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VHDL in the design flow
• At the system level, specify aspects of the system

– structure (architectural partitioning)
– behaviour (data transforms, reactions)
– . . .

• VHDL allows description of structure and
behaviour

• Prefer single language approach
– system level to detailed design (hardware/software)
– aids refinement
– avoid semantic mismatch
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Problem with VHDL
• Behaviour includes concurrency and

communication
• Communication performed using signals

– assignment, resolution, waits

• Signals do not express synchronization
– cf. system description and programming languages
– assignment schedules a message for a particular time
– receiver may miss the message

• if it does not respond at that time
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Ad hoc solutions
• Communication using handshaking protocol

– requires extra signals
– requires protocol implementation

• Explicitly instantiated message queues
– extra components

• Both detract from abstraction of communication
– introduction of extraneous artefacts
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Previous extension proposals
• Vista OO-VHDL (Swamy et al)
• LaMI (Benzakki & Djaffri)
• Bournemouth/IBM-UK (Cabanis et al)
è Based on OO extensions to VHDL

– entity/architecture as a class, components as objects
– entity specifies operations invoked by other processes
– architecture encapsulates state

ï Monitor semantics with concurrency control
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Other description languages
for describing behaviour, eg:
• StateCharts
• Estelle
• SDL
• CSP
• . . .
è Concurrent processes with message passing
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StateCharts
• Extended FSM

– hierarchical states
– concurrent composition of substates
– transitions on events (optionally guarded)
– communication:

• action in one chart ⇒  event in another chart

• Used in UML
– events can be parameterized
– procedural actions

• States are statically specified

July 1997 Ashenden & Wilsey —  3rd Workshop on SLDL 8

Estelle
• Hierarchy of extended NFAs (tasks)

– instances of declared modules
– can be statically or dynamically instantiated
– transitions enabled by event occurrence (msg arrival)
– actions on transitions are Pascal-like statements
– lock-step parallelism (select-transition/fire/action)

• Communication: message passing via links
– links can be statically or dynamically created
– non-blocking send, buffered at receiver



5

July 1997 Ashenden & Wilsey —  3rd Workshop on SLDL 9

SDL
• Hierarchy of statically specified process sets
• Processes: statically or dynamically instantiated

– instances of declared process types
– behaviour specified as extended FSM

• transitions enabled by message arrival
• actions: assignment, branching, process creation,

procedure call, message send

• Communication: message passing via channels
– channels between process sets
– non-blocking send, buffered at receiver

• Also a form of RPC
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CSP
• Statically specified processes

– contain sequentially executed actions
– variable assignment, send, receive

• Synchronous message passing
– statically specified channels
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Comparison with VHDL
• Concurrent process model with message passing

≡ concurrent FSMs communicating by events

• VHDL
– statically specified processes & channels (signals)
– asynchronous unbuffered message passing (?!)

• Alternatives
– static vs. dynamic process instantiation
– static vs. dynamic channel creation
– sync vs. async message passing
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Language design issues
• Message passing mechanism and semantics
• Communication abstraction in entity interface
• Dynamic process creation/termination semantics

– Process abstraction and interface

• Integration with existing language
• Integration with other extension (eg, SUAVE)
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Message passing mechanism (1)
• Alternative 1: introduce new mechanism

– eg, message channel, send & receive operations

channel elevator_call : floor_number;
channel elevator_location : floor_number;

elevator : process is
begin

. . .
receive calling_floor from elevator_call;
send current_floor to elevator_location;
. . .

end process elevator;
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Communication in entity interface (1)

• Alternative 1
entity operator_console is

port ( channel status : in status_msg;
channel command : out command_msg );

end entity operator_console;
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Message passing mechanism (2)
• Alternative 2: generalize existing mechanism

– eg, abstract signals
– transactions queued without delay mechanism
– wait receives next value from queue

signal elevator_call : floor_number abstract;
signal elevator_location : floor_number abstract;

elevator : process is
begin

. . .
wait on elevator_call; -- receive next message
calling_floor := elevator_call;
elevator_location <= current_floor; -- send message
. . .

end process elevator;
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Communication in entity interface (2)

• Alternative 2
entity operator_console is

port ( signal status : in status_msg abstract;
signal command : out command_msg abstract );

end entity operator_console;
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Dynamic process creation
• Eg, for multithreaded server
• Process types

– needed for dynamic instantiation
– parameterized by channel/signal

• Channel/signal types
– needed for dynamic creation of channel/signal
– for communication with dynamically created process
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Process & channel types
• Example

– multithreaded server creates new agent to handle each
incoming request

ServerClient

Agent

request

forwarded
request

result

dynamically
created
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Process & channel types
type result_value is . . . ;
type result_channel is channel result_value;
type result_ptr is access result_channel;

type request_info is record
. . . ;
result_please : result_ptr;

end record request_info;

type client is process body
port ( channel request : out request_info );
variable result : result_ptr := new result_channel;

begin
send ( . . . , result ) to request;
receive . . . from result.all;

end process body client;
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Process & channel types (cont)
type server is process body

port ( channel request : in request_info );

type agent is process body
port ( channel request : in request_info );

variable info : request_info;

begin
receive info from request;
. . .
send . . . to info.result_please.all;
exit;

end process body agent;

. . .
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Process & channel types (cont)
. . .
variable info : request_info;
channel agent_request : request_info;
type agent_ptr is access agent;
variable new_agent : agent_ptr;

begin  -- server
receive info from request;
new_agent := new agent

port map ( agent_request );
send info to agent_request;

end process body server;
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Conclusions
• Improve support for system modeling in VHDL

– more abstract communication
– process abstraction

• process and channel types
• dynamic creation/termination

• Integrate with existing language
– extend existing mechanism where appropriate

• Enables single-language design flow
– hardware/software co-design


