# **High-Performance Digital Signal Processing (DSP) Applications** with Serial RapidIO Standard

© 2007 Altera Corporation—Public

#### Agenda

- High-performance DSP applications
- Serial RapidIO<sup>™</sup> review
- Altera® Serial RapidIO solution
- Altera Serial RapidIO demo



# **Growing Demand for MIPS and Memory Bandwidth**



#### Time

© 2007 Altera Corporation—Public

#### DSP vs. FPGA Comparison – 1

|               | DSP                                                                                                                                             | FPGA                                                                                                                                                               |
|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Advantages    | <ul> <li>High clock rate</li> <li>Rapid software development<br/>in C++</li> </ul>                                                              | <ul> <li>High number of<br/>instructions/clock</li> <li>High number of multipliers</li> <li>High bandwidth<br/>flexible I/O and memory<br/>connectivity</li> </ul> |
| Disadvantages | <ul> <li>Limited number of instructions/clock</li> <li>Limited number of multipliers</li> <li>Limited memory and device connectivity</li> </ul> | <ul> <li>Longer development time</li> <li>Typically lower clock rates</li> </ul>                                                                                   |



### DSP vs. FPGA Comparison – 2

| Functions                                                 | DSP                                      | FPGA                                                                                     |
|-----------------------------------------------------------|------------------------------------------|------------------------------------------------------------------------------------------|
| Maximum clock rate                                        | 1 GHz                                    | 370 MHz                                                                                  |
| Maximum number of multipliers                             | 4 (16-bit X16-bit)                       | Over 700 18-bit X 18-bit<br>(384 HW + 300 LE) or<br>over 1400 9-bit X 9-bit <sup>1</sup> |
| Maximum number of<br>instructions/clock                   | 4 or 8                                   | 100s to 1000s                                                                            |
| Ease of programming                                       | C,C++ software flow                      | HDL hardware flow                                                                        |
| I/O flexibility                                           | Limited                                  | Flexible                                                                                 |
| Memory management                                         | Built-In                                 | Manual                                                                                   |
| Memory bandwidth                                          | 1-Gbps SDRAM                             | 9.5-Gbps DDRII <sup>2</sup>                                                              |
| Power consumption<br>(for high-end processing<br>devices) | Low per device<br>(high per computation) | High per device<br>(low per computation)                                                 |

Multipliers Can Be Implemented Using Hardware (HW) Based Multipliers & Logic Element (LE) Based Multipliers.
 Other Memory Interfaces are Supported Including Single Data Rate, Double Data Rate, RLDRAMI, QDR & QDRI

© 2007 Altera Corporation—Public





#### **Datapath Processing Architecture Options**



© 2007 Altera Corporation—Public

#### **Example: Wireless Tester**



© 2007 Altera Corporation—Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation



#### **Example: WiMAX Channel Card**



© 2007 Altera Corporation—Public



#### **Example: WiMAX Channel Card**



© 2007 Altera Corporation—Public





#### **Interconnect Technology Review**

| Interconnect Use          |    |                |     |         |          | Characteristics                                                                               |
|---------------------------|----|----------------|-----|---------|----------|-----------------------------------------------------------------------------------------------|
| LAN/WAN                   |    |                |     |         | Ethernet | IPv4/IPv6, 48-bit MAC<br>Address                                                              |
| Traffic-Managed<br>Fabric |    |                |     | RapidIO |          | Hundreds of classes, millions of<br>flows, end-to-end flow control,<br>interworking, scalable |
| Switched<br>Interconnect  |    |                | ASI |         |          | Message passing, architectural/<br>topological independence, one<br>flow, protocol tunneling  |
| Serial Local<br>Bus       |    | PCI<br>Express |     |         |          | Serialized Input/Output<br>Transactions/DMA                                                   |
| Parallel Local<br>Bus     | нт | PCI-X          |     |         |          | Parallel Input/Output<br>Transactions/DMA                                                     |

© 2007 Altera Corporation-Public



#### **RapidIO Hierarchy**



© 2007 Altera Corporation—Public



#### **Traditional Interconnect Architecture**



© 2007 Altera Corporation—Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

#### **RapidIO Systems**



© 2007 Altera Corporation—Public



#### **Typical Application**



#### DSP Farm Switch and Backplane Interconnect

© 2007 Altera Corporation-Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

#### **Typical Application**



#### **DSP** Coprocessor

© 2007 Altera Corporation—Public





#### a1<sub>CY2</sub>

### **Altera Stratix II GX RapidIO Solution**

- RapidIO MegaCore<sup>®</sup> Version 6.1
- Compliant with RapidIO Trade Association, RapidIO Interconnect Specification, Revision 1.3
- Physical layer features
  - 1x/4x serial
    - Stratix<sup>®</sup> II GX support, including 1x and 4x up to 3.125 Gbps
    - Cyclone<sup>®</sup> II, Stratix II, Stratix III, and HardCopy<sup>®</sup> II support with an XGMII-like interface to a high-speed fullduplex, serializer / deserializer (SERDES) transceiver
  - 8-bit parallel
- Transport layer features
  - Supports multiple logical layer modules
  - Supports 8-bit device identities (IDs)
  - Device IDs, addressable CARs, and CSRs eliminate hop-count handling and CRC recomputing
- Logic layer features
  - Maintenance master and slave logical layer module
  - I/O master and slave logical layer module
  - Doorbell support
- PCI Express development kit expansion via HSMC connectors to AMC module
- SRIO loopback example design available based on the signal integrity kit
- Other IP vendors: Mercury Computers, GDA Technologies, Jennic, Preasum

© 2007 Altera Corporation—Public

18



#### **SRIO Stratix II GX Characterization**

SRIO I/O (PMA) specifications have evolved

- Currently identical to XAUI @ 3.125 Gbps
- Currently identical to Gigabit Ethernet @ 1.25 Gbps and 2.5 Gbps
- Stratix II GX passes SRIO characterization spectacularly at 3.125 Gbps
- The XAUI and SRIO characterization report now available



#### Interoperability

- Stratix II GX with Altera MegaCore interoperability with TI DSP device via SRIO
  - Stratix II GX signal integrity (SI) board to TI DSP 6455 board via an SMA breakout board

| Baud Rate (Gbaud) | Internal Data Path Width |
|-------------------|--------------------------|
| 1.25              | 32                       |
| 2.5               | 32                       |
| 3.125             | 32                       |
| 2.5               | 64                       |
| 3.125             | 64                       |
|                   | 2.5<br>3.125<br>2.5      |

- Interoperability with IDT switch x1 @ 3.125 Gbps
  Bittware AMC board with Stratix II GX interoperability with
- TI DSPs via Tundra passed



© 2007 Altera Corporation—Public

Altera, Stratix, Arria, Cyclone, MAX, HardCopy, Nios, Quartus, and MegaCore are trademarks of Altera Corporation

CY3

## Stratix II GX FPGA-based Serial RapidIO Solution

| ltem                                               | Status |
|----------------------------------------------------|--------|
| Stratix II GX FPGA                                 |        |
| IP core (x1, x4 serial, x8 parallel)               |        |
| Development kit                                    |        |
| Reference designs                                  |        |
| Device characterization report                     |        |
| System validation report                           |        |
| Additional interoperability (Texas<br>Instruments) |        |

© 2007 Altera Corporation-Public



#### Summary

- Serial RapidIO has become the interface of choice for high-performance DSP applications
- Altera offers complete, easy-to-use Serial RapidIO solutions
  - Arria<sup>™</sup> GX FPGAs for mainstream applications
  - Stratix II GX FPGAs for high-performance systems
- Low-risk, hardware-verified solutions
  - Stratix II GX interoperability with Texas Instruments
  - Development boards

#### Fastest Time-To-Market with Reliable RapidIO Solutions





