distribution

-30.0% -20.0% -10.0% 0.0% 10.0% 20.0% 30.0%

Placed Gates Unplaced

90% within
10% of
actual timing
67% within
5% of actual
timing
145 designs
used

Graphical Island Timing ViewerGraphical Island Timing Viewer

Helps users create a
good floor plan
(physical
constraints)
Easily identify
physically connected
paths with negative
slack
Reduces iterations
of synthesis
New in 8.0

Visual Feedback For Analysis & Design PlanningVisual Feedback For Analysis & Design Planning

Physical Analyst

Physical analysis
Find, filter, expand commands
Cross-probing to source code,
RTL view and Technology view

Improved timing analysis
Critical path display
Cross-probing from timing report

Congestion analysis
Global route estimator
Congestion maps

New in 8.0

AgendaAgenda

Company Introduction
Recipes for achieving high performance
Recipes for area (cost) saving
Physical Synthesis
DSP Synthesis

DSP Synthesis Automation

Algorithm to RTL Implementation for FPGAs

DSP Synthesis Automation

Algorithm to RTL Implementation for FPGAs

DSP Designers & HDL Coders are DifferentDSP Designers & HDL Coders are Different

Algorithm RTL Gates Physical
Matlab, C,
Simulink
Synthesis
Simulation
P&R

Algorithm tools (and designers) have no idea of implementation issues
RTL is written by hand (redundant & error prone)

DSP Guru Implementation Engineer

LevelStep

Synplify DSP

Synplify DSP addresses this by raising the level of
abstraction in which an engineer operates

(Algorithm to RTL)

DSP Synthesis using Synplify DSPDSP Synthesis using Synplify DSP

Front-End for
Synplify Pro
Certify

Two Components
Blockset
Toolbox

Matlab/Simulink
system modeling

Synplify DSP
High-level optimization

& HDL generation

Synthesis (Synplify)

Place & Route

Debug

Optimized DSP
algorithms for hardware

The Synplify DSP BlocksetThe Synplify DSP Blockset

Blockset advantages
Simulink Fixed Point discrete
data type
Simulink Multi Rate discrete
time management
Architecture details hidden
Latency free design

What’s this all mean?
High productivity
Days instead of weeks

The Synplify DSP ToolboxThe Synplify DSP Toolbox

Toolbox advantages
Optimization technology
Decouples algorithm from
architecture
Technology independent

Can be used by the
DSP Guru

The Value of Synplify DSPThe Value of Synplify DSP

Large productivity gain
Decouples algorithm from
architecture
Area-Speed tradeoffs
Multi-channel system from
single-channel spec (patent)

Single source with QoR
DSP optimization gives faster
and smaller designs
Technology Independence

Leverages familiar
design environment

Simulink – No learning curve
Integrated ToolBox

SummarySummary

The market leader in FPGA synthesis
Synthesis impacts your customers bottom line

Innovation leader in FPGA design
First with physical synthesis
First with RTL debug
First with DSP synthesis

Excellent working relationship with Altera
New device support upon availability

Industry-leading post-sales technical support

	Secret Synthesis Recipes for Performance and Cost
	Agenda
	Synplicity, Inc.
	Agenda
	Performance Tips
	Setup Tip #1 The Optimum Constraint
	The Optimum Constraint for Best Results
	Setup Tip #2 – Clock Constraints
	More Setup Tips
	Tip #3 – Pipelining & Retiming
	Tip #4 – State Machines
	Tip #5 – Resource Allocation
	Tip #6 – Optimization Control
	Formal Verification Tool Support
	Agenda
	Synthesis For Area (Cost) Saving
	Synthesis For Area
	Agenda
	Route Delay Must be Considered During Synthesis
	Amplify FPGA - Physical Synthesis
	Accurate Timing Correlation is a Must
	Graphical Island Timing Viewer
	Visual Feedback For Analysis & Design Planning
	Agenda
	DSP Synthesis Automation Algorithm to RTL Implementation for FPGAs
	DSP Designers & HDL Coders are Different
	DSP Synthesis using Synplify DSP
	The Synplify DSP Blockset
	The Synplify DSP Toolbox
	The Value of Synplify DSP
	Summary

