

Agenda

- Background: FPGA-based computing
- FPGA computing topologies and scalability
- Hardware acceleration
- Effect of multiple cores on productivity
- Conclusion
- ■Q&A

Today's FPGA Devices Meet Advanced System Requirements

- Wide range of fast I/O
- Substantial embedded memory
- High-performance digital signal processing (DSP) blocks
- Abundant logic
- Low-cost FPGA and structured ASIC families

FPGA-Based System Economics

Modern FPGAs: Platforms for High-Performance Parallel Architectures

- Example: Altera's Stratix II Family
 - First 90-nm high-end FPGA
 - TSMC Fab
 - Shipped in June 2004
- Rich interconnect fabric
- Up to 180K LEs
- Up to 9 million memory bits
- Up to 96 flexible DSP blocks
- Up to 1,170 high-speed I/O pins
- Many clock trees and phaselocked loops (PLLs)

Soft-Core CPUs Are Affordable

Small Cyclone II 4,600 Look-up Tables (LUTs)

600 LEs 13% of FPGA Nios II/e "Economy"

> 35¢ in Lowest-Cost FPGA

Largest Stratix II 180,000 LUTs

1800 LEs, 1% of FPGA Nios II/f "Fast"

FPGA = Fast Development

- Fast time to production
 - Prototype and production boards can be the same
 - Can accommodate late changes
 - Use/reuse intellectual property (IP)
- Fast design cycle
 - Develop → synthesize → test
- System-level design tools
 - Integration of IP and in-house designs
- Powerful system debug tools
 - Software and hardware

TP

Using IP to Increase Productivity

- Not all blocks are designed with the same interface
- Design for reuse can lead to greater time and cost
- Blocks need integration to create system

SOPC Builder - Automated Integration

- Generates interconnect between IP blocks
 - Supports third party and in-house IP
- Automatically resolves interface issues
 - Clock domains
 - Bit widths
 - Arbitration
 - Other issues

Updating the System

SOPC Builder systems can be easily extended

No need to "hack" into existing system

Minimal disruption to the rest of the system

Embedded System Design Flow

FPGA-Based Soft CPU: Nios II

FPGA-Based Soft CPU Usage Trend

Percent of EE Times embedded systems designers who say they "will likely use a processor inside an FPGA"

Source: CMP 2005 Embedded Market Study

Two FPGA Computing Topologies

Standalone Computing

Companion Computing

Enhancing Your System With FPGAs

- Peripheral expansion
 - Extends life of CPU
 - Enhances flexibility
 - Avoids costs and risks of using new part

Enhancing Your System With FPGAs

- Peripheral expansion
- ■CPU offload
 - No increase in clock speed
 - Preserves real-time set up
 - Low power consumption
 - No upgraded components required
 - Increases flexibility

Enhancing Your System With FPGAs

- Peripheral expansion
- ■CPU offload
- Full system integration
 - Very flexible
 - Fast development
 - No obsolescence issues
 - High performance/low cost

Multiple-Core Scalability

Standalone Computing

Companion Computing

Add Compute Power As Needed

External CPU

Three Ways to Scale Performance

Custom Instructions

 Accelerate CPU processing performance with applicationspecific hardware Hardware Accelerators

 Add external coprocessing hardware to accelerate data functions Multiprocessor System

 Add more processors (internal and/or external) to increase processing power

Multi-Channel Processing

Crescendo Maestro CN-5000E

Application:

Application Acceleration Platform

Crescendo Networks

- Eight Nios II Processors
 - TCP/IP offload engine (TOE)
 - Complex memory management
 - Header parsing

- Comparisons
 - ASIC
 - Lower development cost
 - Faster time to market
 - ASSP
 - More flexible
 - Off-the-shelf processor
 - Able to support multi-Gbit bandwidth

Advanced C-to-Hardware Acceleration (C2H) Productivity Tool

- Automates creation and integration of hardware accelerators
- Intuitive user interface streamlines C acceleration
- Uses familiar Nios II Integrated Development Environment (IDE)
- Support for standard ANSI C language

Right-Click to Accelerate

Add Hardware Accelerator

- CPU starts/stops accelerator
- Accelerator fetches data and stores results

CPU runs application code concurrently

Ideal for block data operations

Anatomy of a Hardware Accelerator

- Multiple Avalon® master interfaces to memory
 - Accelerator pipelined to match memory latency
 - Can sustain extremely high throughput
- Slave interface for CPU control
 - Memory mapped registers such as configuration, start, stop, status, etc.
- Software wrapper function
 - Controls hardware via slave interface

Processor Access (Read/Write)

Adding SOPC Builder Components

- Import hardware design files
- Map signals to Avalon switch fabric
- Set additional timing parameters
- Add software files (optional)
- Add component information
- Add to SOPC Builder library

Performance Comparison

Mandlebrot algorithm

- Pentium M running 1,600 MHz, entirely out of cache (best case)
- Cyclone II system running Nios II processor at 75 MHz with acceleration blocks

	Floating- Point Software	Integer Software	Accelerator Hardware	Direct Memory Access (DMA) I/O Offload Hardware
Pentium at 1,600 MHz	30 ms	110 ms	NA	NA
Pentium at 75 MHz	640 ms	2347 ms	NA	NA
Nios Processor at 75 MHz	351,789 ms	243,017 ms	211 ms	35 ms

Multiple Cores Drive Team Productivity

- Each processor runs fewer lines of code
- Smaller projects are faster to develop
 - "Double the lines of code (LOC) and multiply man-months by four" *
- Improves reliability and maintainability
 - Large function error rates 2X to 6X higher than smaller routines **

of LOC

* "Subtract Software Costs By Adding CPUs"

** "An Empirical Study of Operating System Errors"

⁻⁻ Jack Ganssle, Embedded Systems Programming, May 2005

⁻⁻ Chu, Yang, Chelf, Hallem, Proceedings of the 18th ACM Symposium on Operating System Principles, October 2001

Multiprocessor System Design Made Easy

- Building multiple-CPU systems with SOPC Builder
 - As many Nios II CPUs as you like
 - Communicate via shared memory mailbox
 - Share hardware resources with mutex core
- Software development:
 - Integrated drive electronics with multiprocessor debug support
 - Software drivers for mailbox and mutex
 - Enhanced tool support from Lauterbach
- Example designs and application notes

Nios II Multiprocessor System

Benefits of Multiprocessor Design

- Can increase performance
 - More work per clock cycle
- Can scale system design
 - Add CPU when required
- Can reduce cost
 - External processor upgrade not required
- Can simplify software development

Conclusion

- FPGAs can be viewed as a flexible, scalable computing platform
- FPGAs support general and specialized computing cores
- FPGA-based soft CPU cores are maturing, moving into mainstream
- FPGAs provide flexible way for leveraging productivity advantages of multi-core computing

Call for Actions

- Please download Nios II Embedded Processor
 - http://www.altera.com/download
- Please visit SOPC World Booth for Demos

