m SOPC

WORLD
2004

Nios ||

uC/OS-Il porting with Nios Il

© 2004 Altera Corporation @

SOPC

WORLD
2004

LHC/OS-II

The Real-Time Kernel

© 2004 Altera Corporation

UC/OS-I|

Main Features

Portable (Most 8, 16, 32 and 64 bit CPUS)
ROMable

Scalable

Preemptive

Real-Time
— Deterministic
— High Performance

Multitasking
Robust
Provides many services

WORLD

ra4{SOPC
<>

2004 © 2004 Altera Corporation

/AYOTS RYAN,

uC/OS-II
ROMable and Scalable

m Designed for Embedded Systems

m Footprint depends on your needs:

— Semaphores, Mutex, Event Flags, Mailboxes, Queues ...
— ROM (Code space) — NIOS-II:

e 5 Kbytes (Min.)

e 20 Kbytes (Max.)

— RAM (Data space) — NIOS-II:

e 1 Kbytes (Min.), plus task stacks
e 5 Kbytes (Max.), plus task stacks

WORLD =
H 2004 © 2004 Altera Corporation @

UC/OS-I|

Services
m Semaphores

m Mutual Exclusion Semaphores
— Reduces Priority Inversions

Event Flags

Message Mailboxes
Message Queues
Memory Management
Time Management

m Task Management

}34 SOPC
A2 W/ORLD

5

© 2004 Altera Corporation

/AYOTS RYAN,

UC/OS-I]

Used in 100s of Commercial Products
Avionics

Medical

Cell phones

Routers and switches
High-end audio equipment
Washing machines and dryers
UPS (Uninterruptible Power Supplies)
Industrial controllers

GPS Navigation Systems
Microwave Radios
Instrumentation
Point-of-sale terminals

Many, many more
ya{(SOPC

WORLD _
2004 © 2004 Altera Corporation

6

m SOPC

WORLD
2004

UC/OS-II

The Real-Time Kernel

© 2004 Altera Corporation @

Foreground/Background
Systems

SOPC
;!'{‘J,[SRLD © 2004 Altera Corporation @

Products without Kernels
(Foreground/Background Systems)

Foreground #2

|

Foreground #1 I

| | |

Background [Teskit [l [IESKEENNT [Tesk 3 |
I |

Infinite loop

Time

)a{SOPC
;I(\}'()O4R =L © 2004 Altera Corporation AE“E%A @

Foreground/Background

/* Background */ /* Foreground */

void main (void) ISR (void)

{ {
Initialization; Handle asynchronous event;
FOREVER { }

Read analog i1nputs;

Read discrete 1nputs;

Perform monitoring functions;
Perform control functions;
Update analog outputs;

Update discrete outputs;

Scan keyboard;

Handle user interface;

Update display;

Handle communication requests;

Other...
\ 934 SOPC
H %&RLD © 2004 Altera Corporation AE“E%A ®

11

SOPC

WORLD
2004

Real-Time Kernels
and
LC/OSHII

© 2004 Altera Corporation

JABTERAY

What i1s a Real-Time Kernel?

m Software that manages the time of a

microprocessor or microcontroller.
— Ensures that the most important code runs first!

m Allows Multitasking:

— Do more than one thing at the same time.

— Application is broken down into multiple tasks each handling one
aspect of your application

— It's like having multiple CPUs!

m Provides valuable services to your application:

— Time delays
— Semaphore management
— Intertask communication and synchronization

— More
Pzi SOPC
H 2"’(\3’004RLD © 2004 Altera Corporation AE“E%A ®

LC/OS-I1l Is a Preemptive Kernel

_ ISR makes High Priority Task Ready
SR / -

High Priority Task (HPT)

Low Priority Task (LPT) - --------------------- -

N

WORLD —
2004 © 2004 Altera Corporation AIEIEA ®

What Is a Task?

m A task is a simple program that thinks it has
the CPU all to itself.

m Each Task has:
— Its own stack space
— A priority based on its importance

A task contains YOUR application code!
34 SOPC
H 2v(‘3’0 R © 2004 Altera Corporation AE“E%A

What Is a Task?

m A task Is an infinite loop:

void Task(void *p_arg)

{
Do something with “argument” p_arg;
Task initialization;
for (;3) {
/> Processing (Your Code)
Wait for event; /* Time to expire ...
/* Signal from ISR ...
/* Signal from task ...
/* Processing (Your Code)
+
by
}34 SOPC
WORLD

2004 © 2004 Altera Corporation

*/
*/
*/
*/
*/

/AYOTS RYA,

Task States

Resident in ROM

_ Delete
(Non-active) Task
Waiting Create
For Task
Execution
Event Occurs Context
Or Switch
Timeout

Wait

_ _ _ For
Wait for time to expire Event

Wait for a message
Wait for a signal

)a{SOPC

WORLD _
2004 © 2004 Altera Corporation

‘Creating’ a Task

O OS-Il needs to have information about your task:
— Its starting address
— Its top-of-stack (TOS)
— Its priority
— Arguments passed to the task
— Other

® You create a task by calling a service provided by
OS-Il — OSTaskCreateExt()

}34 SOPC
H %&RLD © 2004 Altera Corporation AE“E%A ®

Creating a Task
Stack ... Task Create ... Task Code

#define APP_TASK_ID 10
#define APP_TASK_PRIO 10
#define APP_TASK_STK_SIZE 256

static 0S_STK AppTaskStk[APP_TASK_STK SIZE];

OSTaskCreateExt(AppTask, //
(void *)0, //
&AppTaskStk[APP_TASK_ START_STK_SIZE - 1], //
APP_TASK_PRIO, //
APP_TASK_ID, //
&AppTaskStk[0], //
APP_TASK STK_SIZE, //
(void *)O0, //
0x0000) ; //

OSTaskNameSet(APP_TASK_PRI0O, "App Task'™, &err);

Task address

= p_arg E
Top-0f-Stack

Task priority
Task ID (not used)
Bottom-Of-Stack
Stack size

‘p_ext’

Options

static void AppTask (void *p_arg)

while (1) {
OSTimeDly(5);

}
ya{ SOPC | s Bis

WORLD _
2004 © 2004 Altera Corporation

Creating a Task for NIOS-II

€

19

SOPC

WORLD
2004

$ctl31 STATUS

$17
$18
$19
$20
$21
$22
$23
$24
$25
$26 (g
$28 (fp

$29 (ta,
$30 (ba)

$31 (ra)

| sct3isTATUS |
| s1
| s
| s3 |
| s
| s |
| s6 |
| sr
| ss |
| s9 |
| s10 |
| s
| sz
| s13 |
IV
| s15 |
| s16 |
| sz
| s18 |
| s10 |
| s20 |
| s |
| s> |
| s23 |
| sa |
| ses |
| s26(@p) |
| s8(p) |
| s200a)
| s30(ba) |
| ssi(a) |
S

OSTCBStkPtr

OSTCBPrio

OSTCBStat

© 2004 Altera Corporation

void
void

*parg,
*ptos,

INT8U prio
INT16U id,

void

*pbos,

OSTaskCreateExt(void (*task)(void *parg),

INT32U stk_size,

void

*p_ext,

INT16U opt);

/AVOTS RYA,

Task Control Blocks
(TCBSs)

m A TCB Is a data structure that is used by the
kernel for task management.

m Each task is assigned a TCB when it Is ‘created'.

m A TCB contains:
— The task’s priority
— The task’s state (Ready, Waiting ...)
— A pointer to the task’s Top-Of-Stack (TOS)
— Other task related data

m [CBs reside in RAM

bzi SOPC
H 2"’(\3’004RLD © 2004 Altera Corporation AE“E%A ®

21

SOPC

WORLD
2004

Scheduling
and
Context Switching

© 2004 Altera Corporation

[NOTSRIA,

What is Scheduling?

m Deciding whether there is a more important task to run.

m Occurs:
— When a task decides to wait for time to expire
— When a task sends a message or a signal to another task

— When an ISR sends a message or a signal to a task
e Occurs at the end of all nested ISRs

m Outcome:

— Context Switch if a more important task has been made ready-to-
run or returns to the caller or the interrupted task

WORLD =
H 2004 © 2004 Altera Corporation @

The uC/OS-Il Ready List

means one of the tasks in ROW #0 is READY

Al
A ‘0O’ means NONE of the tasks in ROW #0 is READY

A ‘1’ means the task is READY
OSRdyGrp A ‘0’ means the task is NOT READY

OSRdyTbI[]

Task Priority #

Lowest Priority Task

m So (Idle Task)

WORLD =

2004 © 2004 Altera Corporation AIEIEA ®
23

Finding the Highest Priority Task Ready

OSRdyGrp

oxF6 | OSRdyThI[]

Y=1

Ox78

X=3

Y=1

Task Priority

€

2004 © 2004 Altera Corporation

Priority Resolution Table

/**

PRIORITY RESOLUTION TABLE

Note(s): 1) Index into table is bit pattern to resolve
highest priority.
2) Indexed value corresponds to highest priority
bit position (i.e. 0..7)

**/

INT8U const OSUnMapTbI[] = {

¥ %k ok % %

o, 0,1, 0, 2, O, 1, O, 3, O, , 2, 0,1, 0, //

4, 0, 1, 0, 2, O, 1, O, 3, O, , 2, 0, 1, 0, 0x10-0x1F
5, 0,1, 0, 2,0,1,0, 3,0 2, 0 // 0x20-0x2F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0 2, 0 0, // 0x30-0x3F
6, 0, 1, 0, 2, 0, 1, 0, 3, O 0, 1, 0, // 0x40-0x4F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0 2, 0, 1, 0, // Ox50-0Ox5F
5, 0,1, 0, 2,0,1,0, 3,0 0, 2, 0, 1, 0, // Ox60-Ox6F
4, 0,1,0,2,0,1,0, 3,0,1,0, 2,0, 1, 0, // Ox70-Ox7F
7, 0,1,0,2,0,12,0, 3,0,1,0, 2, 0,1, 0, // O0x80-0x8F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, O, 1, O, // Ox90-Ox9F
5,0,1,6¢0,2,0,1,0,3,0,1,0,2, 0,1, 0, //

4, 0, 1, 0, 2, O, 1, O, 3, 0, 1, O, 2, O, 1, O,

6, 0, 1, 0, 2, 0,1, 0, 3, 0, 1, 0, 2, 0 0, // OxCO-OxCF
4, 0, 1, 0, 2, O, 1, O, 3, 0, 1 0, 1, 0, // OxDO-OxDF
5, 0,1, 0, 2, 0, 1, O, 3 1, 0, 2, 0, 1, O, // OXEO-OxEF
4, 0,1,0,2,0, 170,3,0,1, 0, 2,0, 1, 0 // OxFO-OxFF

)ya{SOPC

WORLD =
2004 © 2004 Altera Corporation @

25

Priority Resolution

Y = OSUnMapTb Il [OSRdyGrp];
X = OSUnMapTb I [OSRdAyTbI[Y]];
HighestPriority = (¥ * 8) + X;
Y (1.e. 1) = OSUnMapTbl[OxF6];
X (1.e. 3) = OSUnMapTbl[0x78];
HighestPriority = (1 * 8) + 3;
HighestPriority = 11

a4 SOPC

WORLD =
H 2004 © 2004 Altera Corporation @

26

Scheduling

OSRdyGrp OSRdyThbI[] OSTCBPrioTbl[] Old TCB

[1]
(2]
(3]
[4]
(5]
(6]

HPT Ready (7]
(Bit 11) [8]
[9]
[10] New TCB
\ / [11]
(1)
Find
Highest Priority Task
Ready (2)
Index to Find TCB [60]
11 [61]
[62]
prAa4 SOPC (63
WORLD

2004 © 2004 Altera Corporation AIEIEA ®

27

Context Switch
(or Task Switch)

m Once the kernel finds a NEW ‘High-Priority-
Task’, the kernel performs a Context Switch.

m [he context is the ‘volatile’ state of a CPU
— The NIOS-II CPU registers

m A context switch consist of:

— Saving the current CPU registers onto the CURRENT
task’s stack

— Restoring the CPU registers from the NEW task’s

stack
}34 SOPC

WORLD =
H 2004 © 2004 Altera Corporation @

28

29

SOPC

WORLD
2004

Interrupts

© 2004 Altera Corporation

Interrupts

m [nterrupts are always more important than
tasks!

m Interrupts are always recognized

— Except when they are disabled by OS-I
or the application

® You should keep ISRs (Interrupt Service
Routines) as short as possible.

bzi SOPC
H 2"’(\3’004RLD © 2004 Altera Corporation AE“E%A ®

Interrupts

YourISR:
Save CPU Registers;
Notify kernel of ISR entry;
Determine SOURCE of i1nterrupt;
Process ISR(s) (Your code!);

/* Take care of device */
/* Buffer data */
/* Clear interrupt */

/* Signal task to process data */
Notify kernel about end of ISR;
Restore CPU Registers;
Return from Interrupt;

If a more important task is Ready,

the Kernel will do a Context Switch

» ! ‘ SOPC There are no HP Task Ready,

WORLD Return to Interrupted Task!

2004 © 2004 Altera Corporatiori el Wl | 0

Servicing Interrupts

(1)l l (2), Interrupts enabled Ingerrupt ReCO\Nery
- [TAsk]
« 58 I (8). Restore
) - (6) - (7), Kernel ISR Exit function

User ISR
(7), Kernel ISR Exit function

Interrupt Response
- (8), Restore

ISR (3):
Save CPU Registers (4); . (9), RTI
OSIntNesting++ (5);

iIT (OSIntNesting == 1) HPT Task

OSTCBCur->0STCBStkPtr = SP;

Process ISR (6);
Call Kernel ISR Exit function
); Interrupt Recovery

Restore CPU Registers (8);

;ﬂ%ﬁﬁﬁ Interrupt (9);
m b b © 2004 Altera Corporation AE“E%A @

2004

The Clock Tick ISR

O OS-ll requires a periodic interrupt source

— Through a hardware timer
e Between 10 and 100 ticks/sec. (Hz)

— Could be the power line frequency
e 50 or 60 Hz

— Called a ‘Clock Tick’ or ‘System Tick’
— Higher the rate, the more the overhead!

m The tick ISR calls a service provided by the
OS-ll called OSTimeTick()

}34 SOPC
H yg{)ociRLD © 2004 Altera Corporation AE“E%A ®

Why keep track of Clock Ticks?

m To allow tasks to suspend execution for a
certain amount of time

— In integral number of ‘ticks’
e OSTimeDly(ticks)

— In Hours, Minutes, Seconds and Milliseconds
e OSTimeDlyHMSM(hr, min, sec, ms)

m To provide timeouts for other services (more on
this later)
— Avoids waiting forever for events to occur
— Eliminates deadlocks

}34 SOPC
H %&RLD © 2004 Altera Corporation AE“E%A ®

35

SOPC

WORLD
2004

Resource Sharing

© 2004 Altera Corporation

[NOTSRIA,

Resource Sharing

B YOU MUST ensure that access to common
resources Is protected!

= OS-ll only gives you mechanisms

® You protect access to common resources by:
— Disabling/Enabling interrupts

e Some CPUs don’t allow you to do this in ‘user’ code
— Lock/Unlock
— Semaphores
— MUTEX (Mutual Exclusion Semaphores)

}34 SOPC
H y(\J’()oziRLD © 2004 Altera Corporation AE“E%A ®

Resource Sharing
(Disable and Enable Interrupts)

m \When access to resource is done quickly
— Be careful with Floating-point!

m Disable/Enable interrupts is the fastest way!

rom = 60.0 /7 time;
OS _ENTER_CRITICALQ);
Global RPM = rpm;
OS EXIT_CRITICALQ;
}34 SOPC
H WORLD AIEI'EA

2004 © 2004 Altera Corporation

Resource Sharing
(Lock/Unlock the Scheduler)

m ‘Lock’ prevents the scheduler from changing tasks
— Interrupts are still enabled
— Can be used to access non-reentrant functions
— Can be used to reduce priority inversion

— Same effect as making the current task the Highest Priority
Task

m ‘Unlock’ invokes the scheduler to see if a High-Priority
Task has been made ready while locked

0SSchedLock();
Code with scheduler disabled;
0SSchedUnlock;

WORLD =
H 2004 © 2004 Altera Corporation @

Mutual Exclusion
(Semaphores)

m Used when time to access a resource Is
longer than the kernel interrupt disable time!

m Binary semaphores are used to access a
single resource

m Counting semaphores are used to access
multiple resources

}34 SOPC
H y(\J’OociRLD © 2004 Altera Corporation AE“E%A ®

Mutual Exclusion
(Semaphores)

Tasks

i \
\emaphore \ Resource
x/////r//, 7
,/’//:///' /

SOPC i OSSemPost(..);
;'(‘)'ISRLD © 2004 Altera Corporation AE“E%A @

O0SSemPend(..);

Semaphores
(Priority Inversion)

m Delay to a task’s execution caused by interference
from lower priority tasks

m All tasks of medium priority would delay access of
the HPT to the resource!

High Priority Task \-

Medium Priority Task =
s‘tﬁ-bs.kh 7

WORLD
2004 © 2004 Altera Corpora

Semaphores
(Priority Inheritance)

m Low Priority task assumes priority of High Priority task while
accessing semaphore.

m UC/OS-Il has automatic priority ceiling protocols.

High Priority Task _,

Medium Priority Task _

L svh i), |

e
2004 © 2004 Altera Corporation AIEIEA ®

43

Intertask Communication

SOPC
y{‘J,OocLRLD © 2004 Altera Corporation @

Event Flags

m Synchronization of tasks with the occurrence of multiple events

m Events are grouped
— 8, 16 or 32 bits per group

m Types of synchronization:
— Disjunctive (OR): Any event occurred
— Conjunctive (AND): All events occurred

m Task(s) or ISR(s) can either Set or Clear event flags

m Only tasks can Wait for events

}‘4 SOPC

WORLD =
H 2004 © 2004 Altera Corporation @

Event Flags

@ (=
!

Set or Clear

Tlr—

)a{SOPC

WORLD
2004

Message Queues

m Message passing
— Message is a pointer
— Pointer can point to a variable or a data structure

m FIFO (First-In-First-Out) type queue

— Size of each queue can be specified to the kernel

m LIFO (Last-In-First-Out) also possible
m Tasks or ISR can ‘send’ messages
m Only tasks can ‘recelve’ a message

— Highest-priority task waiting on queue will get the message
m Recelving task can timeout if no message Is
recelved within a certain amount of time

bzi SOPC
H 2"’(\3’004RLD © 2004 Altera Corporation AE“E%A ®

P4

47

Miscellaneous Services

SOPC
y{‘J,OocLRLD © 2004 Altera Corporation @

Stack Checking

m Stacks can be checked at run-time to see if you
allocated sufficient RAM

— Assumes you created your task with
OSTaskCreateExt()

m Allows you to know the ‘worst case’ stack growth
of your task(s)

m Assumes stack Is cleared when task Is created
— Could check for other patterns than 0x00

}34 SOPC
H y(\J’()oziRLD © 2004 Altera Corporation AE“E%A ®

Deleting a Task

m Tasks can be deleted (return to the ‘dormant’
state) at run-time

— Task can no longer be scheduled
m Code i1s NOT actually deleted
m Can be used to ‘abort’ (or ‘kill’) a task
m TCB freed and task stack could be reused.

INT8U OSTaskDel (INT8U prio);
INT8U OSTaskDelReq(INT8U prio);

}34 SOPC
H %&RLD © 2004 Altera Corporation AE“E%A ®

Changing a Task’s Priority

m Kernel can allow tasks to change their
priority (or the priority of others) at run-
time
INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

}34 SOPC
H %()?RLD © 2004 Altera Corporation AE“E%A ®

Memory Management

M OS-Il provides fixed-sized memory block
management
— Prevents fragmentation

m Multiple ‘partitions’ can be created with each having a
different block size

® You MUST ensure that you return blocks to the
proper partition.

m Partitions can be ‘extended’ from a larger block.
34 SOPC
H yg{)ociRLD © 2004 Altera Corporation AE“E%A

Initialization

O OS-ll provides an initialization function

m You must create at least one task before starting
multitasking

void main (void)

{
/* User initialization */
oOSInit(Q; /* Kernel Initialization */
/* Install interrupt vectors */

/* Create at least 1 task (Start Task) */
/* Additional User code */

OSStart(); /* Start multitasking */

WORLD =
H 2004 © 2004 Altera Corporation @

Initialization

m You should initialize the
task to run.

— Setup hardware timer,
— Enable timer interrupt

WORLD _
2004 © 2004 Altera Corporation

ya{SOPCT
<

"In the first

POP-Quiz

mltsS = uC/OS-10]| tHet 88 = ==l XA
= S92 L2

— T A=

A) TaskJ} SemaphoreE &
SEH=2 I =2 Task! = 0[L}.

B) UC/OS-lI= AtS2 2 Stack&d ALE otAl= &2
= LC}.

C) Non-preemptive Real-time KernelO| C}.

D) = CH 6402 TaskE Al & etLt.

In
_Olﬂ
Mr
O
1T
10
U
0

Pzi SOPC

WORLD =
H 2004 © 2004 Altera Corporation @

54

	Nios II
	µC/OS-IIMain Features
	µC/OS-IIROMable and Scalable
	µC/OS-IIServices
	µC/OS-IIUsed in 100s of Commercial Products
	µC/OS-IIThe Real-Time Kernel
	Products without Kernels(Foreground/Background Systems)
	Foreground/Background
	What is a Real-Time Kernel?
	µC/OS-II is a Preemptive Kernel
	What is a Task?
	What is a Task?
	Task States
	‘Creating’ a Task
	Creating a TaskStack … Task Create … Task Code
	Creating a Task for NIOS-II
	Task Control Blocks(TCBs)
	What is Scheduling?
	The µC/OS-II Ready List
	Finding the Highest Priority Task Ready
	Priority Resolution Table
	Priority Resolution
	Scheduling
	Context Switch(or Task Switch)
	Interrupts
	Interrupts
	Servicing Interrupts
	The Clock Tick ISR
	Why keep track of Clock Ticks?
	Resource Sharing
	Resource Sharing(Disable and Enable Interrupts)
	Resource Sharing(Lock/Unlock the Scheduler)
	Mutual Exclusion(Semaphores)
	Mutual Exclusion(Semaphores)
	Semaphores(Priority Inversion)
	Semaphores(Priority Inheritance)
	Event Flags
	Event Flags
	Message Queues
	Stack Checking
	Deleting a Task
	Changing a Task’s Priority
	Memory Management
	Initialization
	Initialization
	POP-Quiz

