Model-Based Design with MATLAB[®], Simulink[®], and Altera DSP Builder

MathWorks and Altera Partnership

Amnon Gai Strategic Partner Manager The MathWorks Amnon.Gai@mathworks.com

Agenda

- A Model-Based Design Methodology
 - What is Model-Based Design?
- From MATLAB and Simulink to Altera FPGA
 - Step by step design and implementation of an edge detection algorithm on FPGA
- Future of Model-Based Design and next steps

The MathWorks Mission

Accelerating the Pace of Engineering and Science

MATLAB[®]

The leading environment for technical computing

SIMULINK®

The leading environment for modeling, simulating, and implementing dynamic and embedded systems

The MathWorks

NASA Lands Mars Rover Missions Relying on MathWorks Software

Nissan Cuts Evaporation Emissions by 100% and Development Time By 50%

Session Goal:

Partner to Overcome Today's Main Design Challenges

- Inconsistent and unintegrated design flows
- As designs get more complex, implementation becomes almost impossible
- Model-Based Design approach
 - One integrated environment to simulate, implement, test, and verify complex systems
 - Path to implementation on FPGA and DSPs

Deliver better products in less time

Design Failure and Time-to-Market in Embedded Systems

- Across industries:
 - 50% of projects behind schedule
 - 1/3 fail to meet 50% of performance/feature requirements

Source: Embedded Market Forecasters

Traditional Development

Requirements and Specifications

Design

Implementation

Test and Verification

Text-based

Prevents rapid iteration

Simulation prototypes

- Incomplete and expensive

Manual coding

 Introduces human errors

Traditional testing

 Errors found too late

Advantages of Model-Based Design

Requirements and Specifications

Implementation

Test and Verification

Model Elaboration

Continuous Verification

Executable Models

Simulation

Automatic Code Generation

Test and Design

Model-Based Design with MATLAB and Simulink

Validate Behavior by Model Execution

System-Level
Verification by Reuse
of the Model's Test
Environment

Model Elaboration: Fixed-Point and RF/Analog Effects

Faster Implementation and Fewer Coding Errors

Model-Based Design with MATLAB and Simulink

-Step by Step design and implementation of an edge detection algorithm

What is Simulink?

Simulation, modeling, and design tool

Block diagram environment

Platform for Model-Based Design

Simulink Key Features

- Hierarchical, component-based modeling
- MATLAB® integration
- Extensive library of predefined blocks
- Application-specific libraries available
- Open Application Program Interface (API)

Simulink Libraries and Blocksets Example: Video and Image Processing Blockset

- Analysis and enhancement
- Conversions
- Filtering
- Geometric transforms
- Morphological operations
- Sinks
- Sources
- Statistics
- Text and graphics
- Transforms
- Utilities

Modeling and Simulation w/Simulink

- Executable Specification / Golden Reference
- Design and Verify
- Fixed-Point Design and Verification
- Elaborate and Verify

Live Demo

Co-Simulation (HDL code written manually)

- Co-simulation, Simulink and ModelSim, Verilog

Live Demo

Automatic Code Generation and Continues Verification

- Integrate Altera DSP Builder Blocks
- Automatically generating HDL code
- Elaborate and Verify with Altera DSP Builder
- Implement on FPGA

Live Demo

Model-Based Design Flow from Simulink to Altera FPGAs

DSP System Development

MathWorks and Altera Partnership Roadmap

- Continuing to provide rich set of IPs
 - Signal Processing
 - Video designs
 - Communications
- Seamless integration from Simulink blocks to Altera FPGAs

Latest Designs from Altera: Up Conversion and Wireless IPs

In Summary

- Integrated environment to simulate, implement, test, and verify complex systems
- Automatic code generation for FPGA and DSPs
- MATLAB and Simulink for model-based design
 - Altera DSP builder for FPGA implementation
 - MathWorks provides similar design flow for embedded software implementation

Deliver Better Products in Less Time!

Next Steps

- 1. Attend DSP Builder sessions this afternoon
- 2. Visit the MathWorks booth and talk to our engineers
 - Check out designs and demos
 - Ask for a trial, or schedule a meeting for your company

Thank You!

