
Proposed Extensions to VHDL for
Abstraction of Concurrency and Communication

Peter J. Ashenden <petera@cs.adelaide.edu.au>
Philip A. Wilsey <phil.wilsey@uc.edu>

Technical Report TR-97-11
Department of Computer Science

The University of Adelaide, SA 5005
Australia

Technical Report TR-210/12/97/ECECS
Department of Electrical and Computer Engineering

and Computer Science
University of Cincinnati,

PO Box 210030
Cincinnati, OH 45221--0030

USA

This work was partially supported by Wright Laboratory
under USAF contract F33615--95--C--1638

ii

Abstract

This report describes extensions to VHDL to support system-level behavioral modeling by provid-
ing more abstract forms of communication and concurrency than those currently in the language.
The report summarizes design objectives and issues that must be considered in developing such ex-
tensions, and presents detailed definitions of our extensions. The extensions for communication
consist of channel types, channel objects, dynamically allocated channels, and message passing
statements. The extensions for concurrency consist of process declarations and static and dynamic
process instantiation statements. Use of the extensions is illustrated with examples.

1

1. Introduction

As the complexity of integrated hardware and software systems increases, system-level design lan-
guages are becoming increasingly important. Such languages rely on abstraction as the key to man-
aging complexity. Designers focus first on the abstract properties of a system in various domains
and devise a systems architecture that will satisfy the requirements placed on the system. The do-
mains under consideration include behavior, structure, performance, physical arrangement and
packaging, power consumption, thermal, cost, and so on. In each domain, abstraction is used to
focus on the major aspects of the system and minor detail is ignored. Judicious choice of abstractions
makes architectural design and analysis tractable, and aids subsequent partitioning and refinement
of the system design.

Hardware description languages focus on describing systems in the behavioral and structural do-
mains. However, due to their origin as languages for hardware design, they frequently do not include
strong capabilities for abstracting over data and for describing complex interactions. For example,
in Verilog [13, 17], data types are closely bound to their binary representation, and signalling be-
tween modules includes aspects of electrical implementation. VHDL [1, 12], on the other hand, al-
lows more abstract expression of data, and its type system is similar to that of conventional
programming languages. However, its signalling features are still closely bound to electrical imple-
mentation.

To remedy these deficiencies, we have developed extensions to VHDL to improve its support for
system-level modeling. These extensions are based on the requirement in a system-level description
language for abstraction in the following areas:

S abstraction of data,

S abstraction of concurrency, and

S abstraction of communication and timing.

We have described the details of the extensions to the data modeling facilities in previous papers
[3--5]. These extensions involve mechanisms for object-oriented data types and for genericity. We
have also presented a discussion of the issues that must be considered in extending VHDL to provide
more abstract forms of concurrency and communication [2].

In this report we focus on our extensions for abstraction of communication and concurrency in
the SAUVE (SAVANT and University of Adelaide VHDL Extensions) project. We introduce into
VHDL the notions of communication channels and message-passing operations as an abstraction
of communication by signals. We also extend the process model by allowing process declarations
that can be statically or dynamically instantiated.

Section 2 of this report reviews our design objectives. Section 3 discusses issues that must be
considered in extending VHDL with a more abstract form of communication, and Section 4 presents
the details of the abstract communication language features in SUAVE. Section 5 presents the details
of the extensions for concurrency abstraction. Section 6 presents an extended example, a multi-
threaded client-servers system, that illustrates the combined use of the extensions in a system-level
model. Finally, Section 7 contains our conclusions.

2

2. Design Objectives

Our main design objective in the SUAVE project is to improve high-level modeling support in
VHDL through increased use of abstraction. Specific objectives leading to the extensions described
in this report are:

S to provide a more abstract form of communication than the existing mechanisms of signals
and signal assignment,

S to provide dynamic process creation and termination,
S to provide abstractions that are not biased towards hardware or software implementations,

allowing subsequent partitioning and refinement (hardware/software co-design),
S to preserve capabilities for synthesis and other forms of design analysis,
S to ensure clean integration and well-defined interaction with existing language mecha-

nisms,
S to ensure clean integration and well-defined interaction with extensions for data modeling

and genericity developed in the SUAVE Project, and
S to preserve correctness of existing models within the extended language.
We consider integration with the existing language to be a key design objective. We are guided

by Fred Brooks’notion of “conceptual integrity”[7]. As Brooks notes, “Conceptual integrity does
require that a system reflect a single philosophy and that the specification as seen by the user flow
from a few minds.” To this end, we have embraced the design principles (listed in our earlier paper
[4]) used during earlier development and standardization of VHDL.

3. Considerations for the Abstraction of Communication

At the system level of design, processes representing active objects must interact to communicate
data and to synchronize their operation. The simplest form of interaction is message passing, involv-
ing the transfer of data from a sender process to a receiver process. The act of message passing can
also be used to synchronize processes. SUAVE extends VHDL with message passing for abstract
communication as it is a natural abstraction of communication common to both software and hard-
ware. Other forms of interaction, such as rendezvous and remote procedure call are possible [6],
but are oriented specifically toward software implementation. Fortunately, they are easily expressed
in terms of message passing.

There are two ways that message passing abstracts away the details of communication in hardware
description languages. First, communication events are not tied to specific times, but rather are sim-
ply ordered by relative time of sending. This causality-based ordering is weaker and less constrain-
ing than clock-time ordering, and is therefore more appropriate at the early stages of design. Second,
communication events may be queued (either by queuing messages or processes), rather than relying
on the recipient sensing data at the correct time. This allows multiple communication events to form
a stream or a transaction without the need for detailed signalling protocols.

Signals in VHDL can be viewed as statically instantiated, named communication channels. How-
ever, the semantics of passing values via signals is based on a low-level model of electrical imple-

3

mentation, and is significantly different from the forms of message passing seen in other
system-level description languages such as Estelle [8, 14], SDL [9, 15] and CSP [10, 11]. At best,
VHDL signal assignment might be viewed as asynchronous unbuffered message passing, leading
to loss of messages if the receiver is not ready to accept them.

In a previous paper [2], we identify a number of issues to consider when designing message-pass-
ing communication mechanism in VHDL. The issues are:

1. whether the message send operation should name a target process as the recipient, or a
communication channel as the transmission medium;

2. whether message passing should be asynchronous or synchronous;

3. whether to allow broadcasting of messages; and

4. how message passing integrates with concrete signal assignment.

For the first issue, given that a description may be refined to a hardware implementation in which
communication occurs via named signals, named communication channels are most appropriate.
Channels are a more natural abstraction of the communication mechanism used in hardware descrip-
tion. Furthermore, they allow a communicating process to be encapsulated with formal channels.
Such a process can then be instantiated several times, each instance communicating with different
partner processes.

For the second issue, SUAVE chooses asynchronous message passing. While either form of can
be used to implement the other, asynchronous message passing is the most flexible. Synchronous
communication can be simply expressed using handshaking. The details can be encapsulated to pro-
vide the appearance of simple synchronous message passing, rendezvous, or remote procedure call.
Implementing asynchronous communication with synchronous primitives, on the other hand, re-
quires explicit instantiation of a message buffer. An additional consideration addresses correctness
proofs for communicating programs. While formal proof techniques for synchronous communica-
tion may be simpler, techniques for proving properties of asynchronous communication have been
developed [16].

For the third issue, SUAVE allows multiple processes to receive from a channel, thus implement-
ing a form of broadcast communication. Each receiver accepts a copy of the message when it is
ready. The sender proceeds as soon as it has sent the message. This parallels hardware communica-
tion, in which a signal from one source can be connected to several receivers.

For the fourth issue, the previous paper identified two alternatives: (i) generalizing signals and
signal assignment to a more abstract form, and (ii) adding channels as a new language construct.
While the former alternative is possible, in practice it is difficult to define. To do so involves adding
numerous special-case rules to the semantic definitions of signal declarations, interface signals, sig-
nal assignment statements and wait statements. Adding channels is easier to define, and, since the
semantics are sufficiently different from signals, easier to comprehend. Hence, SUAVE follows the
latter approach.

4

4. Channels and Communication in SUAVE

4.1 Channels

Abstract communication in SUAVE occurs over channels, which are of declared channel types.
Channels can be declared objects or interface objects.

4.1.1 Channel Types

SUAVE extends the classes of types that can be defined to include channel types. The revised syntax
rule for a type definition is:

type_definition ::=
. . .

| channel_type_definition

The syntax rule for a channel type definition is:

channel_type_definition ::=
channel of subtype_indication

| null channel
In the first form of channel type definition, the subtype indication is called the message type of

the channel. It denotes the subtype of values that may be passed as messages on a channel of the
channel type. The base type of this subtype must not be a file type. If it is an access type, the desig-
nated type of the access type must be a channel type. The second form of channel type definition
defines a null channel type. Such a channel type is used for a channel on which the messages have
no data content.

A channel type may only be used to define a channel object, an interface channel, or an access-to-
channel type. It may not be used to define any other class of object or type.
Example

The following declarations define three channel types:
type request_channel is channel of request_message;
type result_channel is channel of result_message;
type acknowledgement_channel is null channel;

— —

4.1.2 Channel Declarations

SUAVE extends VHDL to include channel objects for abstract message-passing communication.
The syntax rule for object declarations is extended to include channel declarations:

object_declaration ::=
. . .
| channel_declaration

5

One or more channels may be declared using a channel declaration. The syntax rule is:

channel_declaration ::=
channel identifier_list : subtype_indication ;

A channel declaration may only appear in a block declarative part, an entity declarative part, or a
package declarative part. The subtype indication must denote a channel type.

A channel is analogous to a signal, except that information is transferred using the send and re-
ceive message passing operations (described in Sections 4.2.1 and 4.2.2). There is no notion of reso-
lution of multiple source values, nor of specific times at which values occur on channels. A channel
object denotes a queue of values called messages. When the channel object is created, the queue
is initially empty.
Example

The following declarations define two channel objects:
channel request : request_channel;
channel result : result_channel;

— —

4.1.3 Interface Channels

Interface declarations are extended to include interface channels. Interface channels may appear
as ports of design entities, components or blocks, or as channel parameters of subprograms. The
extended syntax rules for interface declarations are:

interface_declaration ::=
. . .
| interface_channel_declaration

interface_channel_declaration ::=
channel identifier_list : [mode] subtype_indication

The mode, if present, must be one of in or out. An in mode channel may be used to receive messages,
and an out mode channel may be used to send messages. The subtype indication must denote a chan-
nel type. A composite interface channel must be associated in whole. An interface channel of mode
in must be associated with an actual channel object or be unassociated; it may not be associated with
an expression.

Where an interface channel appears as a channel parameter of a subprogram, the actual channel
object is passed by reference. Send and receive operations on the formal channel object are per-
formed on the actual channel object.
Example

In the following architecture body, the image_channel type represents tokens in an uninterpreted
queuing model. The component image_filter has channel ports for receiving and sending tokens.
The component instance filter has its ports associated with the actual channel objects raw_image and
filtered_image.

architecture performance_modeling of motion_detector is

6

type image_channel is channel of image_token;
component image_filter is

port (channel raw_image : in image_channel;
channel filtered_image : out image_channel);

end component image_filter;
channel raw_image, filtered_image : image_channel;
. . .

begin
filter : component image_filter

port map (raw_image => raw_image,
filtered_image => filtered_image);

. . .
end architecture performance_modeling;

— —
Example

The following procedure declaration has two channel parameters:
procedure process_request (channel request : in request_channel;

channel result : out result_channel);
— —

4.2 Communication Statements

SUAVE extends the set of sequential statements to include send statements, receive statements and
select statements. The extended syntax rule is:

sequential_statement ::=
. . .

| send_statement
| receive_statement
| select_statement

4.2.1 Send Statement

A message is added to the queue of a channel using a send statement. The syntax rule is:

send_statement ::=
[label :] send [expression] to channel_name ;

The expression is disallowed if the channel is of a null channel type. In that case, a data-less message
is sent. Otherwise, the expression is required and denotes the value to be sent as a message. The
base type of the expression must be the same as the base type of the message type of the channel
denoted by the channel name.

Execution of a send statement involves adding the message to the tail of the message queue of the
named channel. The process executing the send statement then continues executing. If multiple

7

processes execute send statements to the same channel concurrently, the order in which the messages
are added to the message queue is not defined.
Example

The following two statements receive (a) from a channel with data and (b) from a null channel:
send result_message’(. . .) to result;
send to acknowledgement;

— —

4.2.2 Receive Statement

A process accepts a message from a channel using a receive statement. The syntax rule is:

receive_statement ::=
[label :] receive [target] from channel_name ;

The target is disallowed if the channel is of a null channel type, otherwise it is required. The target
must denote a variable name or an aggregate of variable names. Execution of a receive statement
involves examining the message queue of the named channel. If the message queue is empty, the
process suspends until a message arrives. When there is a message available, it is removed from the
queue. If the channel is not of a null channel type, the value of the message is assigned to the target
using the same rules as variable assignment.

If multiple processes can read a message channel, all processes receive each message sent to the
channel. Furthermore, all processes receive the messages from the channel in the same order. An
implementation may achieve this effect either by providing one message queue for the channel, from
which each process copies message values, or by replicating the message queue at each process.
Example

The following two statements receive (a) from a channel with data and (b) from a null channel:
receive next_request from request;
receive from acknowledgement;

— —

4.2.3 Select Statement

A process may choose between a number of channels for message reception using a select statement.
The syntax rules are:

select_statement ::=
[select_label :]

select
[guard] receive_alternative

{ or
[guard] receive_alternative }

| else

8

sequence_of_statements]
end select [select_label] ;

guard ::= when condition =>

receive_alternative ::=
receive_statement [sequence_of_statements]

A select statement allows non-deterministic choice between alternative sources for message re-
ception. Each receive alternative may be guarded by a boolean condition; a guarded alternative may
only be chosen if the guard is true.

Execution of the select statement consists firstly of evaluating the guard conditions. An alterna-
tive is said to be open if it has no guard, or if its guard evaluates to true. If no alternative is open
and the select statement has an else clause, the statements in the else clause are executed, thus com-
pleting execution of the select statement. It is an error if no alternative is open and there is no else
clause.

If there are open alternatives for which the channels named in the corresponding receive state-
ments have queued messages, one of the open alternatives is chosen arbitrarily. The receive state-
ment is executed, followed by execution of the sequence of statements (if present), completing
execution of the select statement.

If there are open alternatives but none of the channels named in the corresponding receive state-
ments have queued messages, execution depends on whether the select statement has an else clause.
If there is an else clause, the statements in it are executed, completing execution of the select state-
ment. Otherwise, the process blocks until a message arrives on one of the channels named in the
receive statements of the open alternatives. Execution then proceeds as described in the previous
paragraph. The guard conditions are not re-evaluated while the process is blocked or when a mes-
sage arrives.
Example

In the following example, the process access_controller arbitrates between readers and writers
of a shared resource. A reader sends a read-request message to the process, and only proceeds when
the process responds with an acknowledgment. When the reader finishes reading, it sends a read-fin-
ished message to the process. Writers obey a similar protocol. Multiple readers are allowed concur-
rent access, provided the number of active writers is zero. Only one writer at a time is permitted,
and then only if there are no active readers. The guards in the select statement control the reception
of request messages, based on the number of readers or writers currently active.

type read_request_channel is channel of . . . ;
type read_finished_channel is null channel;
type write_request_channel is channel of . . . ;
type write_finished_channel is null channel;
. . .
channel read_request : read_request_channel;
channel read_finished : read_finished_channel;
channel write_request : write_request_channel;
channel write_finished : write_finished_channel;
. . .

9

access_controller : process is
variable number_of_readers, number_of_writers : natural := 0;

begin
select

when number_of_writers = 0 =>
receive read_request_info from read_request;
number_of_readers := number_of_readers + 1;
. . . -- -- acknowledge read request

or
receive from read_finished;
number_of_readers := number_of_readers -- 1;

or
when number_of_readers = 0 and number_of_writers = 0 =>

receive write_request_info from write_request;
number_of_writers := number_of_writers + 1;
. . . -- -- acknowledge write request

or
receive from write_finished;
number_of_writers := number_of_writers -- 1;

end select;
end process access_controller;

— —

4.3 Dynamically Created Channels

SUAVE provides mechanisms for dynamically creating channels in order to communicate with dy-
namically created processes.

4.3.1 Access-to-Channel Types

An access type may be declared to have a channel type as its designated type. Such an access type
is called an access-to-channel type.

Example

The following declarations define (a) a type to be used for message values, (b) a channel type,
(c) an access-to-channel type, and (d) a record type containing an element of the access-to-channel
type:

type result_value is . . . ;
type result_channel is channel result_value;
type result_ref is access result_channel;
type request_info is record

. . .; -- -- info for the transaction
result_please : result_ref;

end record request_info;

— —

10

4.3.2 Dynamic Allocation and Deallocation of Channels

A channel may be dynamically allocated using an allocator with a subtype indication denoting a
channel type. The access value returned by the allocator designates the newly allocated channel.

The procedure deallocate is implicitly declared for access-to-channel types, just as it is for other
access types. Deallocating a channel designated by an access-to-channel value causes loss of any
messages in the message queue of the channel. Subsequent use of the access-to-channel value is
erroneous, as are subsequent send and receive operations using formal channels directly or indirectly
associated with the deallocated channel.
Example

In the following model fragment, the variable declarations defines a variable of an access-to-
channel type initialized with a reference to a dynamically created channel. The send statement send
a message containing a reference to the dynamically created channel. The receive statement receives
a message from the dynamically created channel. The call to the deallocate procedure deallocates
the dynamically created channel.

variable result : result_ref := new result_channel;
. . .
send (. . . , result) to request;
receive . . . from result.all;
. . .
deallocate (result);

— —

5. Extensions for Abstraction of Concurrency

A system-level design language needs to allow expression of concurrent processes representing the
active objects in a system. In some systems, the number of active objects is not statically determined,
but may vary during operation of the system. For example, in a client/server system, new service
agents may be created as requests arrive from clients, allowing multiple requests to be processed
concurrently. In order to describe such systems, a system-level design language must allow expres-
sion of process types that may be dynamically instantiated and terminated.

The model of concurrency in VHDL is based on processes which are statically specified in archi-
tecture bodies. However, the language does not allow specification of a process type that can be
separately instantiated. Instead, the process must be encapsulated in a design entity and instantiated
through the component instantiation mechanism. This is cumbersome, and has the disadvantage of
implying structural partitioning. Furthermore, it does not allow dynamic instantiation of processes.

These deficiencies can be overcome by extending VHDL to include process declarations, ab-
stracting over the statically specified processes currently provided in the language. A process inter-
acts with its environment using the communication mechanism provided by the language.
Therefore, a process declaration includes an interface in which formal communication objects can
be specified. A process declaration can be statically instantiated as a concurrent statement in an
architecture body, with bindings made between formal and actual communication objects. It can

11

also be dynamically instantiated by the execution of a sequential process instantiation statement.
Process declarations and their instantiation and termination are described more fully below.

5.1 Process Declarations

SUAVE extends declarative parts to include process declarations and process bodies as follows:

process_declaration ::=
process_specification
end process [process_simple_name] ;

process_body ::=
process_specification

process_declarative_part
begin

process_statement_part
end process [process_simple_name] ;

process_specification ::=
process identifier is

[generic_clause]
[port_clause]

Process declarations, like subprogram declarations, may be defined with separate specifications
and bodies. Process declarations and process bodies may be included in the declarative parts of enti-
ty declarations, architecture bodies, block statements, generate statements, process statements, pro-
cess bodies, and subprogram bodies. Process declarations may also be included in package
declarations, and process bodies may be included in package bodies. If a package declaration con-
tains a process declaration, the package must have a package body that contains a process body cor-
responding to the process declaration. If a process has separate declaration and body, the generic
clause and port clause in the body must conform with the generic clause and port clause in the decla-
ration.

5.2 Concurrent Process Instantiation Statement

Static instantiation of declared processs is done using a process instantiation statement. The syntax
rule is:

process_instantiation_statement ::=
[instantiation_label :]

process process_name
[generic_map_aspect]
[port_map_aspect] ;

A process instantiation statement is equivalent to a block statement with the generic clause and
port clause taken from the process declaration and the generic map aspect and port map aspect taken
from the process instantation statement. The declarative part of the block statement is empty, and
the statement part contains a process whose declarative part and statement part are taken from the
process body. The meaning of any identifier within the block statement and the process it contains

12

is that associated with the identifier in the process declaration or body. To illustrate application of
these rules, consider the following process body and instantiation statement:

process p is
generic (g : integer);
port (channel c : c_chan);
variable v : integer;

begin
v := x;

end process p;
. . .
p_inst : process p

generic map (g => 5)
port map (c => c1);

The process instantiation statement is semantically equivalent to:
p_inst : block is

generic (g : integer);
generic map (g => 5);
port (channel c : c_chan);
port map (c => c1);

begin
p : process is

variable v : integer;
begin

v := x;
end process p;

end block p_inst;
The name x is prefixed to ensure that it refers to the same item visible in the process declration rather
than any homograph that hides the name.

5.3 Sequential Process Instantiation Statement

Dynamic instantiation of a process is performed using a sequential process instantiation statement.
The syntax rule is

sequential_process_instantiation_statement ::=
[label :]

process process_name
[generic_map_aspect]
[port_map_aspect] ;

Execution of a sequential process instantiation statement involves the following steps:
S elaboration of the generic list of the process declaration to create the formal generics, and

association of the actual generics with the formal generics;
S elaboration of the port list of the process declaration to create the formal ports, and asso-

ciation of the actual signals, channels and values with the formal ports;

13

S elaboration of the declarations of the process; and
S creation and initialization of the drivers of the process.
The newly instantiated process then commences execution of its statement part concurrently with

the instantiating process in the current simulation cycle. The newly instantiated process is said to
depend on the instance or activation of the declaration or statement that immediately contains the
declaration of the process. That instance or activation may not return or terminate until all of the
processes that depend on it have terminated, since such processes may refer to items declared by the
declaration or statement.

5.3.1 Dynamic Association with Signal Ports

The semantics of dynamically associating a signal with a signal port of a process depends on the
mode of the port. For an unassociated signal port of mode in with a default value expression, the
driving and effective values of the port are set to the value of the expression. Similarly, for a signal
port of mode in associated with an expression, the driving and effective values of the port are set
to the value of the expression. For a signal port of mode in associated with a signal, the port becomes
part of the same net as the signal, and the effective value of the port is determined by the signal update
algorithm.

For a signal port of mode out or buffer associated with a signal, the driver in the process is a source
of the port. The port becomes a new source for the associated signal. This is analogous to reconnec-
tion of a driver that had previously become disconnected through a null signal assignment.

For a signal port of mode inout, the semantics are a combination of the semantics for ports of
mode in and mode out.

5.3.2 Dynamic Association with Channel Ports

The semantics of dynamically associating a channel with a channel port of a process also depends
on the mode of the port. For an unassociated channel port of mode in, the the port denotes an empty
message queue. For a channel port of mode in associated with a channel, the port denotes the mes-
sage queue of the channel. Messages sent to the channel prior to association of the port with the
channel are not received by the process. Messages sent to the channel after the association is made
are received by the process. If a message is sent to the channel in the same simulation cycle that the
association is made, it is not defined whether the process receives the message. However, if the pro-
cess receives one message from a given sender, it receives any message subsequently sent by that
sender.

For an unassociated channel port of mode out, the port denotes a message queue to which the pro-
cess may send messages. Since no process can ever receive the messages, an implementation may
choose to discard them. For a channel port of mode out associated with a channel, the port denotes
the message queue of the channel. Messages sent by the process to the port are added to the message
queue of the channel.

5.4 Process Termination

A process may terminate by executing a sequential statement called a terminate statement. The syn-
tax rule is:

14

terminate_statement ::=
[label :] terminate ;

A terminate statement is only allowed within the statement part of a process body. Termination
of a process involves the following actions:

S The process waits until all processes that depend on it have terminated.
S The drivers of the process are disconnected from the signals that they drive. It is an error

if any of these signals are not guarded signals.
S The formal ports are disassociated from the actual signals and channels.

6. Example: A Client-Server System

This example is a model of a client-server system in which the server is multi-threaded, allowing
it to serve multiple transactions concurrently. Since the number of clients to be served concurrently
is not known a priori, the server creates agents dynamically to perform the transactions. The or-
ganization of the system is illustrated in Figure 1. The system may ultimately be implemented in
software, but it desirable to model it early in the design flow before hardware/software partitioning
is performed.

Client

Figure 1. A client-server system with
dynamically created agents.

Client Server

Agent

request

result forwarded
request

dynamically
created

The type result_channel represents a channel for receiving result messages from the server, and
the type result_ref is a reference to such a channel. The type request_info is the message type for
requests to the server. It includes a reference to the channel upon which the client expects to receive
the result of the request. The type request_channel represents a channel for sending requests, and
the type request_ref is a reference to a request channel.

The client process’s port is a channel upon which it sends requests. Part of the client’s state is a
dynamically created channel for receiving transaction results. When the client makes a request, it
includes the reference to its result channel as part of the request.

The server process has a channel port for receiving requests, and encapsulates a process declara-
tion for agents, which also has a channel port for requests. The body of the server receives a request
message on its request channel, and saves the request in the variable info. It then dynamically creates
a new request channel and a new agent process, with the agent’s request channel port mapped to the

15

new request channel. The server then forwards the saved request message via the new channel. The
newly created agent receives the forwarded message, performs the transaction, and sends the results
to the channel referenced in the request message. The agent then terminates. While the agent is
processing the transaction, the server may receive further request messages and create agents to pro-
cess them concurrently.

architecture system_level of client_server_system is
type result_value is . . . ;
type result_channel is channel result_value;
type result_ref is access result_channel;
type request_info is record

. . .; – – info for the transaction
result_please : result_ref;

end record request_info;
type request_channel is channel request_info;
type request_ref is access request_channel;

process client is
port (channel request : out request_channel);
variable result : result_ref := new result_channel;

begin
. . .
send (. . ., result) to request;
receive . . . from result.all;
. . .

end process client;

process server is
port (channel request : in request_channel);
process agent is

port (channel request : in request_channel);
variable info : request_info;

begin
receive info from request;
. . .; – – perform transaction
send . . . to info.result_please.all;
terminate;

end process agent;
variable info : request_info;
variable new_agent_request : request_ref;

begin
receive info from request;
new_agent_request := new request_channel;
process agent

16

port map (new_agent_request.all);
send info to new_agent_request.all;

end process server;

channel server_request : request_info;
begin

the_server : process server
port map (request => server_request);

client_pool : for client_index in 1 to 10 generate
a_client : process client

port map (request => server_request);
end generate client_pool;

end architecture system_level;

7. Conclusion

Design at the system level relies on abstraction to manage complexity. In this report, we have de-
scribed extensions to VHDL that introduce abstract forms of communication and concurrency.
These extensions make the language suitable for design of behavior and structure at the system level.
Our extensions are not biased towards hardware or software refinement of a design. Thus, the ex-
tended language can be used to express behavior and structure of a system before partitioning into
hardware and software, supporting exploration of hardware/software trade-offs and hardware/soft-
ware co-design. The approach we have taken is to provide abstract forms of the existing language
mechanisms for communication and concurrency. This eases refinement of hardware partitions of
a design to lower-level implementations expressed in VHDL. The abstract forms of communication
and concurrency also ease refinement of the software partitions to programming-language imple-
mentation.

Subsequent work in the SUAVE project will involve implementing the extensions in the SAVANT
framework [18], and validating the language design with use cases to be published by the SI2 System
Level Design Language (SLDL) Committee.

References

[1] P. J. Ashenden, The Designer’s Guide to VHDL. San Francisco, CA: Morgan Kaufmann, 1996.
[2] P. J. Ashenden and P. A. Wilsey, “Considerations on System-Level Behavioural and Structural

Modeling Extensions to VHDL,” Proceedings of VHDL International Users Forum Spring
1998 Conference, Santa Clara, CA, 1998.

[3] P. J. Ashenden, P. A. Wilsey, and D. E. Martin, “Reuse Through Genericity in SUAVE,”Pro-
ceedings of VHDL International Users Forum Fall 1997 Conference, Arlington, VA, pp.
170--177, 1997.

17

[4] P. J. Ashenden, P. A. Wilsey, and D. E. Martin, SUAVE: A Proposal for Extensions to VHDL for
High-Level Modeling, Dept. Computer Science, University of Adelaide, Technical Report
TR-97-07, ftp://ftp.cs.adelaide.edu.au/pub/VHDL/TR-extensions.pdf, 1997.

[5] P. J. Ashenden, P. A. Wilsey, and D. E. Martin, “SUAVE: Painless Extension for an Object-Ori-
ented VHDL,” Proceedings of VHDL International Users Forum Fall 1997 Conference,
Arlington, VA, pp. 60--67, 1997.

[6] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum, “Programming Languages for Distributed Com-
puting Systems,” ACM Computing Surveys, vol. 21, no. 3, pp. 261--322, 1989.

[7] F. P. Brooks, Jr., The Mythical Man-Month, Anniversary ed. Reading, MA: Addison-Wesley,
1995.

[8] S. Budkowski and P. Dembinski, “An Introduction to Estelle: A Specification Language for
Distributed Systems,” Computer Networks and ISDN Systems, vol. 14, no. 1, pp. 3--23, 1987.

[9] O. Færgemand and A. Olsen, “Introduction to SDL-92,” Computer Networks and ISDN Sys-
tems, vol. 26, , pp. 1143--1167, 1994.

[10]C. A. R. Hoare, “Communicating Sequential Processes,”Communications of the ACM, vol. 21,
no. 11, pp. 934--941, 1978.

[11] C. A. R. Hoare, Communicating Sequential Processes. London: Prentice Hall, 1985.
[12] IEEE, Standard VHDL Language Reference Manual. Standard 1076-1993, New York, NY:

IEEE, 1993.
[13] IEEE, Standard Verilog Hardware Description Language Reference Manual. Standard

1364-1995, New York, NY: IEEE, 1995.
[14] ISO, Estelle: A Formal Description Technique Based on an Extended State Transition Model.

Draft International Standard 9074, 1987.
[15] ITU, Specification and Description Language (SDL). Revised Recommendation Z.100, 1992.
[16]R. D. Schlichting and F. B. Schneider, “Understanding and Using Asynchronous Message-Pass-

ing,”Proceedings of 1st ACM SIGACT-SIGOPS Symposium on Principles of Distributed Com-
puting, Ottawa, Canada, pp. 141--147, 1982.

[17]D. E. Thomas and P. R. Moorby, The Verilog Hardware Description Language, Third ed.
Boston, MA: Kluwer Academic Publishers, 1996.

[18]P. A. Wilsey, D. E. Martin, and K. Subramani, “SAVANT/TyVIS/warped: Components for the
Analysis and Simulation of VHDL,”Proceedings of VHDL International User’s Forum Spring
1998 Conference, Santa Clara, CA, to appear, 1998.

