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Main Features

Portable (Most 8, 16, 32 and 64 bit CPUS)
ROMable

Scalable

Preemptive

Real-Time
— Deterministic
— High Performance

Multitasking
Robust
Provides many services
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uC/OS-II
ROMable and Scalable

m Designed for Embedded Systems

m Footprint depends on your needs:

— Semaphores, Mutex, Event Flags, Mailboxes, Queues ...
— ROM (Code space) — NIOS-II:

e 5 Kbytes (Min.)

e 20 Kbytes (Max.)

— RAM (Data space) — NIOS-II:

e 1 Kbytes (Min.), plus task stacks
e 5 Kbytes (Max.), plus task stacks

WORLD =
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UC/OS-I|

Services
m Semaphores

m Mutual Exclusion Semaphores
— Reduces Priority Inversions

Event Flags

Message Mailboxes
Message Queues
Memory Management
Time Management

m Task Management

}34 SOPC
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UC/OS-I]

Used in 100s of Commercial Products
Avionics

Medical

Cell phones

Routers and switches
High-end audio equipment
Washing machines and dryers
UPS (Uninterruptible Power Supplies)
Industrial controllers

GPS Navigation Systems
Microwave Radios
Instrumentation
Point-of-sale terminals

Many, many more
ya{(SOPC
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Products without Kernels
(Foreground/Background Systems)

Foreground #2

|

Foreground #1 I

| | |

Background  [Teskit [l [IESKEENNT [ Tesk 3 |
I |

Infinite loop

Time
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Foreground/Background

/* Background */ /* Foreground */

void main (void) ISR (void)

{ {
Initialization; Handle asynchronous event;
FOREVER { }

Read analog i1nputs;

Read discrete 1nputs;

Perform monitoring functions;
Perform control functions;
Update analog outputs;

Update discrete outputs;

Scan keyboard;

Handle user interface;

Update display;

Handle communication requests;

Other...
\ 934 SOPC
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What i1s a Real-Time Kernel?

m Software that manages the time of a

microprocessor or microcontroller.
— Ensures that the most important code runs first!

m Allows Multitasking:

— Do more than one thing at the same time.

— Application is broken down into multiple tasks each handling one
aspect of your application

— It's like having multiple CPUs!

m Provides valuable services to your application:

— Time delays
— Semaphore management
— Intertask communication and synchronization

— More
Pzi SOPC
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LC/OS-I1l Is a Preemptive Kernel

_ ISR makes High Priority Task Ready
SR / -

High Priority Task (HPT)

Low Priority Task (LPT) - --------------------- -

N
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What Is a Task?

m A task is a simple program that thinks it has
the CPU all to itself.

m Each Task has:
— Its own stack space
— A priority based on its importance

A task contains YOUR application code!
34 SOPC
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What Is a Task?

m A task Is an infinite loop:

void Task(void *p_arg)

{
Do something with “argument” p_arg;
Task initialization;
for (;3) {
/> Processing (Your Code)
Wait for event; /* Time to expire ...
/* Signal from ISR ...
/* Signal from task ...
/* Processing (Your Code)
+
by
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Task States

Resident in ROM

_ Delete
(Non-active) Task
Waiting Create
For Task
Execution
Event Occurs Context
Or Switch
Timeout

Wait

_ _ _ For
Wait for time to expire Event

Wait for a message
Wait for a signal

)a{SOPC
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‘Creating’ a Task

O OS-Il needs to have information about your task:
— Its starting address
— Its top-of-stack (TOS)
— Its priority
— Arguments passed to the task
— Other

® You create a task by calling a service provided by
OS-Il — OSTaskCreateExt()

}34 SOPC
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Creating a Task
Stack ... Task Create ... Task Code

#define APP_TASK_ID 10
#define APP_TASK_PRIO 10
#define APP_TASK_STK_SIZE 256

static 0S_STK  AppTaskStk[APP_TASK_STK SIZE];

OSTaskCreateExt(AppTask, //
(void *)0, //
&AppTaskStk[APP_TASK_ START_STK_SIZE - 1], //
APP_TASK_PRIO, //
APP_TASK_ID, //
&AppTaskStk[0], //
APP_TASK STK_SIZE, //
(void *)O0, //
0x0000) ; //

OSTaskNameSet(APP_TASK_PRI0O, "App Task'™, &err);

Task address

= p_arg E
Top-0f-Stack

Task priority
Task ID (not used)
Bottom-Of-Stack
Stack size

‘p_ext’

Options

static void AppTask (void *p_arg)

while (1) {
OSTimeDly(5);

}
ya{ SOPC | s Bis
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Creating a Task for NIOS-II
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$ctl31 STATUS

$17
$18
$19
$20
$21
$22
$23
$24
$25
$26 (g
$28 (fp

$29 (ta,
$30 (ba)

$31 (ra)

| sct3isTATUS |
| s1
| s
| s3 |
| s
| s |
| s6 |
| sr
| ss |
| s9 |
| s10 |
| s
| sz
| s13 |
IV
| s15 |
| s16 |
| sz
| s18 |
| s10 |
| s20 |
| s |
| s> |
| s23 |
| sa |
| ses |
| s26(@p) |
| s8(p) |
| s200a)
| s30(ba) |
| ssi(a) |
S

OSTCBStkPtr

OSTCBPrio

OSTCBStat

© 2004 Altera Corporation

void
void

*parg,
*ptos,

INT8U prio
INT16U id,

void

*pbos,

OSTaskCreateExt(void (*task)(void *parg),

INT32U stk_size,

void

*p_ext,

INT16U opt);
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Task Control Blocks
(TCBSs)

m A TCB Is a data structure that is used by the
kernel for task management.

m Each task is assigned a TCB when it Is ‘created'.

m A TCB contains:
— The task’s priority
— The task’s state (Ready, Waiting ...)
— A pointer to the task’s Top-Of-Stack (TOS)
— Other task related data

m [CBs reside in RAM

bzi SOPC
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What is Scheduling?

m Deciding whether there is a more important task to run.

m Occurs:
— When a task decides to wait for time to expire
— When a task sends a message or a signal to another task

— When an ISR sends a message or a signal to a task
e Occurs at the end of all nested ISRs

m Outcome:

— Context Switch if a more important task has been made ready-to-
run or returns to the caller or the interrupted task

WORLD =
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The uC/OS-Il Ready List

means one of the tasks in ROW #0 is READY

Al
A ‘0O’ means NONE of the tasks in ROW #0 is READY

A ‘1’ means the task is READY
OSRdyGrp A ‘0’ means the task is NOT READY

OSRdyTbI[ ]

Task Priority #

Lowest Priority Task

m So (Idle Task)

WORLD =
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Finding the Highest Priority Task Ready

OSRdyGrp

oxF6 | OSRdyThI[ ]

Y=1

Ox78

X=3

Y=1

Task Priority

€
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Priority Resolution Table

/************************************************************

PRIORITY RESOLUTION TABLE

Note(s): 1) Index into table is bit pattern to resolve
highest priority.
2) Indexed value corresponds to highest priority
bit position (i.e. 0..7)

************************************************************/

INT8U const OSUnMapTbI[] = {

¥ %k ok % %

o, 0,1, 0, 2, O, 1, O, 3, O, , 2, 0,1, 0, //

4, 0, 1, 0, 2, O, 1, O, 3, O, , 2, 0, 1, 0, 0x10-0x1F
5, 0,1, 0, 2,0,1,0, 3,0 2, 0 // 0x20-0x2F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0 2, 0 0, // 0x30-0x3F
6, 0, 1, 0, 2, 0, 1, 0, 3, O 0, 1, 0, // 0x40-0x4F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0 2, 0, 1, 0, // Ox50-0Ox5F
5, 0,1, 0, 2,0,1,0, 3,0 0, 2, 0, 1, 0, // Ox60-Ox6F
4, 0,1,0,2,0,1,0, 3,0,1,0, 2,0, 1, 0, // Ox70-Ox7F
7, 0,1,0,2,0,12,0, 3,0,1,0, 2, 0,1, 0, // O0x80-0x8F
4, 0, 1, 0, 2, 0, 1, 0, 3, 0, 1, 0, 2, O, 1, O, // Ox90-Ox9F
5,0,1,6¢0,2,0,1,0,3,0,1,0,2, 0,1, 0, //

4, 0, 1, 0, 2, O, 1, O, 3, 0, 1, O, 2, O, 1, O,

6, 0, 1, 0, 2, 0,1, 0, 3, 0, 1, 0, 2, 0 0, // OxCO-OxCF
4, 0, 1, 0, 2, O, 1, O, 3, 0, 1 0, 1, 0, // OxDO-OxDF
5, 0,1, 0, 2, 0, 1, O, 3 1, 0, 2, 0, 1, O, // OXEO-OxEF
4, 0,1,0,2,0, 170,3,0,1, 0, 2,0, 1, 0 // OxFO-OxFF

)ya{SOPC
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Priority Resolution

Y = OSUnMapTb Il [OSRdyGrp];
X = OSUnMapTb I [OSRdAyTbI[Y]];
HighestPriority = (¥ * 8) + X;
Y (1.e. 1) = OSUnMapTbl[OxF6];
X (1.e. 3) = OSUnMapTbl[0x78];
HighestPriority = (1 * 8) + 3;
HighestPriority = 11

a4 SOPC
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Scheduling

OSRdyGrp OSRdyThbI[ ] OSTCBPrioTbl[]  Old TCB

[1]
(2]
(3]
[4]
(5]
(6]

HPT Ready (7]
(Bit 11) [8]
[9]
[10] New TCB
\ / [11]
(1)
Find
Highest Priority Task
Ready (2)
Index to Find TCB [60]
11 [61]
[62]
prAa4 SOPC (63
WORLD
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Context Switch
(or Task Switch)

m Once the kernel finds a NEW ‘High-Priority-
Task’, the kernel performs a Context Switch.

m [he context is the ‘volatile’ state of a CPU
— The NIOS-II CPU registers

m A context switch consist of:

— Saving the current CPU registers onto the CURRENT
task’s stack

— Restoring the CPU registers from the NEW task’s

stack
}34 SOPC
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Interrupts

m [nterrupts are always more important than
tasks!

m Interrupts are always recognized

— Except when they are disabled by OS-I
or the application

® You should keep ISRs (Interrupt Service
Routines) as short as possible.

bzi SOPC
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Interrupts

YourISR:
Save CPU Registers;
Notify kernel of ISR entry;
Determine SOURCE of i1nterrupt;
Process ISR(s) (Your code!);

/* Take care of device */
/* Buffer data */
/* Clear interrupt */

/* Signal task to process data */
Notify kernel about end of ISR;
Restore CPU Registers;
Return from Interrupt;

If a more important task is Ready,

the Kernel will do a Context Switch

» ! ‘ SOPC There are no HP Task Ready,

WORLD Return to Interrupted Task!

2004 © 2004 Altera Corporatiori el Wl | 0



Servicing Interrupts

(1)l l (2), Interrupts enabled Ingerrupt ReCO\Nery
- [ TAsk ]
« 58 I (8). Restore
) - (6) - (7), Kernel ISR Exit function

User ISR
(7), Kernel ISR Exit function

Interrupt Response
- (8), Restore

ISR (3):
Save CPU Registers (4); . (9), RTI
OSIntNesting++ (5);

iIT (OSIntNesting == 1) HPT Task

OSTCBCur->0STCBStkPtr = SP;

Process ISR (6);
Call Kernel ISR Exit function
); Interrupt Recovery

Restore CPU Registers (8);

;ﬂ%ﬁﬁﬁ Interrupt (9);
m b b © 2004 Altera Corporation AE“E%A @
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The Clock Tick ISR

O OS-ll requires a periodic interrupt source

— Through a hardware timer
e Between 10 and 100 ticks/sec. (Hz)

— Could be the power line frequency
e 50 or 60 Hz

— Called a ‘Clock Tick’ or ‘System Tick’
— Higher the rate, the more the overhead!

m The tick ISR calls a service provided by the
OS-ll called OSTimeTick()

}34 SOPC
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Why keep track of Clock Ticks?

m To allow tasks to suspend execution for a
certain amount of time

— In integral number of ‘ticks’
e OSTimeDly(ticks)

— In Hours, Minutes, Seconds and Milliseconds
e OSTimeDlyHMSM(hr, min, sec, ms)

m To provide timeouts for other services (more on
this later)
— Avoids waiting forever for events to occur
— Eliminates deadlocks

}34 SOPC
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Resource Sharing

B YOU MUST ensure that access to common
resources Is protected!

= OS-ll only gives you mechanisms

® You protect access to common resources by:
— Disabling/Enabling interrupts

e Some CPUs don’t allow you to do this in ‘user’ code
— Lock/Unlock
— Semaphores
— MUTEX (Mutual Exclusion Semaphores)

}34 SOPC
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Resource Sharing
(Disable and Enable Interrupts)

m \When access to resource is done quickly
— Be careful with Floating-point!

m Disable/Enable interrupts is the fastest way!

rom = 60.0 /7 time;
OS _ENTER_CRITICALQ);
Global RPM = rpm;
OS EXIT_CRITICALQ;
}34 SOPC
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Resource Sharing
(Lock/Unlock the Scheduler)

m ‘Lock’ prevents the scheduler from changing tasks
— Interrupts are still enabled
— Can be used to access non-reentrant functions
— Can be used to reduce priority inversion

— Same effect as making the current task the Highest Priority
Task

m ‘Unlock’ invokes the scheduler to see if a High-Priority
Task has been made ready while locked

0SSchedLock();
Code with scheduler disabled;
0SSchedUnlock;

WORLD =
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Mutual Exclusion
(Semaphores)

m Used when time to access a resource Is
longer than the kernel interrupt disable time!

m Binary semaphores are used to access a
single resource

m Counting semaphores are used to access
multiple resources

}34 SOPC
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Mutual Exclusion
(Semaphores)

Tasks

i \
\emaphore \ Resource
x/////r//, 7
,/’//:///' /

SOPC i OSSemPost(..);
;'(‘)'ISRLD © 2004 Altera Corporation AE“E%A @
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Semaphores
(Priority Inversion)

m Delay to a task’s execution caused by interference
from lower priority tasks

m All tasks of medium priority would delay access of
the HPT to the resource!

High Priority Task \-

Medium Priority Task =
s‘tﬁ-bs.kh 7

WORLD
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Semaphores
(Priority Inheritance)

m Low Priority task assumes priority of High Priority task while
accessing semaphore.

m UC/OS-Il has automatic priority ceiling protocols.

High Priority Task _,

Medium Priority Task _

L svh i), |
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Event Flags

m  Synchronization of tasks with the occurrence of multiple events

m Events are grouped
— 8, 16 or 32 bits per group

m Types of synchronization:
— Disjunctive (OR): Any event occurred
— Conjunctive (AND): All events occurred

m Task(s) or ISR(s) can either Set or Clear event flags

m Only tasks can Wait for events

}‘4 SOPC
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Event Flags

@ (=
!

Set or Clear

Tlr—

)a{SOPC
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Message Queues

m Message passing
— Message is a pointer
— Pointer can point to a variable or a data structure

m FIFO (First-In-First-Out) type queue

— Size of each queue can be specified to the kernel

m LIFO (Last-In-First-Out) also possible
m Tasks or ISR can ‘send’ messages
m Only tasks can ‘recelve’ a message

— Highest-priority task waiting on queue will get the message
m Recelving task can timeout if no message Is
recelved within a certain amount of time

bzi SOPC
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Stack Checking

m Stacks can be checked at run-time to see if you
allocated sufficient RAM

— Assumes you created your task with
OSTaskCreateExt()

m Allows you to know the ‘worst case’ stack growth
of your task(s)

m Assumes stack Is cleared when task Is created
— Could check for other patterns than 0x00

}34 SOPC
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Deleting a Task

m Tasks can be deleted (return to the ‘dormant’
state) at run-time

— Task can no longer be scheduled
m Code i1s NOT actually deleted
m Can be used to ‘abort’ (or ‘kill’) a task
m TCB freed and task stack could be reused.

INT8U OSTaskDel (INT8U prio);
INT8U OSTaskDelReq(INT8U prio);

}34 SOPC
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Changing a Task’s Priority

m Kernel can allow tasks to change their
priority (or the priority of others) at run-
time
INT8U OSTaskChangePrio(INT8U oldprio, INT8U newprio);

}34 SOPC
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Memory Management

M OS-Il provides fixed-sized memory block
management
— Prevents fragmentation

m Multiple ‘partitions’ can be created with each having a
different block size

® You MUST ensure that you return blocks to the
proper partition.

m Partitions can be ‘extended’ from a larger block.
34 SOPC
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Initialization

O OS-ll provides an initialization function

m You must create at least one task before starting
multitasking

void main (void)

{
/* User initialization */
oOSInit(Q; /* Kernel Initialization */
/* Install interrupt vectors */

/* Create at least 1 task (Start Task) */
/* Additional User code */

OSStart(); /* Start multitasking */

WORLD =
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Initialization

m You should initialize the
task to run.

— Setup hardware timer,
— Enable timer interrupt

WORLD _
2004 © 2004 Altera Corporation
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