Video Image Processing Technology

© 2007 Altera Corporation—Public

ADERA.

Agenda

- Key trend of "video in FPGA"
- Video image processing basics
 - Color space conversion
 - Chroma sampling
 - Scaling
 - Deinterlacing
 - Image blending
 - Filtering
 - Gamma correction

Conclusion

Key Trend for "Video in FPGA" – 1

High definition (HD) video is ~4x to 6x the size of standard definition (SD) video

Key Trend for "Video in FPGA" – 2

MPEG4-2, at a bit rate of 1.2Mbps Resolution (544 x 368) MPEG4-10, at a bit rate of 1.2Mbps Resolution (544 x 368)

HD → Dramatic Increase in Bits

Image size	Frame size: (Total # of pixels)	Frame size: (Assume 10 bits per pixel)	Data rate: (Assuming 60 frames per second (FPS))
1920 X 1080p	1920 x 1080 = 2.08M pixels	62 Mbits or 7.78 Mbytes	3,732 Mbps
1920 X 1080i	1920 x 1080 x 0.5 = 1.04M pixels	31 Mbits or 3.89 Mbytes	1,866 Mbps
1280 X 720p	1280 x 720 = 921K pixels	27.7 Mbits or 3.46 Mbytes	1,659 Mbps
SD 720 x 480i	720 x 480 x 0.5 = 173K pixels	5.2 Mbits or 0.65 Mbytes	311 Mbps

These numbers will change when we account for HSYNC and VSYNC signals, as well as for chroma downsampling

However, they are correct in a relative sense

Color Space: Basics

- A color space is a method by which we can specify, create, and visualize color
- Computers describe a color stimulus in terms of the excitations of red, green, and blue phosphors on the CRT faceplate
- Printers describe a color stimulus in terms of the reflectance and absorbance of cyan, magenta, yellow, and black inks on the paper

Color Space Conversion: Basics

Y = R*0.299 + G*0.587 + B*0.114 CR = R*(-0.169) + G*(-0.332) + B*0.500 + 128Cb = R*0.500 + G*(-0.419) + B*(-0.0813) + 128

© 2007 Altera Corporation—Public

RGB to YCrCb

Color Space Conversion IP

CSC Version 6.1 Parameter Summary Coefficients Trage Data Format Trage Data Format Trage Data Format Coor Plane Configuration Three color planes in sequence Three color planes in sequence Three color planes in sequence Three color planes in sequence Precision Word length Word length consists of an integer part and a fractional part.	MegaWizard Plug-In Manager - CSC		
Image resolution: Image resolution: Image resolutio: Image resolutio: </th <th></th> <th>About Decumentation</th> <th></th>		About Decumentation	
Settings Coefficients Timage Data Format Timage Data Format Timage Data Format Timage Data Format Bits per pixel per color plane : Bits per pixel per color plane : Color Plane Configuration Color Planes in parallel Precision -Vord Length Word length corresponds to the number of bits used by the multipler.		About Documentation	
Image Data Format Image resolution : Im	Settings Model		
Select the size of the image Select bits per pixel Three color planes in sequence Three color planes in parallel Precision Word Length Word length corresponds to the number of bits used by the multiplier.			
Bits per pixel per color plane : Bits Color Plane Configuration Three color planes in sequence Three color planes in parallel Precision Word Length Word Length corresponds to the number of bits used by the multiplier.			Select the size of the image
Color Plane Configuration C Three color planes in sequence Three color planes in parallel C Word Length Word Length Word length corresponds to the number of bits used by the multiplier.			Select bits per pixel Three
Three color planes in sequence Three color planes in parallel Precision Word Length Word Length Word length corresponds to the number of bits used by the multiplier.			
C Three color planes in parallel Precision Word Length Word length corresponds to the number of bits used by the multiplier.			color planes are assumed
Precision Word Length Word length corresponds to the number of bits used by the multiplier.			
Word Length Word length corresponds to the number of bits used by the multiplier.			
Word length corresponds to the number of bits used by the multiplier.	Precision		
Word length corresponds to the number of bits used by the multiplier.	- Word Longth		
	Word length consists of an integer part and a fractional part.		
Please refer to the Video and Image Processing Suite User Guide for details. Select the precision	Please refer to the Video and Image Processing Suite User Guide for details.		Select the precision
Word length: 35 Bits of the multiplier			- /
Integer part of word length : 10 Bits			of the manipher
Overflow behavior : Ignore	Overflow behavior : Ignore		
Underflow Behavior : Ignore	Underflow Behavior : Ignore		
Cancel < Back Next > Einish	Cancel	el < Back Next > Einish	

© 2007 Altera Corporation—Public

Color Space Conversion IP

MegaWizard Plug-In Manager - CSC CSC Version 6.1 Parameter Simulation Settings Coefficients Compile Time Coefficients Color model conversion : Custom Din and dout refer to the in Studio R'G'B' to Y'CbCr: SDTV Image: Studio R'G'B' to Y'CbCr: SDTV dout_0 = 0 Studio R'G'B' to Y'CbCr: HDTV dout_1 = 0 Computer R'G'B' to Y'LV dout_2 = 0 Y'LV to Computer R'G'B' computer R'G'B' to Y'LV	▲bout Documentation * din_2 + 0 * din_2 + 0 * din_2 + 0 * din_2 + 0	Choose the color space conversion	
The core can automatically select the co-efficient, or you can enter custom co-efficient	MegaWizard Plug-In Manager - CSC CSC Version 6.1 Parameter Settings Coefficients Color model conversion : Studio R'G'B' to Y Din and dout refer to the input and output cf dout_0 = 0.299 * din_0 + 0.5 dout_1 = -0.172 * din_0 + -0. dout_2 = 0.511 * din_0 + -0.	* din_1 + 0.114 .339 * din_1 +	▲bout Documentation * din_2 + 0 * din_2 + 128 * din_2 + 128

© 2007 Altera Corporation—Public

- Per pixel
 - Y (10 bits)
 - Cr (10 bits)
 - Cb (10 bits)
- Total bits
 - 40 bits for Y
 - 40 bits for Cr
 - 40 bits for Cb
- 4:4:4 chroma subsampling
- Bits for 4 pixels: 120
- Bit/pixel = 30

- Per pixel
 - Y (10 bits)
 - Cr (10 bits)
 - Cb (10 bits)
- Drop Cr, Cb for alternate pixels, total bits
 - 40 bits for Y
 - 20 bits for Cr
 - 20 bits for Cb
- 4:2:2 chroma subsampling
- Bits for 4 pixels: 80
- Bit/pixel = 20

© 2007 Altera Corporation—Public

- Per pixel
 - Y (10 bits)
 - Cr (10 bits)
 - Cb (10 bits)
- Drop Cr, Cb for alternate pixels
- Drop Cr and Cb for the second line
- Total bits
 - 40 bits for Y
 - 10 bits for Cr
 - 10 bits for Cb
- 4:2:0 chroma subsampling
- Bits for 4 pixels: 60
- Bit/pixel = 15

© 2007 Altera Corporation—Public

Why Chroma Downsampling?

Image size	Frame size: (Total # of pixels)	Frame size: (Assume 10 bits per pixel and 4:4:4)	Frame size: (Assume 10 bits per pixel and 4:2:2)	Frame size: (Assume 10 bits per pixel and 4:2:0)
1920 X 1080p	1920 x 1080 = 2M pixels	60 Mbits	40 Mbits	30 Mbits
1920 X 1080i	1920 x 1080 x 0.5 = 1M pixels	30 Mbits	20 Mbits	15Mbits
1280 X 720p	1280 x 720 = 900K pixels	27 Mbits	18 Mbits	13.5 Mbits
SD 720 x 480i	720 x 480 x 0.5 = 173K pixels	5.19 Mbits	3.46 Mbits	2.595 Mbits

Chroma Resampling IP

📉 MegaWizard	Plug-In Manag	jer - Chroma Resampler	
	Chroma Version 6.1	Resampler	About Documentation
1 Parameter Settings	2 Simulation Model	3 Summary	
-Image Data Form	at		
Image resolut		1920×1080 💌	Pixels
	per color plane : onfiguration : Th	8 ree color planes in sequence	Conversion Format
Behavior			4:4:4 -> 4:2:2
Conversion form	nat :	4:4:4 to 4:2:0 💌	4:4:4 -> 4:2:0
Horizontal interp	polation :	Linear	4:2:2 -> 4:4:4
Vertical interpol	ation :	Linear	4:2:0 -> 4:4:4
	2D	erpolation T LINEAR NEAREST N	ish

© 2007 Altera Corporation—Public

Calculating Data Rates

Image size	Frame size	Chroma sub sample/bits per color plane/FPS	Bit/s transfer rate
1920 x 1080p	2200 x 1125	4:2:2/10/60	2200 x 1125 x 20 x 60 = 2.97 Gbps
1920 x 1080i	2200 x 1125	4:2:2/10/60	2200 x 1125 x 20 x 60 x 0.5 = 1.485 Gbps
1280 x 720p	1650 x 750	4:2:2/10/60	1650 x 750 x 20 x 60 = 1.485 Gbps
720 x 480i	858 x 525	4:2:2/10/60	858 x 525 x 20 x 60 x 0.5 = 270 Mbps ∱
Sync data	Image D	ata 1080p-SDI* rate	e HD-SDI rate HD-SDI rate

SDI = serial digital interface

© 2007 Altera Corporation—Public

Scaling: Basics

D1/SDTV: 720 x 480

HDTV 1080p: 1920 x 1080

- Arbitrary input and output resolutions
- Bicubic, bilinear, and nearest neighbor
- Also with 7.1 \rightarrow multi-tap (polyphase scaling)
- Real-time control of the scaling co-efficiency

© 2007 Altera Corporation—Public

Scaling: Basics

- Nearest neighbor
 - Uses one pixel to generate the new pixel
- Bilinear
 - Uses up to 4 (2x2) pixels to generate the new pixel
- Bicubic
 - Uses up to 16 pixels (4x4) to generate the new pixel
- Multi-tap (polyphase ... coming in 7.1)
 - Uses any arbitrary window size (M x N) to generate the new pixel value

Nearest Neighbor Interpolation

Bilinear Interpolation

Scaling Comparison by Different Methods

Bitubit Scalingsr

© 2007 Altera Corporation—Public

Scaling: Basics

- Nearest neighbor
 - Uses one pixel to generate the new pixel
- Bilinear
 - Uses up to 4 (2x2) pixels to generate the new pixel
- Bicubic
 - Uses up to 16 pixels (4x4) to generate the new pixel
- Multi-tap (polyphase ... coming in 7.1)
 - Uses any arbitrary window size (M x N) to generate the new pixel value
 - Very useful when downscaling

Nearest Neighbor

The quick brown fox jumped over the lazy dog 25 The quick brown fox jumped over the laxy dog 34 The quick brown fox jumped over the laxy dog 32 The quick brown fox jumped over the laxy dog 32 The quick brown fox jumped over the laxy sog 32 The quick brown fox jumped over the laxy sog 38 The quick brown fox jumped over the laxy sog 36 The quick brown fox jumped over the laxy sog 36 The quick brown fox jumped over the laxy sog 36 The quick brown fox jumped over the laxy sog 36 The quick brown fox jumped over the laxy sog 36 The quick brown fox jumped over the laxy sog 36 The quick brown fox jumped over the laxy sog 36 The quick brown fox jumped over the laxy sog 36 The quick brown fox jumped over the laxy sog 36

The quick brown fox jumped over the lazy dog 36 The quick brown fox jumped over the lazy dog 34 The quick brown fox jumped over the lazy dog 30 The quick brown fox jumped over the lazy dog 30 The quick brown fox jumped over the lazy dog 28 The quick brown fox jumped over the lazy dog 28 The quick brown fox jumped over the lazy dog 28 The quick brown fox jumped over the lazy dog 30 The quick brown fox jumped over the lazy dog 32 The quick brown fox jumped over the lazy dog 32 The quick brown fox jumped over the lazy dog 32 The quick brown fox jumped over the lazy dog 32 The quick brown fox jumped over the lazy dog 32 The quick brown fox jumped over the lazy dog 32 The quick brown fox jumped over the lazy dog 30 The quick brown fox jumped aver 40 The quick brown fox jumped aver 40 The quic

© 2007 Altera Corporation—Public

Bilinear

The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 24 The quick brown fox jumped over the lazy dog 22 The quick brown for jumped over the lazy dog 20 The quick brown for jumped over the lay dog 10 The quick brown for jumped over the lay dog 10 The quick brown for jumped over the lay dog 10 The quick brown for jumped over the lay dog 10 The quick brown for jumped over the lay dog 10 The quick brown for jumped over the lay dog 10 The quick brown for jumped over the lay dog 10 The quick brown for jumped over the lay dog 10

The quick brown fox jumped over the lazy dog 36 The quick brown fox jumped over the lazy dog 32 The quick brown fox jumped over the lazy dog 30 The quick brown fox jumped over the lazy dog 30 The quick brown fox jumped over the lazy dog 28 The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 20 The quick brown fox jumped over dog 20 The quick brown fox jumped over dog 20

© 2007 Altera Corporation—Public

5-Tap (5 x 5)

The quick brown fox jumped over the lazy dog 28 The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 24 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 20 The quick brown fox jumped over the lay dog 10 The quick brown fox jumped over the lay dog 10 The quick brown for

> The quick brown fox jumped over the lazy dog 36 The quick brown fox jumped over the lazy dog 32 The quick brown fox jumped over the lazy dog 30 The quick brown fox jumped over the lazy dog 28 The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 20 The quick brown fox jumped ove

© 2007 Altera Corporation—Public

9-Tap (9 x 9)

The quick brown fox jumped over the lazy dog 28 The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 24 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 20 The quick brown fox jumped over the lazy dog 10 The quick brown fox jumped over the lazy dog 10 The quick brown fox jumped over the lazy dog 10 The quick brown fox jumped over the lazy dog 10 The quick brown fox jumped over the lazy dog 10 The quick brown fox jumped over the lazy dog 10 The quick brown fox jumped over the lazy dog 10 The quick brown fox jumped over the lazy dog 10 The quick brown fox jumped over the lazy dog 10 The quick brown fox jumped over the lazy dog 10

> The quick brown fox jumped over the lazy dog 36 The quick brown fox jumped over the lazy dog 32 The quick brown fox jumped over the lazy dog 30 The quick brown fox jumped over the lazy dog 28 The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 26 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 22 The quick brown fox jumped over the lazy dog 20 The quick brown fox jumped over the lazy dog 20 The quick brown fox jumped over the lazy dog 30 The quick brown fox jumped aver the lazy dog 30 The quick brown fox jumped ave

© 2007 Altera Corporation—Public

Upscaling

400 x 300 scaled to 800 x 600

Different Upscaling Results

Upscaling: Things to Remember

- Generally you can get very good results with bicubic or 4-tap scaling
- There is not much improvement beyond 4x4

Interlace

First all odd lines scanned (1/60sec)

...then all even lines (1/60sec)

...presenting a full picture (1/30sec)

Progressive

All lines scanned in single pass ... presenting a full picture (1/60sec)

- Because of the time intermix (1 frame = field @time 't' + field @time 't+1/60') it is impossible to:
 - Deinterlace a frame AND
 - Keep 60 frames/second AND
 - Keep the full quality (=all information for a picture)
- You will have to alter at least one of those points
 - Except, when there is no motion

© 2007 Altera Corporation—Public

How do we deinterlace video?

- 'Bob' deinterlacing
- One field of the video is made into a complete frame
- Because each field has only half the lines of a full frame, additional scan lines have to be added to create a frame

© 2007 Altera Corporation—Public

Generating the additional scan line

- Duplication
- Interpolation

Deinterlacing: The Basics

- How do we deinterlace video?
 - 'Weave' deinterlacing
 - This method simply combines the two fields into one frame
 - This methodology is good when there is not much motion between two successive fields
 - Weave leads to artifacts when there is motion

Deinterlacing: With Motion

Deinterlacing: Without Motion

Deinterlacing Applications

- Deinterlacing is used whenever you want to
 - Grab still image from video
 - Play video on a noninterlaced display
 - Compress video
- Applications
 - Video surveillance before compression/storage
 - Video conferencing to display on a non-interlaced screen
 - Broadcast before compression and video switching

💐 MegaWizard Plug-In Manager - Deinterlacer			<u>- 🗆 ×</u>
MegesCere Version 6.1	About	Documenta	ation
1 Parameter 2 Simulation 3 Summary Settings Model			
-Image Data Format			1
Image resolution : 1920×1080) 🔻	Pixels	
Bits per pixel per color plane : 8	-	Bits	
Number of color planes in sequence : 3	-	Planes	
Behavior]
Deinterlacing method : Bob - Scanline D	uplication	-	
Base address of frame buffers : Bob - Scanline D Bob - Scanline Ir Weave			
weave			
Cancel	< <u>B</u> ack	<u>N</u> ext >	Einish

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

Image Blending: For Onscreen Display (OSD) and Picture-in-Picture (PiP)

Alpha Image Blending: Basics

- Alpha image blending is the process of digitally assembling multiple images to make a final image
- The basic operation used is known as 'alpha blending', where an opacity value, 'α', is used to control the proportions of two input <u>pixel</u> values that end up a single output pixel
- Consider three pixels:
 - Foreground pixel, f
 - Background pixel, b
 - Composited pixel, c
- Also alpha (α) is the opacity value of the foreground pixel
 - α =1 for opaque foreground, α =0 for a completely transparent foreground

Alpha Blending: Basics

191	191	191	191	191	R
63	63	63	63	63	G
255	255	255	255	255	в

- The color is RGB (191, 63, 255)
- The alpha values go from 255 (fully opaque) to 0 (fully transparent)
- The actual resulting merged color is computed this way:
 - (image color × alpha) + (background color × (100% - alpha))

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

Alpha Image Blending: Basics

Composite RGB image can be calculated by

Alpha Blending IP Core

MegaWizard Plug-In Manager - Alpha Blending Mixer				
Alpha Blen Version 6.1	ding Mixe	r	About Documen	tation
1 Parameter Settings				
Image Data Format				
Number of layers being mixed :	8	-		
_ Input Resolutions	р -			
Background image resolution:	1920×1080 🔻	Pixels		
Layer 2 resolution :	64x64	Pixels		
Layer 3 resolution :	128×128	Pixels		
Layer 4 resolution :	256x256	Pixels		
Layer 5 resolution :	640x480	Pixels		
Layer 6 resolution :	720x486	Pixels		
Layer 7 resolution :	1280×720 ▼	Pixels		
Foreground image resolution :	1920x1080	Pixels		
r oreground image resolution .	192021000	FIXOIS		
Bits per pixel per color plane :	8	Bits		
Number of color planes in sequence :		✓ Planes		
	1-			
Behavior				
🔽 Enable alpha blending				
Alpha bits per pixel : 2	-			
			Cancel	Einish

- In PIP, background video is played in the center of the screen, while smaller square video clips are played in corners of the screen
- Multi-layer mixing (2 to 8 layers)
- Every foreground layer can use a different alpha value to control its transparency, resulting in true image blending effects

© 2007 Altera Corporation—Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

Filtering in Video Image Processing (VIP)

- Various video image processing signal chains have to filter the input signals to
 - Remove noise
 - Smooth the image
 - Sharpen the image
 - Implement custom processing
- Altera[®] VIP solutions provide options to implement this filtering

2D Filtering to Enhance Images

2D Filtering to Enhance Images

2D Median Filter

- Noise gets introduced into video data set via any electrical system used for storage, transmission, and/or processing
- Median filtering is a simple and very effective noise removal filtering process
- Median filtering:
 - Each pixel is determined by the median value of all pixels in a selected neighborhood (mask, template, window)
 - The median value m of a population (set of pixels in a neighborhood) is that value in which half of the population has smaller values than m, and the other half has larger values than m

2D Filtering

- 2D finite impulse response (FIR) filter and 2D median filter
 - 3x3, 5x5, or 7x7 filter sizes

 Useful for noise reduction, smoothing, and edge enhancement

100	FIR Filter	2D		
MegaCore'	Version 6.1	20		About Documentation
1 Parameter	2 Simulation	3 Summary		
Settings	Piloudi			
General	Coefficients			
Image resolutio		1024×768 • Pixels		
	planes in sequence :	3 Telanes		
Input			Output	
Bits per pixel p	er color plane :	8 🛨 Bi	ts Bits per pixel per color plane	8 -
Data type :		Unsigned	Data type :	Unsigned
🗌 🕅 Guard bar	ids M	lax : 1 💌	Guard bands	Max: 1
	1	Vin : 1 🔤		Min : 1 💌
Precision The result of th	- ETD colculation is up	sizeed binary fived point data (with 8 magnitude bits and 9 fractio	n hite
		ults will be in the range 0.00 to		1005.
		-		
The selected ou	tput format is 8 bit ur	signed integers. No underflow	or overflow will occur	
Discard fraction	bits by :	Round values to nearest inte	eger 💌	
Convert from si	med to unsigned by a	Replacing negative values w	ith zero 🔻	
Convolention a		Tropiacing negative values w		
Constrain to rar	ige by :	Saturating to min and max v	alues 💌	
	lanager - FIR Filt ilter 2D	er 2D		
FIR F	ilter 2D			
FIR F Version (ilter 2D			
FIR F Version (eter s Model	ilter 2D 5.1 tion 3 Summa			
FIR F Version (eter 2 Simula Model	ilter 2D 5.1 tion 3 Summa		_	
FIR F Version (eter Simula Simula Model Coefficients : 3x3	ilter 2D 5.1 tion 3 Summa		_	
FIR F Version (eter 2 Simula Model	ilter 2D 5.1 tion 3 Summa		_	<u>A</u> bout <u>D</u> ocumentation
FIR F Version (eter Simula Simula Model Coefficients : 3x3	ilter 2D 5.1 tion 3 Summa	у 	_	About Documentation
FIR F Version (Model Coefficients : 3x3 Time Coefficients ient set :	ilter 2D 5.1 tion 3 Summa Simple Smooth Simple Smooth	ny iing 💌	_	About Documentation
FIR F Version (Simular Model Coefficients : 3x3 Time Coefficients ient set : oble symmetric mode	Simple Smooth Single Sharpe	ny		<u>A</u> bout <u>D</u> ocumentation
FIR F Version (Simula Coefficients : 3x3 Time Coefficients ient set : cle symmetric mod	iliter 2D 5.1 tion I Summa Simple Smooth Simple Smooth Simple Sharpe 0. Custom	ing ¥ Ing IIIII		About Documentation
FIR F Version (Model) Coefficients : 3x3 Time Coefficients ient set : ble symmetric moc 1111 :8125	iliter 2D 5.1 ion 3 Summa Simple Smooth Simple Smooth Simple Sharpe 0. Custom 0.111328125	ing ¥ ing 111111 0,1112281225		About Documentation
FIR F Version (Simula Coefficients : 3x3 Time Coefficients ient set : cle symmetric mod	iliter 2D 5.1 tion I Summa Simple Smooth Simple Smooth Simple Sharpe 0. Custom	ing ¥ Ing IIIII		About Documentation
FIR F Version (Model S S S S S S S S S S S S S S S S S S S	iliter 2D 5.1 ton Summa Simple Smooth Simple Smooth Simple Sharpe 0.111328125 0.1111328125	ny ing ing ing ing ing ill1111 0.11128125 0.111128125 0.1111111 0.11128125 0.1111111		About Documentation
FIR F Version (Model) Coefficients : 3x3 Time Coefficients ient set : ole symmetric moor 1111 18125	iliter 2D 5.1 tion Summa Simple Smooth Simple Smooth Simple Smooth Simple Sharpe 0. Lustom 0.111328125	ing ing ing ing ing 0.111228125 0.111228125 0.111228125		About Documentatio
FIR F Version (Model S S S S S S S S S S S S S S S S S S S	iliter 2D 5.1 ton Summa Simple Smooth Simple Smooth Simple Sharpe 0.111328125 0.1111328125	ny ing ing ing ing ing ill1111 0.11128125 0.111128125 0.1111111 0.11128125 0.1111111		About Documentation
FIR F Version (Model S S S S S S S S S S S S S S S S S S S	iliter 2D 5.1 ton Summa Simple Smooth Simple Smooth Simple Sharpe 0.111328125 0.1111328125	ny ing ing ing ing ing ill1111 0.11128125 0.111128125 0.1111111 0.11128125 0.1111111		About Documentation
FIR F Version (Model S S S S S S S S S S S S S S S S S S S	iliter 2D 5.1 ton Summa Simple Smooth Simple Smooth Simple Sharpe 0.111328125 0.1111328125	ny ing ing ing ing ing ill1111 0.11128125 0.111128125 0.1111111 0.11128125 0.1111111		About Documentation
FIR F Version (Model S S S S S S S S S S S S S S S S S S S	iliter 2D 5.1 ton Summa Simple Smooth Simple Smooth Simple Sharpe 0.111328125 0.1111328125 0.1111328125	ny		About Documentation
FIR F Version (Model Source Ficients and Source Ficients and Sour	iliter 2D 5.1 ton Summa Simple Smooth Simple Smooth Simple Sharpe 0.111328125 0.111128125 0.111128125 0.111128125 0.111128125 Integer bits :	ny	Fraction bits :	About Documentation
FIR F Version (Model Source Ficients and Source Ficients and Sour	iliter 2D 5.1 ton Summa Simple Smooth Simple Smooth Simple Sharpe 0.111328125 0.1111328125 0.1111328125	ny	Fraction bits :	About Documentation

2D Median Filter IP

- The 2D Median Filter MegaCore[®] function provides a means to perform 2D median filtering operations using matrices of 3×3, 5×5, or 7×7 kernels
- Each output pixel is the median of the input pixels found in a 3x3, 5x5, or 7×7 kernel centered on the corresponding input pixel
- Where this kernel runs over the edge of the input image, zeros are filled in

🔌 MegaWizard Plug-In Manager - Median Filter 2D
Median Filter 2D Version 6.1 <u>About</u> <u>Documentation</u>
1 Parameter 2 Simulation 3 Summary Settings Model
Image Data Format
Image resolution : 1920×1080 Pixels
Bits per pixel per color plane : 8 💌 Bits
Number of color planes in sequence : 3 Planes
Behavior Filter size : 3x3 Pixels 3x3 5x5 7x7
Cancel < Back Next > Finish

Gamma Correction: Basics

- There is a nonlinear relationship between pixel value and its displayed intensity on a monitor
- This nonlinear relationship is roughly a power function displayed_intensity (L) = pixel_value (V)^gamma

Gamma Correction: Basics

To correct this annoying little problem, the input signal to the monitor (the voltage) must be "gamma corrected"

Gamma Correction: Basics

VIP Basics – Summary

Core	Function
Color space converter	Converts image data between a variety of different color spaces
Chroma resampler	Changes the sampling rate of the chroma data for image frames
Scalar	Resizes and clips image frames
Deinterlacer	Converts interlaced video formats to progressive video format
Alpha blending mixer	Mixes and blends multiple image streams, including PIP
2D filter	Implements a 3x3, 5x5, or 7x7 FIR filter on an image data stream to smooth or sharpen images
Gamma corrector	Performs gamma correction on a color space

DSP Total Solutions

Summary

Key trend of "video in FPGA"

- SD transitions to HD
- MPEG4-2 moves to MPEG4-10
- Video image processing technology consists of:
 - Color space conversion
 - Chroma sampling
 - Scaling
 - Deinterlacing
 - Image blending
 - Filtering
 - Gamma correction

Altera provides total solution for video image processing technology

