
Intel740 Graphics Accelerator
Software Developer’s Manual

February 1998

Order Number: 290617-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel’s Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel740 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the I2C bus/protocol and was developed by Intel.
Implementations of the I2C bus/protocol or the SMBus bus/protocol may require licenses from various entities, including Philips Electronics N.V. and
North American Philips Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

 http://www.intel.com
 or call 1-800-548-4725

Copyright © Intel Corporation, 1997-1998

*Third-party brands and names are the property of their respective owners.

Contents
1 Introduction..1-1

1.1 About This Manual ..1-1
1.2 Intel740 Features ..1-2
1.3 Related Documents ..1-3

2 Hardware Capabilities ..2-1

2.1 Architectural Overview ..2-2
2.2 3D Capabilities..2-7

2.2.1 3D Pipeline...2-7
2.2.2 3D Primitives..2-10
2.2.3 Data Formats ...2-16
2.2.4 Surface Color Attributes...2-16

2.2.4.1 Fogging ...2-16
2.2.4.2 Specular Highlighting ..2-18
2.2.4.3 Alpha Blending..2-19
2.2.4.4 Alpha Testing ..2-22
2.2.4.5 Color Dithering ..2-22
2.2.4.6 Shading...2-23
2.2.4.7 Stippled Pattern ..2-24

2.2.5 Texture Map Attributes...2-24
2.2.5.1 Texture Map Formats..2-26
2.2.5.2 Texture Map Blending...2-28
2.2.5.3 Texture Map Chroma Keying and Color Keying2-30
2.2.5.4 Texture Wrapping Formats ...2-32
2.2.5.5 Texture Map Filtering ..2-33
2.2.5.6 Texture Mipmapping ...2-34

2.2.6 Drawing Formats..2-37
2.2.7 Buffers..2-37

2.2.7.1 Double and Triple Buffering ..2-38
2.2.7.2 Z-Buffering ..2-38

2.2.8 Antialiasing...2-39
2.2.9 Back Face Culling ..2-40

2.3 2D Capabilities..2-41
2.3.1 BitBLT Engine ..2-41
2.3.2 Stretch BLT Engine..2-41
2.3.3 Color Expansion...2-41
2.3.4 Hardware Cursor..2-42
2.3.5 Video Display Resolutions ...2-42

2.4 Video, VBI, and Intercast Capabilities...2-43
2.4.1 Video Capture Port ..2-43
2.4.2 Video Overlay ..2-44
2.4.3 VBI and Intercast ...2-44

2.4.3.1 VBI Data Format ...2-45
2.4.3.2 VBI Data Flow ...2-47
2.4.3.3 CC and EDS ...2-47
2.4.3.4 Direct CC and EDS Capture ...2-47

2.5 DVD Capabilities...2-47
2.5.1 Hardware DVD/MPEG-2 Movie Playback......................................2-47

2.6 TV Out Interface..2-48
Intel740 Software Developer’s Manual iii

2.7 AGP Interface ...2-48
2.7.1 AGP Primer..2-48
2.7.2 AGP Software Architecture ..2-49

2.8 BIOS Interface ..2-50
2.9 Local Memory ...2-50

3 Programming Environment ...3-1

3.1 OpenGL Programming Environment ..3-1
3.1.1 Model ...3-1
3.1.2 Supported OpenGL MCD States ...3-2
3.1.3 Supported OpenGL MCD Primitives ..3-5
3.1.4 Supported OpenGL MCD Texture States ..3-6
3.1.5 Supported OpenGL MCD Texture Environment States3-6

3.2 DirectX Programming Environment ..3-7
3.3 Mini Interface Drivers ..3-8

3.3.1 Mini Display Driver ...3-8
3.3.1.1 Structures Exported to GDI...3-8

3.4 DirectDraw Display Driver Interface..3-10
3.4.1 Directdraw Hal Capabilities..3-10

3.5 Direct3D Interface...3-14
3.5.1 Supported Direct3D Capabilities..3-14
3.5.2 Supported RenderState ...3-18
3.5.3 Supported RenderPrimitives ..3-20

3.6 Video Interface..3-21
3.7 GDI Escape Interface ...3-22

4 Performance Considerations..4-1

4.1 Performance Strategies And Measurements..4-1
4.1.1 Intel740 Performance Capabilities ...4-1
4.1.2 Using CPU/Intel740 Concurrency ..4-2
4.1.3 Performance Test Results ...4-3

4.1.3.1 Raster Speed Test Method ...4-3
4.1.3.2 Implications and Analysis..4-9

4.1.4 Special Performance Considerations...4-11
4.1.4.1 Direct3D DrawPrimitive vs. Execute Buffers.....................4-11
4.1.4.2 Triangle Packet Size ...4-12
4.1.4.3 Texture Sizes ..4-14
4.1.4.4 Palette Changes ...4-15
4.1.4.5 Untiled Textures for Procedural Texture Animation4-15
4.1.4.6 High Performance Transparency4-16
4.1.4.7 Screen Resolutions...4-17

4.1.5 Budgeting CPU Clock Cycles ..4-18
4.1.6 Video Performance ..4-18

4.2 Other Programming Tips ..4-20
4.2.1 Texture and Surface Effects ..4-20

4.2.1.1 Texture Formats..4-20
4.2.1.2 Texture Sizes ..4-21
4.2.1.3 Texture Storage ..4-21
4.2.1.4 Animated Texture Effects..4-21
4.2.1.5 Multi-pass Texture Effects ..4-22

4.2.2 Software Strategies ...4-22
4.2.2.1 Z-Buffering ..4-23
4.2.2.2 Antialiasing..4-23
iv Intel740 Software Developer’s Manual

4.2.2.3 Minimizing State Transitions ...4-23
4.2.2.4 Dynamic AGP Buffer Placement4-23
4.2.2.5 Texture Palettes..4-24
4.2.2.6 Using Mipmapping ..4-24
4.2.2.7 Designing For Sub Pixel Accuracy....................................4-25
4.2.2.8 Using Color/chroma Keying Over Alpha

Blended Textures..4-25
4.2.2.9 Avoiding Stippling Errors...4-25
4.2.2.10Avoiding Flipping Errors..4-25
4.2.2.11Texture Sorting Is Not Required4-25

4.3 OpenGL Performance Guidelines...4-26
4.3.1 OpenGL Feature Classification..4-26
4.3.2 Feature Overview...4-27
4.3.3 OpenGL Operation...4-29

4.3.3.1 Begin/End Paradigm ...4-29
4.3.3.2 Vertex Specification ..4-29
4.3.3.3 Vertex Arrays ..4-29
4.3.3.4 Rectangles ..4-29
4.3.3.5 Coordinate Transformation ...4-29
4.3.3.6 Clipping ...4-29
4.3.3.7 Current Raster Position...4-29
4.3.3.8 Colors and Coloring ..4-30

4.3.4 Rasterization ..4-30
4.3.4.1 Antialiasing..4-30
4.3.4.2 Points ..4-30
4.3.4.3 Line Segments ..4-30
4.3.4.4 Polygons ...4-30
4.3.4.5 Pixel Rectangles ...4-30
4.3.4.6 Bitmaps ...4-30
4.3.4.7 Texturing ...4-30
4.3.4.8 Fog..4-31
4.3.4.9 Antialiasing Application ...4-31

4.3.5 Fragments And The Frame Buffer ...4-31
4.3.5.1 Per-Fragment Operations ...4-31
4.3.5.2 Whole Framebuffer Operations...4-31
4.3.5.3 Drawing, Reading, and Copying Pixels.............................4-31

4.3.6 Special Functions...4-32
4.3.7 State And State Requests..4-32
4.3.8 GL Command Summary ..4-32

Glossary ... Glossary-1
Intel740 Software Developer’s Manual v

Figures

2-1 System Block Diagram with Intel740 ..2-2
2-2 Intel740 Architectural Interfaces ...2-3
2-3 The Intel740 Implementation of Sideband Addressing2-4
2-4 Batch Processing on the Intel740 - A Conceptual View2-5
2-5 The Intel740’s Ability to Execute Textures Directly From AGP Memory.......2-6
2-6 The Intel740 Functioning as Two Memory Controllers2-6
2-7 3D Pipeline for DirectX ...2-8
2-8 3D Pipeline for OpenGL..2-9
2-9 Triangle as the Intel740 Driver Sees It ...2-11
2-10 Effects of Fogging Off vs Fogging On...2-17
2-11 Effects of Using Specular Highlighting..2-18
2-12 Effects of Using Alpha Blending ...2-20
2-13 Effects of Flat Shading vs. Smooth Shading ..2-23
2-14 Getting 1.3 Gbytes of Concurrent Throughput with the Intel7402-25
2-15 A Color Keyed Splash...2-31
2-16 Point Filtering VS. Bilinear Filtering ..2-34
2-17 An Example of Five Levels of Mipmapped Texture2-35
2-18 Z-Buffering Off vs. Z-Buffering On ..2-38
2-19 Effects of Antialiasing ...2-40
2-20 Content of an NTSC Video Frame..2-45
2-21 Configuration of Video Capture Memory with VBI2-46
2-22 VBI Buffering Scheme ..2-46
2-23 Intel740 Connects to System Memory Over AGP2-48
2-24 New Services in Windows Work with DirectDraw to

Support AGP Applications ..2-49
3-1 MCD Architecture ...3-1
3-2 Intel740 Software Architecture..3-7
4-1 Intel740/CPU Usage Model ..4-2
4-2 Improper Usage Model ...4-2
4-3 RasM Intel740/CPU Usage Model ..4-3
4-4 RasM Pseudo-Code ...4-4
4-5 Basic Feature Sweeps..4-6
4-6 Advanced Feature Sweeps...4-7
4-7 Full Feature Sweeps...4-8
4-8 Performance vs. Percent Z Occlusion ..4-10
4-9 Performance of DrawPrimitive vs. Execute Buffer4-11
4-10 Performance vs. Buffer Size (Duty Cycle) ..4-13
4-11 Performance vs. Total Packet Size...4-14
4-12 Performance vs. Texture Size ..4-14
4-13 Performance vs. Palette Changes ..4-15
4-14 Performance with Untiled Textures...4-16
4-15 Performance vs. Transparency...4-17
4-16 Performance vs. Screen Resolution ...4-17
4-17 Available Memory Bandwidth on a Pentium® II Processor System4-18
4-18 Dynamic AGP Buffer Placement...4-24
vi Intel740 Software Developer’s Manual

Tables

1-1 Intel740 Feature Summary ...1-2
2-1 Data Formats ..2-16
2-2 Alpha Blend Functions for OpenGL & DirectX ..2-21
2-3 DirectX Texture Map Blending Functions ...2-29
2-4 OpenGL Texture Blend Modes and Equations ...2-30
2-5 Supported DirectX Texture Wrap Formats..2-32
2-6 Supported OpenGL Texture Wrap Formats..2-32
2-7 Pixel Formats and Buffers...2-37
2-8 Display Resolutions ..2-42
3-1 Supported OpenGL MCD Enables..3-2
3-2 Supported OpenGL MCD States ..3-3
3-3 Supported OpenGL MCD Primitives ...3-5
3-4 Supported OpenGL MCD Texture States ...3-6
3-5 Supported OpenGL MCD Texture Environment States3-6
3-6 Device Technology—dpTechnology ...3-8
3-7 dwCaps—Specifies Driver-Specific Capabilities ...3-10
3-8 dwCaps2—Specifies More Driver-Specific Capabilities..............................3-11
3-9 dwCKeyCaps—Color Key Capabilities ...3-11
3-10 dwFXCaps—Specifies Driver-Specific Stretching and

Effects Capabilities ...3-12
3-11 dwPalCaps—Specifies Palette Capabilities..3-12
3-12 ddsCaps.dwCaps—Specifies The Capabilities Of The Surface3-13
3-13 General Device Capabilities..3-14
3-14 Texture Capabilities ..3-15
3-15 Primitive Capabilities Supported ...3-15
3-16 DIRECT3D RenderState Hardware / Software Support3-18
3-17 DIRECT3D RenderPrimitive Hardware / Software Support3-20
3-18 VfW Capture Driver Capability ..3-21
3-19 Functionality Control ...3-22
3-20 Device Driver Debugging Control ...3-22
4-1 Result Summary ...4-4
4-2 Symbol Key...4-5
4-3 CPU Cycle Targets ...4-18
4-4 Typical Video/Data Capture Applications..4-19
4-5 CPU Usage for Some Typical Applications...4-19
4-6 Rating OpenGL Features..4-27
4-7 Included and Excluded Pre-Fragment Operations......................................4-31
4-8 Command Performance Ratings...4-32
Intel740 Software Developer’s Manual vii

ith
s a
r

e
re
Introduction 1

The Intel740 is a graphics hardware accelerator providing a variety of features which can enhance
the speed and visual quality of 2D and 3D applications. The Intel740 feature set also includes
DVD, video capture, VBI and intercast programming capabilities. The Intel740 works with the
OpenGL*, Microsoft DirectX*, and Win32* programming interfaces. Both the OpenGL and the
DirectX APIs give graphics applications a standard way to invoke 2D, 3D and video graphics
rendering functions and allow a software application to be hardware independent.

The Intel740 OpenGL driver set runs on personal computers that are based on the Intel
Architecture with Accelerated Graphics Port (AGP) support and have Microsoft WindowsNT* 4.0
or newer operating system with the OpenGL 1.1 application programming interface (API). The
Intel740 DirectX driver set runs on personal computers that are based on the Intel Architecture
with AGP support and have the Microsoft Windows98*, Windows95* with USB support, or
WindowsNT 5.0 operating system with DirectX 5.0 (or newer) and Win32 programming
interfaces. This manual presents the Intel740’s accelerated functions that are callable from
OpenGL, DirectX and Win32 application programs.

1.1 About This Manual

This manual is intended for graphics tool or application programmers who are experienced w
writing 2D, 3D, or video graphics applications. The manual assumes that the programmer ha
working knowledge of the vocabulary and principles of graphics applications. It is intended fo
programmers who plan to use the DirectX, OpenGL and Win32 software API interfaces.

This chapter introduces the Intel740 features and API support.

Chapter 2, “Hardware Capabilities” — provides a hardware system overview and reviews the
hardware functionality of the Intel740. This chapter describes in detail the 3D rendering, 2D
display and video capabilities.

Chapter 3, “Programming Environment” — describes the OpenGL and DirectX APIs for the
Windows95, Windows98, and WindowsNT operating environments.

Chapter 4, “Performance Considerations” — discusses programming approaches to maximiz
performance. Throughput, duty cycle, and memory bandwidth sensitivities on performance a
addressed. Programming tips and strategies for using the Intel740 are provided. OpenGL
performance guidelines are also discussed.
Intel740 Software Developer’s Manual 1-1

Introduction
1.2 Intel740 Features

This section offers a brief overview of the most prominent Intel740 features. The Intel740 graphics
controller may contain design defects or errors known as errata. Current characterized errata are
available on request.

Table 1-1. Intel740 Feature Summary

HYPER PIPELINED ARCHITECTURE 2D & DISPLAY FEATURES

• Direct Memory Execution (DME) • Display Resolution: 640x480x8 up to
1280x1024x16 @ 48 Hz - 85 Hz Refresh Rate

• 0.85 Mega-Triangles/Second Peak† • Hardware Cursor

• 425-500K Triangles/Second Full Featured
Sustained 3D Performance† • Hardware Overlay

• 45-55 Mega-Pixels/Second Full Features (>140
Pixel Triangles) Sustained 3D Performance† • Blitter Engine

• Full Sideband Accelerated Graphics Port • Stretch Blitter Engine

• Parallel Execution • Color Expansion

• Optimized for 440LX Intel AGP Sets

3D FEATURES VIDEO IN/OUT FEATURES

• Z-Buffering • Programmable Video Output Characteristics
(VGA, SVGA, NTSC, PAL)

• Back Face Culling • Video Capture Support (16- or 8- bit Uni-
Directional Capture Port)

• Antialiasing • Scaling of the Full Motion Video Data

• Flat and Gouraud Shading • Full Motion Video Overlaid with Frame Buffer

• Specular Highlighting • Intercast & VBI Support

• Fog with RGB Components • MPEGII DVD Capability

• Color Alpha Blending

• Color Dithering

• Stippling or “Screen Door” transparency

• Texture Color Keying and Chroma Keying

• Per Pixel Perspective Correct Texture Mapping

• Mipmapping with Trilinear Filtering 1024x1024 to
1x1

• Texture Formats: 1, 2, 4 or 8-bit palettized;
ARGB 1555 0565 4444; Compressed AYUV
0422 0555 1544.

• Texture Memory Limited Only by System RAM

• Optimized for 800x600x16 and 640x480x16
Display Resolution

† See “Performance Strategies And Measurements” on page 4-1 for the system configuration used to
generate these performance statistics.
1-2 Intel740 Software Developer’s Manual

Introduction
1.3 Related Documents

Refer to the following materials for information outside the scope of this document.

• Intel740 Specification Update

• Silicon Graphics OpenGL* SDK

• OpenGL Programming Guidelines, Second Edition; Woo, Mason; Neider, Jackie; Davis,
Tom; Addison-Wesley Developer Press; 1997.

• Microsoft DirectX* Media 5.0 SDK

• Win32 SDK
Intel740 Software Developer’s Manual 1-3

Hardware Capabilities 2

Optimized for the new Accelerated Graphics Port (AGP), Intel740 delivers high performance in 2D
and 3D graphics rasterization. In addition, Intel740 has a video capture port that allows easy
hookup to video conferencing systems such as POTS (Plain Old Telephone Set) video
conferencing applications and Intercast technology. Each hardware feature is discussed in the
following sections:

• “Architectural Overview” on page 2-2

• “3D Capabilities” on page 2-7

• “2D Capabilities” on page 2-41

• “Video, VBI, and Intercast Capabilities” on page 2-43

• “DVD Capabilities” on page 2-47

• “TV Out Interface” on page 2-48

• “AGP Interface” on page 2-48

• “BIOS Interface” on page 2-50

• “Local Memory” on page 2-50
Intel740 Software Developer’s Manual 2-1

Hardware Capabilities

hics

eavy
l740
el740
2.1 Architectural Overview

The Intel740 is a highly integrated graphics accelerator designed for the Accelerated Graphics Port
(AGP). Its architecture consists of dedicated multimedia engines executing in parallel to deliver
high performance 3D, 2D and video capabilities. The 3D and 2D engines are managed by the 3D/
2D pipeline preprocessor ensuring them a sustained flow of graphics data. The Intel740 also
includes dedicated video engines for support of video conferencing and other video applications.

The Intel740 is capable of delivering a high rate of sustained 3D graphics performance with full 3D
feature set functionality. This constant high level of performance is delivered through the
Intel740’s Direct Memory Execution (DME) architecture and the incorporation of specific grap
architectural enhancements. Through the use of DME, the Intel740 fully utilizes the entire
bandwidth of the AGP and memory, which improves the performance when processing the h
data demands of 3D. Architectural enhancements within the 3D pipeline ensure that the Inte
uses this data in the most efficient way possible. Figure 2-1 shows a block diagram of the Int
architecture.

Figure 2-1. System Block Diagram with Intel740

sys_blk2.vsd

Host Bus

Host Bridge

(e.g., 82443LX)

Main

Memory

Primary PCI Bus

(PCI Bus #0)

PCI Slots

ISA Bus

ISA Slots

System BIOS

System Mgnt (SM) Bus

2 IDE Ports

(Ultra DMA/33)

2 USB

Ports

USB

USB

IO

APIC

PCI-to-ISA
Bridge

(e.g., 82371SB

PIIX4)

AGP

PCI Bus (#1)Intel740

Decoder
Video

Capture

Local Memory
(8 MB)

(SDRAM/SGRAM,
66 to 100 MHz)

Display

TV

Encoder

Video BIOS

Intel740 Graphics Subsystem

DVD Chip

Pentium® II
Processor

Pentium® II
Processor
2-2 Intel740 Software Developer’s Manual

Hardware Capabilities
The DME architecture means that full AGP implementation is integrated into the Intel740 with 2X
sideband support, allowing up to 533 Mbyte/s data transfers. Deep buffering allows the Intel740 to
receive data at this high rate and handle any latencies associated with AGP transactions. Figure 2-3
illustrates the Intel740 implementation of sideband addressing.

Further utilization of AGP is achieved using 2X sideband signaling. Sideband addressing gives the
Intel740 the ability to issue multiple requests without having to wait for data to be returned. This
allows the Intel740 to achieve the highest possible sustained data transfer rates across the AGP, and
makes DME possible.

Figure 2-2. Intel740 Architectural Interfaces

3D/2D Pipeline Preprocessor

3D Pipeline 2D Pipelines

Video
Engines

TV Out

RAMDAC

Local Memory Interface

Port

Local Memory

AGP Interface PCI Interface

AGP PCI Bus

Port

I2C
Intel740 Software Developer’s Manual 2-3

Hardware Capabilities

form
h
Deep buffering, 2X mode, and sideband signaling provide sustained 3D performance by delivering
data at a constant rate regardless of other system activities.

To provide the highest level of system concurrency and performance the Intel740 is optimized for a
batch processing mode of triangle delivery. Batch processing frees up the CPU for intelligent 3D
gaming and more complex geometry processing. This batch processing allows the CPU to place a
“batch” of triangles in memory and begin on another batch of triangles without needing to per
handshaking with the Intel740. Figure 2-4 illustrates a conceptual view of the Intel740’s batc
triangle processing.

Figure 2-3. The Intel740 Implementation of Sideband Addressing

Maximum Throughput With Sideband Implementation

Non-Sideband Implementation

Sideband

Data Path

Request Data Request Data

Request Request Request Request

Data Data Data Data

Time

Request
2-4 Intel740 Software Developer’s Manual

Hardware Capabilities

ds
 from

m

 with
uffer,

phics
mory
The DME capabilities of the Intel740 maximize the amount of memory available for rendering.
The Intel740 is capable of executing directly from AGP memory. This “direct execution” avoi
the “thrashing” of local memory associated with an architecture that must load local memory
AGP or system memory. Textures can be executed directly from AGP memory, allowing
performance to be sustained even when texture complexity increases. Figure 2-5 shows
conceptually how the Intel740 executes textures directly from AGP memory.

The Intel740 is capable of rendering from local memory while textures are being executed fro
AGP memory through parallel arbitration. This arbitration allows a combined memory peak
bandwidth of 1.3 Gbyte/s. The capability to support two open pages in local memory coupled
an open page in AGP memory supports the 3D rendering model of front and back buffers, Z b
and textures. 2D rendering through the use of three raster operands (pattern, source and
destination) is supported. By maintaining virtually three open pages, the Intel740 sustains gra
performance with fully textured and Depth Buffered scenes. Figure 2-6 illustrates the dual me
utilization of the Intel740.

Figure 2-4. Batch Processing on the Intel740 - A Conceptual View

Batch Processing

CPU

1 2 3Intel740

Remaining CPU Time

1st Batch

4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

2nd Batch

321 4 5 6 7 8 9

Increasing Time

Non-Batched Processing

Intel740

CPU

1 2 3

5 Remaining CPU Time

4

1 2 3 4

5

6

6

7

7

8

8

9

8

Stalled
CPU Time

Stalled Graphics
Processing Time
Intel740 Software Developer’s Manual 2-5

Hardware Capabilities

 and
740’s
, the

r
t
page
cene
ented,

ed 3D
Dedicated 3D pipeline enhancements are included in the Intel740’s architecture. These
enhancements are designed to manage the way in which 3D data is requested from memory
then used within the compute engine. While parallelism is employed among each of the Intel
engines, the 3D pipeline calculates 3D data in a highly parallel fashion. With this architecture
3D rasterizer is able to compute four fully textured, shaded, fogged and Z Buffered pixels pe
clock. In addition to using data efficiently, the 3D pipeline requests data from memory so tha
memory locality is maximized regardless of triangle size or orientation. This results in fewer
misses and a highly sustained 3D graphics output independent of the complexity of the 3D s
being rendered. To further improve memory accesses, an efficient texture cache is implem
avoiding the need for redundant fetches when texturing triangles. By combining memory
efficiencies and processing data efficiencies, the Intel740 is capable of a high rate of sustain
performance.

Figure 2-5. The Intel740’s Ability to Execute Textures Directly From AGP Memory

Figure 2-6. The Intel740 Functioning as Two Memory Controllers

440LX
AGPsetIntel740

Local
Memory

System and
AGP

Memory

Textures

AGP AGP

Pentium® II
Processor

440LX
AGPsetIntel740

Local Memory

System
and AGP
MemoryAGP AGP

Textures

Destination

Color Buffer/
Display Buffer

Source

Pentium® II
Processor
2-6 Intel740 Software Developer’s Manual

Hardware Capabilities

rs by
 to
tures

ing,

 high
nly

main
frees
local

, as
2.2 3D Capabilities

While the API or software application takes care of the geometry and lighting stages of the 3D
pipeline, the Intel740 enables hardware acceleration of the rendering stages. In the DirectX and
OpenGL 3D Pipeline diagrams (Figure 2-7 and Figure 2-8), the rasterization stage of the 3D
pipeline consists of the Setup Engine, Scan Converter, Texture Pipeline, and Color Calculator/
Depth Buffer Test. These four modules comprise the rendering engine and this section discusses all
of the rendering features associated with the 3D hardware including the following subsections for
both OpenGL and DirectX:

• “3D Pipeline” (below)

• “3D Primitives” on page 2-10

• “Data Formats” on page 2-16

• “Surface Color Attributes” on page 2-16

• “Texture Map Attributes” on page 2-24

• “Drawing Formats” on page 2-37

• “Buffers” on page 2-37

• “Antialiasing” on page 2-39

• “Back Face Culling” on page 2-40

2.2.1 3D Pipeline

The 3D pipeline unit in the Intel740 offers advantages over the traditional graphics accelerato
performing 3D setup locally rather than within the CPU. This difference allows the processor
perform more geometry calculations while the Intel740 performs set-up and rendering. 3D fea
supported include perspective correct texture mapping, trilinear mipmapping, Gouraud shad
alpha-blending, stippling, and Z-buffering. Depending on the application, each feature can be
independently enabled or disabled for various levels of performance. The Intel740 allows for
performance when all 3D features are enabled for the entire run of the application with the o
exception being antialiasing. The Intel740 is optimized for high throughput when textures are
stored in AGP memory, otherwise known as non-local video memory. Relocating textures in
memory is also supported. Locating texture information in the AGP non-local video memory
up the Intel740 local frame buffer memory for graphics execution. Textures cannot be put in
video memory. Polygon antialiasing is hardware assisted by Intel740.

Figure 2-7 and Figure 2-8 illustrates the DirectX and OpenGL API function calls, respectively
they are used in the 3D rasterization pipeline of the Intel740 architecture.
Intel740 Software Developer’s Manual 2-7

Hardware Capabilities
Figure 2-7. 3D Pipeline for DirectX

Setup
lines and triangles

D3D*Vertex.Specular/Fog,
D3D*Vertex.RGBA

D3DRENDERSTATE_CULLMODE

D3DTLVertex, D3DLVertex, D3DVertex,

(3 verticies per triangle, 2 verticies per line)

Scan
Converter

Triangles
Lines

D3DRENDERSTATE_FILLMODE

D3DRENDERSTATE_STIPPLEENABLE Stipple
Pattern

Notes:
1. Frame buffer = front and back buffers
2. Only 3D buffers are shown in local memory. Other
 data (e.g. video capture buffer and overlay buffer)
 also reside in local memory.
3. Textures can be stored in either AGP, or
 system memory.

Frame
Buffer

Depth
Buffer

(Z-Buffer)

Local Memory
(LM)

D3DRENDERSTATE_ANTIALIAS
Back Buffer Info.

MonoChrome
Bounding Box Expansion

D3DRENDERSTATE_
TEXTUREHANDLE

Texture Filter

Texture Pipeline

Map Lookup

non-palettized

Color Key

palettized

ChromaKey

Texture Palette Lookup

YUV-to-RGB

Texture Cache

SetColorKey()

dwColorSpaceLow
& HighValue

D3DRENDERSTATE_
WRAPU & WRAPV

D3DRENDERSTATE_
TEXTUREMIN

&TEXTUREMAG

Intel740
Interface

Alpha
Test

Fog

Dithering

Texture
Blending

Color Calculator
and

Depth Buffer Test

D3DRENDERSTATE_SRCBLEND
D3DRENDERSTATE_DESTBLEND

D3DRENDERSTATE_DITHERENABLE

Specular
Add D3DRENDERSTATE_SPECULARENABLE

D3DRENDERSTATE_FOGCOLOR

D3DRENDERSTATE_FOGENABLE

D3DRENDERSTATE_ALPHABLENDENABLE
D3DRENDERSTATE_ALPHAFUNC
D3DRENDERSTATE_ALPHAREF

Depth Buffer
Test

BlendingAlpha RGB

D3DRENDERSTATE_ZWRITEENABLE

D3DRENDERSTATE_ZFUNC

D3DRENDERSTATE_
ALPHABLENDENABLE

D3DRENDERSTATE_ZBIAS

Frame Buffer
Write enable

Z Buffer
Write Enable

Coverage
(antialiasing)

D3DRENDERSTATE_STIPPLEPATTERN

D3DRENDERSTATE_
COLORKEYENABLE

Color Key Index Value
SetColorKey()

D3DRENDERSTATE_
COLORKEYENABLE

D3DRENDERSTATE_
TEXTUREMAPBLEND

D3DRENDERSTATE_ANTIALIAS

D3DRENDERSTATE_SHADEMODE

3D Pipeline for
DirectX

AGP Memory

Textures

Instructions
and Data
2-8 Intel740 Software Developer’s Manual

Hardware Capabilities
The four main modules within the 3D Pipeline are:

Setup Engine The Setup Engine performs the necessary calculations to make the
geometry data useful for the rest of the pipeline. Some of the functions
include culling, and perspective correct calculation of texture
coordinates as they correspond to pieces of the geometry.

Figure 2-8. 3D Pipeline for OpenGL

Setup
(lines and triangles)

glCullFace()

pre lit glVertex includes Specular, Ambient and Diffuse color in RGBA
(3 verticies per triangle, 2 verticies per line)

Scan
Converter

Triangles

Lines

glPolygonMode()

glEnable(GL_POLYGON_STIPPLE)
Stipple
Pattern

Frame
Buffer

Depth
Buffer

(Z-Buffer)

Local Memory
(LM)

glEnable(GL_POLYGON_SMOOTH)

Back Buffer Info.

MonoChrome
Bounding Box Expansion

Texel
Generation

glTexParameter(GL_TEXTURE_MIN_FILTER)

Intel740
Interface

Alpha
Test

Fog

Dithering

Texture
Blending

Color Calculator
and

Depth Buffer Test

glEnable(GL_DITHER)

glFog()

glEnable(GL_BLEND)

glBlendFunc()

glEnable(GL_ALPHA_TEST)
glAlphaFunc()

Depth
Buffer
Test

BlendingAlpha RGB

glEnable(GL_DEPTH_TEST)

glDepthFunc()

Frame Buffer
Write Enable

Z Buffer
Write Enable

Coverage
(antialiasing)

glPolygonStipple()

glTexParameter(GL_TEXTURE_WRAP_S)

glTexEnv()

glEnable(GL_POLYGON_SMOOTH)

glShadeMode()

glTexParameter(GL_TEXTURE_MAG_FILTER)

glTexParameter(GL_TEXTURE_WRAP_T)

3D Pipeline for
OpenGL

Notes:
1. Frame buffer = front and back buffers
2. Only 3D buffers are shown in local memory.
 Other data (e.g. video capture buffer and overlay
 buffer) also reside in local memory.
3. Textures can be stored in either AGP, or
 system memory.

AGP Memory

Textures

Instructions
and Data
Intel740 Software Developer’s Manual 2-9

Hardware Capabilities
Scan Converter The Scan Converter performs functions in parallel with the Setup Engine
to read vital information such as fog, specular RGB, and blending data
and sends it on to the Texture Pipeline so that the Texture Pipeline does
not have to stop the flow of the pipeline in order to wait for this data.

Texture Pipeline The Texture Pipeline receives the texture coordinate data information
from the Setup Engine and texture blend information from the Scan
Converter and stores this information in the texture cache. It performs
texture chroma and color key match, texture bilinear interpolation, and
YUV to RGB conversions.

Color Calc./Depth Test The Color Calculator/Depth Test is where the color data such as fogging,
specular RGB, texture blend, and alpha blend is processed. The Color
Calculator computes the resulting color of a pixel. The red, green, blue,
and alpha are combined with the corresponding components resulting
from the Texture Pipeline unit. These textured pixels are then modified
by the specular and fog parameters to create specular highlighted,
fogged, textured pixels which are color blended with the existing values
in the frame buffer. Alpha and depth buffer tests are conducted which
will determine whether the frame and depth buffers will be updated with
new pixel values.

2.2.2 3D Primitives

The 3D primitives are lines, triangles, and state variables. Pipeline flushes occur when updating the
palette and stipple memories, since these are too large to allow pipelining of their data. In either
case, all primitives rendered after a change in state variables will reflect the new state. Figure 2-9
shows the triangle data structure which is handled by the Intel740 drivers and also shows how the
texture is mapped from the texture coordinate U, V space to the normalized S, T object space
where perspective correction is applied to the texture as well as simulated curvature before being
mapped to the object in X, Y screen coordinates. The triangle data structure is passed to the
Intel740 drivers by either the DirectX or the OpenGL API call backs.
2-10 Intel740 Software Developer’s Manual

Hardware Capabilities
Figure 2-9. Triangle as the Intel740 Driver Sees It

x

y

Surface of Object
Calculated on Chip

Texture map
u

v

S
(U * 1/W)

T (V * 1/W)

0

0

0
Three Corners of
Triangle on ScreenIntel740 Vertex:

struct {
float X; /* 0.0 - 2047.0 */
float Y; /* 0.0 - 1023.0 */
float Z; /* 0.0 - 1.0, 0 - 64K */
float W; /* 1/Z */
struct {

unsigned char blue; /* 0 - 255 */
unsigned char green; /* 0 - 255 */
unsigned char red; /* 0 - 255 */
unsigned char alpha; /* 0 - 255 */

} dwColor;
struct {

unsigned char sblue; /* 0 - 255 */
unsigned char sgreen; /* 0 - 255 */
unsigned char sred; /* 0 - 255 */
unsigned char fog; /* 0 - 255 */

} dwSpecularColor;
float U; /* S15.16 0 - 64K */
float V; /* S15.16 0 - 64K */

} Triangle[3];
Intel740 Software Developer’s Manual 2-11

Hardware Capabilities
Example 2-1. Sending Data to the Intel740 Using DirectX

When using DirectX, the data format for a vertex which can be sent to the Intel740 driver via a
DirectX execute buffer, or by using the DrawPrimitive or DrawIndexedPrimitive command is a
D3DTLVERTEX, D3DLVERTEX, or D3DVERTEX data structure. The Intel740 does the
rasterization or rendering portion of the 3D pipe. The user must set up the appropriate lighting and
transforms regardless of vertex type. The difference is that the DirectX API will know to perform
lighting and transforms as preset by the user when a D3DVERTEX is sent, or just transforms when
the D3DLVERTEX is sent. Lighting and transformation is not done by the Intel740, but will be
done by the API software in these instances. See the Microsoft DirectX 5.0 documentation for
more information on how to set up the lighting and transformations. The D3DTLVERTEX data
structure is illustrated below.
D3DTLVERTEX TYPE

 typedef struct _D3DTLVERTEX {

 union {

 D3DVALUE sx; // sx is the screen coordinate of the x position of the vertex

 D3DVALUE dvSX;

 };

 union {

 D3DVALUE sy // sy is the screen coordinate of the y position of the vertex

 D3DVALUE dvSY;

 };

 union {

 D3DVALUE sz; // sz is the z position of the vertex used for z compares

 D3DVALUE dvSZ;

 };

 union {

 D3DVALUE rhw;// rhw is the 1/z value for the vertex or the reciprocal

 //of homogeneous

 D3DVALUE dvRHw;// w. This value is 1 divided by the distance from the

//origin to the object

// along the z-axis.

 };

 union {

 D3DCOLOR color; // color corresponds to the vertex color components of red,

//green, blue, and alpha.

D3DCOLOR dcColor;

 };

 union {

 D3DCOLOR specular; // specular corresponds to the vertex specular color

//component

 D3DCOLOR dcSpecular; // consisting of sred, sgreen, and sblue. The alpha of

//the specular color is used for the fog density value.

 };

 union {

 D3DVALUE tu; // tu corresponds to the texture map horizontal component.

 D3DVALUE dvTU;

 };

 union {

 D3DVALUE tv; // tv corresponds to the texture map vertical component.

 D3DVALUE dvTV;

 };

} D3DTLVERTEX, *LPD3DTLVERTEX;
2-12 Intel740 Software Developer’s Manual

Hardware Capabilities
The Intel740 supports the following different D3DPRIMITIVETYPEs for DrawPrimitive:

D3DPT_POINTLIST Renders a collection of isolated points

D3D_LINELIST Renders a list of isolated straight line segments

D3DPT_LINESTRIP Renders a single polyline

D3DPT_TRIANGLELIST Renders a sequence of isolated triangles

D3DPT_TRIANGLESTRIP Renders a triangle strip

D3DPT_TRIANGLEFAN Renders a triangle fan

Below is the DirectX function prototype for DrawIndexPrimitive which is used to call the Intel740
driver to take the triangle data and begin the hardware rasterization process.
HRESULT IDirect3DDevice2::DrawIndexedPrimitive(

D3DPRIMITIVETYPE type,

D3DTLVERTEXTYPE D3DTLVertex,

LPVOID VertexsListPointer,

DWORD VertexsCount,

LPWORD VertexsIndexList,

DWORD VertexsIndexCount,

DWORD DrawIndexedPrimitiveFlags);

The following code segment illustrates using DrawIndexPrimitive to send the vertex data to the
Intel740, assuming that the triangle information is ready for rendering:
HRESULT ddval

LPDIRECT3DDEVICE lpDev;

TransformVerticesTo3DView();

LightVertices();

TransformVerticesTo2DScreen();

if ((ddrval = lpDev->BeginScene()) != D3D_OK)

return FALSE;

//begining of atomic block for Direct 3D rendering

ddrval=lpDev->DrawIndexedPrimitive(D3DPT_TRIANGLELIST,

D3DVT_TLVERTEX,

(LPVOID)pvTLVertex,

iNumVertex,

(LPWORD)pdwIndex,

iNumFaces*3,

0) ;

if (ddrval != DD_OK)

return FALSE;

//end of atomic block for Direct 3D rendering

if ((ddrval = lpDev->EndScene()) != D3D_OK)

return FALSE;

It is best to do the transformations and lighting for the entire scene before the rendering, as implied
in the code segment above. Multiple triangle lists can be sent within the BeginScene() and
EndScene() call without hampering the performance. A triangle list larger than 85 triangles is
recommended while a list of 512 triangles is optimal. See Chapter 4 for in-depth triangle list
performance information.
Intel740 Software Developer’s Manual 2-13

Hardware Capabilities

 four
r

will

lor,
re
ods
re for

e are
ows:

s

Example 2-2. Sending Data to the Intel740 Using OpenGL

The three ways to send rendering information to the Intel740 using OpenGL are immediate
method, vertex arrays, and display lists. This document first shows the immediate method, which is
straightforward and which helps to understand the second and preferred vertex array method. The
display list method is not discussed in this document; it can be found in the OpenGL Programming
Guide. This document is concerned with showing the user how to implement OpenGL calls which
will utilize the features of the Intel740, therefore this manual will not discuss overall OpenGL
programming methods. It should be noted that the OpenGL vertex information sent to the Intel740
will be pre-lit, which means that the RGBA component will have already included the specular,
diffuse and ambient lighting for the vertex.

OpenGL describes vertex information a little bit differently than DirectX. For instance, to specify
an OpenGL vertex and its surface and texture attributes the following code could be used:
glBegin();

glColor*();// Set current color

glTexCoor*();// Set texture coordinates

glEdgeFlag*();// Control drawing of edges

glVertex*();// Set vertex coordinates

glEnd();

“*” specifies the type of arguments the function call will pass in the function parameters. For
glVertex, the types conform to the following:
void glVertex{234}{sifd}[v](TYPE coords);

Where “(234)” specifies the number of coordinates from as few as two for (x,y) to as many as
for (x,y,z,w). Then the “{sifd}” portion describes the data type as either “short”, “int”, “float”, o
“double.” The next portion of the function, “{v}” is used to specify that a pointer to a vector (or
array) will be past in the parameter rather than a series of individual arguments.

It is important to send the glVertex() command last, because the information sent previously
be used to describe the vertex at this point.

To describe all of the component information of a vertex including the texture coordinates, co
and edge flags, each of the functions between the glBegin() and glEnd() may be called. Befo
making the glColor call, other calls to set the specular lighting, fogging and antialiasing meth
should be called. These calls are discussed in the 3D features section of this document whe
each feature of the Intel740 such as fogging, an OpenGL implementation is provided. The
glBegin() and glEnd() are used to specify the beginning and end of an atomic primitive. Ther
different types of primitives which can be passed as arguments to glBegin(). They are as foll

GL_POINTS Renders a collection of isolated points

GL_LINES Renders a list of isolated straight line segments

GL_TRIANGLES Renders a sequence of isolated triangles

GL_LINE_STRIP Renders a single polyline

GL_TRIANGLE_STRIP Renders a triangle strip

GL_TRIANGLE_FAN Renders a triangle fan

GL_QUAD Renders a quad triangulated into individual triangles

GL_QUAD_STRIP Renders quadrilateral strips triangulated into individual triangle

GL_POLYGON Renders polygons triangulated into individual triangles
2-14 Intel740 Software Developer’s Manual

Hardware Capabilities

rray
nning
, an
y:

. In
rrays
 either
ered
nts:
When using OpenGL, the best way to send vertex data to the driver is to use vertex arrays, which
minimize the number of function calls required for one geometric object. Vertex arrays are a new
feature of OpenGL 1.1. For the Intel740 it is best to minimize these function calls to improve
performance and to reduce the redundant processing of shared vertices. The way to use the vertex
arrays is as follows:

1. Enable each array type to be used:
void glEnableClientState(Glenum array);

Where array is one of the following symbolic constants: GL_VERTEX_ARRAY,
GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY,
GL_TEXTURE_COORD_ARRAY, GL_EDGE_FLAG_ARRAY.

2. Point to each array to be rendered:
void glColorPointer(GLint size, GLenum type, GLsizei stride, const GLvoid
*pointer);

void glTexCoordPointer(GLint size, GLenum type, GLsizei stride, const GLvoid
*pointer);

void glEdgeFlAGPointer(GLsizei stride, const GLvoid *pointer);

void glVertexPointer(GLint size, GLenum type, GLsizei stride, const GLvoid
*pointer);

GLint size: is the number of coordinates per vertex, which must be 2, 3, or 4.

GLenum type:is the data type (GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE).

GLsizei stride:is the byte offset between consecutive vertices (or other type).

GLvoid *pointer:points to the storage array for the vertices (or other type).

Note: There is such a thing as “intertwined” arrays where multiple types can be stored in a single a
and therefore can be “pointed to” using the stride variable to indicate the offset from the begi
of the first group to the beginning of the next group of the type to be pointed to. For example
intertwined array of x, y, z vertices and RGB color could be created and pointed to in this wa

static GLfloat intertwinded[] =

{2.0, 0.3, 2.0, 200.0, 100.0, 0.0,

2.0, 0.3, 0.0, 100.0, 100.0, 0.0,

2.0, 2.0, 0.3, 100.0, 300.0, 0.0};

glEnableClientState(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

glColorPointer(3, GL_FLOAT, 6 * sizeof(GLfloat), intertwined);

glVertexPointer(3, GL_FLOAT, 6 * sizeof(GLfloat), &intertwined[3]);

3. Render the data. The above calls remain on the application side of the graphics pipeline
order to send the data to the Intel740 for rendering the user needs to “dereference” the a
which cause them to be sent down the graphics processing pipeline. This can be done by
de-referencing a single array element from a sequence of array elements or from an ord
list of array elements. The following call is used to render an ordered list of array eleme
void glDrawArrays(GLenum mode, GLint first, GLsizei count);

GLenum mode: The primitive type.

GLint first: The start of the array to be processed

GLsizei count: The number of elements to be rendered.
glEnableClientStat(GL_COLOR_ARRAY);

glEnableClientState(GL_VERTEX_ARRAY);

.

.

glEnableClientState(otherarray);

glColorPointer(3, GL_FLOAT, 6 * sizeof(GLfloat), intertwined);

glVertexPointer(3, GL_FLOAT, 6 * sizeof(GLfloat), &intertwined[3]);

.

.

Intel740 Software Developer’s Manual 2-15

Hardware Capabilities

nd
cts.
:

e
d at
sities
gl*Pointer(...);

glDrawArrays(GL_TRIANGLES, 0, vertexs_count);

glDisableClientState(Glenum array);

The above call would render all of the arrays which have been enabled and pointed to.

2.2.3 Data Formats

The data value ranges are independent of the API. Table 2-1 gives a listing of each data format and
the corresponding domain and range values.

2.2.4 Surface Color Attributes

Surface attributes are those items which allow the user to define the object’s visual quality a
which can be combined in a number of ways to create different atmospheric and lighting effe
The surface attributes which the Intel740 supports are discussed in the following subsections

• “Fogging” (below)

• “Specular Highlighting” on page 2-18

• “Alpha Testing” on page 2-22

• “Color Dithering” on page 2-22

• “Shading” on page 2-23

• “Stippled Pattern” on page 2-24

2.2.4.1 Fogging

Fogging adds the effect of density to the atmosphere. As an object goes farther away from th
viewer, it appears to become more “cloudy” or “foggy” than closer objects. Fogging is specifie
each vertex and is interpolated to each pixel center. If fog is disabled, the incoming color inten
are passed unchanged. Fog is linearly interpolative, with the pixel color determined by the
following equation:

C = f * Cp + (1 - f) * Cf

where f is the fog coefficient per pixel, Cp is the polygon color, and Cf is the fog color.

Table 2-1. Data Formats

Parameters Input Format Domain Range

Vertex X, Y 32-bit Floating Point 0.0–2048 x: 0–2047

y: 0–1023 Depth (Z) 32-bit Floating Point 0.0–1.0

0–64K Texture U, V 32-bit Floating Point 0–64K

0–64K (32K) Texture W 32-bit Floating Point 0.0–1.0

1/z Color R, G, B, A Fixed 0.8 0–255

0–255 Specular Color R, G, B Fixed 0.8 0–255

0–255 Fog Factor Fixed 0.8 0–255

0–255
2-16 Intel740 Software Developer’s Manual

Hardware Capabilities

d
lue

vertex

 and

 API.

lues or

og
Example 2-3. Enabling Fogging with DirectX

The following code shows how to enable fogging using the DirectX API. The first step is to turn
fogging on by setting the “D3DRENDERSTATE_FOGENABLE” state to “TRUE”. The secon
step is to set the color of the fog as shown below where D3DCOLOR has a red, green and b
value that will correspond to the color of the fog.
SetRenderState(D3DRENDERSTATE_FOGENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_FOGCOLOR, <D3DCOLOR>);

The density of the fog is specified by setting the alpha component of the specular value of a
as shown below using the D3DLVERTEX data type:
D3DLVERTEX pLVertex;

pLVertex.specular = RGBA_MAKE(sred, sgreen, sblue, FOG_DENSITY);

The density of the fog value is between 0 and 255, where 0 is dense, completely opaque fog
255 completely clear or no fog.

Example 2-4. Enabling Fogging with OpenGL

There are several steps and many choices when implementing fogging through the OpenGL
The following code shows how to set the multiple fogging values:
glEnable(GL_FOG) { ... };

Enables fogging; other values corresponding to the fog can be set within the braces.
glFogi(GL_FOG_MODE, <MODE>);

Where <MODE> is either GL_LINEAR, GL_EXP, or GL_EXP2. The GL_LINEAR flag is
hardware accelerated with the Intel740.
GLfloatfogColor[4] = {0.5, 0.5, 0.5, 1.0};

glFogfv(GL_FOG_COLOR, fogColor);

Sets the fog color from the values set in the fogColor array. Fog color can be set as RGB va
from a color index.
glFogf(GL_FOG_DENSITY, <VALUE>);

Sets the fog density to <VALUE> which can be a floating point number from 0.0 to 1.0. The f
density is used when calculating GL_EXP or GL_EXP2 fog values.
glFogf(GL_FOG_START, <START_VALUE>);

Figure 2-10. Effects of Fogging Off vs Fogging On
Intel740 Software Developer’s Manual 2-17

Hardware Capabilities

iew

z

d

ach

 on a
reate
Sets the start of the fog in the view. The <START_VALUE> corresponds to a “z” value in the v
and can be any floating point value within the view volume z range.
glFogf(GL_FOG_END, <END_VALUE>);

Sets the end of the fog in the view. The <END_VALUE> corresponds to the point in the view
where the user wants fogging to end and can be a floating point value with the view volume
range.
glHint(GL_FOG_HINT, <HINT_VALUE>);

Specifies how the fog is calculated where <HINT_VALUE> is either GL_NICEST or calculate
per pixel, or GL_FASTEST, calculated per vertex. The Intel740 accelerates GL_FASTEST.

For OpenGL, the fog equations are as follows:

f = e -(density * z) (GL_EXP)

f = e -(density*z)2 (GL_EXP2)

f = end - z/end - start (GL_LINEAR)

2.2.4.2 Specular Highlighting

Specular highlighting adds the effect of a “hot spot” on an object which corresponds to the
shininess of the material. The specular highlight can be varied by the amount specified for e
red, green, and blue component. The Intel740 has the capability to utilize colored specular
highlights which adds to the realism of a scene. For instance, if you have a blue light shining
red apple, the specular highlight would be blue in real life. With the Intel740, it is possible to c
a specular highlight of any color.

Figure 2-11. Effects of Using Specular Highlighting
2-18 Intel740 Software Developer’s Manual

Hardware Capabilities

h
nGL

ding
nd alpha
 allow
Example 2-5. Enabling Specular Highlighting with DirectX

The specular color of a vertex is set to red as illustrated with the following DirectX code:
D3DLVERTEX pLVertex;

pLVertex.specular = RGBA_MAKE(255, 0, 0, FOG_DENSITY);

In order to enable the specular highlights with DirectX so that they are visible, the following
D3DRENDERSTATE is set to true:
SetRenderState(D3DRENDERSTATE_SPECULARENABLE, TRUE);

Example 2-6. Enabling Specular Highlighting with OpenGL

Specular highlighting is added in to the color equation at the application’s lighting stage whic
formulates the RGBA color sent to the driver. To set the specular lighting component in Ope
the following code may be used:
Glfloat mat_specular[] = {1.0, 1.0, 1.0, 1.0}

glMaterialfv(GL_FRONT, GL_SPECULAR, mat_specular);

2.2.4.3 Alpha Blending

Alpha blending adds the material property of transparency or opacity to an object. Alpha blen
requires a source red, green, blue, and alpha component and a destination red, green, blue a
component. This is so that a glass surface on top (source) of a red surface (destination) would
much of the red base color to show through. The Intel740 blends the source Rs, Gs, Bs, As
component with the destination Rd, Gd, Bd, Ad component by the following formula:

(R’, G’, B’, A’) = (RsSr + RdDr, GsSg + GdDg, BsSb +BdDb, AsSa + AdDa)

Where Sr, Sg, Sb, Sa is a blending factor for the source and Dr, Dg, Db, Da is a blending factor for
the destination.
Intel740 Software Developer’s Manual 2-19

Hardware Capabilities
Example 2-7. Enabling Alpha Blending with DirectX

To enable alpha blending with DirectX, the ALPHABLENDENABLE flag must be set to TRUE,
and then a SRCBLEND and DESTBLEND flag must be specified as shown below:
SetRenderState(D3DRENDERSTATE_ALPHABLENDENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_SRCBLEND, <D3DBLEND FLAG>);

SetRenderState(D3DRENDERSTATE_DESTBLEND, <D3DBLEND FLAG>);

The D3DBLEND FLAG is ZERO, ONE, SRCCOLOR, INVSRCCOLOR, DESTCOLOR,
INVDESTCOLOR, BOTHSRCALPHA, or BOTHINVSRCALPHA. The blending factors are
calculated depending on the D3DBLEND FLAG according to the formulas shown in Table 2-2. A
common implementation is to set the source flag to SRCCOLOR and the destination flag to
INVSRCCOLOR.

Example 2-8. Enabling Alpha Blending with OpenGL

To enable alpha blending with OpenGL, the following function call is made:
glEnable(GL_BLEND);

To set the source and destination blending factors, the following call is made:
glBlendFunc(<SOURCE_FLAG>, <DESTINATION_FLAG>);

The <SOURCE_FLAG> and <DEST_FLAG> can be set to any of the flags in the chart below and
the resulting blend will be what the corresponding values equate to when plugged into the Intel740
equation above.

Figure 2-12. Effects of Using Alpha Blending
2-20 Intel740 Software Developer’s Manual

Hardware Capabilities
Table 2-2. Alpha Blend Functions for OpenGL & DirectX

FLAG Source Blend Factor Destination Blend Factor

GL_ZERO

D3DBLEND_ZERO

Sr = 0

Sg = 0

Sb = 0

Sa = 0

Dr = 0

Dg = 0

Db = 0

Da = 0

GL_ONE

D3DBLEND_ONE

Sr = 1

Sg = 1

Sb = 1

Sa = 1

Dr = 1

Dg = 1

Db = 1

Da = 1

GL_SRC_COLOR

D3DBLEND_SRCCOLOR

Sr = Rs

Sg = Gs

Sb = Bs

Sa = As

GL_DST_COLOR

D3DBLEND_DESTCOLOR

Dr = Rd

Dg = Gd

Db = Bd

Da = Ad

GL_ONE_MINUS_SRC_COLOR

D3DBLEND_INVSRCCOLOR

Sr = 1-Rs

Sg = 1-Gs

Sb = 1-Bs

Sa = 1-As

GL_ONE_MINUS_DST_COLOR

D3DBLEND_INVDESTCOLOR

Dr = 1-Rd

Dg = 1-Gd

Db = 1-Bd

Da = 1-Ad

GL_SRC_ALPHA

D3DBLEND_SRCALPHA

Sr = As

Sg = As

Sb = As

Sa = As

Dr = As

Dg = As

Db = As

Da = As

GL_ONE_MINUS_SRC_ALPHA

D3DBLEND_INVSRCALPHA

Sr = 1-As

Sg = 1-As

Sb = 1-As

Sa = 1-As

Dr = 1-As

Dg = 1-As

Db = 1-As

Da = 1-As

D3DBLEND_BOTHSRCALPHA

Sr = As

Sg = As

Sb = As

Sa = As

Dr = 1-As

Dg = 1-As

Db = 1-As

Da = 1-As

D3DBLEND_BOTHINVSRCALPHA

Sr = 1-As

Sg = 1-As

Sb = 1-As

Sa = 1-As

Dr = As

Dg = As

Db = As

Da = As
Intel740 Software Developer’s Manual 2-21

Hardware Capabilities

reas
and
olor
ined
 four
 be
nt and
2.2.4.4 Alpha Testing

The Intel740 supports the use of alpha blend testing functions. This allows the user to control how
objects in the scene are alpha blended. When using source alpha blending the user does not need to
create an alpha buffer. When using source alpha blending, the alpha channel of the textures are
used for the blending formulas and there is no need for an alpha buffer. The user must remember to
sort from back to front, so that the blending is performed correctly.

Example 2-9. Enabling Alpha Testing Functions With DirectX

To enable alpha testing functions with DirectX, the following render states are set:
SetRenderState(D3DRENDERSTATE_ALPHABLENDENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ALPHATESTENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ALPHAFUNC, <D3DCMPFUNC>);

SetRenderState(D3DRENDERSTATE_ALPHAREF, <ALPHA REF>);

Where <D3DCMPFUNC> can be set to D3DCMP_NEVER, D3DCMP_LESS,
D3DCMP_EQUAL, D3DCMP_LESSEQUAL, D3DCMP_GREATER, D3DCMP_NOTEQUAL,
D3DCMP_GREATEREQUAL, or D3DCMP_ALWAYS. And where <ALPHA REF> is a value
specifying a reference alpha value against which pixels are tested when alpha-testing is enabled.
This value is in the range of 0 to 1 and must be 8 bits or less for the Intel740. The default value is 0.

Example 2-10. Enabling Alpha Testing Functions With OpenGL

To enable alpha testing functions with OpenGL, the following render states are set:
glEnable(GL_ALPHA_TEST);

glAlphaFunc(<GLFUNC>, <GLREF>);

Where <GLFUNC> is GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL,
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. <GLREF> must be between 0 and 1.

2.2.4.5 Color Dithering

Color dithering is created by a pattern of pixels which are more than one color. When looked at
from a distance, the combined effect is a new color. In this manner, many different colors can be
simulated by combining a few colors. Color dithering takes advantage of the human eye’s
propensity to “average” the colors in a small area. With limited color fidelity available, large a
of “flat” colors can exist. Color dithering takes the input of color, alpha, and fog components
converts them from 8 bits to five- or six-bit components. Color dithering simulates 256-level c
resolution by an ordered pattern of 32- or 64-level color pixels. A four-bit dither value is obta
by addressing a 4x4 matrix with the pixel’s x and y (2 LSBs of each). The matrix repeats every
pixels in both directions. The value obtained is appropriately shifted to align with (what would
otherwise) truncated bits of the component being dithered. It is then added with the compone
the result is truncated to the five (six for green) MSBs.

Example 2-11. Enabling Color Dithering with DirectX

To enable color dithering with DirectX do the following:
SetRenderState(D3DRENDERSTATE_DITHERENABLE, TRUE);

Example 2-12. Enabling Color Dithering with OpenGL

To enable color dithering with OpenGL do the following:
glEnable(GL_DITHER);
2-22 Intel740 Software Developer’s Manual

Hardware Capabilities
2.2.4.6 Shading

The Intel740 shading attributes determine how the colors of the polygons (triangles) are
interpolated for each pixel in a surface. The Intel740 allows each of the alpha, fog, specular, and
color attributes to be shaded individually. There are two types of shading performed by the
Intel740: flat shading and Gouraud shading. Flat shading makes objects appear blocky, since each
polygon (triangle) face is denoted by a solid color. This is because flat shading takes a specified
attribute from the first passed vertex and uses this attribute to cover every pixel in the polygon.
Gouraud shading smooths the appearance of adjacent polygons (triangles) so that a sphere which
looked blocky flat shaded can be made to look more rounded. This is because Gouraud shading
takes the three vertices of the triangle and interpolates over the entire surface to blend the vertex
colors and attributes such as fog, specularity and transparency (alpha).

Example 2-13. Enabling Shading with DirectX

In order to enable either flat or Gouraud shading using DirectX, the following render state is set:
SetRenderState(D3DRENDERSTATE_SHADEMODE, <D3DSHADEMODE>);

Where the shade mode is either D3D_GOURAUD or D3D_FLAT.

Example 2-14. Enabling Shading with OpenGL

In order to enable either flat or Gouraud shading using OpenGL, the following call can be made:
glShadeModel(<GLSHADEMODE>

Where the shade mode is either GL_SMOOTH, for Gouraud shading, or GL_FLAT for flat
shading.

Figure 2-13. Effects of Flat Shading vs. Smooth Shading
Intel740 Software Developer’s Manual 2-23

Hardware Capabilities

ry.
2.2.4.7 Stippled Pattern

The stipple pattern feature of the Intel740 is used to set values in a 32x32 pixel matrix to be either
1 or 0, where 0 means that the corresponding portion of the pattern will be rendered as a black
pixel. Stippled patterns can be used when the application wants the screen to fade to black by
changing the pattern to have more zeros set for each frame rendered.

Example 2-15. Enabling Stippled Patterns with DirectX

To enable stippled pattern for the Intel740 using DirectX, do the following:
SetRenderState(D3DRENDERSTATE_STIPPLEENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_STIPPLEPATTERN00, 1 OR 0);

.

.

SetRenderState(D3DRENDERSTATE_STIPPLEPATTERN31, 1 OR 0);

The default value for all of the stipple patterns is 0. When a stippled pattern is enabled and no
stipple pattern is set, the result is a black screen.

Example 2-16. Enabling Stippled Patterns with OpenGL

To enable stippled pattern for the Intel740 using OpenGL do the following:
glEnable(GL_POLYGON_STIPPLE);

glPolygonStipple(const Glubyte *StippleMatrix);

Where StippleMatrix is a pointer to a 32x32 pixel bitmap interpreted as a mask of 0s and 1s.

2.2.5 Texture Map Attributes

The Intel740 allows virtually unlimited texture usage. This is because textures can be stored in the
AGP system memory otherwise known as non-local video memory. The amount of AGP memory
available for the application is limited by the amount of system RAM which can be allocated.
Therefore, if a system has 32 Mbytes of RAM available, 20 Mbytes could be used for textures.
Using AGP for texture memory complements the performance of the Intel740, since textures can
be mapped directly from AGP memory to the Intel740 without using the CPU. This mapping is
done in parallel with the Intel740 local video memory transfers for frame buffers. The total
bandwidth enabled by the parallel throughput is up to 1.3 Gbytes per second. The Intel740 also
“tiles” textures in AGP memory in order to minimize page faults and storage overhead which
increases both performance and texture space. Textures can not be put in local video memo
2-24 Intel740 Software Developer’s Manual

Hardware Capabilities
There are many ways to manipulate surface textures with the many Intel740 Texture Map
Attributes. The categories are described in the following subsections:

• “Texture Map Formats” on page 2-26

• “Texture Map Blending” on page 2-28

• “Texture Map Chroma Keying and Color Keying” on page 2-30

• “Texture Wrapping Formats” on page 2-32

• “Texture Map Filtering” on page 2-33

• “Texture Mipmapping” on page 2-34

Figure 2-14. Getting 1.3 Gbytes of Concurrent Throughput with the Intel740

Front
Buffer

Back
Buffer

Z-Buffer

.6 Mbyte

Textures
.533

Gbyte System
Memory

(AGP Port)

Intel740 440 LX

Pentium
Processor

.80 Gbyte
Bandwidth

.533 Gbyte
Bandwidth



.533
Gbyte

640x480x16 640x480x16 640x480x16

.80
Gbyte

2
M

b
yt

e
L

o
ca

l
V

id
eo

 M
em

o
ry

II

.6 Mbyte
.6 Mbyte
Intel740 Software Developer’s Manual 2-25

Hardware Capabilities
2.2.5.1 Texture Map Formats

The Intel740 supports up to 16 bits of color in various texture formats. There are three ways to
catalog texture types: ARGB, AYUV, or YUV. All the texture formats listed below are supported
as either palettized or non-palettized. When the amount of bits per texel in a texture is less than 16,
the color information is stored in a palette consisting of 256 16-bit entries. The texture cache is
used to store previously accessed texels needed for blending or other purposes, so that additional
reads from memory are not needed. The Intel740 supports images whose dimensions are a power
of two. The dimensions do not have to be square.

DirectX Texture Map Formats supported:

• 1555ARGB

• 0565ARGB (DirectX default for palettized)

• 4444ARGB (DirectX default for palettized with alpha)

• 422YUV (UV is 2’s complement) (YUY2 FOURCC)

• 422YUV (UV is excess 128) (YUY2 FOURCC)

• 0555AYUV (texture data compression)

• 1544AYUV (texture data compression)

• Palettized 1, 2, 4, and 8 bit.

OpenGL Texture Map Formats supported:

• RGB5 (0555ARGB)

• RGBA4(4444ARGB)

• RGB5_A1(1555ARGB)

Example 2-17. Creating a Texture Surface with DirectX

The following DirectX example shows how to create a 4444 ARGB texture surface in AGP non-
local video memory:

First set the pixel format for the 4444 ARGB:
DDPIXELFORMAT ddpf;

DDSURFACEDESC ddsd;

ddpf.dwSize = sizeof(ddpf);

ddsd.dwSize = sizeof(ddsd);

ddpf.dwRGBBitCount = 16 //Total number of bits including alpha

ddpf.dwRBitMask = 0x0F00; //Specify the masks for color components

ddpf.dwGBitMask = 0x00F0;

ddpf.dwBBitMask = 0x000F;

ddpf.dwRGBAlphaBitMask = 0xF000;

ddpf.dwFlags = DDPF_RGB; //specify the pixel format is valid

ddsd.dwFlags = DDSD_PIXELFORMAT;

Next set the correct direct draw surface capability flags and creates the surface:
IDIRECTDRAW*lpdd;

IDIRECTDRAWSURFACE*lpTextureSurface;

HRESULT ddrval;

ddsd.dwSize = sizeof(ddsd);

ddsd.dwHeight = 128;

ddsd.dwWidth = 128;
2-26 Intel740 Software Developer’s Manual

Hardware Capabilities
ddsd.wFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH;

ddsd.ddsCaps = DDSCAPS_TEXTURE | DDSCAPS_ALLOCONLOAD | DDSCAPS_VIDEOMEMORY |

DDSCAPS_NONLOCALVIDMEM;

ddrval = lpdd->CreateSurface(&ddsd, &lpTextureSurface, NULL);

Once a texture surface has been created, a palette and texture can be loaded onto the surface using
the DirectDraw sample functions DDLoadPalette and DDReLoadBitmap from the ddutil.cpp file
included in the DirectX 5.0 SDK.

IDIRECTDRAWPALETTE *lpDDPal;
lpDDPal = DDLoadPalette(lpDD, “MyTexture.bmp”);

ddrval = lpTextureSurface->SetPalette(lpDDPal);

ddrval = DDReLoadBitmap(lpTextureSurface, “MyTexture.bmp”);

To enable the texture for rendering, the following state change is made where the texture handle
which points to a texture surface is enabled so that a particular texture surface will be rendered:
D3DTEXTUREHANDLE HTex;

lpTextureSurface->GetHandle(lpD3Ddevice, &HTex);

SetRenderState(D3DRENDERSTATE_TEXTUREHANDLE, &HTex);

The texture handle assigned to the texture surface is enabled.

Example 2-18. Creating a Texture Surface with OpenGL

In OpenGL 1.1, it is recommended to use texture objects. Texture objects are beneficial because
they allow the programmer to specify which texture is active with one simple call after these three
steps are taken:

1. Generate texture names; a texture name can be any nonzero unsigned integer. The following
call should be used when generating a texture name to ensure that a unique texture name is
created.
 glGenTextures(GLsize n, Gluint *TextureName);

This call returns a texture object pointed to through textureName. When using an array of
texture names, n corresponds to the number of unused textures names in the array of texture
names.

2. The next step is to bind texture objects to texture data. The following call is used:
 glBindTexture(GLenum target, Gluint *TextureName);

This causes the texture specified by TextureName to become active where target is either
GL_TEXTURE_1D, or GL_TEXTURE_2D and TextureName is the same pointer used in
glGenTextures.

3. The next step creates the texture surface which will from then on, correspond to the
textureName pointer:

glTexImage2D(GLenum <TARGET>, GLint <LEVEL>, GLint <INTERNALFORMAT>,
Glsizei<WIDTH>, GLsize <HEIGHT>, GLint <BORDER>, GLenum <FORMAT>, GLenum
<TYPE>, GLvoid <PIXELS>);

<TARGET> is either GL_TEXTURE_2D, or GL_PROXY_TEXTURE_2D;

<LEVEL> is 0 or the number of texture resolutions to be used

<INTERNALFORMAT> is the texture format supported by the Intel740 and is GL_RGB5 or
GL_RGBA4, or GL_RGB5_A1

<WIDTH> and <HEIGHT> correspond to the dimensions of the texture; <BORDER>
indicates the width of the border which is either 0 (if there is no border) or 1

<FORMAT> and <TYPE> describe the format and data type of the texture image data

<PIXELS> is a pointer to the texture image data. This data describes the texture image itself as
well as its border.
Intel740 Software Developer’s Manual 2-27

Hardware Capabilities

n for
 When put together, creating and enabling a texture surface is done by the following:
 glEnable(GL_TEXTURE_2D);

 glGenTextures(1, &texture_name);

 glBindTexture(GL_TEXTURE_2D, texture_name);

 glTexImage2D(GL_TEXTURE_2D, 0, GL_RGBA16, width, height, 0, GL_RGBA16,
GL_UNSIGNED_BYTE, image_pointer);

The variable image_pointer points to the memory location where the image data is currently stored.
Subsequent uses of the same image data need only use the glEnable() and the glBindTexture()
calls.

2.2.5.2 Texture Map Blending

The Intel740 supports texture map blending modes that can be used to modify the pixel color by
blending a textured surface with the underlying vertex color.

Example 2-19. Enabling Texture Blending with DirectX

DirectX texture blending modes are shown in Table 2-3. Each mode’s behavior depends on
whether a texture alpha is provided (RGB or RGBA). The color and alpha equations are give
each case. These equations employ the following definitions:

Some of the modes degenerate to the same function if a texture alpha is not provided.

Cf intrinsic (flat or Gouraud Interpolated) color of feature

Af intrinsic (flat or Gouraud Interpolated) alpha of feature

Ct color from texture data

At alpha from texture data

Am lsb of nearest-neighbor alpha from texture data

Co color output of texture blend function

Ao alpha output of texture blend function
2-28 Intel740 Software Developer’s Manual

Hardware Capabilities
Each of the DirectX texture blend states is described in detail below:

DECAL

In the Decal state, the output color is the texture color. The output alpha is the feature alpha with an
RGB texel format and the texture alpha with an RGBA texel format.

MODULATE

In the Modulate state, the output color is the product of the texture color and the feature color. The
output alpha is the feature alpha with an RGB texel format and is the texture alpha with an RGBA
texel format.

DECALALPHA

In the Decal Alpha state, the output color is the texture color with an RGB texel format and is a
texture alpha blended combination of the feature color and the texture color with an RGBA texel
format. The output alpha is the feature alpha.

MODULATEALPHA

In the Modulate Alpha state, the output color is the product of the texture color and the feature
color. The output alpha is the feature alpha with an RGB texel format and is the product of the
feature alpha and the texture alpha, with an RGBA texel format.

DECALMASK

In the Decal Mask state, the output color is the texture color with an RGB texel format. With an
RGBA texel format, the output color is the texture color if the nearest neighbor texel alpha lsb is 1
and is the feature color if the nearest neighbor texel alpha lsb is 0. The output alpha is the feature
alpha.

Table 2-3. DirectX Texture Map Blending Functions

Mode Texture Mode Pixel Color Alpha D3D Texture Modes
(D3DBLEND_)

Decal RGB Co = Ct Ao = Af DECAL

Decal RGBA Co = Ct Ao = At

Modulate RGB Co = Cf * Ct Ao = Af MODULATE

Modulate RGBA Co = Cf * Ct Ao = At

Decal Alpha RGB Co = Ct Ao = Af DECALALPHA

Decal Alpha RGBA Co = (1-At)*Cf + At*Ct Ao = Af

Modulate Alpha RGB Co = Cf * Ct Ao = Af MODULATEALPHA

Modulate Alpha RGBA Co = Cf * Ct Ao = Af * At

Decal Mask RGB Co = Ct Ao = Af DECALMASK

Decal Mask RGBA
If (Am) Co = Ct

Else Co = Cf
Ao = Af

Modulate Mask RGB Co = Cf * Ct Ao = Af MODULATEMASK

Modulate Mask RGBA
If (Am) Co = Cf * Ct

Else Co = Cf
Ao = Af
Intel740 Software Developer’s Manual 2-29

Hardware Capabilities

source
isible
d
so
ying

r
tte for
re the
he hi
MODULATEMASK

In the Modulate Mask state, the output color is the product of the feature color and the texture color
with an RGB texel format. With an RGBA texel format, the output color is the product of the
feature color and the texture color if the nearest neighbor texel alpha lsb is 1 and is the feature color
if the nearest neighbor texel alpha lsb is 0. The output alpha is the feature alpha.

In order to use the texture map blending features with DirectX, first obtain a handle to the texture
surface to be used for blending:
D3DTEXTUREHANDLE HTex;

lpTextureSurface->GetHandle(lpD3Ddevice, HTex);

SetRenderState(D3DRENDERSTATE_TEXTUREHANDLE, &HTex);

SetRenderState(D3DRENDERSTATE_TEXTUREMAPBLEND, <D3DTEXTUREBLEND>);

Where the D3DTEXTUREBLEND values are (D3DTBLEND_) DECAL, DECALALPHA,
DECALMASK, MODULATE, MODULATEALPHA, MODULATEMASK, or COPY.

Example 2-20. Enabling Texture Blending with OpenGL

Table 2-4 states the texture blend functions for OpenGL which the Intel740 supports.

To enable texture map blending in OpenGL, the following code is used:
glEnable(GL_TEXTURE_2D);

glBindTexture(GL_TEXTURE_2D, textureName);

glTexEnvf(GL_TEXTURE_ENV, GL_TEXTURE_NEV_MODE , <MODE>);

where <MODE> is stated as being either GL_DECAL or GL_MODULATE.

2.2.5.3 Texture Map Chroma Keying and Color Keying

Chroma Keying is analogous to the Hollywood “blue screen” effect whereby a color can be
selected in the destination texture through which the source can be made visible on top. The
texture defines a color to be made transparent so that the destination texture appears to be v
through where that color is defined in the source texture. Both texture map chroma keying an
color keying were designed to give the user the ability to make portions of a texture invisible
that the underlying scene can show through. The difference between texture map chroma ke
and color keying is that chroma keying is used for non-palettized textures. Texture map colo
keying is used with palettized texture where the user specifies one value from the color pale
both the high and low range. Texture map chroma keying is used with RGB(A) textures whe
user specifies a 16 bit value which represents the transparent color (usually black) for both t
and low range.

Table 2-4. OpenGL Texture Blend Modes and Equations

Mode Texture Mode Pixel Color Alpha OpenGL Mode

DECAL RGB Co = Ct Ao = Af GL_DECAL

DECAL RGBA Co = Cf(1-At)+Ct*At Ao = Af GL_DECAL

MODULATE RGB Co = Cf * Ct Ao = Af GL_MODULATE

MODULATE RGBA Co = Cf * Ct Ao = Af*At GL_MODULATE
2-30 Intel740 Software Developer’s Manual

Hardware Capabilities
Example 2-21. Enabling Texture Map Chroma Keying and Color Keying with DirectX

To enable chroma/color keying with DirectX, the user fills in a D3DCOLORKEY structure with
either a value range for chroma keying or a single palette value for color keying as follows:
typedef struct D3DCOLORKEY{

DWORD dwColorSpaceLowValue;

DWORD dwColorSpaceHighValue;

} DDCOLORKEY;

DDCOLORKEY ColorKeyInfo;

// for non-palettized textures

ColorKeyInfo.dwColorSpaceLowValue = 0x0000;

ColorKeyInfo.dwColorSpaceHighValue = 0x0000;

// for palettized textures

ColorKeyInfo.dwColorSpaceLowValue = 0;

ColorKeyInfo.dwColorSpaceHighValue = 0;

lpTextureSurface->SetColorKey(<dwFlags>, &ColorKeyInfo);

Where the <dwFlags> are either, DDCKEY_DESTBLT, DDCKEY_DESTOVERLAY, or
DDCKEY_SRCBLT. The SetColorKey function takes as its first parameter a DWORD flag which
can specify whether the color key is for a source blit, a destination blit, or a destination overlay.

To enable the color/chroma keying, the user needs to set the appropriate render state:
SetRenderState(D3DRENDERSTATE_COLORKEYENABLE, TRUE);

To actually see color keying, use one of the DirectX Blt functions as shown:
lpBackBuffer->BltFast(Xpos, Ypos, lpOffscreenSurface, &Rectangle,
DDBLTFAST_SRCCOLORKEY);

Figure 2-15. A Color Keyed Splash
Intel740 Software Developer’s Manual 2-31

Hardware Capabilities

re is

/

map
2.2.5.4 Texture Wrapping Formats

Applications can specify different texture-wrapping formats for either or both of the U and V
directions.

Example 2-22. Enabling Texture Wrapping with DirectX

The Intel740 supports the following DirectX texture wrap formats:

WRAP

The wrap mode creates an effect in which the texture map looks like it is repeated over and over in
the selected region. In wrap mode, textures appear to be tiled. If either WRAPU or WRAPV is set,
the texture is an infinite cylinder with a circumference of 1.0. Texture coordinates greater than 1.0
are valid only in the dimension that is not wrapped.

MIRROR

The mirror mode creates an effect where the texture map looks flipped or “mirrored.” It is
equivalent to the wrap mode’s “tiling” effect except that the texture is flipped at every integer
junction. For instance, between 0 and 1 the texture is normal, then between 1 and 2 the textu
flipped, and between 2 and 3 it is normal, then between 3 and 4 it is flipped, etc.

CLAMP

In clamp mode, the texture coordinates greater than or equal to 1.0 are set to (impasses - 1)
mapsize, and values less than 0.0 are set to 0.0.

In DirectX, the default texture wrap format is D3DADDRESS_WRAP. To change the texture
format with DirectX API, first set the appropriate texture address type:
SetRenderState(D3DRENDERSTATE_TEXTUREADDRESS, <D3DTEXTUREADDRESS>);

Where the D3DTEXTUREADDRESS is either D3DTADDRESS_WRAP,
D3DTADDRESS_MIRROR, or D3DTADDRESS_CLAMP.

Then enable texture wrapping in either the U or V direction by setting the following:
SetRenderState(D3DRENDERSTATE_WRAPU, TRUE);

SetRenderState(D3DRENDERSTATE_WRAPV, TRUE);

Example 2-23. Enabling Texture Wrapping with OpenGL

The Intel740 supports the following OpenGL texture wrap formats:

Table 2-5. Supported DirectX Texture Wrap Formats

Texture Wrap U Texture Wrap V D3DTEXTUREADDRESS

Wrap Wrap D3DTADDRESS_WRAP

Mirror Mirror D3DTADDRESS_MIRROR

Clamp Clamp D3DTADDRESS_CLAMP

Table 2-6. Supported OpenGL Texture Wrap Formats

GL_TEXTURE_WRAP_S GL_TEXTURE_WRAP_T VALUE

Clamp Clamp GL_CLAMP

Repeat Repeat GL_REPEAT
2-32 Intel740 Software Developer’s Manual

Hardware Capabilities

rs
er

ere
h texel

p

ith
res as

n a
In OpenGL, the texture wrap methods are defined as follows:

CLAMP

Any values greater than 1.0 are set to 1.0, and any values less than 0.0 are set to 0.0. Clamping is
useful for applications where you want a single copy of the texture to appear on a large surface. If
the surface-texture coordinates range from 0.0 to 10.0 in both directions, one copy of the texture
appears in the lower corner of the surface.

REPEAT

Any values outside the range of [0,1] will be repeated in the texture map. With repeating textures,
if you have a large texture surface with coordinates from 0.0 to 10.0 in both directions, then 100
copies of the texture will be tiled on the screen.

To enable a texture mapping method, the following calls should be made:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, <WRAP_MODE>);

glTexParameterI(GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, <WRAP_MODE>);

Where <WRAP_MODE> is either GL_CLAMP or GL_REPEAT.

2.2.5.5 Texture Map Filtering

Texture map filtering enables the user to choose the method the hardware uses to calculate the
output pixel color as it corresponds to the texture’s texel color at the mapped location. Facto
which determine the user’s screen pixel color include the distance of the object from the view
and the size of the texture map in relation to the size of the object. In some applications wh
texture filtering is not used, a close up object can cause a texture to look blocky because eac
is repeated over a square range of pixels.

The Intel740 supports the following texture filtering modes for both DirectX and OpenGL:
Nearest, Linear, Mip Nearest, Mip Linear, Linear Mip Nearest and Linear Mip Linear. The Mi
modes will be discussed in the Texture Mipmapping section.

NEAREST

The nearest texture filtering mode is also known as “point filtering.” In this mode, the texel w
coordinates nearest to the desired pixel value are used. The output can result in blocky textu
the object becomes larger to the viewer.

LINEAR

The linear texture filtering mode is also known as “bilinear filtering.” In this mode, a weighted
average of a 2-by-2 area of texels surrounding the desired pixel is used. The output results i
smoother representation of the texture without blockyness.
Intel740 Software Developer’s Manual 2-33

Hardware Capabilities

ize
asing
se of
arther
xture
Example 2-24. Enabling Texture Map Filtering with DirectX

To enable texture filtering with DirectX, there are two cases which must be addressed. First is
when the texture map is minified because the texel is smaller than one pixel. The second case is
when the texture map is magnified and a texel is larger than one pixel. To enable texture filtering
with DirectX, the following render states must be set:
SetRenderState(D3DRENDERSTATE_TEXTUREMIN, <D3DTEXTUREFILTER>);

SetRenderState(D3DRENDERSTATE_TEXTUREMAG, <D3DTEXTUREFILTER>);

Where the D3DTEXTUREFILTER can be set to either D3DFILTER_NEAREST,
D3DFILTER_LINEAR, D3DFILTER_MIPNEAREST, D3DFILTER_MIPLINEAR,
D3DFILTER_LINEARMIPNEAREST, or D3DFILTER_LINEARMIPLINEAR.

Example 2-25. Enabling Texture Map Filtering with OpenGL

To enable texture filtering with OpenGL, the following calls are made:
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, <FILTER_MODE>);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, <FILTER_MODE>);

Where FILTER_MODE is either GL_NEAREST, GL_LINEAR, GL_MIPMAP_NEAREST,
GL_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR.

2.2.5.6 Texture Mipmapping

Because textured objects can be viewed at different distances from the viewer in 3D space, it is
possible for a texture object to become smaller than the texture image. This occurrence will cause
the texture map to be under-sampled during rasterization. As a result, the texture mapping may
display artifacts or “noise.” The purpose of trilinear interpolating and mipmapping is to minim
this effect. With mipmapping, software provides a series of pre-filtered texture maps of decre
resolutions, called “mipmaps” and stores them in memory. When a 3D object is larger becau
its close proximity to the viewer, a corresponding texture map is used. As the object moves f
away from the viewer, Intel740 determines which mipmap to use and switches to a smaller te
size.

Figure 2-16. Point Filtering VS. Bilinear Filtering
2-34 Intel740 Software Developer’s Manual

Hardware Capabilities
Intel740 supports 11 mipmaps ranging from 1024 x 1024 down to a 1 X 1 texel map. Each
successive level has 1/2 the resolution of the previous level in the U and V directions until a 1x1
texture is reached. Both dimensions of the mipmap must be a power of 2 although they do not have
to be square. Two forms of mipmap texture filtering can be selected in either DirectX or OpenGL
they are:

MIP NEAREST

Similar to the texture filtering Nearest form except that Mip Nearest uses the appropriate mipmap
for texel selection.

MIP LINEAR

Similar to the texture filtering Linear form except that Mip Linear uses the appropriate mipmap for
texel selection.

LINEAR MIP NEAREST

The two closest mipmap levels are chosen and then a linear blend is used between point filtered
samples of each level.

LINEAR MIP LINEAR

The two closest mipmap levels are chosen and then combined using a bilinear filter.

Figure 2-17. An Example of Five Levels of Mipmapped Texture
Intel740 Software Developer’s Manual 2-35

Hardware Capabilities

ll the

age

rrent
 on-

all is

n the

ll:
Example 2-26. Mipmap Enabling with DirectX

To enable texture mipmapping using DirectX, a mipmapped surface must first be created and
loaded with the appropriate texture maps. To do this with DirectX Immediate Mode, specify that
the surface is a TEXTURE surface and also a MIPMAP surface. The user can specify the mipmap
count, but this is not necessary. When the “CreateSurface” call is made, DirectX generates a
levels on its own, down to 1x1.

Start by creating the mipmap surfaces:
HRESULT ddres;

DDSURFACEDESC ddsd;

LPDIRECTDRAWSURFACE3 lpDDMipMap;

ZeroMemory(&ddsd, sizeof(ddsd));

ddsd.dwSize = sizeof(ddsd);

ddsd.dwFlags = DDSD_CAPS | DDSD_MIPMAPCOUNT; ddsd.dwMipMapCount = 5;

ddsd.ddsCaps.dwCaps = DDSCAPS_TEXTURE | DDSCAPS_MIPMAP | DDSCAPS_COMPLEX

 | DDSCAPS_VIDEOMEMORY | DDSCAPS_NONLOCALVIDMEM;

ddsd.dwWidth = 256;

ddsd.dwHeight = 256;

Then call the CreateSurface function to build the mipmap chain of surfaces:
ddres = lpDD->CreateSurface(&ddsd, &lpDDMipMap);

Now five subsequent mipmapped surfaces have been created. The next step is to load an im
onto each surface. This can be done by traversing the surfaces with the DirectX
GetAttachedSurface call and then copying a bitmap which has already been loaded to the cu
mipmap level surface using the DDCopyBitmap function. See the DirectX SDK manuals and
line help for more in-depth information.

Finally, enable the mipmap filtering mode by setting the following render state in DirectX:
SetRenderState(D3DRENDERSTATE_TEXTUREMIN, <D3DTEXTUREFILTER>);

SetRenderState(D3DRENDERSTATE_TEXTUREMAG, <D3DTEXTUREFILTER>);

Where D3DTEXTUREFILTER is D3DFILTER_MIPNEAREST, D3DFILTER_MIPLINEAR,
D3DFILTER_LINEARMIPNEAREST, or D3DFILTER_LINEARMIPLINEAR.

Example 2-27. Enabling Mipmapping with OpenGL

OpenGL has a function which generates all the mipmaps from the dimensions of the mipmap
specified down to 1x1. The dimensions of the mipmap can be any power of 2. The following c
used:
gluBuild2DMipmaps(GLenum target, Glint components, Glint width, Glint height,

Glenum format, Glenum type, void *data);

This function is like the glTexImage2D() which creates a texture map surface as mentioned i
section above.

Then, enable either the mip-nearest or mip-linear filtering mode with the following function ca
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, <FILTER_MODE>);

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, <FILTER_MODE>);

Where FILTER_MODE is GL_MIPMAP_NEAREST or GL_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST, or GL_LINEAR_MIPMAP_LINEAR.
2-36 Intel740 Software Developer’s Manual

Hardware Capabilities
2.2.6 Drawing Formats

The Intel740 supports the following Drawing Formats:

Solid The output to the screen is a triangle, either solid color or patterned by a
texture map.

Wire-frame The output to the screen is a line drawing, either solid color or patterned
by a texture map.

Example 2-28. Enabling Drawing Formats with DirectX

To enable drawing formats with DirectX, the following render state call is used:
SetRenderState(D3DRENDERSTATE_FILLMODE, <D3DFILLMODE>);

Where D3DFILLMODE is either D3DFILL_WIREFRAME or D3DFILL_SOLID.

Example 2-29. Enabling Drawing Formats with OpenGL

To enable drawing formats with OpenGL, the following call is made:
glPolygonMode(<FACE>, <MODE>);

where FACE is GL_FRONT_AND_BACK, GL_FRONT or GL_BACK and MODE is either
GL_LINE, or GL_FILL.

2.2.7 Buffers

The Intel740 supports many buffer types including:

• A back buffer, which can be placed in either local video memory or AGP memory

• A front buffer, which should be placed in local video memory

• A Z-buffer, which must be placed in local video memory

The Intel740 also supports two back buffer surfaces needed for triple buffering.

In OpenGL, the buffers are created by selecting the proper pixel format. The pixel formats and the
corresponding buffers they create are as follows:

When creating buffers with the DirectX API, the user uses the “CreateSurface” call and sets
appropriate DDSD flags and capabilities.

Table 2-7. Pixel Formats and Buffers

Back Buffer Depth (Z) Buffer

NO NO

NO YES

YES NO

YES YES
Intel740 Software Developer’s Manual 2-37

Hardware Capabilities
2.2.7.1 Double and Triple Buffering

Intel740 permits the use of both double and triple buffering, where one buffer is the primary buffer
used for display and one or two are the back buffer(s) used for rendering. With double buffering, an
application typically constructs a scene in the back buffer while the front buffer is being displayed.
With triple buffering, a flipping chain of buffers is used which gives added buffering between
drawing to the back buffer and rendering which can help increase performance. For double
buffering, when the scene in the back buffer is complete and it is time to display, the application
flips the two buffers or rather, switches the roles of the two buffers so that the drawn-to buffer
becomes the rendering buffer and vice versa. In the case of triple buffering, when flipping of the
buffers is performed, the application makes the second to last drawn-to buffer the rendering
(primary) buffer and draws to the last buffer used for rendering.

2.2.7.2 Z-Buffering

The Z-buffer contains 16 bits of depth information for each pixel in the display buffer. The use of
the Z-buffer is optional. Figure 2-18 below shows the use of the Z-buffer.

When enabled, the Z-buffer function performs a depth compare between the pixel Z (known as
source Z or ZS) and the Z value read from the Z-buffer at the current pixel address (known as
destination Z or ZD). If the test is not enabled, it is assumed the Z test always passes. The Z value
is only written to the Z-buffer when the results of the Z test are true. It is always necessary to clear
the Z-buffer before each new frame is drawn.

The Intel740 uses a logarithmic method for Z-buffering. The logarithmic approach makes those
objects closer to the viewer look better than does the linear approach.

Figure 2-18. Z-Buffering Off vs. Z-Buffering On
2-38 Intel740 Software Developer’s Manual

Hardware Capabilities
Example 2-30. Enabling Z-Buffering with DirectX
To Create a Z-buffer with DirectX the following surface must be created:

DDSURFACEDESC ddsd;

IDIRECTDRAW*lpdd;

IDIRECTDRAWSURFACE*lpZSurface;

HRESULT ddrval;

ddsd.dwSize = sizeof(ddsd);

ddsd.dwHeight = window_height;

ddsd.dwWidth = window_width;

ddsd.dwZBufferBitDepth = 16;

ddsd.wFlags = DDSD_CAPS | DDSD_HEIGHT | DDSD_WIDTH | DDSD_ZBUFFERBITDEPTH;

ddsd.ddsCaps = DDSCAPS_ZBUFFER | DDSCAPS_VIDEOMEMORY | DDSCAPS_LOCALVIDMEM;

ddrval = lpdd->CreateSurface(&ddsd, &lpZSurface, NULL);

To enable Z-buffering with DirectX, the following render states must be set:
SetRenderState(D3DRENDERSTATE_ZENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ZWRITEENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ZFUNC, <D3DCMPFUNC>);

D3DCMPFUNC is D3DCMP_NEVER, D3DCMP_LESS, D3DCMP_EQUAL,
D3DCMP_GREATEREQUAL, D3DCMP_LESSEQUAL, D3DCMP_GREATER,
D3DCMP_NOTEQUAL, or D3DCMP_ALWAYS.

The application also must clear the Z-Buffer using the following DirectX function call:
lpZSurface->Blt(lpDestRect, lpDDSrcSurface,lpSrcRec, DDBLT_DEPTHFILL,
dwFillDepth);

Example 2-31. Enabling Z-Buffering with OpenGL

In order to enable Z-Buffering with OpenGL, the following code is used:
glEnable(GL_DEPTH_TEST);

glDepthFunc(<FUNCTION>);

FUNCTION is GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL,
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL.

2.2.8 Antialiasing

Aliasing is one of the artifacts that degrades image quality. In its simplest manifestation, aliasing
causes the jagged staircase effects on sloped lines and polygon edges. More subtle effects are
observed in animation, where very small primitives blink in and out of view.

One of the possible solutions to the aliasing problem, area sampling, treats primitives (e.g., points
and lines) as primitives with an area, rather than as zero-dimensional geometric entities. This
method permits rasterizers to compute the fraction of a pixel that a primitive covers and blend the
area-weighted color or the pixel with the color in the frame buffer.

For antialiasing to work properly on the Intel740, polygons (triangles) must be sorted from back to
front. Antialiasing can be used with Z-buffering.
Intel740 Software Developer’s Manual 2-39

Hardware Capabilities

 back
its
 the
dered.
 looks
nt
Example 2-32. Enabling Antialiasing with DirectX

To enable antialiasing with DirectX, the following render state is enabled:
SetRenderState(D3DRENDERSTATE_ANTIALIAS, SORTDEPENDENT);

When using execute buffers, an edge flag can be set to enable edge antialiasing.

Example 2-33. Enabling Antialiasing with OpenGL

To enable antialiasing with OpenGL, the user must first enable alpha blending and set the source
and destination blends properly:
glEnable(GL_BLEND);

glBlendFunc(GL_SRC_ALPHA, GL_ONE_MINUS_SRC_ALPHA);

glEnable(GL_POLYGON_SMOOTH);

2.2.9 Back Face Culling

One of the stages in the 3D Pipeline which can be performed in either the software geometry stage
or in the hardware rendering stage is that of back face culling which consists of the removal of
surfaces of 3D objects which cannot be seen from the user’s viewpoint. The Intel740 supports
face culling. Because every surface has a surface normal which is a vector perpendicular to
surface, the normals of each surface can be tested to see if they point backwards away from
viewer. Back face culling saves processing time since culled surfaces will not need to be ren
When using color alpha blending, be sure to disable back face culling because alpha blending
better when the back facing polygons are also rendered and are visible through the transluce
alpha blended portions.

Example 2-34. Enabling Back Face Culling with DirectX

To enable back face culling with DirectX, the following renderstate is set:
SetRenderState(D3DRENDERSTATE_CULLMODE, <MODE>);

MODE is D3DCULL_CCW for counter clockwise culling, or D3DCULL_CW for clockwise
culling.

Example 2-35. Enabling Back Face Culling with OpenGL

To enable back face culling with OpenGL:
glEnable(GL_CULL_FACE);

glCullFace(<MODE>);

MODE is GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

Figure 2-19. Effects of Antialiasing
2-40 Intel740 Software Developer’s Manual

Hardware Capabilities

high
ws
r

 a

f

to the
s all

hich
ansion

 data

 The
as the
 can

color
r
2.3 2D Capabilities

In this section the 2D capabilities of the Intel740 are discussed:

• “BitBLT Engine” (below)

• “Stretch BLT Engine” (below)

• “Color Expansion” (below)

• “Hardware Cursor” on page 2-42

• “Video Display Resolutions” on page 2-42

2.3.1 BitBLT Engine

The term BitBLT refers to block transfers of pixel data between memory locations. Intel740’s
performance 64-bit BitBLT engine provides hardware acceleration for many common Windo
operations. To facilitate these, there are two primary BitBLT functions in the Intel740: regula
BitBLT and stretch BitBLT. Regular BitBLT involves transferring blocks of data from one
memory location to another. The capability of performing raster operations on the data using
pattern is also included. Stretch BitBLT can stretch source data in the X and Y directions to a
destination larger or smaller than the source. Stretch BitBLT functionality expands a region o
memory into a larger or smaller region using replication and interpolation.

If required, Intel740 will expand monochrome data into color data. This new data will be
destination aligned. The main feature of the BitBLT is to take a stored pattern and expand it
destination color space while destination aligning it. Intel740’s raster opcode engine support
256 Microsoft-defined raster operations (ROPs) including transparent BitBLT.

2.3.2 Stretch BLT Engine

The Stretch BLT Engine allows a source memory region to be blitted to a destination region w
is larger, smaller or the same size as the source region by replacing or removing pixels. Exp
and shrinking can occur in both the horizontal and vertical directions.

An additional feature of the Stretch BLT Engine is the ability to transparently place the source
over some destination data by masking. This is useful for sprites in 3D games.

2.3.3 Color Expansion

During a BLT operation, source color depth may not be the same as destination color depth.
Intel740 supports monochrome data as well as 8, 16, and 24 bit color data. The BLT engine h
ability to expand source monochrome data into a color depth of 8, 16, or 24. Color expansion
be either opaque or transparent. When opaque, a foreground and background color are both
transferred to the destination in the new color depth. When transparent, only the foreground
is specified. This is very useful for text data. Text data can be stored as one bit per pixel colo
(monochrome), and expanded to the correct color later.
Intel740 Software Developer’s Manual 2-41

Hardware Capabilities

al

ith
a
shown

or,
onitor
2.3.4 Hardware Cursor

The Intel740 allows a total of 16 cursor patterns to be stored in 4 Kbytes. Six modes are provided
for the cursor:

• 32x32 2 bpp 2-plane mode (Solid Color, Inverted Solid Color, Transparent, Inverted)

• 128x128 1 bpp 2-color mode

• 128x128 1 bpp 1-color and transparency mode

• 64x64 2 bpp 3-color and transparency mode

• 64x64 2 bpp 2-plane mode (Solid Color, Inverted Solid Color, Transparent, Inverted)

• 64x64 2 bpp 4-color mode

2.3.5 Video Display Resolutions

The Intel740’s video function provides analog output for use with a monitor or a 8/12-bit digit
output to interface to a TV output chip. Integrated into the Intel740 is an I2C interface to facilitate
this capability. Video synchs and timings are fully programmable. Any overlays are merged w
data from the frame buffer during output and can be scaled in the X and Y directions. Gamm
correction can be applied on the video output. Resolutions supported for display ranges are
in Table 2-8. In addition to the standard VGA modes, the Intel740 also supports the following
extended modes with the stated memory and refresh timings:

The video display controller is responsible for the horizontal and vertical timings of the monit
accessing data from memory, preparing data for display, and presenting the results to the m
or TV. The Intel740 can convert YUV(4:2:2) to RGB format. An I2C Bus is provided for easier
connection to some chips.

Table 2-8. Display Resolutions

Resolution Colors/Color
Bits per Pixel

Minimum Memory Configuration
(64-Bit SDRAM)

Vertical Refresh
Rates (MHz)

640x480

256/8-bit palettized 1 Mbyte

60, 75, 8564K/16 1 Mbyte

16M/24 1 Mbyte

800x600

16/4 1 Mbyte

56, 60, 75, 85
256/8-bit palettized 1 Mbyte

64K/16 1 Mbyte

16M/24 2 Mbyte

1024x768

256/8-bit palettized 1 Mbyte

43(1), 60, 75, 8564K/16 2 Mbyte

16M/24 4 Mbyte

1280x1024
256/8-bit palettized 2 Mbyte

43(1), 60, 75
64K/16 4 Mbyte

NOTE:
1. The 3D hardware only rasterizes to 16-bit surface
2-42 Intel740 Software Developer’s Manual

Hardware Capabilities

lue

t
mage
ursor
pported

four
d

 the
lue).
o be

s:

de

his
ming,
UV

ird

 for
The display engine also contains an overlay unit. The overlay (full motion video) unit is capable of
converting from YUV4:2:2 format to 24 bpp RGB. Line widths to 720 pixels are supported. X,Y
interpolation can be performed on the overlay window if the source is smaller or larger than the
destination display size. Intel740 performs filtering/smoothing when interpolating in the horizontal
and vertical directions. The data may be scaled in both the horizontal or vertical direction using a
six bit expansion value. On output, the data is scaled up. The image is increased in size only. This
expansion is smoothed/filtered before being passed to the display.

When stretching is performed, the horizontal filter is 1-1. The vertical interpolation is either
deblocking (average on change only) or 1-2-1 running average. Chroma keying is performed so
that pixels of a selected color are transparent. (This editing effect is sometimes known as “b
screening.”)

The Intel740 contains a separate hardware cursor for Windows. The cursor information is no
stored within the frame buffer but is combined with the screen image immediately before the i
is displayed. Functionality built into the cursor allows it to be enabled or disabled. Up to 16 c
patterns (depending on size) may be stored in separate cursor data space. Cursor modes su
are: 32x32x2bpp and 64x64x2bpp pixel plane modes (for Microsoft Windows), 64x64x2bpp
color mode, 64x64x2bpp three color transparency mode, 128x128x1bpp two color mode, an
128x128x1bpp one color transparency mode.

The combined result from the hardware cursor, overlay, and primary display is performed by
RAMDACs. There are three 8-bit DACs (one for controlling red, one for green, and one for b
Each DAC has a 256x8 palette RAM is responsible for storing information about the colors t
displayed. The Intel740 is optimized for a 2D output resolution of 1024x768 and a 3D display
resolution of 640x480. Within the 2D section, the horizontal sync, vertical sync, and blanking
signals are fully programmable.

2.4 Video, VBI, and Intercast Capabilities

The Intel740’s Video, VBI and Intercast capabilities are discussed in the following subsection

• “Video Capture Port” (below)

• “Video Overlay” on page 2-44

• “VBI and Intercast” on page 2-44

2.4.1 Video Capture Port

The PC video interface to Intel740 is a uni-directional digital input port that accepts 16-bit wi
data, two synchronizing signals (HREF, VFREF), and a pixel rate clock (VCLK). The video
capture port can be configured as a VMI/VAFC interface. Taking the digital video data from t
video port, Intel740 can perform video functions such as color space conversion, scaling, zoo
interpolation, and video playback. The data input to this port can be in RGB-15, RGB-16, or Y
4:2:2 format.

Devices that output an analog signal can be connected to the video capture port through a th
party chip that provides digital output. Digital camera video conferencing applications are
supported permitting the user to have an unflipped/mirrored view. This port provides support
Intercast technology and POTS (Plain Old Telephone Set) video conferencing. Note that an
external third party VBI decoder chip is needed for Intercast technology. For POTS video
conferencing, the port interfaces to a camera.
Intel740 Software Developer’s Manual 2-43

Hardware Capabilities

cable
e

e
To provide smooth overlay, the captured frame can be assembled before being displayed. The
Intel740 also allows incoming video frames to be copied to disk for later playback (via hardware
and software). Because software can write to the video capture buffer directly, playback can occur
directly from CD-ROM, or disk. During playback, software can use status bits to indicate to the
Intel740 when the frame is ready to be displayed.

To facilitate digital camera applications, the Intel740 can perform backward writes. This allows the
user to see a mirrored or non-mirrored view on screen.

Gamma correction is also provided. When in 8-bit-per-pixel mode or smaller, the graphics data is
expanded by a palette. If analog to digital conversion is needed, an external chip creates the digital
signal sent to the Intel740.

2.4.2 Video Overlay

The maximum line width of the overlay is 720 pixels wide. However, the overlay engine can
enlarge a picture using a 6-bit expansion value. The data in the overlay can use a 1-2-1 FIR filter in
the horizontal direction and either line replication, a smoothing at line boundaries, or a continuous
running average filter in the vertical direction. Using the overlay, the data in the capture buffer can
be displayed while capture is occurring. Overlay data does not necessarily have to originate from
the capture port. The data can come from AGP memory. Unlike the capture port, the overlay
engine can support 4-bit indexed, 8-bit indexed, 15-bit RGB, 16-bit RGB, and 24-bit RGB color
formats. The capability to do color keying is included in the overlay.

2.4.3 VBI and Intercast

Television has two main formats: NTSC and PAL/SECAM. The NTSC signal is composed of two
fields made up of 720 pixels and 525 lines every 1/30 of a second. PAL/SECAM has two fields of
720 pixels and 625 lines every 1/25 of a second. Lines 1-22 of the NTSC signal are used for VBI
data and the other lines 23 - 525 are used for the actual video data. The Intel740 has the ability to
capture the NTSC data and place it in a buffer where the video data can be displayed and the VBI
data can be sent to the ISV’s Intercast software to be interpreted. An ISV can then create an
application which displays both the video and the VBI data which is sent by some television
channels as HTML files which complement the currently viewed program. One example is th
cable TV music video channel, MTV 2, which sends HTML files in the VBI stream showing
poetry, photos, and other information along with the currently broadcasting artist which can b
viewed in an HTML browser side by side with the video.
2-44 Intel740 Software Developer’s Manual

Hardware Capabilities
2.4.3.1 VBI Data Format

VBI enabled video decoders, like Brooktree Bt829, are capable of passing through the ancillary
data in the VBI region for later processing by software. Specifically, the raw digitized VBI data
stream bypasses the decimation filter, Y/C separation filters, and the interpolation filter of the
video decoder, and are sent to the Intel740 video capture port along with the rest of the active video
lines.

The Intel740 video capture engine views the incoming VBI and video data lines as the same for
each frame, fetching the same amount of pixels per line and storing to the same local memory
locations. As shown in Figure 2-21, one complete video frame captured in the local memory starts
with about 10 lines of full VBI data (say 800 pixels), followed by active video lines with smaller
amounts of valid video pixels (640 for full resolution and 320 for half resolution).

Note: Since DirectDraw does not allow the width of DD surface in secondary buffer bigger than primary
buffer, the graphics resolution has to be at least 800x600. Also the video decoder has to be able to
deliver 800-pixel or less wide VBI lines.

Since the VBI data stream is not pipeline-delayed to match the YUV4:2:2 video output data with
respect to horizontal timing (HSYNC signal), it arrives earlier than valid video data related to the
HSYNC signal. Therefore, the leading pixels in active video lines are invalid. The tail pixels are
also invalid, since VBI lines are wider than video lines. The boundary of valid video data can be
calculated from the scaling factors of the video decoder. The memory pointer for the active video
frame can be calculated from the number of VBI lines and the video capture span.

The video capture VSYNC is field based (60 per second for NTSC). The VBI Capture VxD
maintains a counter to indicate the field number. VBI Capture VxD handles the VBI data only for
odd field VSYNC.

Figure 2-20. Content of an NTSC Video Frame

Line 284 for Extended Data Service

Lines 1-9

Lines 10-20

Lines 21-263

Lines 264-273(1-9)

Lines 274-283 (10-20)

Lines 283-525 (20-262)

Vertical Synchronization Region

Vertical Blanking Interval (VBI)

Video Image Region

Vertical Synchronization Region

Vertical Blanking Interval (VBI)

Video Image Region

 Field 1

 Field 2

Line 21 for Closed Caption
Intel740 Software Developer’s Manual 2-45

Hardware Capabilities
The Intel740 VBI Capture VxD is responsible for capturing raw VBI data into system memory
(regular cacheable system memory). Allocation of system memory is the responsibility of The
Intel740 VBI Capture VxD. The format of raw VBI data in system memory is per Intercast
specification. Intercast VBI decoder requires VBI data to be organized into fields (each field
corresponds to one and only one television field) in system memory. However, the Intel740 Video
Capture Engine is frame-based (i.e., the odd and even fields of a video frame, including VBI data,
are automatically de-interlaced before storing in local memory). To avoid data overrun, hardware
double buffering is activated. Four VBI field buffers are allocated in system memory by the
Intel740 VBI Capture VxD. Two for frame n and another two for frame n+1. As shown in
Figure 2-22, there are two fields of VBI data ready for decoding for frame n, and two for frame
n+1. Note that the two fields of a frame can be allocated together as long as the correct pointer is
sent to the VBI decoder.

Alternatively, the interlaced VBI frame data can also be directly copied to system memory without
reordering. In this case, a correct pointer and a correct line span (twice the input line span) needs to
be sent to the VBI decoder.

Figure 2-21. Configuration of Video Capture Memory with VBI

800 pixels

500 lines

20 lines

480 lines

640 pixels

 White strip: field 1
 Dark strip: field 2

Interlaced VBI Data

Deinterlaced Video Data

Figure 2-22. VBI Buffering Scheme

VBI Field 1
of Frame n

VBI Field 2
of Frame n

VBI Field 1
of Frame n+1

VBI Field 2
of Frame n+1

Local Memory

System Memory

Interlaced
VBI Frame n

Interlaced
VBI Frame n+1
2-46 Intel740 Software Developer’s Manual

Hardware Capabilities

VBI

at
dio

a
h
,
es,
G-2

 can be

ssed
 to the
m the
 to
the
2.4.3.2 VBI Data Flow

The Intel740 VBI Capture VxD moves raw VBI data from local memory to system memory. No
format conversion or data processing is done. There are about 34 Kbytes of VBI data per frame
second (~800 pixels/line * 2 bytes/pixel * ~22 lines/frame) and the total VBI data bandwidth is
about 1 Mbyte (30 frames/second).

2.4.3.3 CC and EDS

According to the EIA-608 standard, two bytes of information are presented on line 21 (field 1) for
Closed Captioning (CC) and an additional two bytes are presented on line 284 (field 2) for
Extended Data Services (EDS). The Intel740 VBI Capture VxD delivers raw data for CC/EDS
lines as other VBI lines to the Intercast VBI decoder VxD.

2.4.3.4 Direct CC and EDS Capture

Some video decoders (Brooktree Bt829, Philips 7111A) can provide decoded CC/EDS data
through the I2C interface. When valid data is detected, the video decoder stores the data in an I2C
data register. An I2C status register provides data valid and data ready flags.

An application can access CC/EDS data from the video decoder through asynchronous reading of
the I2C bus. The application polls the Close Caption Valid bit in the video decoder’s I2C status
register. The polling frequency has to be slightly higher than the field frequency of 60 Hz for
NTSC. Since there are only two bytes of CC or EDS data per frame and a video decoder can
provide a FIFO for storing the bytes, there is typically sufficient time to fetch this data.

The direct CC/EDS capture is convenient for TV viewing applications that do not require full
decoding. The low data-rate CC/EDS data needs to be delivered to system memory.

2.5 DVD Capabilities

DVD (Digital Video Disk) discs are the media for next generation laserdisc players. DVD form
specifies MPEG-2 standard for video compression, and AC-3 (NTSC) or MPEG (PAL) for au
compression. MPEG-2 uses the YUV4:2:0 format, also known as YUV12; U and V are
subsampled by 2 in both horizontal and vertical directions. A YUV12 macroblock consists of
16x16 block of Y data (256 bytes) and two 8x8 blocks (2x64 bytes) for the U and V data. Eac
macroblock stores 256 pixels in 384 bytes, or 12 bits/pixel. Backward compatible with the CD
DVD allows a single side storage of 8.5 Gbytes. DVD is used to play movies, interactive gam
and training on the PC using Dolby* AC-3 (3D sound) surround sound audio. DVD uses MPE
encoding and special encryption. Once the encryption and MPEG-2 are decoded, the output
sent directly to the Intel740 using the YUV 4:2:2 encoding.

2.5.1 Hardware DVD/MPEG-2 Movie Playback

A DVD decoder chip located on the PCI bus receives the raw DVD stream (including compre
video and audio data) and decompresses the data. The decompressed audio stream is sent
audio subsystem through a dedicated digital audio port. The decoded video stream is sent fro
DVD decoder chip to the Intel740 through the video capture port. The incoming video stream
the Intel740 is in YUV2 format with resolution of 720x480 at 30 frames per second following
CCIR601 standard. The Intel740 drivers, DirectDraw HAL and DDVPE HAL, handle video
display for DVD.
Intel740 Software Developer’s Manual 2-47

Hardware Capabilities

GP
phics
use of

tor
emory.
rfaces
trated
2.6 TV Out Interface

The Intel740 has a digital TV out interface multiplexed with the BIOS address lines. When using
the TV out interface, normal VGA display cannot be used. The 12-bit digital interface is designed
to interface with an external TV encoder, which incorporates a high quality flicker filter and
performs overscan compensation.

2.7 AGP Interface

The Intel740 is AGP 1.0 and PCI 2.1 compliant. Optimized for AGP, the Intel740 runs effectively
at 133 MHz on a 32-bit bus, allowing 533 Mbyte/s peak data throughput. The Intel740 supports
AGP sideband extensions, permitting demultiplexed address/data transfers. The Intel740’s A
interface allows memory reads to equal the throughput of memory writes. The use of this gra
port overcomes the read latency of PCI by making reads zero wait state, just like writes. Beca
this dedicated high bandwidth port, the Intel740 is able to use system memory for graphics
purposes more effectively than PCI.

2.7.1 AGP Primer

The Accelerated Graphics Port (AGP) brings new levels of performance and realism to next-
generation 3D graphics accelerators. The principal benefit comes from the graphics accelera
having high speed access to surface textures and other graphics surfaces in main system m
Special performance oriented AGP features allow much faster read/write access to these su
than has been possible in the past. The basic memory architecture of an AGP system is illus
in Figure 2-23 below.

Figure 2-23. Intel740 Connects to System Memory Over AGP

PCI

3.3V/32 bit 33 Mhz

440LX
Chipset

Memory

3.3V/64 bit

3.3V EIO

USB
uDMA

EDO or 66 MHZ SDRAM

Pentium® II
Processor

DRAM
AGP

3.3v/32 bit 66 Mhz
Intel740

BIOSAudio
KBC
µcntlr

Super
 I/O

PIIX4

324 MBGA

AGP bus: 66 Mhz
Pipelining
2X data transfers
Side Addressing

AGP Memory: GART remapping
WriteCombining

AGP bus: 66 Mhz
Pipelining
2X data transfers
Side Band Addressing

AGP Memory: GART remapping
WriteCombining

AGP Advantages

2

2-48 Intel740 Software Developer’s Manual

Hardware Capabilities

r.
-local
m.
ligned

pand
it set

the
 is
Graphics software infrastructure requires that AGP memory be contiguous, which means a page
based system memory must have a graphics address remapping table (GART) capability. This is
because the operating system ordinarily allocates randomly located pages of memory whereas
graphics software requires its memory to be contiguous.

The translation facility gives each memory page a second aliased address. All the addresses are
adjacent, making this part of system memory closely resemble conventional video memory.
Memory accessible through the GART is referred to as non-local video memory, meaning video
memory that is not local to the Intel740.

Non-local memory can be accessed by the host processor, by the Intel740, and in current AGP
systems by other PCI devices. In future systems, the GART translation will only be used by AGP
graphics devices and the host processor will perform a corresponding address translation.

2.7.2 AGP Software Architecture

DirectDraw applications request space for graphics surfaces by calling the DirectDraw function
“CreateSurface.” Space for the surface is obtained from heaps defined by the graphics drive
Memory for non-local memory heaps is obtained from the operating system. When more non
video memory is needed, DirectDraw can obtain additional memory from the operating syste
Memory is locked in place and mapped into the proper GART address range. The surface is a
and its memory type established as specified in the graphics heap template. Requests to ex
AGP memory are honored so long as the total amount of AGP memory does not exceed a lim
by the operating system.

Initialization details are attended to at the time the operating system is loaded. The operating
system calls the chipset miniport which initializes AGP port parameters, allocates space for
GART translation table and initializes the GART hardware. The interaction of these functions
summarized below.

Figure 2-24. New Services in Windows Work with DirectDraw to Support AGP Applications

Direct 3D*
DirectDraw*

Application

Windows* 95
Operating

System

AGP Chipset
MiniPort

GFx driver

Surface(s)

Heap
Attributes

Memory &
Limit Policy

mapping

Initialize: AGP port, GART
Runtime: GART management

GART

* Other brands and names are the property of their respective owners.
Intel740 Software Developer’s Manual 2-49

Hardware Capabilities
2.8 BIOS Interface

The Intel740 supports a maximum video BIOS size of 256K x 8. Flash can be used.

2.9 Local Memory

The Intel740 uses SDRAM technology and can interface to SGRAM through its 32-bit or 64-bit
memory interface. Memory Bus speeds range from 66 MHz, 83 MHz, and 100 MHz while
configurations of 1, 2, 4 and 8 Mbytes are supported. Using a 64-bit interface, up to 800 Mbytes/s
peak bandwidth is supported. The Intel740 allows operands to be placed in either local video
memory or AGP memory. It is recommended that the Z, display, and Render buffers, video capture
and MPeg overlay be located in local video memory, however when space becomes limited, the
Render buffer should be relocated into AGP memory.
2-50 Intel740 Software Developer’s Manual

”

,
 the

y the
Programming Environment 3

3.1 OpenGL Programming Environment

OpenGL is an application programming interface (API) which is used by a software application to
interface with the graphics hardware. OpenGL consists of approximately 120 different commands
which are used to specify graphical objects and the operations applied to the objects which are
required by 3D applications. OpenGL is a streamlined, hardware-independent interface designed to
make applications portable from one hardware platform to another. For more information on the
OpenGL function commands, see the OpenGL Specification document which can be obtained from
the SGI web site at http://www.sgi.com. Also see Section 4.3, “OpenGL Performance Guidelines
on page 4-26, for the Intel740-specific OpenGL performance information.

3.1.1 Model

The MCD interfaces with the following external entities: Microsoft Mini-Client Driver Interface
Intel740 2D display driver, WIN32 GDI Escape Mechanism, Microsoft Windows Registry, and
Intel740 Interface Language (AIL). The Configuration Applet, along with any Diagnostic/Test
application, will interface with the MCD through the GDI device-dependent escapes defined b
driver. Figure 3-1 demonstrates the MCD architecture context diagram.

Note: In this chapter, the terms pass and punt have special meaning: “pass” control or data to a lower
level on the software chain; “punt” back to a higher level on the software chain.

Figure 3-1. MCD Architecture

OpenGL Application

OPENGL32.DLL

MCD32.DLL

GFX40.DLL
Display Driver

MCDSRV32.DLL
(dynamically loaded by the display driver)

CMM AIL

MCD

User Mode

Kernal ModeVia ExtEscape()

Via MCD-provided function pointers

MCDrvGetEntryPoints()

MCDFUNCS escapes are passed to
MCDSRV32.DLL for processing

To Intel740 FIFOsControls Intel740 video

memory usage

AGP
Memory
Intel740 Software Developer’s Manual 3-1

Programming Environment
3.1.2 Supported OpenGL MCD States

Table 3-1. Supported OpenGL MCD Enables (Sheet 1 of 2)

MCD Enables Intel740 State(s) Notes

ALPHA_TEST ALPHA_TEST_ENABLE

BLEND BLEND_ENABLE

INDEX_LOGIC_OP n/a color index not supported

DITHER DITHER_ENABLE

DEPTH_TEST Z_ENABLE

FOG FOG_ENABLE

LIGHTING† n/a

COLOR_MATERIAL† n/a

LINE_STIPPLE n/a
Intel740 hardware acceleration cannot
be used for line stipple except in the
case where the stipple pattern is solid

LINE_SMOOTH

EDGE_ANTIALIAS

LINE_AA_REGION

BOUNDING_BOX_EXPANSION

POINT_SMOOTH n/a Antialiased points are punted to
software

POLYGON_SMOOTH

EDGE_ANTIALIAS

POLY_AA_REGION

BOUNDING_BOX_EXPANSION

Antialiased lines wider than three are
punted to software

CULL_FACE CULL_MODE
Also uses the cullFaceMode and
frontFace items in the
MCDRENDERSTATE structure

POLYGON_STIPPLE STIPPLE

Intel740 buffer stipple will be used to
mimic polygon stipple. Hardware
stipple will be disabled when lines and
points are rasterized.

SCISSOR_TEST n/a
Scissor rectangles that are smaller
that the window size are punted to
software

STENCIL_TEST MCD will punt unless the stencil test is
a trivial operation

TEXTURE_1D See Notes

textureEnabled Boolean in the
MCDRENDERSTATE structure
controls whether textures are to be
used during rasterization

TEXTURE_2D See Notes See Notes above

TEXTURE_GEN_S† n/a

TEXTURE_GEN_T† n/a

TEXTURE_GEN_R† n/a

TEXTURE_GEN_Z† n/a

NORMALIZE† n/a

AUTO_NORMAL† n/a
3-2 Intel740 Software Developer’s Manual

Programming Environment

POLYGON_OFFSET_POINT n/a
MCD will calculate the appropriate
offset and apply to the vertices before
passing to the Intel740 hardware

POLYGON_OFFSET_LINE n/a See above

POLYGON_OFFSET_FILL n/a See above

COLOR_LOGIC_OP n/a
MCD will punt the rendering to the
software implementation unless the
logical operation is GL_COPY

† Not currently used by MCD.

Table 3-2. Supported OpenGL MCD States (Sheet 1 of 2)

MCD State Intel740 State Notes

textureEnabled TEXTURE_ENABLE

fogColor FOG_COLOR

fogIndex n/a

fogDensity n/a

fogStart n/a
The fog component of the MCDVERTEX
structure takes into account the fogStart
and fogEnd components.

fogEnd n/a

fogMode

GL_LINEAR fog will be accelerated;
GL_EXP and GL_EXP2 exponential fog will
not be accelerated if FOG_HINT is set to
GL_NICEST.

shadeModel SHADE_MODE

pointSize
GFXTLTRIANGLEs will be used to simulate
GL_POINTS with pointSize greater than
one.

lineWidth LINE_WIDTH
If lineWidth is greater than three,
GFXTLTRIANGLEs will be used to
simulate.

lineStipplePattern n/a MCD will punt to software implementation if
pattern is not solid

lineStippleRepeat n/a See above

cullFaceMode CULL_MODE Also depends on frontFace

frontFace CULL_MODE Also depends on cullFaceMode

polygonModeFront FILL_MODE

polygonModeBack FILL_MODE

polygonStipple GFXPALSTIPPROC_STIPPLE_
PATTERN

zOffsetFactor n/a
The zOffsetFactor and zOffsetUnits will be
used to calculate an offset to apply to the z
component of each primitive

ZOffsetUnits n/a see zOffsetFactor above

StencilTestFunc n/a MCD will punt unless trivial operation

Table 3-1. Supported OpenGL MCD Enables (Sheet 2 of 2)

MCD Enables Intel740 State(s) Notes
Intel740 Software Developer’s Manual 3-3

Programming Environment
stencilMask n/a

stencilRef n/a

stencilFail n/a

stencilDepthFail n/a

stencilDepthPass n/a

alphaTestFunc ALPHA_FUNC

alphaTestRef ALPHA_REF

depthTestFunc Z_FUNC

blendSrc SRC_BLEND

blendDst DST_BLEND

logicOpMode n/a

drawBuffer n/a

indexMask n/a

colorWriteMask n/a

depthWriteMask Z_WRITE_ENABLE

stencilWriteMask n/a

colorClearValue n/a used to clear the back and/or front buffers

indexClearValue n/a

depthClearValue n/a used to clear the depth buffer

stencilClearValue n/a

TwoSided n/a A multi-pass rendering will be used for two
sided polygon rendering

userClipPlanes n/a

perspectiveCorrectionHint n/a All textures are perspective-corrected

pointSmoothHint Antialiasing-related

lineSmoothHint Antialiasing-related

polygonSmoothHint Antialiasing-related

fogHint

If fogHint is GL_NICEST and the fogMode
is GL_EXP or GL_EXP2 the MCD will punt
the rendering to the software
implementation

Table 3-2. Supported OpenGL MCD States (Sheet 2 of 2)

MCD State Intel740 State Notes
3-4 Intel740 Software Developer’s Manual

Programming Environment
3.1.3 Supported OpenGL MCD Primitives

Table 3-3. Supported OpenGL MCD Primitives

MCD Render Primitive Intel740 Primitive Notes

GL_POINTS LINE or TRIANGLE
Points are converted to sub-pixel length lines.

Wide points are converted to two triangles.

GL_LINES LINE

GL_LINE_STRIP LINE Line strips are converted to individual lines

GL_LINE_LOOP LINE
The MCD Helper library automatically converts line
loops to line strips. The MCD will never actually receive
line loops.

GL_TRIANGLES TRIANGLE

GL_TRIANGLE_STRIP TRIANGLE Triangle strips converted to individual triangles

GL_TRIANGLE_FAN TRIANGLE Triangle fans converted to individual triangles

GL_QUADS TRIANGLE Quads are triangulated into individual triangles

GL_QUAD_STRIP TRIANGLE Quad strips are triangulated into individual triangles

GL_POLYGON TRIANGLE Polygons are triangulated into individual triangles
Intel740 Software Developer’s Manual 3-5

Programming Environment
3.1.4 Supported OpenGL MCD Texture States

3.1.5 Supported OpenGL MCD Texture Environment States

Table 3-4. Supported OpenGL MCD Texture States

MCD Texture State Intel740 Texture State
Supported Notes

sWrapMode

GL_CLAMP

GL_REPEAT

WRAP_U

CLAMP

WRAP

The Intel740 wrap states
MIRROR, CLAMP_TRANSPARENT,
and WRAP_SHORTEST aren’t used
by the MCD.

tWrapMode

GL_CLAMP

GL_REPEAT

WRAP_V

CLAMP

WRAP

The Intel740 wrap states
MIRROR, CLAMP_TRANSPARENT,
and WRAP_SHORTEST aren’t by the
MCD.

minFilter

GL_NEAREST

GL_LINEAR

GL_NEAREST_MIPMAP_NEAREST

GL_NEAREST_MIPMAP_LINEAR

GL_LINEAR_MIPMAP_NEAREST

GL_LINEAR_MIPMAP_LINEAR

TEXTURE_MIN

NEAREST

GLINEAR

MIP_NEAREST

MIP_LINEAR

LINEAR_MIPMAP_NEAREST

LINEAR_MIPMAP_LINEAR

magFilter

GL_NEAREST

GL_LINEAR

TEXTURE_MAG

NEAREST

LINEAR

borderColor n/a Texture border colors are not
supported

Table 3-5. Supported OpenGL MCD Texture Environment States

MCD Texture Environment
State

Intel740 Texture State
Supported Notes

texEnvMode

GL_REPLACE

GL_DECAL

GL_MODULATE

GL_BLEND

MAP_BLEND

DECAL

DECAL_ALPHA

MODULATE_ALPHA

Not Supported (see note)

The Intel740 Texture map blend modes
MODULATE, DECAL_MASK,
MODULATE_MASK and the other more
obscure blend modes aren’t used in the
MCD.

GL_BLEND mode is punted

texEnvColor n/a (see note) The texEnvColor is used when the MCD
mimics GL_BLEND
3-6 Intel740 Software Developer’s Manual

Programming Environment
3.2 DirectX Programming Environment

This chapter explains the relationship between the Intel740 API and the Microsoft Windows*
support driver environment (Microsoft Windows95*/Windows98*/WindowsNT* 5.0). References
are made to existing standards documents. Intel740 extensions or behaviors that differ from the
standard are described in detail.

The Intel740 video support drivers include DirectDraw* (Overlay) driver, DirectDraw VPE driver,
and VBI Capture VxD. The Intel740 DirectDraw Driver (DDHAL/DDHAL VPE) interfaces with
the following external entities: Microsoft DirectX* API, and AGP Memory driver. The Intel740
VBI Capture VxD interfaces with the Intel VBI Decoder VxD, DDHAL VPE driver, AGP Memory
driver. Table 3-2 shows the Intel740 driver architecture.

The Intel740 Direct3D device driver interfaces with the following external entities: Microsoft
DirectX API, Intel740 2D display driver, WIN32 GDI Escape Mechanism, Windows 95 Registry,
and AGP Memory driver. The Configuration Applet along with any Diagnostic/Test applications
will interface with the Intel740 Direct3D device driver through the GDI device-dependent graphics
escapes defined by the driver. Figure 3-2 shows the Intel740 Direct3D driver architecture.

Figure 3-2. Intel740 Software Architecture

Direct Video Active Movie

DirectDraw DirectDraw VPEGDI Direct3D

Stream Decoder(s)

Microsoft

Intercast Stack

VBI Decode VxD

Ring
3

Ring
0

Intel Intercast

Win32 Applications

GDI Driver

Intel740

DDHAL / DDHAL VPE D3D HAL VBI Capture VxD

Intel740 HardwareIntel740
Intel740 Software Developer’s Manual 3-7

Programming Environment
3.3 Mini Interface Drivers

3.3.1 Mini Display Driver

3.3.1.1 Structures Exported to GDI

Table 3-6. Device Technology—dpTechnology (Sheet 1 of 2)

Function Supported

DT_PLOTTER(0)

DT_RASDISPLAY(1) ✓

DT_RASPRINTER (2)

Raster Capabilities—dpRaster

RC_BITBLT (0001h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_BANDING (0002h)

RC_SCALING (0004h)

RC_SAVEBITMAP (0040h)

RC_PALETTE (0100h) ✓ (8 BPP)

RC_DIBTODEV (0200h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_BIGFONT (0400h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_STRETCHBLT (0800h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_FLOODFILL (1000h)

RC_STRETCHDIB (2000h) ✓ (8 BPP, 16 BPP, 24BPP)

RC_DEVBITS (8000h) ✓ (8 BPP, 16 BPP, 24BPP)

Level of text support the device driver provides—dpText

TC_OP_CHARACTER (0001h)

TC_OP_STROKE (0002h)

TC_CP_STROKE (0004h) ✓

TC_CR_90 (0008h)

TC_CR_ANY (0010h)

TC_SF_X_YINDEP (0020h)

TC_SA_DOUBLE (0040h)

TC_SA_INTEGER (0080h)

 TC_SA_CONTIN (0100h)

TC_EA_DOUBLE (0200h)

TC_IA_ABLE (0400h)

TC_UA_ABLE (0800h)

 TC_SO_ABLE (1000h)

TC_RA_ABLE (2000h) ✓

 TC_VA_ABLE (4000h)
3-8 Intel740 Software Developer’s Manual

Programming Environment
Additional raster abilities—dpCaps1

 C1_TRANSPARENT (0001h)

TC_TT_ABLE (0002h)

 C1_TT_CR_ANY (0004h)

C1_EMF_COMPLIANT (0008h)

 C1_DIBENGINE (0010h) ✓

C1_GAMMA_RAMP (0020h) ✓

C1_ICM (0040h)

C1_REINIT_ABLE (0080h)

C1_GLYPH_INDEX (0100h) ✓

C1_BIT_PACKED (0200h)

C1_BYTE_PACKED (0400h) ✓

C1_COLORCURSOR (0800h) ✓

C1_CMYK_ABLE (1000h)

C1_SLOW_CARD (2000h)

Polyline and line-drawing capabilities—dpLines

LC_POLYGONSCANLINE (0001h) ✓

LC_POLYLINE (0002h) ✓

LC_WIDE (0010h)

LC_STYLED (0020h) ✓

LC_WIDESTYLED (0040h)

LC_INTERIORS (0080h)

Polygon-, rectangle-, and scan-line drawing capabilities- dpPolygonals

PC_ALTPOLYGON (0001h) ✓

PC_RECTANGLE (0002h)

PC_WINDPOLYGON (0004h)

PC_SCANLINE (0008h) ✓

PC_WIDE (0010h)

PC_STYLED (0020h)

PC_WIDESTYLED (0040h)

PC_INTERIORS (0080h) ✓

PC_POLYPOLYGON (0100h)

PC_PATHS (0200h)

Table 3-6. Device Technology—dpTechnology (Sheet 2 of 2)
Intel740 Software Developer’s Manual 3-9

Programming Environment
3.4 DirectDraw Display Driver Interface

This section explains the interfaces of Intel740 2D drivers. It does not cover the whole 2D driver
interface, since it is already defined by Microsoft in the Windows95 or Windows98 DDK. This
section specifies the interfaces of display driver, mini-VDD, DirectDraw HAL, DirectDraw VPE
HAL and version information.

3.4.1 Directdraw Hal Capabilities

Table 3-7. dwCaps—Specifies Driver-Specific Capabilities

Function Supported

DDCAPS_3D ✓

DDCAPS_ALIGNBOUNDARYDEST

DDCAPS_ALIGNBOUNDARYSRC

DDCAPS_ALIGNSIZEDEST

DDCAPS_ALIGNSIZESRC

DDCAPS_ALIGNSTRIDE

DDCAPS_ALPHA

DDCAPS_BANKSWITCHED

DDCAPS_BLT ✓

DDCAPS_BLTCOLORFILL ✓

DDCAPS_BLTDEPTHFILL ✓

DDCAPS_BLTFOURCC

DDCAPS_BLTQUEUE

DDCAPS_BLTSTRETCH

DDCAPS_CANBLTSYSMEM ✓

DDCAPS_CANCLIP

DDCAPS_CANCLIPSTRETCHED

DDCAPS_COLORKEY ✓

DDCAPS_COLORKEYHWASSIST

DDCAPS_GDI ✓

DDCAPS_NOHARDWARE

DDCAPS_OVERLAY ✓

DDCAPS_OVERLAYCANTCLIP ✓

DDCAPS_OVERLAYFOURCC ✓ (YUV4:2:2, RBG555 and RGB565)

DDCAPS_OVERLAYSTRETCH ✓

DDCAPS_PALETTE

DDCAPS_PALETTEVSYNC

DDCAPS_READSCANLINE ✓

DDCAPS_STEREOVIEW

DDCAPS_VBI

DDCAPS_ZBLTS

 DDCAPS_ZOVERLAYS

DDCAPS_ZOVERLAYS
3-10 Intel740 Software Developer’s Manual

Programming Environment
Table 3-8. dwCaps2—Specifies More Driver-Specific Capabilities

Function Supported

DDCAPS2_CERTIFIED

DDCAPS2_NO2DDURING3DSCENE

DDCAPS2_VIDEOPORT ✓

DDCAPS2_AUTOFLIPOVERLAY ✓

DDCAPS2_CANBOBINTERLEAVED ✓

DDCAPS2_WIDESURFACES ✓

DDCAPS2_NOPAGELOCKREQUIRED

Table 3-9. dwCKeyCaps—Color Key Capabilities

Function Supported

DDCKEYCAPS_DESTBLT ✓

DDCKEYCAPS_DESTBLTCLRSPACE

DDCKEYCAPS_DESTBLTCLRSPACEYUV

DDCKEYCAPS_DESTBLTYUV

DDCKEYCAPS_DESTOVERLAY ✓

DDCKEYCAPS_DESTOVERLAYCLRSPACE

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV

DDCKEYCAPS_DESTOVERLAYONEACTIVE ✓

DDCKEYCAPS_DESTOVERLAYYUV ✓

DDCKEYCAPS_NOCOSTOVERLAY ✓

DDCKEYCAPS_SRCBLT ✓

DDCKEYCAPS_SRCBLTCLRSPACE

DDCKEYCAPS_SRCBLTCLRSPACEYUV

DDCKEYCAPS_SRCBLTYUV

DDCKEYCAPS_SRCOVERLAY

DDCKEYCAPS_SRCOVERLAYCLRSPACE

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV

DDCKEYCAPS_SRCOVERLAYONEACTIVE

DDCKEYCAPS_SRCOVERLAYYUV
Intel740 Software Developer’s Manual 3-11

Programming Environment
Table 3-10. dwFXCaps—Specifies Driver-Specific Stretching and Effects Capabilities

Function Supported

DDFXCAPS_BLTARITHSTRETCHY

DDFXCAPS_BLTARITHSTRETCHYN

DDFXCAPS_BLTMIRRORLEFTRIGHT

DDFXCAPS_BLTMIRRORUPDOWN

DDFXCAPS_BLTROTATION

DDFXCAPS_BLTROTATION90

DDFXCAPS_BLTSHRINKX

DDFXCAPS_BLTSHRINKXN

DDFXCAPS_BLTSHRINKY

DDFXCAPS_BLTSHRINKYN

DDFXCAPS_BLTSTRETCHX ✓

DDFXCAPS_BLTSTRETCHXN

DDFXCAPS_BLTSTRETCHY ✓

DDFXCAPS_BLTSTRETCHYN

DDFXCAPS_OVERLAYARITHSTRETCHY ✓

DDFXCAPS_OVERLAYARITHSTRETCHYN

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT

DDFXCAPS_OVERLAYMIRRORUPDOWN

DDFXCAPS_OVERLAYSHRINKX

DDFXCAPS_OVERLAYSHRINKXN

DDFXCAPS_OVERLAYSHRINKY

DDFXCAPS_OVERLAYSHRINKYN

DDFXCAPS_OVERLAYSTRETCHX ✓

DDFXCAPS_OVERLAYSTRETCHXN

DDFXCAPS_OVERLAYSTRETCHY ✓

DDFXCAPS_OVERLAYSTRETCHYN

Table 3-11. dwPalCaps—Specifies Palette Capabilities

Function Supported

DDPCAPS_1BIT ✓

DDPCAPS_2BIT ✓

DDPCAPS_4BIT ✓

DDPCAPS_8BIT ✓

DDPCAPS_8BITENTRIES

DDPCAPS_ALLOW256

DDPCAPS_PRIMARYSURFACE

DDPCAPS_PRIMARYSURFACELEFT

DDPCAPS_VSYNC
3-12 Intel740 Software Developer’s Manual

Programming Environment
Table 3-12. ddsCaps.dwCaps—Specifies The Capabilities Of The Surface

Function Supported

DDSCAPS_3D ✓ (Enabled if 3D is detected)

DDSCAPS_3DDEVICE ✓

DDSCAPS_ALLOCONLOAD ✓

DDSCAPS_ALPHA

DDSCAPS_BACKBUFFER ✓

DDSCAPS_COMPLEX ✓

DDSCAPS_FLIP ✓

DDSCAPS_FRONTBUFFER ✓

DDSCAPS_HWCODEC

DDSCAPS_LIVEVIDEO ✓

DDSCAPS_MIPMAP ✓

DDSCAPS_MODEX ✓

DDSCAPS_OFFSCREENPLAIN ✓

DDSCAPS_OVERLAY ✓

DDSCAPS_OWNDC

DDSCAPS_PALETTE ✓

DDSCAPS_PRIMARYSURFACE ✓

DDSCAPS_PRIMARYSURFACELEFT

DDSCAPS_SYSTEMMEMORY ✓

DDSCAPS_TEXTURE ✓

DDSCAPS_VIDEOMEMORY ✓

DDSCAPS_VISIBLE ✓

DDSCAPS_WRITEONLY

DDSCAPS_ZBUFFER ✓

DDSCAPS_NONLOCALVIDMEM ✓
Intel740 Software Developer’s Manual 3-13

Programming Environment
3.5 Direct3D Interface

3.5.1 Supported Direct3D Capabilities

Table 3-13. General Device Capabilities

Function Supported

Device Color Model

RGB ✓

Mono ✓

Device Capabilities

FloatTLVertex ✓

SortIncreasingZ

SortDecreasingZ

SortExact

ExecuteSystemMemory

ExecuteVideoMemory

TLVertexSystemMemory

TLVertexVideoMemory

TextureSystemMemory

TextureVideoMemory ✓

Transform Capabilities

Clip

Lighting Capabilities

RGBModel

MonoModel

Point

Spot

Directional

ParallelPoint

GLSpot

Clipping

True

False ✓

Render Bit Depth

16-bit ✓

Z Buffer Bit Depth

16-bit ✓
3-14 Intel740 Software Developer’s Manual

Programming Environment
Table 3-14. Texture Capabilities

Format Width Height Bits Per
Texel R/Y Mask G/U Mask B/V Mask Alpha Mask

RGB 565 1024 1024 16 F800h 07E0h 001Fh 0000h

RGBa 5551 1024 1024 16 7C00h 03E0h 001Fh 8000h

RGBa 4444 1024 1024 16 0F00h 00F0h 000Fh F000h

YUV 422 1024 1024 8 F0h 0Ch 03h 00h

Palette Indexed 1 1024 1024 1

Palette Indexed 2 1024 1024 2

Palette Indexed 4 1024 1024 4

Palette Indexed 8 1024 1024 8

Table 3-15. Primitive Capabilities Supported (Sheet 1 of 3)

Capability Lines Triangles

Misc. Capabilities

MaskPlanes

MaskZ ✓ ✓

LinePatternRep

Conformant

CullNone ✓

CullCW ✓

CullCCW ✓

Raster Capabilities

Dither ✓ ✓

Rop2

Xor

Pat

Ztest ✓ ✓

Subpixel ✓ ✓

SubpixelX

FogVertex ✓ ✓

FogTable

Stipple ✓ ✓

Z/AlphaCompare Capabilities Z / Alpha Z / Alpha

Never ✓ / ✓ ✓ / ✓

Less ✓ / ✓ ✓ / ✓

Equal ✓ / ✓ ✓ / ✓

LessEqual ✓ / ✓ ✓ / ✓

Greater ✓ / ✓ ✓ / ✓
Intel740 Software Developer’s Manual 3-15

Programming Environment
NotEqual ✓ / ✓ ✓ / ✓

GreaterEqual ✓ / ✓ ✓ / ✓

Always ✓ / ✓ ✓ / ✓

Source/Destination Blend Capabilities Src / Dst Src / Dst

Zero ✓ / ✓ ✓ / ✓

One ✓ / ✓ ✓ / ✓

SrcColor ✓ / ✓ ✓ / ✓

InvSrcColor ✓ / ✓ ✓ / ✓

SrcAlpha ✓ / ✓ ✓ / ✓

IncSrcAlpha ✓ / ✓ ✓ / ✓

DestAlpha

InvDestAlpha

IncSrcAlpha ✓ / ✓ ✓ / ✓

InvDestColor ✓ / ✓ ✓ / ✓

SrcAlphaSat

BothSrcAlpha ✓ / ✓ ✓ / ✓

BothInvSrcAlpha ✓ / ✓ ✓ / ✓

Shade Capabilities

ColorFlatMono ✓ ✓

ColorFlatRGB ✓ ✓

ColorGouraudMono ✓ ✓

ColorGouraudRGB ✓ ✓

ColorPhongMono

ColorPhongRGB

SpecularFlatMono ✓ ✓

SpecularFlatRGB ✓ ✓

SpecularGouraudMono ✓ ✓

SpecularGouraudRGB ✓ ✓

SpecularPhongMono

SpecularPhongRGB

AlphaFlatBlend ✓ ✓

AlphaFlatStippled ✓ ✓

AlphaGouraudBlend ✓ ✓

AlphaGouraudStippled

AlphaPhongBlend

AlphaPhongStippled

FogFlat ✓ ✓

FogGouraud ✓ ✓

Table 3-15. Primitive Capabilities Supported (Sheet 2 of 3)

Capability Lines Triangles
3-16 Intel740 Software Developer’s Manual

Programming Environment
FogPhong

Texture Capabilities

Perspective ✓ ✓

Pow2 ✓ ✓

Alpha ✓ ✓

Transparency ✓ ✓

Border

SquareOnly

Texture Filter Capabilities

Nearest ✓ ✓

Linear ✓ ✓

MipNearest ✓ ✓

MipLinear ✓ ✓

LinearMipNearest ✓ ✓

LinearMipLinear ✓ ✓

Texture Blend Capabilities

Decal ✓ ✓

Modulate ✓ ✓

DecalAlpha ✓ ✓

ModulateAlpha ✓ ✓

DecalMask ✓ ✓

ModulateMask

Copy ✓ ✓

Texture Address Capabilities

Wrap ✓ ✓

Mirror ✓ ✓

Clamp ✓ ✓

Table 3-15. Primitive Capabilities Supported (Sheet 3 of 3)

Capability Lines Triangles
Intel740 Software Developer’s Manual 3-17

Programming Environment
3.5.2 Supported RenderState

Table 3-16. DIRECT3D RenderState Hardware / Software Support (Sheet 1 of 3)

State Supported
in SW

Supported
in HW Values Notes

ALPHAFUNC ✓ ✓

NEVER

LESS

EQUAL

LESSEQUAL

GREATER

NOTEQUAL

GREATEREQUAL

ALWAYS

ALPHAREF ✓ ✓ 8-bit value

ALPHATESTENABLE ✓ ✓ TRUE / FALSE

ANTIALIAS ✓ ✓
SORTDEPENDENT /
NONE

ALPHABLENDENABLE ✓ ✓ TRUE / FALSE

CULLMODE ✓ ✓

NONE

CW

CCW

DESTBLEND ✓ ✓

ZERO

ONE

SRCCOLOR

INVSRCCOLOR

SRCALPHA

INVSRCALPHA

DESTCOLOR

INVDESTCOLOR

BOTHSRCALPHA

BOTHINVSRCALPHA

DITHERENABLE ✓ ✓ TRUE / FALSE

FILLMODE ✓ ✓
WIREFRAME -

SOLID

FOGENABLE ✓ ✓ TRUE / FALSE

FOGCOLOR ✓ ✓
lower 24-bits of a 32-bit
value

FOGTABLEDENSITY NO NO

FOGTABLEEND NO NO

FOGTABLEMODE NO NO

FOGTABLESTART NO NO

LASTPIXEL NO NO TRUE / FALSE

LINEPATTERN NO NO 32-bit value

MONOENABLE ✓ ✓ TRUE / FALSE

PLANEMASK NO NO 32-bit value
3-18 Intel740 Software Developer’s Manual

Programming Environment
ROP2 NO NO

SHADEMODE ✓ ✓
FLAT

GOURAUD

SPECULARENABLE ✓ ✓ TRUE / FALSE

SRCBLEND ✓ ✓

ZERO

ONE

SRCCOLOR

INVSRCCOLOR

SRCALPHA

INVSRCALPHA

DESTCOLOR

INVDESTCOLOR

BOTHSRCALPHA

BOTHINVSRCALPHA

STIPPLEDALPHA NO NO

STIPPLEENABLE ✓ ✓ TRUE / FALSE

STIPPLEPATTERN00-31 ✓ ✓ 32-bit values

SUBPIXEL NO NO

SUBPIXELX NO NO

TEXTUREADDRESS ✓ ✓

WRAP

MIRROR

CLAMP

TEXTUREHANDLE ✓ ✓ 32-bit value

TEXTUREMAG ✓ ✓

NEAREST

LINEAR

MIPNEAREST

MIPLINEAR

LINEARMIPNEAREST

LINEARMIPLINEAR

TEXTUREMAPBLEND ✓ ✓

DECAL

MODULATE

DECALALPHA

MODULATEALPHA

DECALMASK

COPY

TEXTUREMIN ✓ ✓

NEAREST

LINEAR

MIPNEAREST

MIPLINEAR

LINEARMIPNEAREST

LINEARMIPLINEAR

TEXTURE
PERSPECTIVE ✓ ✓ TRUE

Table 3-16. DIRECT3D RenderState Hardware / Software Support (Sheet 2 of 3)

State Supported
in SW

Supported
in HW Values Notes
Intel740 Software Developer’s Manual 3-19

Programming Environment
3.5.3 Supported RenderPrimitives

WRAPUV ✓ ✓ TRUE / FALSE

WRAPV ✓ ✓ TRUE / FALSE

ZENABLE ✓ ✓ TRUE / FALSE

ZFUNC ✓ ✓

NEVER

LESS

EQUAL

LESSEQUAL

GREATER

NOTEQUAL

GREATEREQUAL

ALWAYS

ZVISIBLE NO NO TRUE / FALSE

ZWRITEENABLE ✓ ✓ TRUE / FALSE

Table 3-17. DIRECT3D RenderPrimitive Hardware / Software Support

Primitive Supported in
SW

Supported in
HW Notes

POINT ✓ NO Implemented as a 0 length line

LINE ✓ ✓

TRIANGLE ✓ ✓

SPAN ✓ NO Implemented with a line

STRIP ✓ NO Implemented with a triangle

FAN ✓ NO Implemented with a triangle

Table 3-16. DIRECT3D RenderState Hardware / Software Support (Sheet 3 of 3)

State Supported
in SW

Supported
in HW Values Notes
3-20 Intel740 Software Developer’s Manual

Programming Environment
3.6 Video Interface

All VfW Capture Messages are supported by the Intel740 video capture driver.

Table 3-18. VfW Capture Driver Capability

VfW Capture Message Supported

DRV_LOAD ✓

DRV_FREE ✓

DRV_OPEN ✓

DRV_CLOSE ✓

DRV_ENABLE ✓

DRV_DISABLE ✓

DRV_QUERYCONFIGURE ✓

DRV_CONFIGURE ✓

DRV_INSTALL ✓

DRV_REMOVE ✓

DRV_GETVIDEOAPIVER ✓

DVM_GETERRORTEXT ✓

DVM_DIALOG ✓

DVM_PALETTE ✓

DVM_FORMAT ✓

DVM_PALETTERGB555 ✓

DVM_SRC_RECT ✓

DVM_DST_RECT ✓

DVM_UPDATE ✓

DVM_CONFIGURE_STORAGE ✓

DVM_FRAME ✓

DVM_GET_CHANNEL_CAPS ✓

DVM_STREAM_INIT ✓

DVM_STREAM_FINI ✓

DVM_STREAM_GETERROR ✓

DVM_STREAM_GETPOSITION ✓

DVM_STREAM_ADDBUFFER ✓

DVM_STREAM_PREPAREHEADER ✓

DMV_STREAM_UNPREPAREHEADER ✓

DVM_STREAM_RESET ✓

DVM_STREAM_START ✓

DVM_STREAM_STOP ✓
Intel740 Software Developer’s Manual 3-21

Programming Environment
3.7 GDI Escape Interface

The Intel740 Direct3D Driver supports the GDI Escape interface that allows dynamic alterations of
operational parameters as well as debugging and performance monitoring. Access to these device
capabilities which are specific to Intel740 3D functionality is achieved using the following
function call:
ExtEscape(HDC, //handle to Windows device context

int, //Intel740 3D escape function number (1234h)

int, //number of bytes in input structure

LPCSTR, //pointer to input structure

//typedef struct AubControlInBuffer

// { DWord EscapeNumber;

// DWordSubFunction;

// DWordDataPointer;

// }

int, //number of bytes in output structure

LPSTR); //pointer to output structure

// typedef struct AubControlOutBuffer

// { DWordEscapeNumber;

// DWordSubFunction;

// DWordDataPointer;

// }

The following sections define the available subfunctions along with a definition for each
DataPointer associated with the input and/or output structures. Data types which are in bold italic
text are defined by Microsoft in the DirectX documentation.

Table 3-19. Functionality Control

Sub-function Description AubControlInBuffer Data AubControlOutBuffer
Data

101h Set State Variable

DWord StateNumber

01h-FFh - As defined by
D3DRENDERSTATETYPE

100h - Texture LOD Bias

101h - Texture LOD Dither
weight

102h - Alpha in Z buffer

103h - QWord fetch mode

DWord StateValue

void

102h Set Capabilities D3DDEVICEDESC
D3Dcapabilities void

103h Get Capabilities void D3DDEVICEDESC
D3Dcapabilities

10Ah Get AGP Config
Registers void DWord Reg[3]

Table 3-20. Device Driver Debugging Control

Sub-function Description AubControlInBuffer Data AubControlOutBuffer
Data

200h Set Debug Logging Level
DWord Level

0..MaxDebugLevel
void
3-22 Intel740 Software Developer’s Manual

etric)
a
ed for
Performance Considerations 4

This chapter describes programming approaches to maximize performance, report Intel740
performance test results, and introduce creative programming techniques which take advantage of
the Intel740 features.

4.1 Performance Strategies And Measurements

All performance statistics outlined in this section were gathered using Intel’s RasM (Raster M
2.0 software. RasM, a raster speed measurement tool, measures the rasterization speed of
hardware accelerator vs. the scene complexity of an application. The system configuration us
gathering the data shown in this document is as follows:

• 300 MHz Pentium® II processor with MMX™ technology

• Atlanta motherboard with PhoenixBIOS*

• 440LX Chipset

• Intel740 AGP graphics card with 200 BIOS

• Windows95 operating system (OSR2.1)

• 64 Mbytes system memory (SDRAM, 66 MHz)

• 4 Mbyte local video memory (SDRAM, 100 MHz)

• 640x480x16 bits per pixel screen resolution

• 60 Hz refresh rate

4.1.1 Intel740 Performance Capabilities

The Intel740 supports the next generation of high-content applications. 3D games will use more
realistic models with more triangles of smaller size. The Intel740 provides its peak performance for
these types of games.

The recommended game detail target for the Intel740 is 10,000 triangles per frame, between 75 and
175 pixels per triangle, at 30 frames per second. 10,000 triangles per scene requires a triangle rate
of approximately 300,000. The Intel740 can render 366,000 full featured triangles per second with
an average of 105 pixels per triangle.

Required_Tri_Per_Sec =Tri_Per_Scene / (1/Frames_per_Second - Tover_head)

The following sections include Intel740 performance results along with descriptions of how the
results can be used to predict frame rates for particular applications and scene complexities.
Intel740 Software Developer’s Manual 4-1

Performance Considerations

nce

s of a

ation
ntil
ically

the
2D
4.1.2 Using CPU/Intel740 Concurrency

Applications should be designed to take advantage of the concurrency allowed by the Intel740 and
AGP system architecture. The Intel740 can be thought of as a second processor for rasterization,
optimized for maximum parallelism with the CPU. The benefit given to the application is that the
CPU is free to do more AI, physics, lighting, and geometry. The Intel740 drivers minimize CPU
overhead, balance the system, and allow for maximum system concurrency.

Many of the performance results included in this chapter report the driver duty cycle for the CPU.
The duty cycle is the ratio of CPU time used by the Intel740 driver divided by the length of time
the Intel740 requires to render the scene. It is a measure of how much time an application can
spend on lighting, geometry, and game controls while not causing the CPU to limit performance.

In systems with software rasterization only, a typical application used 90% of CPU cycles for
rasterization alone. Because the Intel740 renders much faster than software engines and because of
the system’s available concurrency, a system with an Intel740 gains a tremendous performa
advantage.

Figure 4-1 shows the usage model for the Intel740 and the CPU during one and a half frame
typical application cycle.

Applications should be structured such that CPU cycles are not wasted waiting for synchroniz
with the Intel740. Forcing flips or blits to surfaces being rendered cause the CPU to sit idle u
rendering has completed. Figure 4-2 illustrates how an improperly placed flip or blit can drast
reduce frame rate.

In this case, only minimal concurrency is achieved. The problem can be alleviated by simply
rearranging the flow so that the CPU processing for the following frame is completed before
render target is flipped. Similar problems will be seen by code that issues blit commands for
effects directly after sending a 3D scene.

Figure 4-1. Intel740/CPU Usage Model

CPU Intel740 Driver Game Control Light & Geom. Intel740 Driver Game Controls…

Intel740 Raster Triangles Raster Triangles….

One Frame

Figure 4-2. Improper Usage Model

CPU Game Control Light & Geom. Intel740 Driver …CPU Idle…

Intel740 …Intel740 Idle… Raster Triangles

One Frame

Request
Flip Flip Occurs
4-2 Intel740 Software Developer’s Manual

Performance Considerations

: 10
ngle

 of the
he
ene.
plying
re
d
d 20%
angles

s the
he
e
4.1.3 Performance Test Results

4.1.3.1 Raster Speed Test Method

This section describes the tests used to measure the performance numbers reported in this
document.

Figure 4-3 shows the system usage while RasM is running. The time that RasM waits for the
Intel740 to complete will be used for AI, game control, lighting, geometry, and anything else the
application needs to do before sending the next frame off to be rendered. To attain the maximum
frame rate, applications should be optimized to finish all computations during this time.

The program execution can be broken down into two phases called consecutively by a loop that
sequences through all the triangle sizes to be tested:

Loop (for all triangle sizes do)
Phase 1: Build execute buffers
Phase 2: Execute the buffers and time the hardware

The first phase creates and fills execute buffers with 512 triangles each. The total number of
triangles depends on triangle size, depth complexity (DC) goal, and percent Z-buffering (%Z) goal.
Unless otherwise stated, the sweeps reported in this document have a constant DC of 2.5 and 50%
Z across the triangle size sweeps. For example, the 120 pixel/triangle data point contains about
13,300 randomly distributed triangles per scene:

Triangles_per_Scene = (Screen.W * Screen.H * Avg_DC_Goal / Percent_Z_Goal) / Pix_per_Tri

To achieve a predefined DC and %Z goal, a “survival of the fittest” algorithm is implemented
randomly placed and oriented triangles are generated for each required triangle, and the tria
that brings the scene the closest to its DC and %Z goals is selected.

Game scenes often have some percentage of triangles use specular and alpha blend. Many
sweeps in this document test scenes with specular and blend enabled for only a fraction of t
triangles. RasM always puts the triangles with specular and blend in the last portion of the sc
The rationale here is that games using only a small percent specular or alpha blend will be ap
highlights to the scene near the end of their triangle lists. Unless otherwise stated, textures a
mipmapped with 16-bit color. When multiple textures are used in a scene, they are distribute
equally thoughout the scene. A scene with 10,000 triangles, three textures, 30% specular, an
alpha blend would generate 20 execute buffers, 3,400 triangles per texture; the last 2,000 tri
would use specular and alpha blend, and the preceding 1,000 would use just specular.

The second phase of the loop executes the buffers created in the first phase, and then clock
driver and hardware raster speed. The scene is clocked, displayed, and recorded 15 times; t
middle five times are averaged to get the final result. Figure 4-4 shows pseudo-code from th
timing/display loop.

Figure 4-3. RasM Intel740/CPU Usage Model

CPU Intel740 Driver ...Waiting for Intel 740... Intel740 Driver …Waiting…

Intel740 Raster Triangles Raster Triangles...

One Frame
Intel740 Software Developer’s Manual 4-3

Performance Considerations
The reported results are divided into sections: Result Summary, Basic Sweeps, Advanced Sweeps,
and Full Sweeps. The Result Summary contains data taken directly from the set of sweeps. It is
intended to be used as just a summary or for quick reference. Section 4.1.3.2 contains more
detailed information that can be used to predict application frame rates.

The basic sweep compares Gouraud only to Gouraud with Z-Buffer and, finally, Gouraud with Z-
Buffer and Textures (GZT). The advanced sweeps takes the GZT features from the last basic sweep
and tests the sensitivity to fog, alpha blending, specular, and anti-aliasing. The full sweeps combine
all features.

Figure 4-4. RasM Pseudo-Code

T0:

T1:

T2:

∆T2

∆T1

For All Execute Exec(…)
EndScene()

RenderBuffer Lock(…)

Triangles_per_Second = (Triangles_per_Scene) / ∆T2

Pixels_per_Second = (Triangles_per_Scene) * Pix_per_Triangle / ∆T2

Duty Cycle = ∆T1 / ∆T2

Table 4-1. Result Summary

Gouraud Fog Blend Spec Anti-
Alias

Z-Buff
50% Z

MipMap
16 BBP

Set-up
Limited
(Triangles

per Second)

105 PixTri
(Triangles per

Second)

Fill Rate
(Pixels per
Second)

X 675k 482k 65.7M

X X 672k 385k 59.1M

X X X 577k 349k 54.2M

X X X X 535k 349k 53.8M

X 20% X X 568k 340k 53.8M

X 100% X X 535k 300k 48.2M

X 30% X X 539k 348k 53.7M

X 100% X X 468k 347k 54.2M

X 20% X X 372k 253k 51.4M

X X 20% 30% X X 496k 338k 53.2M

X X 100% 100% X X 415k 298k 48.0M
4-4 Intel740 Software Developer’s Manual

Performance Considerations
Table 4-2. Symbol Key

Symbol Definition

G Gouraud Shading

Fg Vertex Fog Enabled 100% of Scene

A20 and A100 Alpha Blend Enabled for 20% and 100% of Scene

S30 and S100 Specular Highlights Enabled for 30% and 100% of Scene

Aa20 Anti-Aliasing enabled for 20% of Scene

Z Z-Buffer enabled. Cleared at beginning of Scene

T 256X256 MipMap BiLinear Filter, ARGB 0565 Format (unless otherwise stated)
Intel740 Software Developer’s Manual 4-5

Performance Considerations
The graphs in Figure 4-5 show triangles per second, pixels per second, and duty cycle for Gouraud
only, Gouraud with Z-Buffer and Gouraud with Z-Buffer and Textures.

Figure 4-5. Basic Feature Sweeps

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

7.00E+05

0 100 200 300 400 500

G GZ (50% Z) GZT (50% Z)

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

7.00E+07

0 50 100 150 200 250 300 350 400 450 500

G GZ (50% Z) GZT (50% Z)

0.00E+00
1.00E+01
2.00E+01
3.00E+01
4.00E+01
5.00E+01
6.00E+01
7.00E+01
8.00E+01
9.00E+01
1.00E+02

0 50 100 150 200 250 300 350 400 450 500

G GZ (50% Z) GZT (50% Z)

target range

target range

target range

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Triangle

Triangles Per Second

Pixels Per Second

Duty Cycle
4-6 Intel740 Software Developer’s Manual

Performance Considerations
The graphs in Figure 4-6 show triangles per second, pixels per second, and duty cycle. The feature
sets start with the GZT features set from the last basic sweep and display the sensitivity to fog,
alpha blending, specular, and anti-aliasing.

Figure 4-6. Advanced Feature Sweeps

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

0 100 200 300 400 500

GZT (50% Z) GFgZT (50% Z) GA20ZT (50% Z)
GA100ZT (50% Z) GS30ZT (50% Z) GS100ZT (50% Z)
GAa20ZT (50% Z)

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

GZT (50% Z) GFgZT (50% Z) GA20ZT (50% Z)
GA100ZT (50% Z) GS30ZT (50% Z) GS100ZT (50% Z)
GAa20ZT (50% Z)

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

GZT (50% Z) GFgZT (50% Z) GA20ZT (50% Z)
GA100ZT (50% Z) GS30ZT (50% Z) GS100ZT (50% Z)
GAa20ZT (50% Z)

target range

target range

target range

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Triangle

Duty Cycle

Pixels Per Second

Triangles Per Second
Intel740 Software Developer’s Manual 4-7

Performance Considerations
The graphs in Figure 4-7 show triangles per second, pixels per second, and duty cycle with full
feature sets.

Figure 4-7. Full Feature Sweeps

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

GZT (50% Z) GFgA20S30ZT (50% Z) GFgA100S100ZT (50% Z)

0.00E+00

1.00E+01

2.00E+01

3.00E+01

4.00E+01

5.00E+01

6.00E+01

7.00E+01

8.00E+01

9.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

GZT (50% Z) GFgA20S30ZT (50% Z) GFgA100S100ZT (50% Z)

0.00E+00

1.00E+05

2.00E+05

3.00E+05

4.00E+05

5.00E+05

6.00E+05

0 100 200 300 400 500

GZT (50% Z) GFgA20S30ZT (50% Z) GFgA100S100ZT (50% Z)

target range

target range

target range

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Triangle

Triangles Per Second

Pixels Per Second

Duty Cycle
4-8 Intel740 Software Developer’s Manual

Performance Considerations

int of
rator,
of the

, or
 game

0
les will
r. Note
re

fill rate

es

iangle
ng to

s fill
ance.

he
g
4.1.3.2 Implications and Analysis

This section suggests how the reported results can be translated into performance for individual
applications. The tests are raster speed only. Because of system concurrency, if the application
code executed between scenes preserves the duty cycle, the stated triangle and fill rates will be
achieved.

Average and percent Z are a good measure of scene complexity from the graphics card’s po
view. They actually define the number of pixels that will be processed by the graphics accele
per scene. Pixels per scene and desired frames per second give the fill rate that is required
graphics accelerator to hit that frame rate.

Pixels_per_Scene = (Screen.W * Screen.H * Avg_DC_Goal / Percent_Z_Goal)

Required_Fill_Rate = Pixels_per_Scene / (1/Frames_per_Second - Tover_head)

Tover_head is the overhead time which may be required to clear the Z-buffer, render buffers
blit a background. The number and size of triangles per scene may be more convenient for a
designer to work with, but it is not a difficult conversion between the two.

Avg_DC_Goal = Triangles_per_Scene * Pix_per_Tri * Percent_Z_Goal / (Screen.W * Screen.H)

The %Z goal is really just how well the triangles are ordered before being sent to the Intel74
graphics accelerator. 50% Z assumes that half of the pixels contained in the processed triang
actually not be written to the screen because they are behind the previous pixel in the z-orde
that for a constant number of pixels per scene, if %Z goes up (a higher number of Z-values a
written) then the DC also goes up. Even though the pixels per scene remains the same, the
will change because it is a function of %Z.

A scene complexity of 2.5 DC and 50% Z was chosen because it is predicted that typical gam
will have a similar complexity. However, not all games will follow this pattern.

Depth complexity is really a measure of pixels per scene. Increasing DC does not affect the tr
rate or the actual fill rate, but will affect the pixels per scene and the required fill rate accordi
the equations mentioned above.

Percent Z occlusion does affect the triangle and fill rates. Basically, decreasing %Z increase
rate, and vice versa. Sorting triangles from front to back produces higher graphic card perform
Implementing a sorting algorithm is only recommended when the Intel740 fill rate becomes t
system performance bottleneck. The following graph illustrates the performance with changin
scene %Z occlusion.
Intel740 Software Developer’s Manual 4-9

Performance Considerations
Very few games will have just one triangle size per scene, but it is useful to analyze just one size at
a time because it supplies many of the building blocks required to approximate triangle rate, fill
rate, and duty cycle for more complex scenes. This example uses a game scene of 7,000 triangles of
75 pixels and 3,000 triangles of 175 pixels, has a 50% Z, uses a full feature set of GFgA20S30ZT,
has a Tover_head of about 1 ms, and requires 30 frames per second. The average DC for the scene
comes to 2.34, the pixels per scene is 1.2M, and it requires a fill rate of 37.1M pixels per second.

Avg_DC_Goal = (75 * 7,000 + 175 * 3,000) * .5 / (640 * 480) = 1.71

Required_Fill_Rate = 1.05M / (1/30 - .001) = 32.5M

The fill rate for this type of scene is not explicitly quoted in the graphs included in this document,
but a weighted average based on numbers of pixels can be used to extrapolate the Intel740 resultant
fill rate. For the previous example, the extrapolated fill rate of the Intel740 is 35.2M pixels/s.

Pixels_per_Second (estimate) = (525k * 30.4M + 525k * 40.0M) / 1.2M = 35.2M Pix/s

RasM can be used to test scenes with non-constant triangle sizes. When the hardware was tested for
this case, the actual fill rate was reported to be 34.2M pixels/s. Most of the discrepancy can be
attributed to the scene depth complexity in this example being below that of the quoted tests. For
more information on how DC (or total packet size) can affect performance, see Table 4.1.4.2
“Triangle Packet Size” on page 4-12.

Figure 4-8. Performance vs. Percent Z Occlusion

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 100 200 300 400 500

ZBuffer On (Write Never) ZBuffer On (10% Z) ZBuffer On (25% Z)
ZBuffer On (50% Z) ZBuffer On (70% Z) ZBuffer On (Write Alw ays)

target range

Pixels Per Triangle

Pixels Per Second
4-10 Intel740 Software Developer’s Manual

Performance Considerations
4.1.4 Special Performance Considerations

This section contains descriptions of subtle application design choices which can have
considerable effects on performance.

4.1.4.1 Direct3D DrawPrimitive vs. Execute Buffers

Direct3D immediate mode allows programmers to choose between execute buffers and draw
primitive methods of sending commands to the graphics hardware. The Intel740 performance and
CPU driver duty cycle are both nearly identical for either sets of methods. This is the case as long
as other considerations such as concurrency and packet size are not ignored. The following full
feature sweeps (Fog, 20% Alpha, 30% Specular, MipMap Textures, 2.5 DC, 50% Z) use execute
buffers, draw indexed primitive, draw primitive with triangle lists, and draw primitive with discrete
triangles. Each of the instructions sending groups of triangles (includes all but draw primitive with
discrete triangles) issues 500 triangles per instruction.

Figure 4-9. Performance of DrawPrimitive vs. Execute Buffer

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

ExecBuff DrawIndexedPrim
DrawPrim TRI_LIST DrawPrim Single Tris

0.00E+00
1.00E+01

2.00E+01
3.00E+01
4.00E+01

5.00E+01
6.00E+01
7.00E+01
8.00E+01

9.00E+01
1.00E+02

0 50 100 150 200 250 300 350 400 450 500

ExecBuff DrawIndexedPrim DrawPrim TRI_LIST DrawPrim Single Tris

target range

target range

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Second

Duty Cycle
Intel740 Software Developer’s Manual 4-11

Performance Considerations

 of the

head is
are
40

etween
uffer/

ve
 20%
e. The
Each method has an associated CPU overhead. Execute buffers have the lowest, followed by draw
primitive with triangle lists. Sending a single triangle with each draw primitive command has a
very high overhead; below about 200 pixels per triangle the CPU is unable to send enough triangles
down per second to keep the Intel740 busy.

It is important to note that execute buffers tend to force applications to group triangle execution
commands, which is advantageous for the Intel740 and its driver. For more information on
Performance vs. triangle packet size see Section 4.1.4.2, “Triangle Packet Size” on page 4-12.

4.1.4.2 Triangle Packet Size

Software designers should try to bunch triangle packets sent to the Intel740 driver. Because
overhead associated with starting the flow of command packets, sending a small number of
triangles in a packet decreases performance. By sending out large triangle packets, the over
amortized over the rasterization time of all triangles. As a result, higher triangle and fill rates
achieved. Grouping rastered triangles is also critical to maintaining a high level of CPU/Intel7
concurrency. For more information on concurrency, see Section 4.1.2, “Using CPU/Intel740
Concurrency” on page 4-2.

This section addresses both performance vs. execute buffer/draw primitive buffer size, and
performance vs. total packet size. The total packet size is the total number of triangles sent b
breaks caused by game controls, lighting, or other CPU tasks. It consists of all the execute b
draw primitive buffers sent down one right after the other.

The following graphs illustrate the performance vs. execute buffer size, draw indexed primiti
triangle list size, and draw primitive list size. All of these sweeps are full feature sweeps (Fog,
Alpha, 30% Specular, MipMap Textures) and have a constant 10,000 triangle total packet siz
Intel740 fill rate is not affected; the following graphs show duty cycle (CPU overhead).
4-12 Intel740 Software Developer’s Manual

Performance Considerations

en
erably

 need
l to
trates

ll
es in
Optimal D3D execute-buffer size on a Pentium® II processor system with an Intel740 has be
determined to be 512 triangles. Keeping a buffer size above about 50 triangles may be consid
easier to implement and will only cost a few percent performance degradation.

The second and equally important concern is performance vs. total packet size. Applications
to have a minimum of about 2,000 triangles per packet (which if organized efficiently is equa
triangles per scene) to achieve near maximum system performance. The following graph illus
how sending small numbers of triangles in a packet can drastically reduce performance. An
example of how this can happen is an application with a render loop which sends many sma
triangle packets divided up by game controls. Note that the following curves have 100% Z writ
order to keep the %Z constant with changing triangle packet size.

Figure 4-10. Performance vs. Buffer Size (Duty Cycle)

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

ExecBuff 500 ExecBuff 100 ExecBuff 20 ExecBuff 4 ExecBuff 2

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

Draw IndexedPrim 500 Draw IndexedPrim 100 Draw IndexedPrim 20
Draw IndexedPrim 4 Draw IndexedPrim 2

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

Draw Prim TRI_LIST 500 Draw Prim TRI_LIST 100 Draw Prim TRI_LIST 20
Draw Prim TRI_LIST 4 Draw Prim TRI_LIST 2

target range

target range

target range

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Triangle

Duty Cycle

Duty Cycle

Duty Cycle
Intel740 Software Developer’s Manual 4-13

Performance Considerations
4.1.4.3 Texture Sizes

The ratio of texture-mapped area to triangle area can have a very significant performance impact.
Mapping large non-mipmapped textures onto small triangles forces the Intel740 to scan through
much of the texture for just a few texels. When a textured triangle can be viewed up close as well as
far away, mipmapping is an excellent choice. Using mipmapped textures, in addition to looking
better, alleviates this problem by selecting a texture map size which is close to the textured triangle
size.

The following graph demonstrates how performance can be degraded by texture to triangle size
mismatches.

A 32x32 bitmap maps directly onto a 512 pixel triangle. Notice that this size bitmap considerably
degrades performance of triangles smaller than about 300 pixels (about half of the direct mapped
triangle size). In general, the bitmap area being mapped onto a triangle should be no larger that
twice the triangle area in order to maintain high performance. The mipmapped textures (512x512
and 128x128) achieve high performance by allowing the Intel740 to select the texture size.

Figure 4-11. Performance vs. Total Packet Size

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

0 50 100 150 200 250 300 350 400 450 500

GFgA20S30ZT (10k Tri) GFgA20S30ZT (2k Tri) GFgA20S30ZT (400 Tri)
GFgA20S30ZT (80 Tri) GFgA20S30ZT (16 Tri)

target range

Pixels Per Triangle

Pixels Per Second

Figure 4-12. Performance vs. Texture Size

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 100 200 300 400 500

MipMap (512x512 to 1x1) MipMap (128x128 to 1x1)
BitMap (512x512) BitMap (128x128)
BitMap (32x32) BitMap (8x8)

target range

Pixels Per Triangle

Pixels Per Second
4-14 Intel740 Software Developer’s Manual

Performance Considerations
4.1.4.4 Palette Changes

The Intel740 is optimized for 16-bit textures. It is recommended that applications use 16-bit
textures over 8-bit palettized textures. Palettized textures are supported with a relatively low
overhead. The following graph reports the performance of a full-featured scene (Fog, 20% Alpha,
30% Specular, 2.5 DC, 50% Z) with a varied number of palette changes per scene.

Application developers can use these graphs as an indicator of when to sort palettized textured
triangles by texture handle. If an application is CPU limited, sorting by texture handle will degrade
performance in most cases.

4.1.4.5 Untiled Textures for Procedural Texture Animation

Directly modifying texture surfaces in AGP memory can be used as a powerful method for creating
many types of stunning effects. This section describes the performance implication of using untiled
textures. For more information on how to create effects with procedural animation and on Intel740
tiling, see Section 4.2.1.4, “Animated Texture Effects” on page 4-21.

Triangles which use untiled textures will be processed with some performance degradation.
Figure 4-14 illustrates the performance difference between triangles using tiled and untiled
textures.

Figure 4-13. Performance vs. Palette Changes

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

25 Pal Changes 100 Pal Changes
400 Pal Changes 1600 Pal Changes

0.00E+00

2.00E+01

4.00E+01

6.00E+01

8.00E+01

1.00E+02

0 50 100 150 200 250 300 350 400 450 500

25 Pal Changes 100 Pal Changes
400 Pal Changes 1600 Pal Changes

target range

target range

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Second

Duty Cycle
Intel740 Software Developer’s Manual 4-15

Performance Considerations

ding.
lpha

cency

 Z.
Untiled textures can degrade performance when large texture maps are used or when large triangle
to texture map size mismatches are present. Note that in the case of mipmaps, only a small
performance degradation is seen for both 512x512 and 128x128. This is because the triangle to
texture size mismatch is minimized, so only the degradation with large texture maps is seen. For
more information on performance of triangle to texture size mismatch, see Section 4.1.4.3,
“Texture Sizes” on page 4-14.

4.1.4.6 High Performance Transparency

Methods of implementing transparency include: chroma keying, alpha testing, and alpha blen
If performance is the primary concern, chroma keying or alpha testing should be used over a
blending. The Intel740 implements both without any performance degradation. When translu
is desired, alpha blending is supported with only a minor performance decrease.

The following graph illustrates the performance of chroma keying, alpha testing, and alpha
blending. The sweeps use a feature set of Gouraud, Mipmapped Textures, 2.5 DC, and 50%

Figure 4-14. Performance with Untiled Textures

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 1000 2000 3000 4000 5000

BitMap (128x128) BitMap (32x32)
BitMap (No Tile, 128x128) BitMap (No Tile, 32x32)

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 1000 2000 3000 4000 5000

MipMap (512x512 to 1x1) MipMap (128x128 to 1x1)
MipMap (No Tile, 512x512 to 1x1) MipMap (No Tile, 128x128 to 1x1)

Pixels Per Triangle

Pixels Per Triangle

Pixels Per Second

Pixels Per Second
4-16 Intel740 Software Developer’s Manual

Performance Considerations
4.1.4.7 Screen Resolutions

The Intel740 3D performance is optimized for 640x480 and it is recommended that applications
target 3D graphic intensive applications for this resolution. The following graph illustrates
performance scaling for greater resolutions. The tests are full-feature sweeps (Fog, 20% Alpha,
30% Specular, Mipmapped Textures, 2.5 DC, 50% Z). This test is run with 8 Mbytes of video
memory to enable 1280x1024 to fit both the render and Z-Buffer in local video.

Note that 1280x1024 mode is actually faster than 1024x768 mode because it is interlaced, which
does not require as much local memory bandwidth.

Figure 4-15. Performance vs. Transparency

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

None Chroma Key Alpha Test Alpha Blend

target range

Pixels Per Triangle

Pixels Per Second

Figure 4-16. Performance vs. Screen Resolution

0.00E+00

1.00E+07

2.00E+07

3.00E+07

4.00E+07

5.00E+07

6.00E+07

0 50 100 150 200 250 300 350 400 450 500

Full (640x480) Full (800x600) Full (1024x768) Full (1280x1024)

target range

Pixels Per Triangle

Pixels Per Second
Intel740 Software Developer’s Manual 4-17

Performance Considerations

in
tive

r
sis of

ance
4.1.5 Budgeting CPU Clock Cycles

For an application to achieve a sustainable high frame rate, the CPU must calculate lighting,
geometry, and game controls, and send the triangle information off to the Intel740 — all with
each frame period. Budgeting CPU clock cycles to fit within the Intel740 duty cycle is impera
to this task.

For the Intel740, it is suggested that developers of 3D applications target 10,000 triangles pe
frame at 30 frames per second. The numbers listed in Figure 4-3 show a conservative analy
the needed CPU clock cycles and assumptions. The user can anticipate good overall perform
when implementing full features of the Intel740 and using these targets.

Assumptions:

• Intel740 state and operand(s) change overhead not considered

• No Page-Miss on Execute Buffer Reads

• No FP to MMX™ instruction alignment cycles considered

• Theoretical full bandwidth of memory bus available

• Definition of 24 DWords/triangle (96 bytes)

4.1.6 Video Performance

Table 4-3. CPU Cycle Targets

Function Description Notes

Frames per Sec 30

CPU Speed 233 MHz

CPU Clocks/Triangle 200

Triangles/Sec 300,000 Triangles/Frame * Frames/Second

Triangles/Frame 10,000

CPU Clocks/Frame 2,000,000 Triangles/Second * CPU Clocks/Triangle

Figure 4-17. Available Memory Bandwidth on a Pentium® II Processor System

CPU

Frame Buffer

AGP Video Memory
(AGP Aperture)

System Memory

WC WR

(up to 180 MB/s) WC/MMX RD

(upto 24 MB/s)

WC WR
(370 MB/s)

WC/MMX RD

(62 MB/s)

Cacheable RD/WR
(370 MB/s)

DMA
AGP Master

(300 MB/s)HW BLT
(300 MB/s)

Platform:
Pentium

Processor/440LX

Memory Access Chart

II®
4-18 Intel740 Software Developer’s Manual

Performance Considerations
Table 4-4 shows the video/data rates for some typical applications. The highest data rate for video
capture is in application of video conferencing on a 200 kbps ISDN line. The highest video display
data rate is 20 Mbyte/s in DVD/MPEG-2 playback applications.

Table 4-5 shows the CPU usage for those applications, which can be calculated based on the
memory bandwidth. Note that most applications will benefit from the higher read bandwidth of
AGP aperture, if the video or VBI data can be routed through the AGP aperture. In this case, the
CPU usage for data capturing will be under 5%, making the capture I/O a less degradation factor
for the applications. Similarly, the high CPU write bandwidth of AGP aperture can also be useful
for DVD/MPEG-2 playback applications.

Table 4-4. Typical Video/Data Capture Applications

Application Format Frame Rate
(fps)

Resolution
hor*vert*pixdep

Frame Size
(bytes)

Bandwidth
(Mbytes/s)

Intercast (VBI) Raw Data 30 800 x 22 x 2 35,200 1.0

POTS Video Conf Sub-QCIF 15 128 x 96 x 2 24,576 0.37

POTS VC QCIF 12 176 x 144 x 2 50,688 0.6

ISDN VC (128kbps) CIF 12 352 x 288 x 2 202,752 2.4

ISDN VC (200kbps) CIF 15 352 x 288 x 2 202,752 3.0

DVD/MPEG-2 DCIF 30 720 x 480 x 2 691,200 20

Table 4-5. CPU Usage for Some Typical Applications

Video/Data Stream CPU Usage (%)

Format Frame
Rate

BW
(Mbytes/s)

FB Read (BW=
24Mbytes/s)

AGP Read (BW=
62Mbytes/s)

FB Write (BW=
180Mbytes/s)

AGP Write (BW=
360Mbytes/s)

VBI 30fps 1.0 4.2% 1.6%

SQCIF 15 .37 1.5% 0.6%

QCIF 12 0.6 2.5% 1.0%

CIF 12 2.4 10% 3.9%

CIF 15 3.0 13% 4.8%

DCIF 30 20 11% 5.6%
Intel740 Software Developer’s Manual 4-19

Performance Considerations

ger
 can
are

es
nd it
f the

ng

its
at

s the
een

 a

 small
des
se
es as
 in

rease
with

ed
e

me!
4.2 Other Programming Tips

4.2.1 Texture and Surface Effects

Several aspects of texture usage are discussed in this section including:

• “Texture Formats” on page 4-20

• “Texture Sizes” on page 4-21

• “Texture Storage” on page 4-21

• “Animated Texture Effects” on page 4-21

• “Multi-pass Texture Effects” on page 4-22

4.2.1.1 Texture Formats

Because AGP allows high bandwidth for texture execution, and virtually unlimited storage
potential (based on the amount of system RAM available) the application developer is no lon
limited to small 8-bit palettized textures. There is a whole new world of texture formats which
be experimented with to increase the look and feel of the application. These texture formats
discussed below:

16-bit RGB(A) Using 16-bit RGB(A) textures is highly recommended because it fre
the application from dependence upon the single hardware palette a
allows for a wider span of colors in each texture. Frequent changes o
hardware palette can put a slight strain on the overall performance.

8-bit YUV &
16-bit AYUV Using YUV textures may provide the user with a new look. When usi

8-bit YUV 4:2:2 texture format, storage space is minimized. Also the
textures can be input as 16-bit YUV(A) with more colors and more
intensities of color as well as alpha. An advantage of YUV is that 8 b
can be represented without the overhead of a palette. YUV is a form
that favors the human eye’s sensitivity to color because it compresse
chrominance and luminance of a color rather than a degradation betw
colors. Usually the outcome is a picture which has kept its detail but
which is slightly different in color values than the original. Like
RGB(A), YUV(A) allows for a much larger range of colors than does
palette.

1, 2, 4, & 8 bit palettized Sometimes it is good to use a palette for a texture because only a
amount of colors are employed. For instance, if the sky is mainly sha
of blue mixed with white, a 4-bit palette could work very well. Becau
the palette is kept in the hardware, it is not as easy to animate palett
it is in software. Every time the palette is changed, there is a change
state which causes a performance decrease. This performance dec
is estimated at about 1% if there are 30 palette changes in a frame
10,000 triangles with full features on.

Live Video Capture Live Video Capture can be used for a surface texture when combin
with 2D Chroma Keying. It might make an astonishing effect if a gam
incorporated live input of the game player as they are playing the ga
4-20 Intel740 Software Developer’s Manual

Performance Considerations

t
 is
le for

er
r

 be

ing
uld

ure
llow
ming

en
s in

 to
d
by
can
4.2.1.2 Texture Sizes

Intel740 supports texture sizes ranging from 1024 x 1024 all the way down to 1 x 1 and any power
of two-sided rectangle in between. It is recommended that a few large surface areas take advantage
of the large map sizes to show-off this ability where it counts, such as when a background
landscape is shown, or to get high resolution detail of a painting. It is best to balance the usage of
large and small texture maps to object surfaces that can best utilize them without taking up memory
resources when it is not necessary to have that large of a texture.

4.2.1.3 Texture Storage

Intel740 is optimized for texture storage in AGP memory because it allows simultaneous
throughput of up to 533 Mbyte/s of textures with the 800 Mbyte/s of local video memory which
may contain the display, render and Z-buffer. This equates to 1.3 Gbyte/s total throughput. This is
a great advantage over non-AGP graphics accelerator hardware which must keep all the textures in
local video memory equating to significantly fewer textures and less local video memory bus
bandwidth because it has to share with display, frame and Z-buffers. It is not possible to store
textures in local video memory on the Intel740. With DirectX it is easy to allocate a texture in
AGP memory (also known as non-local memory) as it is in local video memory.

4.2.1.4 Animated Texture Effects

There are many strategies which can be used in animating textures. Each is described below:

UV Coordinates One way to animate a texture is to change the texture U, V coordinates
as they map on to the vertices for each frame. This method of animation
is extremely fast since it does not cause any change of state for the
hardware and therefore does not cause any performance degradation.

Texture Frames Several frames can be loaded into AGP for one object and then the
object’s texture pointer can be changed to cycle through the differen
textures and give the effect of the textures changing. The drawback
that extra storage space is needed although with more space availab
texture storage due to AGP, storing more textures is not a problem.

Specular Lighting By changing the specular highlighting values along each vertex ov
time, a change in lighting patterns over an object to simulate water o
flickering lights can be produced. Intel740 also allows the Specular
Color value to be any R.G.B. color, which means that the colors could
animated to get different effects.

Fogging As with Specular Highlight animation, Fogging values can be varied
over time to produce new and unusual effects such as a whale jump
out of the water and the fog comes off of its body as it hits air and co
be replaced with more shininess (specular highlights).

Alpha Blending By changing the blending factors over time for each frame, the text
can appear more opaque or more translucent over time. This could a
for an effect such as a figure starting out as a ghost object and beco
more visible over time.

Procedural Textures A procedural texture is one where texel values are changed betwe
renders by a mathematical formula to produce such effects as ripple
water. When creating the texture surface in DirectX, the user needs
specify the DDSCAPS_3DDEVICE so that the surface will not be tile
if using AGP non local video memory. The texture can be written on
locking the texture surface and getting a pointer to it. Then the user
Intel740 Software Developer’s Manual 4-21

Performance Considerations
traverse the texture memory space and apply their changes. This is a
great way to represent fire or water in a texture and utilizes the extra CPU
cycles while scene rendering is being done by the hardware. Textures
should be stored in AGP memory to take advantage of the Direct
Memory Execution (DME) abilities of the Intel740.

4.2.1.5 Multi-pass Texture Effects

There are a few more texture effects worth mentioning that can be obtained with multi-pass
algorithms. Multi-pass means that the scene is rendered twice for each frame, hence causes a 2x
slower performance. The different effects are listed below:

Z-Buffer Shadowing First the camera must view the scene from the point of view of a light
source. The scene is rendered using Z-buffering. On the second pass, the
scene is rendered from the real point of view of the camera, and then the
old Z-buffer values are read with a color altering algorithm which is
applied to the pixel values being rendered at the same x, y location, thus
creating a shadow.

Dual Texture Rendering The first scene is rendered with textures in their correct places, then the
second scene is rendered with a common pattern (possibly using one of
the animated texture techniques) such as a translucent lighting effect. In
this way underwater rocks, plants, and animals could all appear to be
affected by the same light patterns.

4.2.2 Software Strategies

This section describes how to optimize applications which take advantage of the many features of
the Intel740. Topics of discussion include:

• Z-Buffering

• Antialiasing

• Minimizing State Transitions

• Dynamic AGP Buffer Placement

• Texture Palettes

• Using Mipmapping

• Designing for Sub Pixel Accuracy

• Using Color/Chroma keying Over Alpha Blended Textures

• Avoiding Stippling Errors

• Avoiding Flipping Errors

• Texture Sorting is Not Required
4-22 Intel740 Software Developer’s Manual

Performance Considerations

 that
eed
mer

ion

t, and
the
les be
es a

will
is
er

o
 causes
oth be
ing
g
 and

f a 3D
ing all
ld

t take
 causes
ered

nges do
ippling

m
 is
 can
her,
e back

ory
4.2.2.1 Z-Buffering

The Intel740 performs all of an application’s 3D depth compare in the hardware. This means
the hardware will correctly write all of the triangles in the scene as they overlap, without the n
for breaking them up into smaller triangles or expensive sorting algorithms. What the program
must remember is that if the polygons (triangles) are sorted from back to front in the applicat
and then sent to the hardware with the Z-buffering enabled, this will give worse case results
because the hardware Z-buffer algorithm checks each pixel in an x, y position against the las
if it is in front of the last according to its z value, it will write over it. It is best not to sort at all if
Z-buffer is enabled. However, enabling anti-aliasing or alpha blending requires that the triang
sorted from back to front. In this case Z-buffering may cause a performance hit which becom
trade-off for rendering any intersecting triangles properly.

The Intel740 supports a 16-bit Z-buffer. Sometimes an application’s scene depth complexity
cause rounding of the z bits resulting in unwanted tears along some polygons. To alleviate th
problem the user could disable Z-buffering for background items and render them first. Anoth
solution is to make the scene’s z coordinates fit within a 16-bit range.

4.2.2.2 Antialiasing

It is very easy to implement anti-aliasing. Simply enable it. Sort the polygons/triangles back t
front, and render the scene. The user should be cautioned to use anti-aliasing sparingly as it
a performance slow down. The user should also note that anti-aliasing and Z-buffering can b
enabled at the same time. One strategy for rendering a scene with anti-aliasing and Z-buffer
acceleration would be to render the background separately without anti-aliasing or Z-bufferin
enabled, then sort back to front the forefront items, enable both anti-aliasing and Z-buffering
then render the rest of the scene.

4.2.2.3 Minimizing State Transitions

It is encouraged that as much of the features of the Intel740 be utilized during the execution o
program as is needed to achieve the maximum visual effect. There is little overhead for enabl
of the Intel740 3D features with the exception of alpha blending and anti-aliasing which shou
only be enabled as needed. Each time a feature is enabled or disabled, a state change mus
place within the hardware. State changes cause a slight decrease in overall bandwidth and so
a slight performance hit. Best performance will be ensured if triangles to be rendered are ord
according to their state or the set of features they have enabled. For the most part, state cha
not affect the Intel740. The only state changes which cause a pipeline flush are palette and st
changes.

4.2.2.4 Dynamic AGP Buffer Placement

The Intel740 supports dynamic AGP Buffer Placement. Alternate buffers can be relocated fro
local video memory into AGP memory when necessary to allow full functionality. When there
two Mbytes of local video memory, at 640 x 480 x 16 the front buffer, back buffer and Z-buffer
all be placed in local video memory. When the resolution is changed to 800 x 600 x 16 or hig
then the back buffer can be relocated to AGP memory. The Intel740 supports rendering to th
buffer in AGP memory. Putting the back buffer into AGP memory can free up local video mem
for MPEG Overlay as well.
Intel740 Software Developer’s Manual 4-23

Performance Considerations
4.2.2.5 Texture Palettes

It is best not to use palettized textures, because the Intel740 supports many formats of ARGB,
YUV and AYUV, which allows more colors without the overhead of palette loads and changes. To
use palettized textures, minimize changes in palettes. The hardware only supports one palette and
to change it requires a state change and a pipeline flush, which slows overall performance. There
are ways to combine many texture palettes into one with the use of a tool such as Debabelizer*
which can find a common palette among many textures. It is best to use texture formats that require
no palette at all.

4.2.2.6 Using Mipmapping

An application not only increases visual quality but can also increase performance of the
application by using mipmapped textures. When an object becomes very small or distant and it has
a large texture map associated with it, the ratio of texel look-up to texels used in rendering can be 8
to 1 because the Intel740 drivers are acquiring 16 bytes from a section of the texture map but only
2 bytes are actually being rendered. Mipmapping will give a 1 to 1 ratio of texture texels read from
an image to those texels rendered in the scene. Mipmapping usually improves overall application
performance by at least 10%.

Mipmapping provides better looking graphical representation of a scene by allowing the user to
create various texture maps, which the hardware will choose to map onto the object based on how
far the object is from the viewer. So if a scene has a patterned texture which is mapped onto an
object, the user would want to create variations of that pattern which would get smaller and smaller
to correspond with each mipmapping level. The user then sets a pointer to each level of mipmap so
that the hardware will choose the correct texture based on the distance from the viewer. The
Intel740 supports tri-linear mipmapping for added visual quality.

Figure 4-18. Dynamic AGP Buffer Placement

Front
Buffer

Back
Buffer

Z-Buffer

Textures

AGP
Memory

Intel740 LX

Pentium® II
Processor

Mpeg Overlay
.6mb

.04GB

Back Buffer
4-24 Intel740 Software Developer’s Manual

Performance Considerations

racy

d. It is
 of

 are
Use the

rly.
nd for
B has

1.
he
ld not
ippling

.

lls at
ch as

 texture
 the

 be at
es, it

e each
ting.
4.2.2.7 Designing For Sub Pixel Accuracy

Users of the Intel740 need to make sure that their polygon meshes are created so that no triangle
sides are disjointed and to avoid triangle sides with “T”s because the Intel740 sub pixel accu
for texture mapping will magnify this type of application error. This means that “floating”
geometry pieces made to intersect other pieces as part of the scenery are highly discourage
also important to make sure that clipping algorithms are working correctly and that all edges
adjoining polygons are free of gaps.

4.2.2.8 Using Color/chroma Keying Over Alpha Blended Textures

When using both alpha blending and chroma/colorkeying together in a rendered frame there
some renderstates which must be enabled to ensure that all textures are rendered properly.
following DirectX render states:
SetRenderState(D3DRENDERSTATE_ALPHATESTENABLE, TRUE);

SetRenderState(D3DRENDERSTATE_ALPHAFUNC, D3DCMP_NOTEQUAL);

SetRenderState(D3DRENDERSTATE_ALPHAREF, 0);

At the same time, chroma/color keying should also be enabled using the DirectX function,
SetColorKey() and setting the dwColorSpaceLowValue and dwColorSpaceHighValue prope
Remember that for color keying, both values should be the same color palette index value, a
chroma keying, the both values should be the same value for high and low as to how the RG
been defined.

4.2.2.9 Avoiding Stippling Errors

Some developers have set D3DRENDERSTATE_STIPPLEENABLE to TRUE which sets the
default value of 0 to be set for all stippled patterns from
D3DRENDERSTATE_STIPPLEPATTERN00 to D3DRENDERSTATE_STIPPLEPATTERN3
The result of enabling stippling without setting any values will be a black screen since all of t
values are by default set to zero. If developers are not going to be using stippling, they shou
use this render state at all. If they are going to use stippling, they should be sure to set the st
values for all the D3DRENDERSTATE_STIPPLEPATTERNXX. When stippling is not to be in
use, developers should make sure to set D3DRENDERSTATE_STIPPLEENABLE to FALSE

4.2.2.10 Avoiding Flipping Errors

When using the DirectX API, it is important to always use the BeginScene and EndScene ca
the beginning and end of each frame to be written. These calls ensure that flipping errors su
blanking screens do not occur.

4.2.2.11 Texture Sorting Is Not Required

With the Intel740, the user does not have to sort textures because even though changing the
pointer is a state change, it does not cause a pipeline flush and will not noticeably slow down
rendering. The application would be much slower at sorting textures than the Intel740 would
swapping handles. If texture sorting for static geometry can be done once to affect many fram
might be useful to do so. If palettized textures are used, a performance hit may result becaus
pixel written could change palettes many times when relying on hardware Z-buffering for sor
Because hardware Z-buffering will always be faster than software sorting algorithms, it is
recommended that the user move toward RGBA or YUV textures, which will not have a
performance impact.
Intel740 Software Developer’s Manual 4-25

Performance Considerations

t

 (such
set.”

e
re
rily

ill be
ion.

me
4.3 OpenGL Performance Guidelines

OpenGL implementations must be complete. They must support all commands and parameters as
specified in The OpenGL Graphics System: A Specification. Typically this requires the OpenGL
implementation to be divided between the CPU and the graphics subsystem, in varying degrees
according to the operations involved and the functionality and performance of those system
components. This characteristic of OpenGL implementations is desirable because the application is
not required to understand the division of labor (and its resultant performance).

In many instances, the performance of a software implementation cannot be tolerated because
minimum frame rates cannot be attained. This document specifies which functions/features of
OpenGL V1.1 will be hardware-accelerated (vs. performed in software or require software
rasterization) by the Intel740 OpenGL implementation. By using accelerated features and avoiding
software rasterization, a developer can gain some assurance that the application will run at a high
level of performance. An application still needs to be tuned to ensure the highest level of
performance. That the Intel740 OpenGL implementation is “complete” and contains all the
required functionality.

4.3.1 OpenGL Feature Classification

For the Intel740 OpenGL implementation, OpenGL “features” fall into three categories:

1. Features supported directly by graphics hardware (such as setup and most per-fragmen
operations). These features are rated “G” for “graphics accelerated.”

2. Features not supported by graphics hardware which would require software rasterization
as stencil operations). These features are rated “X” for “excluded from the performance
Obviously these features should be avoided or, at best, used sparingly.

3. “CPU-supported” features (geometry, lighting, display lists, etc.) which, although not
particularly accelerated by graphics hardware, are likely to provide a level of performanc
equal to (or greater) than similar functions performed in the application. These features a
considered “PG” for “Programmer’s Discretion is Advised” since their use is not necessa
detrimental to performance. This rating is also used for “hybrid” (software + hardware)
support.

Note: The programmer must consider all the pertinent state variables in order to understand what w
hardware accelerated — a single mode might preclude acceleration of all primitive rasterizat

Note: In some situations the definition of “hardware acceleration” can become ambiguous, since so
features may require a hybrid solution (a mixture of software and hardware algorithms).
4-26 Intel740 Software Developer’s Manual

Performance Considerations
4.3.2 Feature Overview

The following table lists (at a high level) the rating of the OpenGL features.

Table 4-6. Rating OpenGL Features (Sheet 1 of 2)

Function Rating† Comments

Pixel Formats

 RGBA G

 Color Index X

Vertex Specification

 Begin/End PG

 Vertex Array PG

Evaluator PG

Model-view Transform PG

Lighting PG

Texture Generation PG

Texture Transform PG

User Clip Planes PG

Projection Transform PG

View Volume Clipping PG

Perspective Divide PG

Viewport Transform PG

Current Raster Position PG

Pixel Operations X

Point Rasterization

 Width PG

 Anti-aliasing X

Line Rasterization

 Width G/PG G: Width = 1.0

 Smoothing G

 Stippling G/X G: for trivial patterns

Polygon Rasterization

 Culling G

 Stippling G

 Smoothing G

 Fill Mode G

 Point Mode PG

 Line Mode G

 Depth Offset PG

Pixel Rectangles / Bitmaps G/X G: simple copy operations

† “G” indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.
Intel740 Software Developer’s Manual 4-27

Performance Considerations
Texturing

 TexImage* PG

 CopyTex PG

 TexSubImage PG

 CopyTexSubImage PG

 Wrap G

 Bilinear Filtering G

 Trilinear Filtering X

 Border X

 Texture Objects PG

 Replace, Modulate, Decal
Modes G

 Blend Mode X

Fog

 Per-Vertex G

 Per-Pixel X

Per-Fragment Operations

 Pixel Ownership X when drawing to occluded front buffer

 Scissor X

 Alpha Test G

 Stencil X

 Depth Buffer Test G

 Blending G Note: No destination alpha buffer with depth
buffer

 Dithering G

 Logical Op X except for trivial operations

Whole Frame Buffer Operations

 FRONT_AND_BACK PG driver must draw twice

 Stereo Buffers n/a Not supported

 Auxiliary Buffers n/a Not supported

 Buffer Masks G/X X: different R,G,B,A masks

 Clear G

 Accumulation Buffer PG
accumulation performed in software

 Read Pixels PG

 Copy Pixels G/X G: simple copies

Selection PG

Feedback PG

State Requests PG

Table 4-6. Rating OpenGL Features (Sheet 2 of 2)

Function Rating† Comments

† “G” indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.
4-28 Intel740 Software Developer’s Manual

Performance Considerations

ion
e

ents,
ed
ration.

ith the

scribe

rmal,
hese

nGL

must

e or
Note: The remainder of this chapter is structured as an “annotation” of the OpenGL V1.1 specificat
and specific extensions. Only performance notes will be discussed and included here, so on
probably needs to read this document alongside the OpenGL specification.

4.3.3 OpenGL Operation

The following sections describe the classification of OpenGL features.

4.3.3.1 Begin/End Paradigm

There are no primitive (object) types excluded from hardware acceleration. Points, line segm
line segment loops, separated line segments, polygons, triangle strips, triangle fans, separat
triangles, quadrilateral strips, and separated triangles are all candidates for hardware accele
This includes the specification of polygon edge flags.

4.3.3.2 Vertex Specification

All vertex and associated auxiliary data specifications are included in the performance set, w
following exceptions:

Since color index mode is not supported. Index specification is not of particular interest

4.3.3.3 Vertex Arrays

Vertex array specification is included in the performance set, and is the preferred means to de
objects with a large number of vertices.

4.3.3.4 Rectangles

Rectangles are included in the performance set.

4.3.3.5 Coordinate Transformation

The Intel740 does not provide hardware acceleration for transformations, although vertex, no
and texture coordinate transformations are supported and optimized for the target platform. T
operations are therefore rated PG.

Application designers wishing to perform these operations internally are referred to the “Ope
Correctness Tips” provided in the OpenGL Programming Guide; directions are given to allow 2D
rasterization specification. Note that the viewport transformation is always enabled and thus
be set to properly generate the proper window coordinates.

4.3.3.6 Clipping

The Intel740 OpenGL implementation does not provide hardware acceleration for view-volum
client clip plane clipping. These operations will require a software clipping stage prior to
rasterization.

4.3.3.7 Current Raster Position

Not all operations which rely on the current raster position are hardware accelerated.
Intel740 Software Developer’s Manual 4-29

Performance Considerations
4.3.3.8 Colors and Coloring

The Intel740 does not provide hardware accelerated lighting operations. Although lighting is
supported, applications wishing to perform these operations internally should ensure that lighting is
disabled in OpenGL.

Both flat shading modes (SMOOTH and FLAT) are supported by the Intel740 hardware.

4.3.4 Rasterization

4.3.4.1 Antialiasing

Line and polygon smoothing is supported by the Intel740 hardware.

4.3.4.2 Points

Aliased points are rendered by the Intel740 hardware using short lines or triangles. Antialiased
points will require software rasterization.

4.3.4.3 Line Segments

Only unit-width aliased or anti-aliased lines are supported by the Intel740 hardware. Stippled and/
or wide lines are not supported by the hardware and will require a software or hybrid rasterization
phase.

4.3.4.4 Polygons

Polygon culling is supported by the Intel740 hardware, as are stippled and/or anti-aliased polygons.

FILL and LINE polygon modes are supported by the Intel740 hardware. Depth offset is not directly
supported by the hardware, but does not require software rasterization.

4.3.4.5 Pixel Rectangles

Pixel rectangles are not supported by the Intel740 hardware and will require software rasterization.

4.3.4.6 Bitmaps

Bitmaps are not supported by the Intel740 hardware and will require software rasterization.

4.3.4.7 Texturing

All texture mapping functions are supported by the Intel740 hardware, with the following
exceptions:

• Border colors are ignored (textures are clamped to the edges)

• BLEND texture function requires software rasterization
4-30 Intel740 Software Developer’s Manual

Performance Considerations

4.3.4.8 Fog

The Intel740 hardware supports linear interpolation of the fog factor. Setting the FOG_HINT to
NICEST when EXP or EXP2 modes are selected will require software rasterization.

4.3.4.9 Antialiasing Application

Line and polygon smoothing is supported by the Intel740 hardware.

4.3.5 Fragments And The Frame Buffer

4.3.5.1 Per-Fragment Operations

The following table defines which pre-fragment operations are included or excluded from the
performance set.

4.3.5.2 Whole Framebuffer Operations

Drawing to the FRONT_AND_BACK will require two rasterization passes (internal to the
OpenGL implementation). Stereo and auxiliary buffers are not supported.

Use of ColorMask should be limited to enabling or disabling all the color components
concurrently. Software rasterization will be required if only some of the color components masked.

Those “whole frame buffer” operations related to stencil or accumulation buffers will require
software rasterization.

4.3.5.3 Drawing, Reading, and Copying Pixels

Only “pure” copy pixel operations are hardware accelerated. Pixel reads will be performed in
software.

Table 4-7. Included and Excluded Pre-Fragment Operations

Operation Rating†

Pixel Ownership X (when drawing to an occluded front buffer)

Scissor X

Alpha Test G

Stencil X

Depth Buffer Test G

Blending G, though destination alpha buffer is not supported

Dithering G

Logical Operation X

† “G” indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.
Intel740 Software Developer’s Manual 4-31

Performance Considerations

G.”
4.3.6 Special Functions

The special functions (listed below) are all performed by the CPU and are therefore rated “P

• Display lists

• Flush and Finish

• Evaluators

• Selection

• Feedback

4.3.7 State And State Requests

All of the state request commands are performed in software are therefore rated “PG.”

4.3.8 GL Command Summary

The following table provides “performance ratings” on a per-command basis, with notes on
parameter settings.

Table 4-8. Command Performance Ratings (Sheet 1 of 5)

Command/Feature Rating† Comment/Exception

glAccum PG

glAlphaFunc G

glAreTexturesResident PG

glArrayElement PG

glBegin PG

glBindTexture PG

glBitmap X

glBlendFunc G

glCallList PG

glCallLists PG

glClear G

glClearAccum X

glClearColor G

glClearDepth G

glClearIndex X color index not supported

glClearStencil X

glClipPlane PG requires software clipping

glColor PG

glColorMask G/X G: only when all channels are masked or
enabled together

† “G” indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.
4-32 Intel740 Software Developer’s Manual

Performance Considerations
glColorMaterial PG

glColorPointer PG

glCopyPixels G/X G: for simple copies

glCopyTex* G/X G: for simple copies

glCullFace G

glDeleteLists PG

glDeleteTextures PG

glDepthFunc G

glDepthMask G

glDepthRange PG

glDisable - see glEnable

glDisableClientState PG

glDrawArrays PG

glDrawBuffer G/PG G: only NONE, FRONT or BACK

glDrawElements PG

glDrawPixels G/X G: for simple copies

glEdgeFlag G

glEdgeFlAGPointer PG

glEnable

 *_ARRAY PG

 ALPHA_TEST G

 AUTO_NORMAL PG

 BLEND G/X X: destination alpha buffer not supported

 CLIP_PLANEi PG

 COLOR_MATERIAL PG

 CULL_FACE G

 DEPTH_TEST G

 DITHER G

 FOG G/X X: when FOG_HINT == NICEST and not
LINEAR fog

 LIGHTi PG

 LIGHTING PG

 LINE_SMOOTH G

 LINE_STIPPLE G/X G: trivial patterns

 *_LOGIC_OP G/X G: trivial operations

 MAP* PG

 NORMALIZE PG

Table 4-8. Command Performance Ratings (Sheet 2 of 5)

Command/Feature Rating† Comment/Exception

† “G” indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.
Intel740 Software Developer’s Manual 4-33

Performance Considerations
 POINT_SMOOTH X

 POLYGON_OFFSET* PG

 POLYGON_SMOOTH G

 POLYGON_STIPPLE G

 SCISSOR_TEST X

 STENCIL_TEST X

 TEXTURE_*D PG

 TEXTURE_GEN* PG

glEnd -

glEndList PG

glEval* PG

glFeedbackBuffer PG

glFinish PG

glFlush PG

glFog G/X X: when FOG_HINT == NICEST and not
LINEAR

glFrontFace G

glFrustrum PG

glGenLists PG

glGenTextures PG

glGet* PG

glHint - depends on hint

glIndex* X color index not supported

glInitNames PG

glInterleavedArrays PG

glIs* PG

glLight PG

glLightModel PG

glLineStipple G/X G: when solid

glLineWidth G/X G: when 1.0

glListBase PG

glLoadIdentity PG

glLoadMatrix PG

glLoadName PG

glLogicOp G/X G: when CLEAR, COPY or SET

glMap* PG

glMaterial PG

Table 4-8. Command Performance Ratings (Sheet 3 of 5)

Command/Feature Rating† Comment/Exception

† “G” indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.
4-34 Intel740 Software Developer’s Manual

Performance Considerations
glMatrixMode PG

glMultMatrix PG

glNewList PG

glNormal PG

glNormalPointer PG

glOrtho PG

glPassThrough PG

glPixelMap G/X G: trivial operations

glPixelStore G/X G: trivial operations

glPixelTransfer G/X G: trivial operations

glPixelZoom X

glPointSize G/PG G: only for unit width

glPolygonMode G/PG G: when FILL or LINE

glPolygonOffset PG

glPolygonStipple G

glPopAttrib PG

glPopMatrix PG

glPopName PG

glPrioritizeTextures PG

glPushAttrib PG

glPushMatrix PG

glPushName PG

glRasterPos PG

glReadBuffer X

glReadPixels X

glRect G

glRenderMode G/PG G: RENDER; PG: SELECT or FEEDBACK

glRotate PG

glScale PG

glScissor X

glSelectBuffer PG

glShadeModel G

glStencil* X

glTexCoord G

glTexEnv G/X X: BLEND

glTexGen PG

glTexImage1d PG border colors ignored

Table 4-8. Command Performance Ratings (Sheet 4 of 5)

Command/Feature Rating† Comment/Exception

† “G” indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.
Intel740 Software Developer’s Manual 4-35

Performance Considerations
glTexImage2d PG border colors ignored

glTexParameter G/X X: *_MIPMAP_LINEAR and
TEXTURE_BORDER_COLOR

glTextureSubImage* PG

glTranslate PG

glVertex PG

glVertexPointer PG

glViewport PG

Table 4-8. Command Performance Ratings (Sheet 5 of 5)

Command/Feature Rating† Comment/Exception

† “G” indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.
4-36 Intel740 Software Developer’s Manual

Glossary

Accelerated
Graphics Port (AGP)

A scalable architecture that increases the bandwidth available
to a graphics controller and provides the performance
necessary for a graphics controller to do texturing directly from
system memory.

Alpha Blending Uses a fourth color component which is not displayed but which
corresponds to the opacity of a surface to control the amount of
color of a pixel in the source surface to be blended with a pixel
in the destination surface.

Antialiasing An algorithm designed to reduce the stair-stepping artifacts
(sometimes called jaggies) that result from drawing graphic
primitives on a raster grid. The solution usually relies on the
multi-bit raster’s ability to display a number of pixel intensities. If
the intensities of the neighboring pixels lie between the
background and line intensities, the line becomes slightly
blurred, and the jagged appearance is thereby diffused.

Bitmap A representation, consisting of rows and columns of dots, of a
graphics image in computer memory. The value of each dot
(whether it is filled in or not) is stored in one or more bits of data.
For simple monochrome images, one bit is sufficient to
represent each dot, but for colors and shades of gray, each dot
requires more than one bit of data. The more bits used to
represent a dot, the more colors and shades of gray that can be
represented.

BitPlane A rectangular array of bits mapped one-to-one with pixels. The
framebuffer is a stack of bitplanes.

Buffer A group of bitplanes that store a single component (such as
depth or red) or a single index (such as the color index).

Clipping A three dimensional operation that reduces the number of
drawing calculations the CPU makes by eliminating any objects,
or portions of objects, outside the viewing area.

Depth Cueing Reducing an object’s color and intensity as a function of its
distance from the observer. For instance, a bright, shiny red ball
may look duller and darker the farther away it is from the
observer.

Direct3D (D3D) An Application Programming Interface (API) for manipulating
and displaying 3-dimensional objects. Developed by Microsoft,
Direct3D provides programmers with a way to develop 3-D
programs abstracted from the hardware layer, but which can
utilize 3-D capabilities of the underlying graphics accelerated
hardware.

DirectDraw Microsoft’s new 2D library of graphics API’s, enabling access to
hardware’s Blitting, clipping and flipping capabilities. DirectDraw
provides low-level access to the frame buffer and advanced
features of the display adapter.
Intel740 Software Developer’s Manual Glossary-1

Glossary
DirectDraw Video
Port Extension
(VPE)

Microsoft’s extension of DirectDraw to control the flow of data
from a hardware video port device to a DirectDraw surface in
video memory. As the VPE specification is finalized, it will be
merged with the rest of the DirectDraw documentation.

Direct Memory
Execution (D.M.E.)

Utilization of the entire AGP bandwidth through deep buffering
and 2x side band signaling with write combining which provides
the highest sustained data transfer rates across AGP.

Double Buffering The process of using two frame buffers for smooth animation.
Graphical contents of one frame buffer are displayed while
updates occur on the other buffer. When the updates are
complete, the buffers are switched. Only complete images are
displayed, and the process of drawing is not shown. The result
is the appearance of smooth animation.

Fogging The alteration of the visibility of what is seen, depending on how
far one is from the object.

Frame Buffer A block of graphics memory that represents the display screen.

GDI The Windows Graphics Device Interface, a library of video
display and printer functions for 2D graphics.

Gouraud shading Smooth interpolation of colors across a polygon or line segment.
Colors are assigned at vertices and linearly interpolated across
the primitive to produce a relatively smooth variation in color.

H.324 New communications standard for sharing video, voice and data
over a single analog telephone line.

HAL Hardware Abstraction Layer. A specification of a graphics
hardware’s functionality. Generally implemented into a device
driver software program.

Hyper Pipelined
Architecture

An architecture designed so that many operations are executed
in parallel to improve performance.

I2C* I2C* (Inter-Integrated Circuit) is a two-wire serial bus/protocol. A
serial clock line (IICCLK) and serial data line (IICDAT) are used
to transfer data between a bus master and a slave device. The
maximum data rate is 100 Kbits/s. A slave may slow down the
bus by inserting wait states. In the Intel740 a single bus master
can be implemented by using two of Intel740’s GPIO pins; one
for IICCLK and one for IICDAT. Multiple slaves can be
connected to this system (e.g., a TV tuner, video decoder, and
digital TV encoder). However, only one I2C* master is allowed
(Intel740). The timing for the I2C* is derived from Intel740’s PCI
clock.

Lighting A mathematical formula for approximating the physical effect of
light from various sources striking objects. Typical lighting
models use light sources, an object’s position & orientation and
surface type.
Glossary-2 Intel740 Software Developer’s Manual

Glossary
Mipmapping When viewing a distant texture-mapped object in a 3D world,
many texels make up each pixel seen on the screen, causing
the textures to often appear aliased or distorted, if point
sampling, the most common texture-mapping technique, is
used. Mipmapping solves that problem by precomputing (that is,
prefiltering) different levels of detail of your texture image, and
accessing the appropriate level according to the object’s
distance from the camera. For example, a texture image which
is 16x16 texels, will have four more mipmaps at lower
resolutions, 8x8, 4x4, 2x2 and 1x1. Bilinear mipmapping
chooses the closest mipmap image to your pixel’s level of detail,
then performs a bilinear interpolation upon that texture image to
get the color value for the pixel. Trilinear mipmapping requires
over twice the computational cost, as it chooses the two closest
mipmaps, performs a bilinear interpolation on each, then
averages the two results to arrive at the final screen pixel value.

MMX™ Technology A set of 57 multimedia instructions built into Intel’s newest
microprocessors. MMX™ Technology-enabled microprocessors
can handle many common multimedia operations, such as
digital signal processing (DSP), that are normally handled by a
separate sound or video card. However, only software
especially written to call MMX™ Instructions can take
advantage of the MMX Instruction set.

Pixel Short for picture element. The bits at location (x, y) of all the
bitplanes in the framebuffer constitute the single pixel (x, y). It is
the smallest discrete unit of a computer or TV tube that can be
assigned a specific color, the “dots” that make up TV and
computer screen pictures.

POTS Video Low cost video conferencing over Plain Old Telephone Service
(POTS).

Raster A rectangular grid of picture elements, or pixels. The graphical
data to be displayed on the raster is stored by the frame buffer.
Raster operations can be performed on some portion or all of
the raster. Such operations aid in the efficient handling of blocks
of pixel data.

Rendering The process of computing a graphical model’s surface qualities,
such as color, shading, smoothness, and texture, and creating a
raster image.

Setup Stage responsible for the precalculation of various derivatives
used by inner loops of rendering algorithms.

Shading The process of interpolating color within the interior of a
polygon, or between the vertices of a line, during rasterization.

Texel A texture element. A texel is obtained from texture memory and
represents the color of the texture to be applied to a
corresponding fragment.
Intel740 Software Developer’s Manual Glossary-3

Glossary
Texture antialiasing Bilinear or trilinear filtering. Also known as sub-texel positioning.
If a pixel is between texels, the program choses the color of the
pixel by averaging the adjacent texels’ colors instead of
assigning it the exact color of one single texel. Without bilinear
or trilinear filtering, the texture gets very blocky up close as
multiple pixels get the exact same texel coloring, while the
texture shimmers at a distance because small position changes
keep producing large texel changes.

Texture mapping The process of superimposing a 2-D texture or pattern over the
surface of a 3-D graphical object. This is an efficient method of
producing the appearance of texture, such as that of wood or
stone, on a large surface area.

Three Dimensional
Graphics

The display of objects and scenes with height, width, and depth
information. The information is calculated in a coordinate
system that represents three dimensions via x, y, and z axes.

VxD Virtual Device Driver.

WDM Win32 Driver Model (WDM) provides a common set of I/O
services and binary-compatible device drivers for both Windows
NT and future Windows operating systems. WDM will maximize
system responsiveness and throughput by providing extremely
low services and fewer ring transitions that interactive
applications demand. All WDM drivers execute in Ring 0 and
have access to low latency services. For backward
compatibility, a Windows virtualization driver can be
implemented to interface a hardware-specific legacy application
to WDM.

Z-buffer The depth buffer in 3-D graphics. The z-buffer memory
locations, like those in the frame buffer, correspond to the pixels
on the screen. The z-buffer, however, contains information
relating only to the z-axis (or depth axis). The z-buffer is used in
hidden surface removal algorithms, so that for each pixel
written, the depth of the pixel is stored in the z-buffer. When
subsequent objects attempt to draw that pixel, that object’s z
value is compared with the number in the z-buffer, and the write
is omitted if the object is farther away from the eye.
Glossary-4 Intel740 Software Developer’s Manual

	Intel740 Graphics Accelerator
	Contents
	Figures
	Figure 2-1. System Block Diagram with Intel740
	Figure 2-2. Intel740 Architectural Interfaces
	Figure 2-3. The Intel740 Implementation of Sideban...
	Figure 2-4. Batch Processing on the Intel740 - A C...
	Figure 2-5. The Intel740’s Ability to Execute Text...
	Figure 2-6. The Intel740 Functioning as Two Memory...
	Figure 2-7. 3D Pipeline for DirectX
	Figure 2-8. 3D Pipeline for OpenGL
	Figure 2-9. Triangle as the Intel740 Driver Sees I...
	Figure 2-10. Effects of Fogging Off vs Fogging On
	Figure 2-11. Effects of Using Specular Highlightin...
	Figure 2-12. Effects of Using Alpha Blending
	Figure 2-13. Effects of Flat Shading vs. Smooth Sh...
	Figure 2-14. Getting 1.3 Gbytes of Concurrent Thro...
	Figure 2-15. A Color Keyed Splash
	Figure 2-16. Point Filtering VS. Bilinear Filterin...
	Figure 2-17. An Example of Five Levels of Mipmappe...
	Figure 2-18. Z-Buffering Off vs. Z-Buffering On
	Figure 2-19. Effects of Antialiasing
	Figure 2-20. Content of an NTSC Video Frame
	Figure 2-21. Configuration of Video Capture Memory...
	Figure 2-22. VBI Buffering Scheme
	Figure 2-23. Intel740 Connects to System Memory Ov...
	Figure 2-24. New Services in Windows Work with Dir...
	Figure 3-1. MCD Architecture
	Figure 3-2. Intel740 Software Architecture
	Figure 4-1. Intel740/CPU Usage Model
	Figure 4-2. Improper Usage Model
	Figure 4-3. RasM Intel740/CPU Usage Model
	Figure 4-4. RasM Pseudo-Code
	Figure 4-5. Basic Feature Sweeps
	Figure 4-6. Advanced Feature Sweeps
	Figure 4-7. Full Feature Sweeps
	Figure 4-8. Performance vs. Percent Z Occlusion
	Figure 4-9. Performance of DrawPrimitive vs. Execu...
	Figure 4-10. Performance vs. Buffer Size (Duty Cyc...
	Figure 4-11. Performance vs. Total Packet Size
	Figure 4-12. Performance vs. Texture Size
	Figure 4-13. Performance vs. Palette Changes
	Figure 4-14. Performance with Untiled Textures
	Figure 4-15. Performance vs. Transparency
	Figure 4-16. Performance vs. Screen Resolution
	Figure 4-17. Available Memory Bandwidth on a Penti...
	Figure 4-18. Dynamic AGP Buffer Placement

	Tables
	Table 1-1. Intel740 Feature Summary
	Table 2-1. Data Formats
	Table 2-2. Alpha Blend Functions for OpenGL & Dire...
	Table 2-3. DirectX Texture Map Blending Functions
	Table 2-4. OpenGL Texture Blend Modes and Equation...
	Table 2-5. Supported DirectX Texture Wrap Formats
	Table 2-6. Supported OpenGL Texture Wrap Formats
	Table 2-7. Pixel Formats and Buffers
	Table 2-8. Display Resolutions
	Table 3-1. Supported OpenGL MCD Enables (Sheet 2 o...
	Table 3-2. Supported OpenGL MCD States (Sheet 2 of...
	Table 3-3. Supported OpenGL MCD Primitives
	Table 3-4. Supported OpenGL MCD Texture States
	Table 3-5. Supported OpenGL MCD Texture Environmen...
	Table 3-6. Device Technology—dpTechnology (Sheet 2...
	Table 3-7. dwCaps—Specifies Driver-Specific Capabi...
	Table 3-8. dwCaps2—Specifies More Driver-Specific ...
	Table 3-9. dwCKeyCaps—Color Key Capabilities
	Table 3-10. dwFXCaps—Specifies Driver-Specific Str...
	Table 3-11. dwPalCaps—Specifies Palette Capabiliti...
	Table 3-12. ddsCaps.dwCaps—Specifies The Capabilit...
	Table 3-13. General Device Capabilities
	Table 3-14. Texture Capabilities
	Table 3-15. Primitive Capabilities Supported (Shee...
	Table 3-16. DIRECT3D RenderState Hardware / Softwa...
	Table 3-17. DIRECT3D RenderPrimitive Hardware / So...
	Table 3-18. VfW Capture Driver Capability
	Table 3-19. Functionality Control
	Table 3-20. Device Driver Debugging Control
	Table 4-1. Result Summary
	Table 4-2. Symbol Key
	Table 4-3. CPU Cycle Targets
	Table 4-4. Typical Video/Data Capture Applications...
	Table 4-5. CPU Usage for Some Typical Applications...
	Table 4-6. Rating OpenGL Features (Sheet 2 of 2)
	Table 4-7. Included and Excluded Pre-Fragment Oper...
	Table 4-8. Command Performance Ratings (Sheet 5 of...

	Introduction 1
	1.1 About This Manual
	1.2 Intel740 Features
	1.3 Related Documents

	Hardware Capabilities 2
	2.1 Architectural Overview
	2.2 3D Capabilities
	2.2.1 3D Pipeline
	2.2.2 3D Primitives
	Example 2�1. Sending Data to the Intel740 Using Di...
	Example 2�2. Sending Data to the Intel740 Using Op...

	2.2.3 Data Formats
	2.2.4 Surface Color Attributes
	2.2.4.1 Fogging
	Example 2�3. Enabling Fogging with DirectX
	Example 2�4. Enabling Fogging with OpenGL

	2.2.4.2 Specular Highlighting
	Example 2�5. Enabling Specular Highlighting with D...
	Example 2�6. Enabling Specular Highlighting with O...

	2.2.4.3 Alpha Blending
	Example 2�7. Enabling Alpha Blending with DirectX
	Example 2�8. Enabling Alpha Blending with OpenGL

	2.2.4.4 Alpha Testing
	Example 2�9. Enabling Alpha Testing Functions With...
	Example 2�10. Enabling Alpha Testing Functions Wit...

	2.2.4.5 Color Dithering
	Example 2�11. Enabling Color Dithering with Direct...
	Example 2�12. Enabling Color Dithering with OpenGL...

	2.2.4.6 Shading
	Example 2�13. Enabling Shading with DirectX
	Example 2�14. Enabling Shading with OpenGL

	2.2.4.7 Stippled Pattern
	Example 2�15. Enabling Stippled Patterns with Dire...
	Example 2�16. Enabling Stippled Patterns with Open...

	2.2.5 Texture Map Attributes
	2.2.5.1 Texture Map Formats
	Example 2�17. Creating a Texture Surface with Dire...
	Example 2�18. Creating a Texture Surface with Open...

	2.2.5.2 Texture Map Blending
	Example 2�19. Enabling Texture Blending with Direc...
	Example 2�20. Enabling Texture Blending with OpenG...

	2.2.5.3 Texture Map Chroma Keying and Color Keying...
	Example 2�21. Enabling Texture Map Chroma Keying a...

	2.2.5.4 Texture Wrapping Formats
	Example 2�22. Enabling Texture Wrapping with Direc...
	Example 2�23. Enabling Texture Wrapping with OpenG...

	2.2.5.5 Texture Map Filtering
	Example 2�24. Enabling Texture Map Filtering with ...
	Example 2�25. Enabling Texture Map Filtering with ...

	2.2.5.6 Texture Mipmapping
	Example 2�26. Mipmap Enabling with DirectX
	Example 2�27. Enabling Mipmapping with OpenGL

	2.2.6 Drawing Formats
	Example 2�28. Enabling Drawing Formats with Direct...
	Example 2�29. Enabling Drawing Formats with OpenGL...

	2.2.7 Buffers
	2.2.7.1 Double and Triple Buffering
	2.2.7.2 Z-Buffering
	Example 2�30. Enabling Z-Buffering with DirectX
	Example 2�31. Enabling Z-Buffering with OpenGL

	2.2.8 Antialiasing
	Example 2�32. Enabling Antialiasing with DirectX
	Example 2�33. Enabling Antialiasing with OpenGL

	2.2.9 Back Face Culling
	Example 2�34. Enabling Back Face Culling with Dire...
	Example 2�35. Enabling Back Face Culling with Open...

	2.3 2D Capabilities
	2.3.1 BitBLT Engine
	2.3.2 Stretch BLT Engine
	2.3.3 Color Expansion
	2.3.4 Hardware Cursor
	2.3.5 Video Display Resolutions

	2.4 Video, VBI, and Intercast Capabilities
	2.4.1 Video Capture Port
	2.4.2 Video Overlay
	2.4.3 VBI and Intercast
	2.4.3.1 VBI Data Format
	2.4.3.2 VBI Data Flow
	2.4.3.3 CC and EDS
	2.4.3.4 Direct CC and EDS Capture

	2.5 DVD Capabilities
	2.5.1 Hardware DVD/MPEG-2 Movie Playback

	2.6 TV Out Interface
	2.7 AGP Interface
	2.7.1 AGP Primer
	2.7.2 AGP Software Architecture

	2.8 BIOS Interface
	2.9 Local Memory

	Programming Environment 3
	3.1 OpenGL Programming Environment
	3.1.1 Model
	3.1.2 Supported OpenGL MCD States
	3.1.3 Supported OpenGL MCD Primitives
	3.1.4 Supported OpenGL MCD Texture States
	3.1.5 Supported OpenGL MCD Texture Environment Sta...

	3.2 DirectX Programming Environment
	3.3 Mini Interface Drivers
	3.3.1 Mini Display Driver
	3.3.1.1 Structures Exported to GDI

	3.4 DirectDraw Display Driver Interface
	3.4.1 Directdraw Hal Capabilities

	3.5 Direct3D Interface
	3.5.1 Supported Direct3D Capabilities
	3.5.2 Supported RenderState
	3.5.3 Supported RenderPrimitives

	3.6 Video Interface
	3.7 GDI Escape Interface

	Performance Considerations 4
	4.1 Performance Strategies And Measurements
	4.1.1 Intel740 Performance Capabilities
	4.1.2 Using CPU/Intel740 Concurrency
	4.1.3 Performance Test Results
	4.1.3.1 Raster Speed Test Method
	4.1.3.2 Implications and Analysis

	4.1.4 Special Performance Considerations
	4.1.4.1 Direct3D DrawPrimitive vs. Execute Buffers...
	4.1.4.2 Triangle Packet Size
	4.1.4.3 Texture Sizes
	4.1.4.4 Palette Changes
	4.1.4.5 Untiled Textures for Procedural Texture An...
	4.1.4.6 High Performance Transparency
	4.1.4.7 Screen Resolutions

	4.1.5 Budgeting CPU Clock Cycles
	4.1.6 Video Performance

	4.2 Other Programming Tips
	4.2.1 Texture and Surface Effects
	4.2.1.1 Texture Formats
	4.2.1.2 Texture Sizes
	4.2.1.3 Texture Storage
	4.2.1.4 Animated Texture Effects
	4.2.1.5 Multi-pass Texture Effects

	4.2.2 Software Strategies
	4.2.2.1 Z-Buffering
	4.2.2.2 Antialiasing
	4.2.2.3 Minimizing State Transitions
	4.2.2.4 Dynamic AGP Buffer Placement
	4.2.2.5 Texture Palettes
	4.2.2.6 Using Mipmapping
	4.2.2.7 Designing For Sub Pixel Accuracy
	4.2.2.8 Using Color/chroma Keying Over Alpha Blend...
	4.2.2.9 Avoiding Stippling Errors
	4.2.2.10 Avoiding Flipping Errors
	4.2.2.11 Texture Sorting Is Not Required

	4.3 OpenGL Performance Guidelines
	4.3.1 OpenGL Feature Classification
	4.3.2 Feature Overview
	4.3.3 OpenGL Operation
	4.3.3.1 Begin/End Paradigm
	4.3.3.2 Vertex Specification
	4.3.3.3 Vertex Arrays
	4.3.3.4 Rectangles
	4.3.3.5 Coordinate Transformation
	4.3.3.6 Clipping
	4.3.3.7 Current Raster Position
	4.3.3.8 Colors and Coloring

	4.3.4 Rasterization
	4.3.4.1 Antialiasing
	4.3.4.2 Points
	4.3.4.3 Line Segments
	4.3.4.4 Polygons
	4.3.4.5 Pixel Rectangles
	4.3.4.6 Bitmaps
	4.3.4.7 Texturing
	4.3.4.8 Fog
	4.3.4.9 Antialiasing Application

	4.3.5 Fragments And The Frame Buffer
	4.3.5.1 Per-Fragment Operations
	4.3.5.2 Whole Framebuffer Operations
	4.3.5.3 Drawing, Reading, and Copying Pixels

	4.3.6 Special Functions
	4.3.7 State And State Requests
	4.3.8 GL Command Summary

	Glossary

