Ease Your Life With Altera Low-Cost Products

AP Technology Roadshow 2013

MEASURABLE ADVANTAGE **

Low Cost Product Families – Rollout History

Broadest 28nm Product Portfolio

More Products Than Any Other Prior Node

28HP & 28LP are Industry Processes of Choice

Vendors using 28HP & 28LP

Source: Semiconductor Manufacturing and Design

28nm GPU at TSMC source: Taiwan Economic News

Source: Netlogic Micro and Magma

analogue IP · custom chip · platforms

Source: Power Systems Design

28nm GPU at TSMC source: Digitimes

Vendors using 28HPL

Major Semiconductor Vendors Choose TSMC's 28LP Process for Lowest Power

TSMC 28nm Technology in Volume Production

Hsinchu, Taiwan – October 24, 2011 – TSMC (TWSE: 2330, NYSE: TSM) today announced that its 28nm process is in volume production and production wafers have been shipped to customers. TSMC leads the foundry segment to achieve volume production at 28nm node.

TSMC's 28nm process offering includes 28nm High Performance (28HP), 28nm High Performance Low Power (28HPL), 28nm Low Power (28LP), and 28nm High Performance Mobile Computing (28HPM). Among these technology offerings, 28HP, 28HPL and 28LP are all in volume production and 28HPM will be ready for production by the end of this year. The production-version design collateral of 28HPM has been distributed to most mobile computing customers for their product-design use.

The number of customer 28nm production tape outs has more than doubled as compared with that of 40nm. At 28nm, there are currently more than 80 customer product tape-outs. The TSMC 28nm process has surpassed the previous generation's production ramps and product yield at the same point in time due to closer and earlier collaboration with customers. TSMC's 28nm design ecosystem is available through its Open Innovation Platforms@, with qualified EDA design tools and third-party IP ready for customer designs.

"Building on TSMC and Altera's 18 years of established technology partnership, TSMC's comprehensive 28-nm process offerings and Altera's leading-edge FPGA technology complement each other perfectly, enabling us to uniquely tailor our 28-nm product portfolio to best meet our customers' diverse design requirements," said Vince Hu, Vice President of Product and Corporate Marketing at Altera Corporation. "In our 28nm generation, TSMC's 28LP process fits the requirement of Cyclone V and Arria V families with the lowest power and costs, and we have utilized the 28HP process for the industry's first delivered high-end 28nm FPGA, Stratix V with the highest performance and the lowest power in high-performance systems."

"Qualcomm and TSMC have a long history of collaboration to bring to market the latest in mobile semiconductor technology on the most advanced silicon manufacturing processes, and we are excited to be introducing the first integrated smartphone processors at the 28nm node," said Jim Clifford, senior vice president and general manager of operations at Qualcomm. "Most recently, Qualcomm's work with TSMC yielded our Snapdragon™ S4 class of processors, including the Snapdragon S4 MSM8960™, a highly-integrated, dual-core SoC designed to reduce power in cutting-edge smartphones and tablets. The Snapdragon S4 class of processors are manufactured in TSMC's highly sophisticated 28LP process, enabling Qualcomm to deliver the breakthrough combination of high performance and ultra low power to mobile devices."

Click here for full press release

© 2013 Altera Corporation—Public

"Building on TSMC and Altera's 18 years of established technology partnership, TSMC's comprehensive 28-nm process offerings and Altera's leading-edge FPGA technology complement each other perfectly, enabling us to uniquely tailor our 28-nm product portfolio to best meet our customers' diverse design requirements," said Vince Hu, Vice President of Product and Corporate Marketing at Altera Corporation. "In our 28nm generation, TSMC's 28LP process fits the requirement of Cyclone V and Arria V families with the lowest power and costs, and we have utilized the 28HP process for the industry's first delivered high-end 28nm FPGA, Stratix V with the highest performance and the lowest power in high-performance systems."

"Qualcomm and TSMC have a long history of collaboration to bring to market the latest in mobile semiconductor technology on the most advanced silicon manufacturing processes, and we are excited to be introducing the first integrated smartphone processors at the 28nm node," said Jim Clifford, senior vice president and general manager of operations at Qualcomm. "Most recently, Qualcomm's work with TSMC yielded our Snapdragon™ S4 class of processors, including the Snapdragon S4 MSM8960™, a highly-integrated, dual-core SoC designed to reduce power in cutting-edge smartphones and tablets. The Snapdragon S4 class of processors are manufactured in TSMC's highly sophisticated 28LP process, enabling Qualcomm to deliver the breakthrough combination of high performance and ultra low power to mobile devices."

TSMC 28LP: Qualcomm's process choice to deliver lowest power for mobile devices

MEASURABLE ADVANTAGE **

Cyclone V FPGAs: Lowest System Cost and Power

Lowest system cost

- Only two required voltage rails for simple power distribution
- Partial reconfiguration
- Configuration via Protocol (CvP)
- Wire bond packaging
- Hardened IP to save time and cost
 - Memory controller for DDR3, DDR2, LPDDR2
 - PCle Gen 1 and 2
 - Variable Precision DSP blocks
 - PLLs with 32 bit fractional frequency synthesis

Lowest system power

- 40% lower total power than previous generation
- Lowest transceiver power at any data rate
- 28-nm LP process for the lowest static power

Maximum Functionality

- 300K logic elements
- 11.6 Mbits of block memory
- Up to 342 variable precision DSP blocks
- Up to 560 User IO
- Up to 2 PCIe blocks
- Up to 2 hardened memory controller blocks
- Up to 12 x 5G transceivers

Cyclone V FPGA Family

Opening Up Design Possibilities

	Lowest cost and power	3G transceivers	5G transceivers
ADERA. Cyclone V	Optimized for lowest system cost and power for a wide spectrum of general logic and DSP applications	Optimized for lowest cost and power for 614 Mbps to 3.125 Gbps transceiver applications	FPGA industry's lowest cost and power for 5.0 Gbps transceiver applications
FPGA	E Variant	GX Variant	GT Variant
Integrated ARM Cortex-A9 MPCore Processor System	SE Variant	SX Variant	ST Variant

MEASURABLE ADVANTAGE **

Cyclone V FPGAs Reduce Power Up to 40%

28-nm LP benefits:

- Lower capacitance
- Multi-threshold transistors
- Variable channel lengths reduce leakage
- Reduced core voltage

Cyclone V FPGAs: Designed for Low Power

MEASURABLE ADVANTAGE"

Cyclone V: Innovations in Leaps and Bounds

Adaptive Logic Module (ALM)

Improves logic efficiency vs. 4-LUT module

- 8-input fracturable look-up table (LUT) efficiency
- 1 ALM = 2.65 LEs
- Four registers improve timing closure for register-rich or heavily pipelined designs

Optimized to reduce area and power consumption

Core performance tuned for 5G applications

Optimizations Result in Smaller Logic Array Blocks (LABs) and Lower Power

Variable-Precision DSP Block

High-Efficiency for Key Applications

Embedded Memory

Two types: MLAB and M10K

NEW!

	M10K	MLAB
f _{MAX}	380 MHz	300 MHz
RAM bits per block	10,240 bits	640 bits
Configuration	256 x40 or 32 bits 512 x20 or 16 bits 1K x10 or 8 bits 2k x5 or 4 bits 4k x2 bits 8K x1 bit	32 x 1, 2, 4, 8, 9, 10, 16, 18, or 20 bits
ROM with preload	\checkmark	\checkmark
Single-port	\checkmark	\checkmark
Simple dual-port	\checkmark	\checkmark
True dual-port	\checkmark	-

Design Security – Deny the Counterfeiters!

- 256-bit Advanced Encryption Standard (AES)
 - Volatile and non-volatile keys
- Embedded unique identification (ID)
 - For traceability
- Cyclical redundancy check (CRC)
 - Detects unauthorized configuration changes
- On-chip oscillator
 - Results in uninterruptible clock source
- Protection against tampering
 - Clears device if tampering is detected
- JTAG port protection
 - Prevents reverse engineering

The Most Comprehensive Design Protection in an FPGA

MEAS DAB/ E ADVANTAGE

^{© 2013} Altera Corporation—Public

Faster, More Flexible Configuration Options

Configuration Via Protocol (CvP)

- Fast, low pin count configuration
- Greater flexibility for configuration storage

Wider bus for faster configuration

- Active serial (AS) x1 and x4 (NEW)
- Fast passive parallel (FPP) x8 and x16 (NEW)

Classic configuration options

- Passive serial (PS)
- JTAG

PCle Configuration Host/CPU

Flexible, Low Pin Count Configurations Including PCIe Option

Cyclone V FPGA Transceivers

88 mW power per channel at

Protocol	GX Data Rate (Gbps)	GT Data Rate (Gbps)				
Basic mode/ proprietary protocols	Up to 3.125	Up to 5.0				
CPRI	0.6144 to 3.072	0.6144 to 6.144				
OBSAI	0.75 to 3.072					
Serial RapidIO®	1.25 to 3.125					
JESD204A	0.3125 to 3.125					
PCIe	2.5	5.0				
SATA	1.5	to 3.0				
SDI SD/HD, 3G-SDI (Triple Rate)	0.27 to 2.97					
XAUI	3.125					
Gigabit Ethernet	1.25					
Display Port	Up	to 5.4				
Vx1	Up to 3.125	Up to 3.75				

The Most Robust and Lowest Power Transceivers

MEASURABLE ADVANTAGE

Cyclone V FPGA External SDRAM Interface

© 2013 Altera Corporation—Public

to Meet Your Application Needs

MEASURABLE ADVANTAGE"

Cyclone V FPGAs: Ideal for Industrial Applications

Need	Cyclone V FPGA Feature	Customer Benefit
High Function and Small Form Factor	 3.3-V I/O with 16mA drive PCIe multifunction Integrated security and safety HiSPi™, Sub-LVDS I/O Just two voltages for core and transceiver power 	 Less components → reduced BOM cost Single hardware supports multiple SKU's
Low Power	 Up to 40% lower total power 	 Easier thermal management Increased functionality while staying within fixed power budgets
Long Life	>15 years of life cycleIntegrated security and safety	 Obsolescence proof Supports legacy ASSP I/Os Prevents cloning and reverse engineering

Cyclone V FPGA Device Family Plan

		Core Fabric							erconne	ect	Hard IP		
Family	Device	LE (1)	# Blocks	Block Memory (Kb)	MLAB (Kb)	DSP Blocks (2)	PLL	XCVR	GPIO	LVDS Pairs	PCIe Blocks (Base / Full)	Memory Controllers (Base / Full) (4)	
	5CEA2	25K	176	1,760	196	25	4	-	224	100	-	0,1	
	5CEA4	49K	308	3,080	303	66	4	-	224	100	-	0,1	
Cyclone V E	5CEA5	77K	446	4,460	424	150	6	-	240	100	-	0,2	
	5CEA7	149.5K	686	6,860	836	156	7	-	480	122	-	0,2	
	5CEA9	301K	1,220	12,200	1,717	342	8	-	480	122	-	0,2	
	5CGXC3	31.5K	119	1,190	159	51	4	3	208	48	0,1	0,1	
	5CGXC4	50K	250	2,500	295	70	6	6	336	90	0,2	0,2	
Cyclone V GX	5CGXC5	77K	446	4,460	424	150	6	6	336	100	0,2	0,2	
	5CGXC7	149.5K	686	6,860	836	156	7	9	480	122	0,2	0,2	
	5CGXC9	301K	1,220	12,200	1,717	342	8	12	560	122	0,2	0,2	
O utline M	5CGTD5	77K	446	4,460	424	150	6	6	336	100	2	2	
Cyclone V GT	5CGTD7	149.5K	686	6,860	836	156	7	9	480	122	2	2	
•	5CGTD9	301K	1,220	12,200	1,717	342	8	12	560	122	2	2	

1. 2.65 logic element (LE) equivalent per Adaptive Logic Module (ALM).

2. Each DSP block can natively support 3x(9X9), 2x(18x18), or single 27 x 27 multiplier.

3. Hard Memory Controllers include ECC support for high reliability.

4. Number of Hard Memory Controllers available in the device (0,1, or 2) can be chosen in part ordering code

Cyclone V FPGA Package Options

Family	Device	LE	M301 11x11	M383 13x13	M484 15x15	F256 17x17	U324 15x15	U484 19x19	F484 23x23	F672 27x27	F896 31x31	F1152 35x35
	5CEA2	25K	-	223 ³	-	1 <mark>28</mark>	1 <mark>76</mark>	<mark>-22</mark> 4	<mark>22</mark> 4	-	-	-
	5CEA4	49K	-	223 ³	-	128	176	<mark>22</mark> 4	<mark>224</mark>	-	-	-
Cyclone V E	5CEA5	77K	-	175	-	-	-	<mark>22</mark> 4	<mark>24</mark> 0	-	-	-
	5CEA7	149.5K	-	-	240	-	-	<mark>24</mark> 0	2 <mark>40</mark>	<mark>-33</mark> 6	<mark>48</mark> 0	-
	5CEA9	301K	-	-	-	-	-	<mark>240</mark>	224	<mark>33</mark> 6	<mark>48</mark> 0	-
	5CGXC3	31.5K	-	-	-	-	144/3	20 <mark>8</mark> /3	20 <mark>8/</mark> 3	-	-	-
	5CGXC4	50K	<mark>129 / 4</mark>	<mark>175 / 6</mark>	-	-	-	22 <mark>4</mark> /6	24 <mark>0 /</mark> 6	3 <mark>36</mark> /6	-	-
Cyclone V GX	5CGXC5	77K	<mark>129 / 4</mark>	<mark>175 / 6</mark>	-	-	-	22 <mark>4</mark> /6	24 <mark>0 /</mark> 6	3 <mark>36</mark> / 6	-	-
	5CGXC7	149.5K	-	-	<mark>240 / 3</mark>	-	-	24 <mark>0</mark> /6	24 <mark>0 /</mark> 6	3 <mark>36</mark> / 9	4 <mark>80</mark> / 9	-
	5CGXC9	301K	-	-	-	-	-	240/5	22 <mark>4</mark> /6	3 <mark>36</mark> /9	480/12	560 / 12
Cyclone V GT	5CGTD5	77K	<mark>129 / 4</mark>	<mark>175 / 6</mark>	-	-	-	2 <mark>24</mark> /6	2 <mark>40</mark> /6	3 <mark>36</mark> /6	-	-
	5CGTD7	149.5K	-	-	<mark>240 / 3</mark>	-	-	24 <mark>0</mark> /6	24 <mark>0 /</mark> 6	3 <mark>36</mark> / 9	4 <mark>80</mark> / 9	-
	5CGTD9	301K	-	-	-	-	-	240/5	2 <mark>24</mark> /6	3 <mark>36</mark> /9	480/12	560 / 12

Notes:

1. New Packages

2. See Quartus II design software for pin-migration details.

3. 175 I/O are migratable to 5CE-A5 M383.

4. Fxxx = 1.0mm ball spacing

5. Uxxx = 0.8mm ball spacing

6. Mxxx = 0.5mm ball spacing

Cyclone V Dev Kit Portfolio is Strong!

	Cyclone V E Kit	Cyclone V GX Kit	Cyclone V GT Kit
DDR3 SDRAM	Soft memory controller: x32	Hard Mem. Controller: x32 w/t ECC @ 400 MHz Soft Mem. Controller: x32 w/t ECC	Hard Mem. Controller: x32 w/t ECC @ 400 MHz Soft Mem. Controller: x64 (no ECC)
LPDDR2 SDRAM	LPDDR2 x16 (soft memory controller)	-	-
User Control	4 push buttons, 5 LEDs, 4 DIP switches, 2x Resets (CPU reset, System reset)	3 push buttons, 4 LEDs, 4 DIP switches, 2x Resets (CPU reset, Dev Clear)	3 push buttons, 4 LEDs, 4 DIP switches, 2x Resets (CPU reset, Dev Clear)
LCD	Character LCD (16x2)	Character LCD (16x2)	Character LCD (16x2)
Components and interfaces	Ethernet (2x RJ45), HSMC (1), UART USB 2.0 for configuration and control	PCIe x4 Edge Connector, HSMC (1), Ethernet (RJ45), SDI (1), SMA (2 for 1 Tx/Rx) USB 2.0 for config. & control	PCIe x4 Edge Connector, HSMC (2), Ethernet (RJ45), SDI (2), SMA (2 for 1 Tx/Rx), USB 2.0 for config. & control
Public Availability	Shipping since Nov. 2012	Shipping since Sept. 2012	April 2013
Price, P/N	\$1,099 (DK-DEV-5CEA7N)	\$1,199 (DK-DEV-5CGXC7NES)	\$1,299 (DK-DEV-5CGTD9N)

MAX V CPLDs

MEASURABLE ADVANTAGE **

Announcing the MAX V CPLD Family

Low power and high performance

Up to 50% lower total power * Performance up to 247.5 MHz

MAX°V

* Versus competitors' equivalent density CPLDs

Low-Power Leadership

 * Based on suppliers early power estimators at 85 $^{\circ}\,$ C, 100MHz

MEASURABLE ADVANTAGE

MAX V Family – Package and I/O Options

	Density		M64	E64	M68	T100	M100	T144	F256	F324
Device	Logic Elements	Typical Macrocells	4.5x4.5	204 7x7	5x5	14x14	6x6	21x21	17x17	19x19
5M40Z	40	32	30	54						
5M80Z	80	64	30	54	52	79				
5M160Z	160	128		54	52	79	79			
5M240Z	240	192			52	79	79	114		
5M570Z	570	440				74	74	114	159	
5M1270Z	1,270	980						114	211	271
5M2210Z	2,210	1,700							203	271

M = 0.5-*mm* pitch easy-break-out BGA package

E = 0.5-*mm* pitch EQFP package

T = 0.5-mm pitch TQFP package

F = 1.0-mm pitch FineLine BGA package

Supports Commercial, Industrial, and Extended Temperatures (T_j = -40° C to +125° C)

Consumer functions: Simple → Complex

Next Generation CPLDs

MEASURABLE ADVANTAGE **

Next Generation Low-Cost PLD Family

COMING SOON!!!

Thank You

© 2013 Altera Corporation-Public

ALTERA, ARRIA, CYCLONE, HARDCOPY, MAX, MEGACORE, NIOS, QUARTUS and STRATIX words and logos are trademarks of Altera Corporation and registered in the U.S. Patent and Trademark Office and in other countries. All other words and logos identified as trademarks or service marks are the property of their respective holders as described at www.altera.com/legal.

MEASURABLE ADVANTAGE M