Drive Control

Altera Technology Roadshow 2013

Challenges for Drive Manufacturers

Performance Improvements

- Higher switching frequencies, higher dynamic response
- Adapting to latest technologies
- Multi-axis, On-line Diagnostics

Differentiation While Lowering Costs

- Multiple Industrial
 Ethernet (IE) and encoder
 protocols
- Integrating functions into fewer components, drive miniaturization, platforms

Implementing Functional Safety

- -Cost overhead and time to market impact
- Not always customer core competence

Challenge Across All Types of Drives Manufacturers

FPGA in Drives

- Low Cost Altera FPGA as an I/O expansion
- I/O Expansion
- Industrial Ethernet and Fieldbus IP
- Encoder IP
- Control Algorithm HW Acceleration

- Cost and Performance optimized integrated *Drive-on-a-Chip*
- Multi-axis control significant system cost reduction

As FPGA Content Increases, System Costs Decreases!

Oper

MEASURABLE ADVANTAGE™

Drive Content Expansion with FPGA

Altera Industrial Ethernet Solution

Industrial Ethernet Solution 2013

Profinet RT/IRT Powerlink Ethernet/IP ModBus TCP/IP Profibus

& EtherCAT

<u>All protocols</u> enabled by the same CPLD – one at a time <u>All protocols</u> have a common SW API and a common HW interface

Altera Industrial Ethernet Roadmap

2013

- Include EtherCAT within the same model
 - One CPLD for ALL protocols

- Optimize protocols for CV SoC
 - Use the hard IP HMC, EMAC, A9

<u>2014</u>

 Optimize protocols for next generation low cost components

© 2013 Altera Corporation—Public

FPGA Co-Processors for CPU/MCU

Offload DSP algorithm from CPU

- Custom hardware block implements complete DSP datapath, <u>offloads CPU</u> to run other tasks
- Memory mapped register access between CPU & hardware
- Floating-point and variable width fixed-point arithmetic supported

Algorithm	Folding	LE Usage	Multiplier Usage	Algorithm Latency (µs)
Floating-point single-precision	None	20K	56	1.0
Floating-point single-precision	Enabled	7.5K	5	1.73
16-bit fixed-point	None	3K	16	0.22
16-bit fixed point	Enabled	2K	1	0.88

...scales to multiaxis at close to zero additional cost/latency

Altera DSP Builder - Quick Algorithm Implementation

8

MEASURABLE ADVANTAGE "

Drive-on-a-Chip Reference Design Overview

Integrated Multi-Axis Drive-on-a-Chip on Cyclone FPGA

- Software-only and FPGA Accelerated Implementations of multi-axis motor control
- Motor Control IP Suite
 - FOC Control Loop IP
 - Sigma-delta ADC I/F, PWM, Drive System Monitor
 - Encoder IP (Partners)
- Interactive Drive-on-a Chip System Debug
 Tools

Fast, Parallel Computation – Do Much More in Less Time

Fast, Parallel Computation – Do Much More in Less Time

Altera FPGA Drive-on-a-Chip - Scalable Performance

Requirement	FPGA Benefit
Fast Dynamic Response for Precise and Efficient Motor Control	 Ultra-low latency control loops (FOC <1us) – support for higher switching frequency, optimal sampling in time Efficient Floating Point Current Observers reduce measurement lag High precision/resolution current and position feedback Vibration Suppression actively removes artifacts in sensed current Advanced motor state estimation
Cost-effective Multiaxis	Time-sharing of FOC DSP coprocessor – control 2,4,8,16 axes at close to zero latency/resource overhead
On-Line Diagnostics	Parallel monitoring and detection of wider system vibration, stator winding, bearing wear without loading CPU

Altera FPGA Drive-on-a-Chip – Flexibility

Flexible fieldbus, encoder, connectivity and power interfaces

Flexible safety and diagnostics

Requirement	FPGA Benefit
Multiple Ethernet Protocols	All major protocols, custom switch implementations in FPGA fabric
Varying and evolving power stage interfaces	"Limitless" PWM interface count, 2L/3L inverters, flexibility in ADC support requirements
Varying Encoder Protocols	High Performance Endat, BiSS, Hiperface Master support, configurable number of interfaces/axes, Custom/Proprietary interfaces
Functional Safety	Reduced Cost, T2M & Risk - Functional Safety Data Package, Safe/Non-Safe Partitioning

Available Hardware Platforms

Falconeye Motor Control

Reference Design	Board Support	Comments
Altera Multi-axis FOC in fixed and floating point	INK CIV, Altera CV + Multiaxis Motor Control Board	MMC Board available for sale end Q1. Est Price: 2000 USD
Altera Single-axis FOC in fixed and floating point	Falconeye Motor Control Kit supporting CIV, CV (Feb'13)	Single-axis variation of multiaxis design. (Price 2500, includes CIV/CV FGPA Board)
EBV/U Cologne Drive Reference Design Single-axis, Nios II floating-point design with custom instructions	Falconeye Motor Control Kit (CIV, CV)	Reference design ships with Falconeye Kit (Price : 1800 EU before shipping)

Field Demo Kits - Industrial Ethernet

Thank You

