Abstraction of Concurrency
and Communication in VHDL

Peter J. Ashenden
University of Adelaide

Philip A. Wilsey
University of Cincinnati

Thiswork was partially supported by Wright Laboratory
under USAF contract F33615-95-C-1638.

VHDL in the design flow

» At the system level, specify aspects of the system
— structure (architectural partitioning)
— behaviour (data transforms, reactions)

» VHDL allows description of structure and
behaviour

» Prefer single language approach
— system level to detailed design (hardware/software)
— aids refinement
— avoid semantic mismatch

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 2

Problem with VHDL

» Behaviour includes concurrency and
communication
» Communication performed using signals
— assignment, resolution, waits
 Signals do not express synchronization
— cf. system description and programming languages
— assignment schedules a message for a particular time
— receiver may miss the message
* if it does not respond at that time

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

Ad hoc solutions

» Communication using handshaking protocol
— requires extrasignals
— requires protocol implementation
» Explicitly instantiated message queues
— extra components
» Both detract from abstraction of communication
— introduction of extraneous artefacts

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

Previous extension proposals

* VistaOO-VHDL (Swamy et al)
e LaMI (Benzakki & Djaffri)
* Bournemouth/IBM-UK (Cabanis et al)

» Based on OO extensionsto VHDL
— entity/architecture as a class, components as objects
— entity specifies operations invoked by other processes
— architecture encapsul ates state

= Monitor semantics with concurrency control

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

Other description languages

for describing behaviour, eg:
StateCharts

Estelle

« SDL

« CSP

= Concurrent processes with message passing

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

StateCharts

e Extended FSM
— hierarchical states
— concurrent composition of substates
— transitions on events (optionally guarded)
— communication:
 action in one chart P event in another chart

e Usedin UML
— events can be parameterized
— procedural actions

» States are statically specified

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

Estelle

» Hierarchy of extended NFAs (tasks)
— instances of declared modules
— can be statically or dynamically instantiated
— transitions enabled by event occurrence (msg arrival)
— actions on transitions are Pascal-like statements
— lock-step parallelism (select-transition/fire/action)
» Communication: message passing vialinks
— links can be statically or dynamically created
— non-blocking send, buffered at receiver

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

SDL

» Hierarchy of statically specified process sets

* Processes: statically or dynamically instantiated
— instances of declared process types
— behaviour specified as extended FSM
* transitions enabled by message arrival

* actions: assignment, branching, process creation,
procedure call, message send

» Communication: message passing via channels
— channels between process sets
— non-blocking send, buffered at receiver

e Alsoaformof RPC

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 9

CSP

» Statically specified processes
— contain sequentially executed actions
— variable assignment, send, receive

* Synchronous message passing
— statically specified channels

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 10

Comparison with VHDL

» Concurrent process model with message passing
© concurrent FSMs communicating by events
* VHDL
— statically specified processes & channels (signals)
— asynchronous unbuffered message passing (?!)
o Alternatives
— static vs. dynamic process instantiation
— static vs. dynamic channel creation
— Sync Vs. async message passing

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

11

L anguage design issues

M essage passing mechanism and semantics
Communication abstraction in entity interface
Dynamic process creation/termination semantics
— Process abstraction and interface

Integration with existing language

Integration with other extension (eg, SUAVE)

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

12

M essage passing mechanism (1)

» Alternative 1: introduce new mechanism
— eg, message channel, send & receive operations

channel elevator_call : floor_number;
channel elevator_location : floor_number;

elevator : process is
begin

receive calling_floor from elevator_call;
send current_floor to elevator_location;

end process elevator;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 13

Communication in entity interface (1)

e Alternative 1

entity operator_console is
port (channel status : in status_msg;
channel command : out command_msg);
end entity operator_console;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 14

M essage passing mechanism (2)

 Alternative 2: generalize existing mechanism
— €g, abstract signals
— transactions queued without delay mechanism
— walit receives next value from queue

signal elevator_call : floor_number abstract;
signal elevator_location : floor_number abstract;

elevator : process is
begin

wait on elevator_call; -- receive next message
calling_floor := elevator_call;
elevator_location <= current_floor; -- send message

end process elevator;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 15

Communication in entity interface (2)

e Alternative 2

entity operator_console is
port (signal status : in status_msg abstract;

signal command : out command_msg abstract);
end entity operator_console;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 16

Dynamic process creation

» Eg, for multithreaded server
* Processtypes
— needed for dynamic instantiation
— parameterized by channel/signal
* Channel/signal types
— needed for dynamic creation of channel/signal
— for communication with dynamically created process

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 17

Process & channel types

* Example
— multithreaded server creates new agent to handle each
incoming request

request
Client X » Server
l forwarded
request
result

1
i Agent 1 gynamically
- -- I' created

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 18

Process & channel types

type result_valueis.. . .;
type result_channel is channel result_value;
type result_ptr is access result_channel;

type request_info is record

result_please : result_ptr;
end record request_info;

type clientis process body
port (channel request : out request_info);

variable result : result_ptr := new result_channel;

begin
send (..., result) to request;
receive . .. from result.all;
end process body client;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 19

Process & channel types (cont)

type server is process body
port (channel request : in request_info);

type agent is process body
port (channel request : in request_info);

variable info : request_info;
begin
receive info from request;

send . . . to info.result_please.all;
exit;
end process body agent;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 20

10

Process & channel types (cont)

variable info : request_info;

channel agent_request : request_info;
type agent_ptr is access agent;
variable new_agent : agent_ptr;

begin -- server
receive info from request;
new_agent := new agent
port map (agent_request);
send info to agent_request;
end process body server;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

21

Conclusions

 Improve support for system modeling in VHDL
— more abstract communication
— process abstraction
* process and channel types
* dynamic creation/termination
* Integrate with existing language
— extend existing mechanism where appropriate
» Enables single-language design flow
— hardware/software co-design

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL

22

11

