
1

Abstraction of Concurrency
and Communication in VHDL

Peter J. Ashenden
University of Adelaide

Philip A. Wilsey
University of Cincinnati

This work was partially supported by Wright Laboratory
under USAF contract F33615-95-C-1638.

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 2

VHDL in the design flow
• At the system level, specify aspects of the system

– structure (architectural partitioning)
– behaviour (data transforms, reactions)
– . . .

• VHDL allows description of structure and
behaviour

• Prefer single language approach
– system level to detailed design (hardware/software)
– aids refinement
– avoid semantic mismatch

2

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 3

Problem with VHDL
• Behaviour includes concurrency and

communication
• Communication performed using signals

– assignment, resolution, waits

• Signals do not express synchronization
– cf. system description and programming languages
– assignment schedules a message for a particular time
– receiver may miss the message

• if it does not respond at that time

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 4

Ad hoc solutions
• Communication using handshaking protocol

– requires extra signals
– requires protocol implementation

• Explicitly instantiated message queues
– extra components

• Both detract from abstraction of communication
– introduction of extraneous artefacts

3

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 5

Previous extension proposals
• Vista OO-VHDL (Swamy et al)
• LaMI (Benzakki & Djaffri)
• Bournemouth/IBM-UK (Cabanis et al)
è Based on OO extensions to VHDL

– entity/architecture as a class, components as objects
– entity specifies operations invoked by other processes
– architecture encapsulates state

ï Monitor semantics with concurrency control

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 6

Other description languages
for describing behaviour, eg:
• StateCharts
• Estelle
• SDL
• CSP
• . . .
è Concurrent processes with message passing

4

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 7

StateCharts
• Extended FSM

– hierarchical states
– concurrent composition of substates
– transitions on events (optionally guarded)
– communication:

• action in one chart ⇒ event in another chart

• Used in UML
– events can be parameterized
– procedural actions

• States are statically specified

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 8

Estelle
• Hierarchy of extended NFAs (tasks)

– instances of declared modules
– can be statically or dynamically instantiated
– transitions enabled by event occurrence (msg arrival)
– actions on transitions are Pascal-like statements
– lock-step parallelism (select-transition/fire/action)

• Communication: message passing via links
– links can be statically or dynamically created
– non-blocking send, buffered at receiver

5

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 9

SDL
• Hierarchy of statically specified process sets
• Processes: statically or dynamically instantiated

– instances of declared process types
– behaviour specified as extended FSM

• transitions enabled by message arrival
• actions: assignment, branching, process creation,

procedure call, message send

• Communication: message passing via channels
– channels between process sets
– non-blocking send, buffered at receiver

• Also a form of RPC

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 10

CSP
• Statically specified processes

– contain sequentially executed actions
– variable assignment, send, receive

• Synchronous message passing
– statically specified channels

6

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 11

Comparison with VHDL
• Concurrent process model with message passing

≡ concurrent FSMs communicating by events

• VHDL
– statically specified processes & channels (signals)
– asynchronous unbuffered message passing (?!)

• Alternatives
– static vs. dynamic process instantiation
– static vs. dynamic channel creation
– sync vs. async message passing

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 12

Language design issues
• Message passing mechanism and semantics
• Communication abstraction in entity interface
• Dynamic process creation/termination semantics

– Process abstraction and interface

• Integration with existing language
• Integration with other extension (eg, SUAVE)

7

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 13

Message passing mechanism (1)
• Alternative 1: introduce new mechanism

– eg, message channel, send & receive operations

channel elevator_call : floor_number;
channel elevator_location : floor_number;

elevator : process is
begin

. . .
receive calling_floor from elevator_call;
send current_floor to elevator_location;
. . .

end process elevator;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 14

Communication in entity interface (1)

• Alternative 1
entity operator_console is

port (channel status : in status_msg;
channel command : out command_msg);

end entity operator_console;

8

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 15

Message passing mechanism (2)
• Alternative 2: generalize existing mechanism

– eg, abstract signals
– transactions queued without delay mechanism
– wait receives next value from queue

signal elevator_call : floor_number abstract;
signal elevator_location : floor_number abstract;

elevator : process is
begin

. . .
wait on elevator_call; -- receive next message
calling_floor := elevator_call;
elevator_location <= current_floor; -- send message
. . .

end process elevator;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 16

Communication in entity interface (2)

• Alternative 2
entity operator_console is

port (signal status : in status_msg abstract;
signal command : out command_msg abstract);

end entity operator_console;

9

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 17

Dynamic process creation
• Eg, for multithreaded server
• Process types

– needed for dynamic instantiation
– parameterized by channel/signal

• Channel/signal types
– needed for dynamic creation of channel/signal
– for communication with dynamically created process

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 18

Process & channel types
• Example

– multithreaded server creates new agent to handle each
incoming request

ServerClient

Agent

request

forwarded
request

result

dynamically
created

10

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 19

Process & channel types
type result_value is . . . ;
type result_channel is channel result_value;
type result_ptr is access result_channel;

type request_info is record
. . . ;
result_please : result_ptr;

end record request_info;

type client is process body
port (channel request : out request_info);
variable result : result_ptr := new result_channel;

begin
send (. . . , result) to request;
receive . . . from result.all;

end process body client;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 20

Process & channel types (cont)
type server is process body

port (channel request : in request_info);

type agent is process body
port (channel request : in request_info);

variable info : request_info;

begin
receive info from request;
. . .
send . . . to info.result_please.all;
exit;

end process body agent;

. . .

11

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 21

Process & channel types (cont)
. . .
variable info : request_info;
channel agent_request : request_info;
type agent_ptr is access agent;
variable new_agent : agent_ptr;

begin -- server
receive info from request;
new_agent := new agent

port map (agent_request);
send info to agent_request;

end process body server;

July 1997 Ashenden & Wilsey — 3rd Workshop on SLDL 22

Conclusions
• Improve support for system modeling in VHDL

– more abstract communication
– process abstraction

• process and channel types
• dynamic creation/termination

• Integrate with existing language
– extend existing mechanism where appropriate

• Enables single-language design flow
– hardware/software co-design

