Observations for other Positive Edge-Triggered D-FF

positive edge-triggered TSPC D-flip flop (non-split output)

Need to analyze for clock = 0 (master sampling, slave holding), clock $0 \rightarrow 1$, clock = 1:

_	clock	D	X	Y	\overline{Q}
_	0	0	1	1	$\overline{Q}_{ m old}$
	0	1	0	1	$\overline{Q}_{ m old}$

clock	D	X	Y	\overline{Q}
$0 \rightarrow 1$	0	$X_{\rm old} \ (= 1)$	0	1
$0 \rightarrow 1$	1	$X_{\text{old}} (= 0)$	$Y_{\text{old}} (= 1)$	0

For the above case where clock is going $0 \rightarrow 1$ and D = 0, no reset is needed. In the second case above where clock is going $0 \rightarrow 1$ and D = 1, we need to force Y_{old} to be a zero when reset is asserted. How to do this?

When clock $(\emptyset) = 0 \rightarrow 1$, R = 0, $\overline{R} = 1$, then forces Y node = 0. Even works when clock = 0, can get rid of *p*MOS pullup on \overline{Q} output.

Will have to invert <u>R</u> inside of circuit because R is low true, so final transistor count for adding asynchronous low true reset is $\underline{4}$.

Final circuit (positive edge-triggered TSPC *D*-flip flop with asynchronous, low-true reset):

Final transistor count = 15. Recall again that a static D-flip flop can require 33 transistors!

Final check \rightarrow

