intal.

Intel 740 Graphics Accelerator

Software Developer’'s Manual

February 1998

Order Number: 290617-001

Information in this document is provided in connection with Intel products. No license, express or implied, by estoppel or otherwise, to any intellectual
property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no liability
whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties relating to
fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are not
intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved” or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

The Intel740 may contain design defects or errors known as errata which may cause the product to deviate from published specifications. Current
characterized errata are available on request.

MPEG is an international standard for video compression/decompression promoted by ISO. Implementations of MPEG CODECSs, or MPEG enabled
platforms may require licenses from various entities, including Intel Corporation.

I2C is a two-wire communications bus/protocol developed by Philips. SMBus is a subset of the 1’c bus/protocol and was developed by Intel.
Implementations of the 12C bus/protocol or the SMBus bus/protocol may require licenses from various entities, including Philips Electronics N.V. and
North American Philips Corporation.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.
Copies of documents which have an ordering number and are referenced in this document, or other Intel literature, may be obtained from:

http://www.intel.com
or call 1-800-548-4725

Copyright © Intel Corporation, 1997-1998
*Third-party brands and names are the property of their respective owners.

intel.

Contents

1 INEFOAUCTION ..o 11
1.1 ADOUL ThiS MaNUANeeeiiiiie it 11
1.2 INEEITAD FEATUMES ...ttt e e ee e ee e e e 1-2
1.3 Related DOCUMENTSuuiiiiiiieieeii ettt e e e e e e 1-3

2 Hardware CapabilitieS ... 2-1
2.1 ArChIitECIUIal OVEIVIEWoeiiiiii ettt ee e e e 2-2
2.2 3D Capabilities......cooi i 2-7

221 3D PIPEIINE...c e e 2-7
2.2.2 3D PrIMItIVES ...ttt 2-10
2.2.3 Data FOMALScooiiiiiiiiiiiiiiet e 2-16
2.2.4 Surface Color AtrDULEScoiiiiiieiiiiiiie e 2-16
2.2.4.1 FOQUING ttttiiiiitiiiieeeiitieeee ettt ee ettt 2-16

2.2.4.2 Specular Highlightingc..coviiiiiiii e 2-18

2.2.4.3 AIpha BIENAING......coiuiiiiiiiiiiiei it 2-19

2.2.4.4 AIPha TESHNG c.vveeeiiiiiiiiieiiriieee et 2-22

2.2.4.5 ColOr DIthEIING ..ceeviiiiiiiiiiiieiieie et 2-22
2.2.4.6 ShadiNg ...cccooiiiiiiiieiiiiiiie e 2-23
2.2.4.7 Stippled Patterncooooiiiiiieiiiieee e 2-24

2.25 Texture Map AUMNDULES........oooiiiiie e 2-24
2.2.5.1 Texture Map FOrMALS.........ccoomiiiiiiiiiiiiiieie e 2-26

2.2.5.2 Texture Map Blending..........cccooruiiriiniiiiecee e 2-28

2.2.5.3 Texture Map Chroma Keying and Color Keying 2-30

2.2.5.4 Texture Wrapping FOrMatScccevirimiereiniiieiieinniieieen 2-32

2.2.5.5 Texture Map Filteringcceevviiiiiiiiiiiiie e 2-33

2.2.5.6 Texture MipmapPingc.ccuveeeeermieeeeeriieee e ieeee e 2-34

2.2.6 Drawing FOMALS........ccooiiiiiieiiiiiiie et 2-37
227 BUITEIS. . e 2-37
2.2.7.1 Double and Triple BUfferingccccccevviieeeinniiieie e, 2-38

2.2.7.2 Z-BUFfEIING cooiiiieie e 2-38

2.2.8 ANAlIASING.....eeeeeeiiiie e 2-39
2.29 Back Face CUlliNgueuiieiiiiiiiiiiiieie e 2-40
2.3 2D Capabilities.......coiiiiii et 2-41
2.3.1 BitBLT ENQINE .eiiiiiiiiiie ettt 2-41
2.3.2 Stretch BLT ENQINE ...coviiiiiiiiiiiieee e 2-41
2.3.3 COlOr EXPANSIONouiiiiiiiiieeiieii ittt 2-41
2.3.4 HArAWAre CUISON ... uuueeiiiiieeiieiis ittt ettt e e e s s st e e e e ee e s e anenes 2-42
2.3.5 Video Display ReSOIULIONScvveviiiiiiiineiiis e 2-42
2.4 Video, VBI, and Intercast Capabilities.............ccouvrvereiiiiiiimiiiiiere e 2-43
2.4.1 Video Capture POIuuuuiiiieie s 2-43
2.4.2 VidE0O OVEIIAY ...ovvviiriiiii ittt e e e e e e aeenees 2-44
2.4.3 VBl and INtercastcccoovvvieeiiiiie e 2-44
2.4.3.1 VBI Data FOormatcccccceviiiiiiiiiiiiin e, 2-45

2.4.3.2 VBIData FIOWccvvviiiiiiieiiieee e 2-47

2433 CCaANd EDSoooiiiieeeie e 2-47

2.4.3.4 Direct CC and EDS Capturecoeeeeeeeeeeeeeeveeeeeeeeenenn 2-47

2.5 DVD CapabilitieScccveieieiee et 2-47
2.5.1 Hardware DVD/MPEG-2 Movie Playback...........c.cccccvvvvvvirninnnnnnnn. 2-47
2.6 TV OUL INEEITACEeee ettt 2-48

Intel740 Software Developer's Manual iii

2.7 AGP INTEITACEviiiie it 2-48
271 AGP PrIMEI . .cciiiiiieie ettt 2-48

2.7.2 AGP Software ArchiteCtureccocceevviiiiiiiiiiiie e 2-49

2.8 BIOS INtEITACEeeeeieiiiie ettt 2-50
2.9 (I Tor= 11V =1 0T] Y USRI 2-50
Programming ENVIFONMENT ..o 31
3.1 OpenGL Programming ENVIFONMENTcooiiiiiiiiiiiiieiiee e 3-1
3Ll MOAEL ..ot 3-1

3.1.2 Supported OpenGL MCD Statesccvcuurreiieiieeieear e ee e 3-2

3.1.3 Supported OpenGL MCD Primitivesccccceeveeiiearininiiiieieeeeeeenn 3-5

3.1.4 Supported OpenGL MCD Texture Statescccceevericiiiiiieiieneeanenn. 3-6

3.1.5 Supported OpenGL MCD Texture Environment States.................. 3-6

3.2 DirectX Programming ENVIFONMENTccocuiiiiiiiiiiieeiiece e 3-7
3.3 MiNi INEEITACE DIIVEIS ...t 3-8
3.3.1 Mini DISPlay DIiVETcoiuuiiiiiiiiiiie et 3-8

3.3.1.1 Structures Exported t0 GDI..........coovciiiiiiiiiiiieie e, 3-8

3.4 DirectDraw Display Driver INnterface.........ococeeiiiiiiiiiiiieeeecee e 3-10
3.4.1 Directdraw Hal CapabilitieS..........c.coouviiiiiiiiiiiniie e, 3-10

3.5 DIreCt3D INTEITACE ...eeeiitiieie ittt 3-14
3.5.1 Supported Direct3D CapabilitieS..........ccceeriiiiieiiiiiiieiiee e, 3-14

3.5.2 Supported RENAEISIALEcvveeveiiiiiiiei e 3-18

3.5.3 Supported ReNderPrimitiVescceeeiiiiiiiiieirieeie e 3-20

3.6 VIO INEITACE. ... e 3-21
3.7 GDI ESCAPe INtEITACEoeeiieiiirt e 3-22
Performance Considerations. ... 4-1
4.1 Performance Strategies And Measurements.........ccccoeeveiiiiiieeiiee e e 4-1
4.1.1 Intel740 Performance Capabilities.............ccooiiiiiiii e, 4-1

4.1.2 Using CPU/INtel740 CONCUIMENCY ...ccceieeiiaiiiiiieie et ee e 4-2

4.1.3 Performance TeSt RESUILSc..evviiiiiiiiiiiiiie e 4-3

4.1.3.1 Raster Speed Test Method...........cccccoeeiiiiiiiiiiiiiiieee, 4-3

4.1.3.2 Implications and ANalySiS........cccccueiieeiieiieeiiiee e 4-9

4.1.4 Special Performance Considerations............cccceeeeiiieeeeenniiieeeennene. 4-11

4.1.4.1 Direct3D DrawPrimitive vs. Execute Buffers..................... 4-11

4.1.4.2 Triangle Packet Sizeccceeeiiiiieeiiiiiiiec e 4-12

4.1.4.3 TEXEUIE SIZES ..eeiiiiiiiiiieei ittt ettt 4-14

4.1.4.4 Palette Changescccooiiiiieeiiniiiiieeiiie e 4-15

4.1.4.5 Untiled Textures for Procedural Texture Animation.......... 4-15

4.1.4.6 High Performance TranSparencCyccccceouueeeeenniveeeeenns 4-16

4.1.4.7 Screen ReSOIULIONS.........cuviiiiiiiiiiii e 4-17

4.1.5 Budgeting CPU CIOCK CYCIEScciiiimiiiiiiiiiiiiie e 4-18

4.1.6 Video PerformanCec..ceiiiiiiiiiiiiiiiie e 4-18

4.2 Other Programming TIPS ...eeeeeiiueeee ettt 4-20
4.2.1 Texture and Surface Effectsooooviiiiiiiiiiii e, 4-20

4.2.1.1 TexXture FOIMATS........cocurimrimiriieie i 4-20

4.2.1.2 TEXEUIE SIZES ..eeeiiiiiiiiieii ittt ettt 4-21

4.2.1.3 TeXtUre STOragecevverrrmmrrieririeie s e ee e e e eeeeeeeeeee e e e e 4-21

4.2.1.4 Animated Texture EffectS.........ccooceiiiiieiiii e 4-21

4.2.1.5 Multi-pass Texture EffectSccccciiiniiiiiiiiiieeee 4-22

4.2.2 SOftWare StrateQiesccuueeiiiiiiiiieie i 4-22

4.2.2.1 Z-BUFFEIING ..o 4-23

4.2.2.2 ANGANASING......evrieieeie e 4-23

Intel740 Software Developer’s Manual

4.2.2.3 Minimizing State TranSitioNSooviiiiiiiiieiiee s 4-23
4.2.2.4 Dynamic AGP Buffer Placement............cccccccceiiiiniiiiiinns 4-23
4.2.2.5 Texture PalettesS.........ccccviiiiieiieii it 4-24
4.2.2.6 Using Mipmappingeeeeeeeeeerieanianiiiiiieieeeeaeaee e seeens 4-24
4.2.2.7 Designing For Sub Pixel AcCuracy..........cccoccveeiieaianiinnnnns 4-25

4.2.2.8 Using Color/chroma Keying Over Alpha
Blended TeXIUIESccoiiiieiiiiiiieie e 4-25
4.2.2.9 Avoiding Stippling ErfOrsS......cccooiiiiiiiiiiiieeee e 4-25
4.2.2.10Avoiding Flipping Errors.......ccccoveeiiiiiiiiiiiieeeee e 4-25
4.2.2.11Texture Sorting Is Not Requiredc.cccvveeveeiinerinniiinns 4-25
4.3 OpenGL Performance GUIdelines.............euviiieiiiiiiiiiiiiee e 4-26
4.3.1 OpenGL Feature Classification...........ccceveriiiiriiiiiiiiieieiie e 4-26
4.3.2 FeatUre OVEIVIEWviiiiiiiiiieee ettt ettt ettt et arbe e e 4-27
4.3.3 OPENGL OPEratioN......ccceeiiiiiiieeaiiiieie ettt e et ee et ee e e e ee e 4-29
4.3.3.1 Begin/End Paradigmcccvviiiiiiiiinniieee e 4-29
4.3.3.2 Vertex SPecCifiCationoccvvvviriiiiiinni e 4-29
4.3.3.3 VErteX AITAYS ...ccoieiiiiitirieeie ettt 4-29
4.3.3.4 RECLANGIES ..ot 4-29
4.3.3.5 Coordinate Transformationcccccovveiieiiniiiiieee e, 4-29
4.3.3.6 ClIPPING . vtveeeiiiieieiit ettt 4-29
4.3.3.7 Current Raster POSItION........cccuviiiiiiiiie e 4-29
4.3.3.8 Colors and CoOlOMNGcuveriiiriiiiriiie e 4-30
4.3.4 RASLEIIZALONeeeiiiiitiiiiee e 4-30
4.3.4.1 ANHAlIBSING...cii et 4-30
A.3.4.2 POINES c.ooiiiiiieie ettt 4-30
4.3.4.3 LiNE SEOMENTSooiiiiiiiiieie ittt 4-30
4.3.4.4 POIYGONS ...oeiiiiiiiieie ettt 4-30
4.3.4.5 Pixel RECtaNGIESccoiiiiiiiiiiiiie e 4-30
4.3.4.6 BiItMAPS .. eeiiiiiiiiiiiie ettt 4-30
A.3.4.7 TEXEUING eeveeeiiitieeie ettt 4-30
A.3.4.8 FOQ uuiiiiaiiiiiiie it 4-31
4.3.4.9 Antialiasing AppliCationcooveiinniiii e 4-31
4.3.5 Fragments And The Frame Bufferccccccooiiiiinii s 4-31
4.3.5.1 Per-Fragment Operationsccoccuveveriiiiieeeniiiiieee e 4-31
4.3.5.2 Whole Framebuffer Operations..........ccccoccuvveriiiiieeneeennnn. 4-31
4.3.5.3 Drawing, Reading, and Copying PixelS...........c.cccccceeennnnen. 4-31
4.3.6 Special FUNCLONS........cuuiiiiiiieieeci et 4-32
4.3.7 State And State REQUESTES........ccoovieiiiriiiieee et 4-32
4.3.8 GL Command SUMMAIYccoeeeriiiiiiiriiiieeieee e ae e e e 4-32
GlOSSANY .o Glossary-1

Intel740 Software Developer's Manual Y

Figures

vi

2-1

2-3
2-4
2-5
2-6
2-7
2-8
2-9
2-10
2-11
2-12
2-13
2-14
2-15
2-16
2-17
2-18
2-19
2-20
2-21
2-22
2-23
2-24

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18

System Block Diagram with INtel740 ..., 2-2
Intel740 Architectural Interfacesocuvveiiiiiiiie e 2-3
The Intel740 Implementation of Sideband Addressingcccccoeeiiiviiiennen. 2-4
Batch Processing on the Intel740 - A Conceptual Viewcccccceeveeeieennnes 2-5
The Intel740’s Ability to Execute Textures Directly From AGP Memory....... 2-6
The Intel740 Functioning as Two Memory Controllersccocvvvvivininnen, 2-6
3D Pipeling fOr DIFECEXvviiiiiiiiiieie ittt 2-8
3D Pipeling fOr OPENGL......ccii it 2-9
Triangle as the INtel740 Driver SEES Itovcveiiiriiiiiee e 2-11
Effects of Fogging Off vsS FOGQING ON.....c.ueviiiiiiiiiiiie e 2-17
Effects of Using Specular Highlighting...........coooiiiiiiiee 2-18
Effects of Using Alpha BIENdINGcccooiiiiiiiiiiiiiiiieee e 2-20
Effects of Flat Shading vs. Smooth Shadingccccceiniiiiiinniie, 2-23
Getting 1.3 Gbytes of Concurrent Throughput with the Intel740 2-25
A Color Keyed SPIashi........oouuiiiiiiiii e 2-31
Point Filtering VS. Bilinear Filteringccccceeeiiiiiieiiiieeeeeieee e 2-34
An Example of Five Levels of Mipmapped Textureccooevevvvivnereenen. 2-35
Z-Buffering Off vs. Z-BUFfering ONcoeveiiiiiiiiiiee e 2-38
Effects of ANtialiaSingcooooviieiieiieei e 2-40
Content of an NTSC Vide0 Frameccccoeviiiiiiiriiiii e 2-45
Configuration of Video Capture Memory wWith VBIcccccoviiiiiiiinieeennn. 2-46
VBI BUFfering SChEMEomiiiiieiie e 2-46
Intel740 Connects to System Memory Over AGPcccccvvveiiiiniiiiiiiinnien, 2-48
New Services in Windows Work with DirectDraw to

Support AGP APPLICALIONScooeiiieiieee e 2-49
MCD AICRITECIUIE ..eeeiiiiieie e 3-1
Intel740 Software ArChitECIUIe...........ooviiieiiii s 3-7
INtel740/CPU Usage MOAElo.ueeieeiiiciiie e 4-2
Improper Usage MOAELoouveeieieiiceiei e ee e e e ee e 4-2
RasM Intel740/CPU Usage MOUEl...........coovviiiiiiiiieee e 4-3
RaSM PSEUAO-COEoeeiiiiiiiiee e e e 4-4
BaASIC FEAUINE SWEEPS . .uuvueue i i e e ee ettt s n e s en e e e ee s 4-6
AdvanCed FEAtUIE SWEEPS.....uuuuurur i it eees et e eeeeete e e e e e e e e e e e aae e 4-7
FUII FEALUINE SWEEPS ...vuitiii it e ettt e eaaee s 4-8
Performance vs. Percent Z OCCIUSIONcuuviiiiiiiiiiiniieeee e 4-10
Performance of DrawPrimitive vs. Execute Buffer.............ccoociiveiiin, 4-11
Performance vs. Buffer Size (Duty CYCl€)uvvvrrvieiiiniiiiiiiiiiiiiei e, 4-13
Performance vs. Total Packet Size...........cooviiiiiiii e, 4-14
Performance VS. TEXIUIE SIZEcuiiiiiiiiiiiiiiiiiiiiet e 4-14
Performance vs. Palette Changes ... 4-15
Performance with Untiled TeXtUreS.......ccoooiiiiiiiiiiiiiee e 4-16
Performance vs. TranSPar€nCy......ccceceeieieeeeeieiie e 4-17
Performance vs. Screen ReSOIULIONcoociiiiiiiiiiiieiie e 4-17
Available Memory Bandwidth on a Pentium® Il Processor System 4-18
Dynamic AGP Buffer Placement............cccccoiiiii e 4-24

Intel740 Software Developer’s Manual

intel.

Tables
1-1

2-2
2-3
2-4
2-5
2-6
2-7
2-8
3-1
3-2
3-3
3-4
3-5
3-6
3-7
3-8
3-9
3-10

3-11
3-12
3-13
3-14
3-15
3-16
3-17
3-18
3-19
3-20
4-1

4-2

4-4
4-5
4-6
4-7

INtel740 Feature SUMMEAIY ... ee et e e eeae e 1-2
Data FOMMALSo ee e e e e e e b eaees 2-16
Alpha Blend Functions for OpenGL & DIireCtXccceeeieeiiiiiiiiiiiieeeeeenenn, 2-21
DirectX Texture Map Blending FUNCLIONS ..., 2-29
OpenGL Texture Blend Modes and EqQUationsccceeueiieieeiieeiniiiiins 2-30
Supported DirectX Texture Wrap FOrmatsS..........cccceeviiiiieeniiiiie e 2-32
Supported OpenGL Texture Wrap FOrmats.........ccovvveeeeeniieiieeninieie e 2-32
Pixel Formats and BUFfers...........cuviiiieiiioiiiieee e 2-37
Display RESOIULIONScooiiiiiiiiiiiiit e 2-42
Supported OpenGL MCD EN@bIES.........cccuuiiiiiiiii e 3-2
Supported OpeNGL MCD STALESoviiiiiiiiiiiiiie et 3-3
Supported OpenGL MCD PrMItIVEScc.euiiiiiiiiee e 3-5
Supported OpenGL MCD TexXture Statesccccoevvvvieiiniiiiiieee e 3-6
Supported OpenGL MCD Texture Environment States..........cccoeevveeeeninne. 3-6
Device Technology—dpTechnologyccoovueieiiiiiiiie e 3-8
dwCaps—Specifies Driver-Specific CapabilitieS...........ccccovvviiiiiiieeinnee, 3-10
dwCaps2—Specifies More Driver-Specific Capabilities...............cccccvvieneee. 3-11
dwCKeyCaps—Color Key Capabilitiesccvvevveiiieiniiiieeeeeeee e 3-11
dwFXCaps—Specifies Driver-Specific Stretching and

Effects Capabilili€Sscuvieiiiiii e 3-12
dwPalCaps—Specifies Palette Capabilities...............oevvvieieiiiiiiiiiiiiieneeen. 3-12
ddsCaps.dwCaps—Specifies The Capabilities Of The Surface 3-13
General Device CapabilitieS...........coouiiiiiiiii e 3-14
Texture Capabilitiesoov i 3-15
Primitive Capabilities SUPPOIedcccevvevieiiiiiiie e 3-15
DIRECT3D RenderState Hardware / Software Supportc.eeevvevnennnee. 3-18
DIRECT3D RenderPrimitive Hardware / Software Support..........cccccvvvneeee. 3-20
VIW Capture Driver Capabilityccoooiiviiiiiie e 3-21
Functionality CONtrolovvviiiieieiiiiiis e e e enenees 3-22
Device Driver Debugging CONtrolieiiiiiiiiriiieeeeeeeeeeeeee e 3-22
RESUIL SUMMAIY ... e e s e e e e e e e e e eeae e e ae e eaeeeaenne 4-4
I3 81010 Y I = S 4-5
(04 S U @3 Yo 1= -1 0[] £ 4-18
Typical Video/Data Capture AppliCations............c.euvuvvieirieiiiiinininen e 4-19
CPU Usage for Some Typical Applications...........cccevvvvvviveviveieeiieen, 4-19
Rating OPeNnGL FEALUIEScciveieeieieieeiiees s e e e e es e e e e e e e e e e aeaesaeaeaeaaeaeaees 4-27
Included and Excluded Pre-Fragment Operations.........cccceeveeeveieeeeeeeeeenennn, 4-31
Command Performance RatingS..........c.uvuveiiiiieiieieieeieieieiiiiiieieeeeeeeenenens 4-32

Intel740 Software Developer's Manual vii

intel.

Introduction 1

1.1

The Intel 740 is a graphics hardware accel erator providing a variety of features which can enhance
the speed and visual quality of 2D and 3D applications. The Intel 740 feature set also includes
DVD, video capture, VBI and intercast programming capabilities. The Intel 740 works with the
OpenGL*, Microsoft DirectX*, and Win32* programming interfaces. Both the OpenGL and the
DirectX APIs give graphics applications a standard way to invoke 2D, 3D and video graphics
rendering functions and allow a software application to be hardware independent.

The Intel 740 OpenGL driver set runs on personal computers that are based on the Intel

Architecture with Accelerated Graphics Port (AGP) support and have Microsoft WindowsNT* 4.0
or newer operating system with the OpenGL 1.1 application programming interface (API). The
Intel740 DirectX driver set runson personal computers that are based on the Intel Architecture
with AGP support and have the Microsoft Windows98* , Windows95* with USB support, or
WindowsNT 5.0 operating system with DirectX 5.0 (or newer) and Win32 programming
interfaces. This manual presents the Intel740’s accelerated functions that are callable from
OpenGL, DirectX and Win32 application programs.

About This Manual

This manual is intended for graphics tool or application programmers who are experienced with
writing 2D, 3D, or video graphics applications. The manual assumes that the programmer has a
working knowledge of the vocabulary and principles of graphics applications. It is intended for
programmers who plan to use the DirectX, OpenGL and Win32 software API interfaces.

This chapter introduces the Intel740 features and API support.

Chapter 2, “Hardware Capabilities” — provides a hardware system overview and reviews the
hardware functionality of the Intel740. This chapter describes in detail the 3D rendering, 2D
display and video capabilities.

Chapter 3, “Programming Environment” — describes the OpenGL and DirectX APlIs for the
Windows95, Windows98, and WindowsNT operating environments.

Chapter 4, “Performance Considerations” — discusses programming approaches to maximize
performance. Throughput, duty cycle, and memory bandwidth sensitivities on performance are
addressed. Programming tips and strategies for using the Intel740 are provided. OpenGL
performance guidelines are also discussed.

Intel740 Software Developer’s Manual 1-1

Introduction

1.2

Intel740 Features

Table 1-1. Intel740 Feature Summary

intel.

This section offers a brief overview of the most prominent Intel 740 features. The Intel 740 graphics
controller may contain design defects or errors known as errata. Current characterized errata are
available on request.

HYPER PIPELINED ARCHITECTURE

2D & DISPLAY FEATURES

» Direct Memory Execution (DME)

Display Resolution: 640x480x8 up to
1280x1024x16 @ 48 Hz - 85 Hz Refresh Rate

» 0.85 Mega-Triangles/Second Peak’

Hardware Cursor

» 425-500K Triangles/Second Full Featured
Sustained 3D Performance

Hardware Overlay

» 45-55 Mega-Pixels/Second Full Features (>140
Pixel Triangles) Sustained 3D Performance’

Blitter Engine

* Full Sideband Accelerated Graphics Port

Stretch Blitter Engine

e Parallel Execution

Color Expansion

* Optimized for 440LX Intel AGP Sets

3D FEATURES

VIDEO IN/OUT FEATURES

» Z-Buffering

Programmable Video Output Characteristics
(VGA, SVGA, NTSC, PAL)

» Back Face Culling

Video Capture Support (16- or 8- bit Uni-
Directional Capture Port)

» Antialiasing

Scaling of the Full Motion Video Data

* Flat and Gouraud Shading

Full Motion Video Overlaid with Frame Buffer

» Specular Highlighting

Intercast & VBI Support

* Fog with RGB Components

MPEGII DVD Capability

» Color Alpha Blending

» Color Dithering

» Stippling or “Screen Door” transparency

» Texture Color Keying and Chroma Keying

» Per Pixel Perspective Correct Texture Mapping

* Mipmapping with Trilinear Filtering 1024x1024 to
Ix1

» Texture Formats: 1, 2, 4 or 8-bit palettized;
ARGB 1555 0565 4444; Compressed AYUV
0422 0555 1544.

* Texture Memory Limited Only by System RAM

* Optimized for 800x600x16 and 640x480x16
Display Resolution

t See “Performance Strategies And Measurements” on page 4-1 for the system configuration used to

generate these performance statistics.

Intel740 Software Developer’'s Manual

= Introduction
intgl.

1.3 Related Documents

Refer to the following materias for information outside the scope of this document.
* Intel 740 Specification Update
* Silicon Graphics OpenGL* SDK

* OpenGL Programming Guidelines, Second Edition; Woo, Mason; Neider, Jackie; Davis,
Tom; Addison-Wesley Developer Press; 1997.

* Microsoft DirectX* Media5.0 SDK
* Win32 SDK

Intel740 Software Developer’s Manual

1-3

intel.

Hardware Capabilities 2

Optimized for the new Accelerated Graphics Port (AGP), Intel 740 delivers high performancein 2D
and 3D graphics rasterization. In addition, Intel 740 has avideo capture port that allows easy
hookup to video conferencing systems such as POTS (Plain Old Telephone Set) video
conferencing applications and I ntercast technology. Each hardware feature is discussed in the
following sections:

“Architectural Overview” on page 2-2

“3D Capabilities” on page 2-7

“2D Capabilities” on page 2-41

“Video, VBI, and Intercast Capabilities” on page 2-43
“DVD Capabilities” on page 2-47

“TV Out Interface” on page 2-48

“AGP Interface” on page 2-48

“BIOS Interface” on page 2-50

“Local Memory” on page 2-50

Intel740 Software Developer’s Manual 2-1

Hardware Capabilities inu
®

Figure 2-1. System Block Diagram with Intel740

2.1

2-2

Pentium®1I Pentium®1I
Processor Processor
Intel740 Graphics Subsystem i I
Host Bus

DVD Chip 4
Fy
Video L 2

y A

< AGP > Host Bridge < > MMaln
emor —
Intel740 PCI Bus (#1) (e.q., 82443LX) y

A

Display
- PCI Slots
v Local Memory
(8 MB)
Primary PCI Bus
A
(SDRAM/SGRAM, (PCI Bus #0)
66 to 100 MHz)
y
f¢ / System Mgnt (SM) Bus
2 IDE Ports £ 4 6\%

PCI-to-ISA

(Ultra DMA/33) e Bridge 10
=~ APIC
(e.g., 82371SB
PlIX4)
2 usB
ISA Slots

Ports @
I ISA Bus L—J |'—r| DD

sys_blk2.vs

Architectural Overview

The Intel 740 isa highly integrated graphics accel erator designed for the Accelerated Graphics Port
(AGP). Itsarchitecture consists of dedicated multimedia engines executing in parallel to deliver
high performance 3D, 2D and video capabilities. The 3D and 2D engines are managed by the 3D/
2D pipeline preprocessor ensuring them a sustained flow of graphics data. The Intel 740 also
includes dedicated video engines for support of video conferencing and other video applications.

The Intel 740 is capable of delivering a high rate of sustained 3D graphics performance with full 3D

feature set functionality. This constant high level of performance is delivered through the

Intel740’s Direct Memory Execution (DME) architecture and the incorporation of specific graphics
architectural enhancements. Through the use of DME, the Intel740 fully utilizes the entire
bandwidth of the AGP and memory, which improves the performance when processing the heavy
data demands of 3D. Architectural enhancements within the 3D pipeline ensure that the Intel740
uses this data in the most efficient way possible. Figure 2-1 shows a block diagram of the Intel740
architecture.

Intel740 Software Developer’'s Manual

In

tel

Figure 2-2. Intel740 Architectural Interfaces

Hardware Capabilities

12C
Port

Port

AGP

PCI Bus
A

A 4

AGP Interface

A 4

PCI Interface

y

A
A 4

A A A
VVY

Video

Engines

3D/2D Pipeline Preprocessor >

A
A 4

TV Out

A

3D Pipeline 2D Pipelines

A
A 4

RAMDAC

v

Local Memory Interface

Local Memory

v

The DME architecture means that full AGP implementation is integrated into the Intel 740 with 2X
sideband support, allowing up to 533 Mbyte/s data transfers. Deep buffering allows the Intel 740 to
receive data at this high rate and handle any latencies associated with A GP transactions. Figure 2-3
illustrates the Intel 740 implementation of sideband addressing.

Further utilization of AGP isachieved using 2X sideband signaling. Sideband addressing gives the
Intel 740 the ability to issue multiple requests without having to wait for data to be returned. This

allowsthe Intel 740 to achieve the highest possible sustained datatransfer rates acrossthe AGP, and
makes DME possible.

Intel740 Software Developer’s Manual

2-3

Hardware Capabilities inu
®

2-4

Figure 2-3. The Intel740 Implementation of Sideband Addressing

Time

v

Non-Sideband Implementation

J Request ‘ Data ‘ Request ‘ Data ‘ Request ‘

Maximum Throughput With Sideband Implementation

Sideband ‘ Request ‘ Request ‘ Request ‘ Request ‘

Data Path ‘ Data ‘ Data ‘ Data ‘ Data ‘

Deep buffering, 2X mode, and sideband signaling provide sustained 3D performance by delivering
data at a constant rate regardless of other system activities.

To provide the highest level of system concurrency and performance the Intel 740 is optimized for a

batch processing mode of triangle delivery. Batch processing frees up the CPU for intelligent 3D

gaming and more complex geometry processing. This batch processing allows the CPU to place a

“batch” of triangles in memory and begin on another batch of triangles without needing to perform
handshaking with the Intel740. Figure 2-4 illustrates a conceptual view of the Intel740’s batch
triangle processing.

Intel740 Software Developer’'s Manual

inl I Hardware Capabilities
®

Figure 2-4. Batch Processing on the Intel740 - A Conceptual View

ININLN Y 5 s

Intel740 | 1 | 2 3 |4|5|6|7|8|9|

Batch Processing

CPU|1|2|3|4|5|6|7|8|9| Remaining CPU Time
1st Batch | 2nd Batch

Non-Batched Processing

Stalled Graphics

NS

intel740 | 1 | 2 | 3 [4[Is[el [7]]] 5]

CPU|1|2| |3| |4| |5|6|7|8|9|RemainingCPUTime

_

Stalled
CPU Time

The DME capabilities of the Intel 740 maximize the amount of memory available for rendering.

The Intel740 is capable of executing directly from AGP memory. This “direct execution” avoids
the “thrashing” of local memory associated with an architecture that must load local memory from
AGP or system memory. Textures can be executed directly from AGP memory, allowing
performance to be sustained even when texture complexity increases. Figure 2-5 shows
conceptually how the Intel740 executes textures directly from AGP memory.

The Intel740 is capable of rendering from local memory while textures are being executed from
AGP memory through parallel arbitration. This arbitration allows a combined memory peak
bandwidth of 1.3 Gbyte/s. The capability to support two open pages in local memory coupled with
an open page in AGP memory supports the 3D rendering model of front and back buffers, Z buffer,
and textures. 2D rendering through the use of three raster operands (pattern, source and
destination) is supported. By maintaining virtually three open pages, the Intel740 sustains graphics
performance with fully textured and Depth Buffered scenes. Figure 2-6 illustrates the dual memory
utilization of the Intel740.

Intel740 Software Developer’s Manual 2-5

Hardware Capabilities inu
®

Figure 2-5. The Intel740’s Ability to Execute Textures Directly From AGP Memory

Pentium®1|
Processor
I System and
AGP
AGP 440LX AGP Memory

D E— D EEm—
Intel740 AGPset

Local
Memory

Figure 2-6. The Intel740 Functioning as Two Memory Controllers

Pentium®1l
Processor
A
v System
and AGP
AGP 440LX AGP Memo
Intel740 | > opest [> 24

A A
.
|

Color Buffer/ |
Display Buffer

y

Source <

Local Memory

Dedicated 3D pipeline enhancements are included in the Intel740’s architecture. These

enhancements are designed to manage the way in which 3D data is requested from memory and
then used within the compute engine. While parallelism is employed among each of the Intel740’s
engines, the 3D pipeline calculates 3D data in a highly parallel fashion. With this architecture, the
3D rasterizer is able to compute four fully textured, shaded, fogged and Z Buffered pixels per
clock. In addition to using data efficiently, the 3D pipeline requests data from memory so that
memory locality is maximized regardless of triangle size or orientation. This results in fewer page
misses and a highly sustained 3D graphics output independent of the complexity of the 3D scene
being rendered. To further improve memory accesses, an efficient texture cache is implemented,
avoiding the need for redundant fetches when texturing triangles. By combining memory
efficiencies and processing data efficiencies, the Intel740 is capable of a high rate of sustained 3D
performance.

Intel740 Software Developer’'s Manual

2.2

221

Hardware Capabilities

3D Capabilities

While the API or software application takes care of the geometry and lighting stages of the 3D
pipeline, the Intel 740 enabl es hardware acceleration of the rendering stages. In the DirectX and
OpenGL 3D Pipeline diagrams (Figure 2-7 and Figure 2-8), the rasterization stage of the 3D
pipeline consists of the Setup Engine, Scan Converter, Texture Pipeline, and Color Calcul ator/
Depth Buffer Test. These four modul es comprise the rendering engine and this section discusses all
of the rendering features associated with the 3D hardware including the following subsections for
both OpenGL and DirectX:

* “3D Pipeline” (below)

¢ “3D Primitives” on page 2-10

¢ “Data Formats” on page 2-16

* “Surface Color Attributes” on page 2-16
* “Texture Map Attributes” on page 2-24
* “Drawing Formats” on page 2-37

* “Buffers” on page 2-37

* “Antialiasing” on page 2-39

* “Back Face Culling” on page 2-40

3D Pipeline

The 3D pipeline unit in the Intel740 offers advantages over the traditional graphics accelerators by
performing 3D setup locally rather than within the CPU. This difference allows the processor to
perform more geometry calculations while the Intel740 performs set-up and rendering. 3D features
supported include perspective correct texture mapping, trilinear mipmapping, Gouraud shading,
alpha-blending, stippling, and Z-buffering. Depending on the application, each feature can be
independently enabled or disabled for various levels of performance. The Intel740 allows for high
performance when all 3D features are enabled for the entire run of the application with the only
exception being antialiasing. The Intel740 is optimized for high throughput when textures are
stored in AGP memory, otherwise known as non-local video memory. Relocating textures in main
memory is also supported. Locating texture information in the AGP non-local video memory frees
up the Intel740 local frame buffer memory for graphics execution. Textures cannot be put in local
video memory. Polygon antialiasing is hardware assisted by Intel740.

Figure 2-7 and Figure 2-8 illustrates the DirectX and OpenGL API function calls, respectively, as
they are used in the 3D rasterization pipeline of the Intel740 architecture.

Intel740 Software Developer’s Manual 2-7

Hardware Capabilities in

Figure 2-7. 3D Pipeline for DirectX

AGP Memor 1 i
Y S D3DTLVertex, D3DLVertex, D3DVertex, 3D Pipeline for
Instructions 11 (3 verticies per triangle, 2 verticies per line) i
ctons | 1|) DirectX
[D3D*Vertex.Specular/Fog,
Textures [h D3D*Vertex.RGBA Setup
: : D3DRENDERSTATE_SHADEMODE —)| lines and triangles
11 D3DRENDERSTATE_CULLMODE ¥
11 Scan «+— Back Buffer Info.
1 D3DRENDERSTATE_ANTIALIAS | | Converter «—— MonoChrome
11 D3DRENDERSTATE_FILLMODE Triangles . <— Bounding Box Expansion
: : D3DRENDERSTATE_STIPPLEENABLE —|* 1 Stipple Lines
Pattern
| ||D3DRENDERSTATE_STIPPLEPATTERN >
[
I v _
11 Texture Pipeline
[«— D3DRENDERSTATE_
[— Texture Cache | TEXTUREHANDLE
[
: : D3DRENDERSTATE_ /| Map Lookup |
WRAPU & WRAPV N .
11 l ll l palettized l l l l non-palettized D3DRENDERSTATE_
[D3DRENDERSTATE_ Color Key ChromaKe | COLORKEYENABLE
11 TEXTUREMIN Y dwColorSpacelLow
I &TEXTUREMAG ¥ Texture Palette Lookup & HighValue
[YYvY SetColorKey()
: | D3DRENDERSTATE’ [Texture Filter
| : COLORKEYENABLE
1 Color Key Index Value YUV-to-RGB
11 SetColorKey()
I l
11
[
Local Memory [-
(LM) [Color Calculator Dithering | «—1—— D3DRENDERSTATE_DITHERENABLE
[and
11 Depth Buffer Test \
1 Texture D3DRENDERSTATE__
Depth (] Blending TEXTUREMAPBLEND
Buffer i
(z-Buffer) [
: : —— D3DRENDERSTATE_SPECULARENABLE
[
[—— D3DRENDERSTATE_FOGENABLE
Frame Il
|1 —— D3DRENDERSTATE_FOGCOLOR
Buffer -
11
Coverage
11 (amialia:gng) <«— D3DRENDERSTATE_ANTIALIAS
LI
v D3DRENDERSTATE_ALPHABLENDENABLE
Intel740 Alpha |*[D3DRENDERSTATE_ALPHAFUNC
Interface 7 Buffer Test <«+—T—— D3DRENDERSTATE_ALPHAREF
Write Enable
< Depth Buffer | * D3DRENDERSTATE_ZWRITEENABLE
Test |4 D3DRENDERSTATE_ZBIAS
h D3DRENDERSTATE_ZFUNC
Notes: Frame Buffer
1. Frame buffer = front and back buffers Write enable
2. Only 3D buffers are shown in local memory. Other -« D3DRENDERSTATE_
data (e.g. video capture buffer and overlay buffer) < < Blendin ALPHABLENDENABLE
also reside in local memory. Alpha RGB g D3DRENDERSTATE SRCBLEND
3. Textures can be stored in either AGP, or T —
system memory. D3DRENDERSTATE_DESTBLEND

2-8 Intel740 Software Developer’'s Manual

inl I Hardware Capabilities
®

Figure 2-8. 3D Pipeline for OpenGL

3D Pipeline for
AGP Memory
7 pre lit glVertex includes Specular, Ambient and Diffuse color in RGBA Op en G L
Instructions 11 (3 verticies per triangle, 2 verticies per line)
and Data [} ‘
[
Textures [M glShadeMode() —» Setup
[(lines and triangles)
11 glCullFace() ——» ‘
[
1 Scan -«—— Back Buffer Info.
| || glEnable(GL_POLYGON_SMOOTH) Converter <«— MonoChrome
[l gIPongonMode()_: Triangles -«+—— Bounding Box Expansion
I [Stipple Lines
I I'| glEnable(GL_POLYGON_STIPPLE) Pattern
. (G
: : glPolygonsStipple()
[‘
[Texel
[Generation
[g
11 glTexParameter(GL_TEXTURE_MIN_FILTER)
: : glTexParameter(GL_TEXTURE_MAG_FILTER)
[glTexParameter(GL_TEXTURE_WRAP_S)
|
| : glTexParameter(GL_TEXTURE_WRAP_T)
[
[
[
[
[
[
[
I l
[
[
Local Memory [Ditheri
) 1 Color Calculator ithering | «—t—— glEnable(GL_DITHER)
[and
[Depth Buffer Test \
[Texture | «——— glTexEnv()
Depth [Blending
Buffer — P——
(Z-Buffer) I 1
[
I I v
|
| : Fog | «— glFog()
|
Frame | :
Buffer 0
I I A 4
11 Coverage | | g Enable(GL_POLYGON_SMOOTH)
LI (antialiasing)
/ +
Intel740
Interface AT'EZ? <l glEnable(GL_ALPHA_TEST)
Z Buffer glAlphaFunc()
Write Enable
Notes: < Depth | T glEnable(GL_DEPTH_TEST)
1. Frame buffer = front and back buffers Buffer
2. Only 3D buffers are shown in local memory. > Test <«— glDepthFunc()
Other data (e.g. video capture buffer and overlay
buffer) also reside in local memory. Frame Buffer
3. Textures can be stored in either AGP, or { Write Enable E
system memory. 4+—— glEnable(GL_BLEND)
Alpha RGB Blending «+—— gIBlendFunc()
The four main modules within the 3D Pipeline are:
Setup Engine The Setup Engine performs the necessary cal culations to make the

geometry data useful for the rest of the pipeline. Some of the functions
include culling, and perspective correct calculation of texture
coordinates as they correspond to pieces of the geometry.

Intel740 Software Developer’s Manual 2-9

Hardware Capabilities

2.2.2

2-10

Scan Converter

Texture Pipeline

Color Calc./Depth Test

3D Primitives

intel.

The Scan Converter performsfunctionsin parallel with the Setup Engine
to read vital information such as fog, specular RGB, and blending data
and sends it on to the Texture Pipeline so that the Texture Pipeline does
not have to stop the flow of the pipeline in order to wait for this data.

The Texture Pipeline receives the texture coordinate data information
from the Setup Engine and texture blend information from the Scan
Converter and stores thisinformation in the texture cache. It performs
texture chroma and color key match, texture bilinear interpolation, and
YUV to RGB conversions.

The Color Calculator/Depth Test iswhere the color datasuch asfogging,
specular RGB, texture blend, and alpha blend is processed. The Color
Calculator computes the resulting color of apixel. The red, green, blue,
and alpha are combined with the corresponding components resulting
from the Texture Pipeline unit. These textured pixels are then modified
by the specular and fog parameters to create specular highlighted,
fogged, textured pixelswhich are color blended with the existing values
in the frame buffer. Alpha and depth buffer tests are conducted which
will determine whether the frame and depth bufferswill be updated with
new pixel values.

The 3D primitivesarelines, triangles, and state variables. Pipeline flushes occur when updating the
palette and stipple memories, since these are too large to allow pipelining of their data. In either
case, all primitives rendered after a changein state variables will reflect the new state. Figure 2-9
shows the triangle data structure which is handled by the Intel 740 drivers and & so shows how the
texture is mapped from the texture coordinate U, V space to the normalized S, T object space
where perspective correction is applied to the texture aswell as simulated curvature before being
mapped to the object in X, Y screen coordinates. The triangle data structure is passed to the

Intel 740 drivers by either the DirectX or the OpenGL API call backs.

Intel740 Software Developer’'s Manual

inl I Hardware Capabilities
®

Figure 2-9. Triangle as the Intel740 Driver Sees It

Surface of Object
Calculated on Chip T (v*1/Ww)
\")
'y
A
]
/
A
T » Tt ;S .
0 u Y uraw)
Texture map o————————%
Three Corners of
Intel740 Vertex: Triangle on Screen
struct {
float X; /0.0 - 2047.0 */
float Y; /0.0 - 1023.0 */
float Z; /0.0 - 1.0, 0- 64K */
float Ww; *1/Z */
struct {
unsigned char blue; /¥ 0 - 255 #/
unsigned char green; /* 0 - 255 */
unsigned char red; /¥ 0 - 255 */
unsigned char alpha; /* 0 - 255 */
} dwColor;
struct {
unsigned char sblue; /* 0 - 255 */
unsigned char sgreen; /* 0 - 255 */
unsigned char sred; /¥ 0 - 255 */
unsigned char fog; /* 0 - 255 *
} dwSpecularColor;
float U; [* S15.16 0 - 64K */
float V; [* S15.16 0 - 64K */
} Triangle[3];

Intel740 Software Developer’s Manual 2-11

Hardware Capabilities inu
®

Example 2-1. Sending Data to the Intel740 Using DirectX

When using DirectX, the data format for avertex which can be sent to the Intel 740 driver viaa
DirectX execute buffer, or by using the DrawPrimitive or DrawlndexedPrimitive command isa
D3DTLVERTEX, D3DLVERTEX, or D3DVERTEX data structure. The Intel 740 does the
rasterization or rendering portion of the 3D pipe. The user must set up the appropriate lighting and
transforms regardless of vertex type. The difference is that the DirectX API will know to perform
lighting and transforms as preset by the user when a D3DVERTEX is sent, or just transforms when
the D3ADLVERTEX is sent. Lighting and transformation is not done by the Intel 740, but will be
done by the API software in these instances. See the Microsoft DirectX 5.0 documentation for
more information on how to set up the lighting and transformations. The D3DTLVERTEX data
structure isillustrated bel ow.
D3DTLVERTEX TYPE
typedef struct _D3DTLVERTEX {
uni on {
D3DVALUE sx; // sx is the screen coordinate of the x position of the vertex
D3DVALUE dvSX;

b

uni on {
D3DVALUE sy // sy is the screen coordinate of the y position of the vertex
D3DVALUE dvSY;

b

uni on {
D3DVALUE sz; // sz is the z position of the vertex used for z conpares
D3DVALUE dvSz;

b

uni on {

D3DVALUE rhw;// rhwis the 1/z value for the vertex or the reciprocal
/ / of honogeneous
D3DVALUE dvRHw; // w. This value is 1 divided by the distance fromthe
//origin to the object
// along the z-axis.
b
uni on {
D3DCCOLOR col or; // color corresponds to the vertex col or conponents of red,
//green, blue, and al pha.
D3DCOLCR dcCol or;

b
uni on {
D3DCCOLOR specul ar; // specul ar corresponds to the vertex specul ar col or
/ / conponent
D3DCCOLOR dcSpecul ar; // consisting of sred, sgreen, and sblue. The al pha of
//the specular color is used for the fog density val ue.
b
uni on {
D3DVALUE tu; // tu corresponds to the texture map horizontal conponent.
D3DVALUE dv Ty,
b
uni on {
D3DVALUE tv; // tv corresponds to the texture map vertical conponent.
D3DVALUE dvTV,
b

} D3DTLVERTEX, *LPD3DTLVERTEX;

2-12 Intel740 Software Developer’'s Manual

tel

Hardware Capabilities

The Intel 740 supports the following different D3DPRIMITIVETY PEs for DrawPrimitive:

D3DPT_POINTLIST Renders a collection of isolated points
D3D_LINELIST Renders alist of isolated straight line segments
D3DPT_LINESTRIP Renders asingle polyline

D3DPT_TRIANGLELIST Renders a sequence of isolated triangles
D3DPT_TRIANGLESTRIP Rendersatriangle strip
D3DPT_TRIANGLEFAN Renders atriangle fan

Below isthe DirectX function prototype for DrawlndexPrimitive which is used to call the Intel 740
driver to take the triangle data and begin the hardware rasterization process.

HRESULT | Di rect 3DDevi ce2: : Draw ndexedPrim tive(

D3DPRI M TI VETYPE t ype,

D3DTLVERTEXTYPE D3DTLVert ex,

LPVO D VertexsLi st Pointer,

DWORD Ver t exsCount ,

LPWORD Vert exsl ndexLi st

DWORD Vert exsl ndexCount ,

DWORD Dr aw ndexedPrim tiveFl ags);

The following code segment illustrates using DrawlndexPrimitive to send the vertex datato the
Intel 740, assuming that the triangle information is ready for rendering:
HRESULT ddval
LPDI RECT3DDEVI CE | pDev;
TransfornVerti cesTo3DVi ew) ;
Li ght Vertices();
TransfornVerti cesTo2DScr een() ;
if ((ddrval = |pDev->Begi nScene()) != D3D_OK)
return FALSE;
// begining of atom c block for Direct 3D rendering
ddr val =l pDev- >Dr awl ndexedPri mi ti ve(D3DPT_TRI ANGLELI ST,
D3DVT_TLVERTEX,
(LPVO D) pvTLVert ex,
i NunVert ex,
(LPWORD) pdwi ndex,
i NunFaces* 3,
0) ;
if (ddrval != DD_CK)
return FALSE;
//end of atomc block for Direct 3D rendering
if ((ddrval = |pDev->EndScene()) != D3D_CK)
return FALSE;

It isbest to do the transformations and lighting for the entire scene before the rendering, asimplied
in the code segment above. Multiple triangle lists can be sent within the BeginScene() and
EndScene() call without hampering the performance. A triangle list larger than 85 trianglesis
recommended while alist of 512 trianglesis optimal. See Chapter 4 for in-depth triangle list
performance information.

Intel740 Software Developer’s Manual 2-13

Hardware Capabilities inu
®

Example 2-2. Sending Data to the Intel740 Using OpenGL

2-14

The three ways to send rendering information to the Intel 740 using OpenGL are immediate
method, vertex arrays, and display lists. This document first shows the immediate method, which is
straightforward and which helps to understand the second and preferred vertex array method. The
display list method is not discussed in this document; it can be found in the OpenGL Programming
Guide. This document is concerned with showing the user how to implement OpenGL callswhich
will utilize the features of the Intel 740, therefore this manual will not discuss overall OpenGL
programming methods. It should be noted that the OpenGL vertex information sent to the Intel 740
will be pre-lit, which means that the RGBA component will have already included the specular,
diffuse and ambient lighting for the vertex.

OpenGL describes vertex information alittle bit differently than DirectX. For instance, to specify
an OpenGL vertex and its surface and texture attributes the following code could be used:
gl Begin();
gl Color*();// Set current color
gl TexCoor*();// Set texture coordinates
gl EdgeFl ag*();// Control draw ng of edges
gl Vertex*();// Set vertex coordinates
gl End();

“*" specifies the type of arguments the function call will pass in the function parameters. For
glVertex, the types conform to the following:
voi d gl Vertex{234}{sifd}[v](TYPE coords);

Where “(234)" specifies the number of coordinates from as few as two for (x,y) to as many as four
for (x,y,z,w). Then the “{sifd}" portion describes the data type as either “short”, “int”, “float”, or
“double.” The next portion of the function, “{v}" is used to specify that a pointer to a vector (or

array) will be past in the parameter rather than a series of individual arguments.

It is important to send the glVertex() command last, because the information sent previously will
be used to describe the vertex at this point.

To describe all of the component information of a vertex including the texture coordinates, color,
and edge flags, each of the functions between the glBegin() and glEnd() may be called. Before
making the glColor call, other calls to set the specular lighting, fogging and antialiasing methods
should be called. These calls are discussed in the 3D features section of this document where for
each feature of the Intel740 such as fogging, an OpenGL implementation is provided. The
giBegin() and glEnd() are used to specify the beginning and end of an atomic primitive. There are
different types of primitives which can be passed as arguments to glBegin(). They are as follows:

GL_POINTS Renders a collection of isolated points

GL_LINES Renders a list of isolated straight line segments
GL_TRIANGLES Renders a sequence of isolated triangles

GL_LINE_STRIP Renders a single polyline

GL_TRIANGLE_STRIP Renders a triangle strip

GL_TRIANGLE_FAN Renders a triangle fan

GL_QUAD Renders a quad triangulated into individual triangles
GL_QUAD_STRIP Renders quadrilateral strips triangulated into individual triangles
GL_POLYGON Renders polygons triangulated into individual triangles

Intel740 Software Developer’'s Manual

tel

Note:

Hardware Capabilities

When using OpenGL, the best way to send vertex data to the driver is to use vertex arrays, which
minimize the number of function calls required for one geometric object. VVertex arrays are a new
feature of OpenGL 1.1. For the Intel 740 it is best to minimize these function calls to improve
performance and to reduce the redundant processing of shared vertices. The way to use the vertex
arraysisasfollows:

1. Enable each array type to be used:

voi d gl Enabl e ientState(d enum array);

Where array is one of the following symbolic constants: GL_VERTEX_ARRAY,
GL_COLOR_ARRAY, GL_INDEX_ARRAY, GL_NORMAL_ARRAY,
GL_TEXTURE_COORD_ARRAY, GL_EDGE_FLAG_ARRAY.

. Point to each array to be rendered:

voi d gl Col orPoi nter(CGLint size, GLenumtype, GLsizei stride, const G.void
*poi nter);

voi d gl TexCoordPoi nter (GLint size, G.enumtype, GLsizei stride, const G.void
*pointer);

voi d gl EdgeFl AGPoi nt er (GLsi zei stride, const G.void *pointer);

voi d gl VertexPointer(GLint size, GLenumtype, GLsizei stride, const G.void
*poi nter);

GLint size: is the number of coordinates per vertex, which must be 2, 3, or 4.

GLenum typeiis the data type (GL_SHORT, GL_INT, GL_FLOAT, GL_DOUBLE).
GLsizei strideisthe byte offset between consecutive vertices (or other type).

GLvoid * pointer:points to the storage array for the vertices (or other type).

There is such a thing as “intertwined” arrays where multiple types can be stored in a single array
and therefore can be “pointed to” using the stride variable to indicate the offset from the beginning
of the first group to the beginning of the next group of the type to be pointed to. For example, an
intertwined array of x, y, z vertices and RGB color could be created and pointed to in this way:

static GLfloat intertw nded[] =

{2.0, 0.3, 2.0, 200.0, 100.0, 0.0,

2.0, 0.3, 0.0, 100.0, 100.0, 0.0,

2.0, 2.0, 0.3, 100.0, 300.0, 0.0};

gl Enabl ed i ent St at e(GL_COLOR_ARRAY) ;

gl Enabl ed i ent St at e(GL_VERTEX_ARRAY) ;

gl Col orPointer (3, G._FLOAT, 6 * sizeof(G.float), intertw ned);

gl VertexPointer(3, GL_FLOAT, 6 * sizeof(G.float), & ntertw ned[3]);

. Render the data. The above calls remain on the application side of the graphics pipeline. In

order to send the data to the Intel740 for rendering the user needs to “dereference” the arrays
which cause them to be sent down the graphics processing pipeline. This can be done by either
de-referencing a single array element from a sequence of array elements or from an ordered
list of array elements. The following call is used to render an ordered list of array elements:
voi d gl DrawArrays(G.enum node, GLint first, G.sizei count);

GLenum mode: The primitive type.
GLint first: The start of the array to be processed

GLsizei count: The number of elements to be rendered.
gl Enabl edl i ent St at (GL_COLOR_ARRAY) ;
gl Enabl ed i ent St at e(GL_VERTEX_ARRAY) ;

gl Enabl eC i ent St at e(ot herarray);
gl Col orPointer(3, G_FLOAT, 6 * sizeof (G.float), intertw ned);
gl VertexPointer(3, GL_FLOAT, 6 * sizeof(G.float), & ntertw ned[3]);

Intel740 Software Developer’s Manual 2-15

Hardware Capabilities

2.2.3

intel.

gl *Pointer(...);
gl DrawArrays(GL_TRI ANGLES, 0, vertexs_count);
gl Di sabl eCl i ent State(d enum array);

The above call would render all of the arrays which have been enabled and pointed to.

Data Formats

The data value ranges are independent of the API. Table 2-1 gives alisting of each dataformat and
the corresponding domain and range values.

Table 2-1. Data Formats

224

2241

2-16

Parameters Input Format Domain Range
Vertex X, Y 32-bit Floating Point 0.0-2048 x: 0-2047
y: 0-1023 Depth (2Z) 32-bit Floating Point 0.0-1.0
0-64K Texture U, V 32-bit Floating Point 0-64K
0-64K (32K) Texture W 32-bit Floating Point 0.0-1.0
1/z Color R, G, B, A Fixed 0.8 0-255
0-255 Specular Color R, G, B Fixed 0.8 0-255
0-255 Fog Factor Fixed 0.8 0-255
0-255

Surface Color Attributes

Surface attributes are those items which allow the user to define the object’s visual quality and
which can be combined in a number of ways to create different atmospheric and lighting effects.
The surface attributes which the Intel740 supports are discussed in the following subsections:

* “Fogging” (below)

* “Specular Highlighting” on page 2-18
* “Alpha Testing” on page 2-22

* “Color Dithering” on page 2-22

* “Shading” on page 2-23

* “Stippled Pattern” on page 2-24

Fogging

Fogging adds the effect of density to the atmosphere. As an object goes farther away from the
viewer, it appears to become more “cloudy” or “foggy” than closer objects. Fogging is specified at
each vertex and is interpolated to each pixel center. If fog is disabled, the incoming color intensities
are passed unchanged. Fog is linearly interpolative, with the pixel color determined by the
following equation:

C=f*Cp+(1-f)*Cf

where f is the fog coefficient per pixel, Cp is the polygon color, and Cf is the fog color.

Intel740 Software Developer’'s Manual

In

.tel Hardware Capabilities
®

Figure 2-10. Effects of Fogging Off vs Fogging On

Example 2-3. Enabling Fogging with DirectX

The following code shows how to enable fogging using the DirectX API. Thefirst step isto turn

fogging on by setting the “D3DRENDERSTATE_FOGENABLE" state to “TRUE”. The second
step is to set the color of the fog as shown below where D3DCOLOR has a red, green and blue

value that will correspond to the color of the fog.
Set Render St at e(D3DRENDERSTATE_FOGENABLE, TRUE) ;
Set Render St at e(D3DRENDERSTATE_FOGCOLOR, <D3DCOLOR>) ;

The density of the fog is specified by setting the alpha component of the specular value of a vertex

as shown below using the D3DLVERTEX data type:
D3DLVERTEX pLVert ex;
pLVertex. specul ar = RGBA _MAKE(sred, sgreen, sblue, FOG DENSITY);

The density of the fog value is between 0 and 255, where 0 is dense, completely opaque fog and

255 completely clear or no fog.

Example 2-4. Enabling Fogging with OpenGL

There are several steps and many choices when implementing fogging through the OpenGL API.

The following code shows how to set the multiple fogging values:
gl Enable(GL_FOQ { ... };

Enables fogging; other values corresponding to the fog can be set within the braces.
gl Fogi (GL_FOG_MODE, <MODE>);

Where <MODE> is either GL_LINEAR, GL_EXP, or GL_EXP2. The GL_LINEAR flag is
hardware accelerated with the Intel740.

GLfl oatfogColor[4] = {0.5, 0.5, 0.5, 1.0};

gl Fogf v(GL_FOG _COLOR, fogCol or);

Sets the fog color from the values set in the fogColor array. Fog color can be set as RGB values or

from a color index.
gl Fogf (GL_FOG DENSI TY, <VALUE>);

Sets the fog density to <VALUE> which can be a floating point number from 0.0 to 1.0. The fog

density is used when calculating GL_EXP or GL_EXP?2 fog values.
gl Fogf (GL_FOG_START, <START_VALUE>);

Intel740 Software Developer’s Manual 2-17

Hardware Capabilities inu
®

2.24.2

Sets the start of the fog in the view. The <START_VALUE> corresponds to a “z” value in the view
and can be any floating point value within the view volume z range.
gl Fogf (GL_FOG_END, <END_VALUE>);

Sets the end of the fog in the view. The <END_VALUE> corresponds to the point in the view
where the user wants fogging to end and can be a floating point value with the view volume z
range.

gl Hi nt (GL_FOG HI NT, <HI NT_VALUE>);

Specifies how the fog is calculated where <HINT_VALUE> is either GL_NICEST or calculated
per pixel, or GL_FASTEST, calculated per vertex. The Intel740 accelerates GL_FASTEST.

For OpenGL, the fog equations are as follows:

f=e -(density * z) (GL_EXP)
f= e -(densiy'z)2 (GL_EXP2)
f=-end - z/lend - start (GL_LINEAR)

Specular Highlighting

Specular highlighting adds the effect of a “hot spot” on an object which corresponds to the
shininess of the material. The specular highlight can be varied by the amount specified for each
red, green, and blue component. The Intel740 has the capability to utilize colored specular
highlights which adds to the realism of a scene. For instance, if you have a blue light shining on a
red apple, the specular highlight would be blue in real life. With the Intel740, it is possible to create
a specular highlight of any color.

Figure 2-11. Effects of Using Specular Highlighting

2-18

Intel740 Software Developer’'s Manual

inl I Hardware Capabilities
®

Example 2-5. Enabling Specular Highlighting with DirectX

The specular color of avertex is set to red as illustrated with the following DirectX code:
D3DLVERTEX pLVert ex;
pLVertex. specul ar = RGBA_MAKE(255, 0, 0, FOG_DENSI TY);

In order to enable the specular highlights with DirectX so that they are visible, the following
D3DRENDERSTATE is set to true:
Set Render St at e(D3DRENDERSTATE_SPECULARENABLE, TRUE) ;

Example 2-6. Enabling Specular Highlighting with OpenGL

Specular highlighting is added in to the color equation at the application’s lighting stage which
formulates the RGBA color sent to the driver. To set the specular lighting component in OpenGL
the following code may be used:

G float mat_specular[] = {1.0, 1.0, 1.0, 1.0}

gl Material f v(GL_FRONT, GL_SPECULAR, nmt_specul ar);

2.2.4.3 Alpha Blending

Alpha blending adds the material property of transparency or opacity to an object. Alpha blending
requires a source red, green, blue, and alpha component and a destination red, green, blue and alpha
component. This is so that a glass surface on top (source) of a red surface (destination) would allow
much of the red base color to show through. The Intel740 blends the source Rs, Gs, Bs, As
component with the destination Rd, Gd, Bd, Ad component by the following formula:

(R, G, B’, A’) = (RsSr + RdDr, GsSg + GdDg, BsSb +BdDb, AsSa + AdDa)

Where Sr, Sg, Sh, Sais ablending factor for the source and Dr, Dg, Db, Dais ablending factor for
the destination.

Intel740 Software Developer’s Manual 2-19

Hardware Capabilities inu
®

2-20

Figure 2-12. Effects of Using Alpha Blending

Example 2-7. Enabling Alpha Blending with DirectX

To enable alpha blending with DirectX, the ALPHABLENDENABLE flag must be set to TRUE,
and then a SRCBLEND and DESTBLEND flag must be specified as shown below:

Set Render St at e(D3DRENDERSTATE_ALPHABLENDENABLE, TRUE) ;

Set Render St at e(D3DRENDERSTATE_SRCBLEND, <D3DBLEND FLAG>);

Set Render St at e(D3DRENDERSTATE_DESTBLEND, <D3DBLEND FLAG>);

The D3DBLEND FLAG isZERO, ONE, SRCCOLOR, INVSRCCOLOR, DESTCOLOR,
INVDESTCOLOR, BOTHSRCALPHA, or BOTHINVSRCALPHA. The blending factors are
calculated depending on the D3DBLEND FLAG according to the formulas shown in Table 2-2. A
common implementation is to set the source flag to SRCCOL OR and the destination flag to
INVSRCCOLOR.

Example 2-8. Enabling Alpha Blending with OpenGL

To enable alpha blending with OpenGL, the following function call is made:
gl Enabl e(GL_BLEND) ;

To set the source and destination blending factors, the following call is made:
gl Bl endFunc(<SOURCE_FLAG>, <DESTI NATI ON_FLAG>) ;

The <SOURCE_FLAG> and <DEST_FLAG> can be set to any of the flagsin the chart below and
the resulting blend will be what the corresponding values equate to when plugged into the Intel 740
equation above.

Intel740 Software Developer’'s Manual

intel.

Table 2-2. Alpha Blend Functions for OpenGL & DirectX

Hardware Capabilities

FLAG Source Blend Factor Destination Blend Factor
Sr=0 Dr=0
GL_ZERO Sg=0 Dg=0
D3DBLEND_ZERO Sh=0 Db=0
Sa=0 Da=0
Sr=1 Dr=1
GL_ONE Sg=1 Dg=1
D3DBLEND_ONE Sh=1 Db=1
Sa=1 Da=1
Sr=Rs
GL_SRC_COLOR Sg=Gs
D3DBLEND_SRCCOLOR Sh=Bs
Sa=As
Dr=Rd
GL_DST_COLOR Dg = Gd
D3DBLEND_DESTCOLOR Db = Bd
Da = Ad
Sr=1-Rs
GL_ONE_MINUS_SRC_COLOR Sg =1-Gs
D3DBLEND_INVSRCCOLOR Sb=1-Bs
Sa=1-As
Dr=1-Rd
GL_ONE_MINUS_DST_COLOR Dg = 1-Gd
D3DBLEND_INVDESTCOLOR Db =1-Bd
Da=1-Ad
Sr=As Dr=As
GL_SRC_ALPHA Sg=As Dg = As
D3DBLEND_SRCALPHA Sbh=As Db = As
Sa=As Da = As
Sr=1-As Dr=1-As
GL_ONE_MINUS_SRC_ALPHA Sg = 1-As Dg=1-As
D3DBLEND_INVSRCALPHA Sbh = 1-As Db = 1-As
Sa=1-As Da=1-As
Sr=As Dr=1-As
Sg=As Dg=1-As
D3DBLEND_BOTHSRCALPHA
- Sb=As Db =1-As
Sa=As Da=1-As
Sr=1-As Dr =As
Sg=1-As Dg = As
D3DBLEND_BOTHINVSRCALPHA
- Sb =1-As Db = As
Sa=1-As Da = As

Intel740 Software Developer’s Manual

2-21

Hardware Capabilities inu
®

2.2.4.4 Alpha Testing

The Intel 740 supports the use of alpha blend testing functions. This allows the user to control how
objectsin the scene are alpha blended. When using source al pha blending the user does not need to
create an alpha buffer. When using source a pha blending, the alpha channel of the textures are
used for the blending formulas and there is no need for an alpha buffer. The user must remember to
sort from back to front, so that the blending is performed correctly.

Example 2-9. Enabling Alpha Testing Functions With DirectX

To enable alphatesting functions with DirectX, the following render states are set:
Set Render St at e(D3DRENDERSTATE_ALPHABLENDENABLE, TRUE) ;

Set Render St at e(D3DRENDERSTATE_ALPHATESTENABLE, TRUE);

Set Render St at e(D3DRENDERSTATE_ALPHAFUNC, <D3DCMPFUNC>) ;

Set Render St at e(D3DRENDERSTATE_ALPHAREF, <ALPHA REF>);

Where <D3DCMPFUNC> can be set to D3SDCMP_NEVER, D3DCMP_LESS,
D3DCMP_EQUAL, D3DCMP_LESSEQUAL, D3DCMP_GREATER, D3DCMP_NOTEQUAL,
D3DCMP_GREATEREQUAL, or D3SDCMP_ALWAYS. And where <ALPHA REF> isavalue
specifying a reference a pha value against which pixels are tested when alpha-testing is enabl ed.
Thisvalueisin the range of 0to 1 and must be 8 bits or less for the Intel 740. The default value is 0.

Example 2-10. Enabling Alpha Testing Functions With OpenGL

To enable alphatesting functions with OpenGL, the following render states are set:
gl Enabl e(GL_ALPHA_TEST) ;
gl Al phaFunc(<GLFUNC>, <CGLREF>);

Where <GLFUNC> isGL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL,
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL. <GLREF> must be between 0 and 1.

2.2.4.5 Color Dithering

Color dithering is created by a pattern of pixelswhich are more than one color. When looked at

from a distance, the combined effect isa new color. In this manner, many different colors can be
simulated by combining a few colors. Color dithering takes advantage of the human eye’s
propensity to “average” the colors in a small area. With limited color fidelity available, large areas
of “flat” colors can exist. Color dithering takes the input of color, alpha, and fog components and
converts them from 8 bits to five- or six-bit components. Color dithering simulates 256-level color
resolution by an ordered pattern of 32- or 64-level color pixels. A four-bit dither value is obtained
by addressing a 4x4 matrix with the pixel's x and y (2 LSBs of each). The matrix repeats every four
pixels in both directions. The value obtained is appropriately shifted to align with (what would be
otherwise) truncated bits of the component being dithered. It is then added with the component and
the result is truncated to the five (six for green) MSBs.

Example 2-11. Enabling Color Dithering with DirectX

To enable color dithering with DirectX do the following:
Set Render St at e(D3DRENDERSTATE_DI THERENABLE, TRUE) ;

Example 2-12. Enabling Color Dithering with OpenGL

To enable color dithering with OpenGL do the following:
gl Enabl e(GL_DI THER) ;

2-22 Intel740 Software Developer’'s Manual

2.24.6

Hardware Capabilities

Shading

The Intel 740 shading attributes determine how the colors of the polygons (triangles) are
interpolated for each pixel in a surface. The Intel 740 allows each of the alpha, fog, specular, and
color attributes to be shaded individually. There are two types of shading performed by the

Intel 740: flat shading and Gouraud shading. Flat shading makes objects appear blocky, since each
polygon (triangle) face is denoted by a solid color. This is because flat shading takes a specified
attribute from the first passed vertex and uses this attribute to cover every pixel in the polygon.
Gouraud shading smooths the appearance of adjacent polygons (triangles) so that a sphere which
looked blocky flat shaded can be made to look more rounded. This is because Gouraud shading
takes the three vertices of the triangle and interpolates over the entire surface to blend the vertex
colors and attributes such as fog, specularity and transparency (al pha).

Figure 2-13. Effects of Flat Shading vs. Smooth Shading

Example 2-13. Enabling Shading with DirectX

In order to enable either flat or Gouraud shading using DirectX, the following render stateis set:
Set Render St at e(D3DRENDERSTATE_SHADEMODE, <D3DSHADEMODE>) ;

Where the shade mode is either D3D_GOURAUD or D3D_FLAT.

Example 2-14. Enabling Shading with OpenGL

In order to enable either flat or Gouraud shading using OpenGL, the following call can be made:
gl ShadeModel (<GLSHADEMODE>

Where the shade mode is either GL_SMOQOTH, for Gouraud shading, or GL_FLAT for flat
shading.

Intel740 Software Developer’s Manual 2-23

Hardware Capabilities inu
®

2.2.4.7 Stippled Pattern

The stipple pattern feature of the Intel 740 is used to set valuesin a 32x32 pixel matrix to be either
1 or 0, where 0 means that the corresponding portion of the pattern will be rendered as a black
pixel. Stippled patterns can be used when the application wants the screen to fade to black by
changing the pattern to have more zeros set for each frame rendered.

Example 2-15. Enabling Stippled Patterns with DirectX

To enable stippled pattern for the Intel 740 using DirectX, do the following:
Set Render St at e(D3DRENDERSTATE_STI PPLEENABLE, TRUE) ;
Set Render St at e(D3DRENDERSTATE_STI PPLEPATTERNOO, 1 OR 0);

Set Render St at e(DSDRENDERSTATE_STI PPLEPATTERN31, 1 OR 0);

The default value for all of the stipple patterns is 0. When a stippled pattern is enabled and no
stipple pattern is set, the result is a black screen.

Example 2-16. Enabling Stippled Patterns with OpenGL

To enable stippled pattern for the Intel 740 using OpenGL do the following:
gl Enabl e(GL_POLYGON_STI PPLE) ;
gl Pol ygonSti ppl e(const G ubyte *Stippl eMatrix);

Where StippleMatrix is a pointer to a 32x32 pixel bitmap interpreted as a mask of 0s and 1s.

2.2.5 Texture Map Attributes

The Intel 740 allows virtually unlimited texture usage. This is because textures can be stored in the

AGP system memory otherwise known as non-local video memory. The amount of AGP memory
available for the application islimited by the amount of system RAM which can be allocated.
Therefore, if a system has 32 Mbytes of RAM available, 20 Mbytes could be used for textures.

Using AGP for texture memory complements the performance of the Intel 740, since textures can

be mapped directly from AGP memory to the Intel 740 without using the CPU. This mapping is

donein parallel with the Intel 740 local video memory transfers for frame buffers. The total

bandwidth enabled by the parallel throughput is up to 1.3 Gbytes per second. The Intel 740 al so

“tiles” textures in AGP memory in order to minimize page faults and storage overhead which
increases both performance and texture space. Textures can not be put in local video memory.

2-24 Intel740 Software Developer’'s Manual

intel.

Hardware Capabilities

Figure 2-14. Getting 1.3 Gbytes of Concurrent Throughput with the Intel740

Pentium- |1
Processor
Textures
Intel 740 440 LX o
nite Gbyte System
Memory
(AGP Port)

.80
.80 Gbyte
Gbyte ¢ Bandwidth
533 Gbyte
s2 Bandwidth
Front Back | Z-Buffer 3:%
Buffer Buffer |.6 Mbyte | 0 =
.6 Mbyte | .6 Mbyte 2 2
=0
640x480x16 640x480x16 | 640x480x16 NS

There are many ways to manipul ate surface textures with the many Intel 740 Texture Map
Attributes. The categories are described in the following subsections:

“Texture Map Formats” on page 2-26

“Texture Map Blending” on page 2-28

“Texture Map Chroma Keying and Color Keying” on page 2-30
“Texture Wrapping Formats” on page 2-32

“Texture Map Filtering” on page 2-33

“Texture Mipmapping” on page 2-34

Intel740 Software Developer’s Manual

2-25

Hardware Capabilities inu
®

2.25.1

Texture Map Formats

The Intel 740 supports up to 16 bits of color in various texture formats. There are three waysto
catalog texture types: ARGB, AYUV, or YUV. All the texture formats listed below are supported
as either palettized or non-palettized. When the amount of bits per texel in atextureislessthan 16,
the color information is stored in a pal ette consisting of 256 16-bit entries. The texture cacheis
used to store previously accessed texels needed for blending or other purposes, so that additional
reads from memory are not needed. The Intel 740 supports images whose dimensions are a power
of two. The dimensions do not have to be square.

DirectX Texture Map Formats supported:
* 1555ARGB
* 0565ARGB (DirectX default for palettized)
* 4444ARGB (DirectX default for palettized with alpha)
* 422YUV (UV is 2's complement) (YUY2 FOURCC)
* 422YUV (UV isexcess 128) (YUY 2 FOURCC)
* 0555AYUV (texture data compression)
* 1544AY UV (texture data compression)
* Palettized 1, 2, 4, and 8 bit.

OpenGL Texture Map Formats supported:
* RGB5 (0555ARGB)
* RGBAA4(4444ARGB)
* RGB5_A1(1555ARGB)

Example 2-17. Creating a Texture Surface with DirectX

2-26

The following DirectX example shows how to create a 4444 ARGB texture surface in AGP non-
local video memory:

First set the pixel format for the 4444 ARGB:

DDPI XELFORMAT ddpf ;

DDSURFACEDESC ddsd;

ddpf . dwSi ze = si zeof (ddpf);

ddsd. dwSi ze = si zeof (ddsd);

ddpf . dwRGBBi t Count = 16 /1 Total nunmber of bits including al pha
ddpf . dwRBi t Mask = OxOF00; //Specify the masks for col or conponents
ddpf . dwGBi t Mask = Ox00FO;

ddpf . dwBBi t Mask = Ox000F;

ddpf . dwRGBAI phaBi t Mask = 0xF000;

ddpf . dwFl ags = DDPF_RGB; //specify the pixel format is valid
ddsd. dwFl ags = DDSD_PI XELFORMAT;

Next set the correct direct draw surface capability flags and creates the surface:
| DI RECTDRAW | pdd;

| DI RECTDRAWSURFACE* | pText ur eSur f ace;

HRESULT ddr val ;

ddsd. dwSi ze = si zeof (ddsd);

ddsd. dwHei ght = 128;

ddsd. dwW dth = 128;

Intel740 Software Developer’'s Manual

tel

Hardware Capabilities

ddsd. wFl ags = DDSD_CAPS | DDSD_HElI GHT | DDSD_W DTH;

ddsd. ddsCaps = DDSCAPS_TEXTURE | DDSCAPS_ALLOCONLOAD | DDSCAPS_VI DEOVEMORY |
DDSCAPS_NONLOCALVI DVEM

ddrval = | pdd->CreateSurface(&ddsd, & pTextureSurface, NULL);

Once a texture surface has been created, a palette and texture can be loaded onto the surface using
the DirectDraw sample functions DDL oadPal ette and DDRel oadBitmap from the ddutil.cpp file
included in the DirectX 5.0 SDK.

IDIRECTDRAWPALETTE *IpDDPal;

IpDDPal = DDLoadPalette(IpDD, “MyTexture.bmp”);

ddrval = IpTextureSurface->SetPalette(IpDDPal);

ddrval = DDReLoadBitmap(IpTextureSurface, “MyTexture.bmp”);

To enable the texture for rendering, the following state change is made where the texture handle
which points to a texture surface is enabled so that a particular texture surface will be rendered:
D3DTEXTUREHANDLE HTex;

IpTextureSurface->GetHandle(lpD3Ddevice, &HTex);
SetRenderState(D3DRENDERSTATE_TEXTUREHANDLE, &HTex);

The texture handle assigned to the texture surface is enabled.

Example 2-18. Creating a Texture Surface with OpenGL

In OpenGL 1.1, it is recommended to use texture objects. Texture objects are beneficial because
they allow the programmer to specify which texture is active with one simple call after these three
steps are taken:

1. Generate texture names, a texture name can be any nonzero unsigned integer. The following
call should be used when generating a texture name to ensure that a unique texture name is
created.
glGenTextures(GLsize n, Gluint *TextureName);

This call returns a texture object pointed to through textureName. When using an array of
texture names, n corresponds to the number of unused textures names in the array of texture
names.

2. Thenext step is to bind texture objects to texture data. The following call is used:
glBindTexture(GLenum target, Gluint *TextureName);
This causes the texture specified by TextureName to become active where target is either
GL_TEXTURE_1D, or GL_TEXTURE_2D and TextureName is the same pointer used in
glGenTextures.

3. The next step creates the texture surface which will from then on, correspond to the
textureName pointer:

glTeximage2D(GLenum <TARGET>, GLint <LEVEL>, GLint <INTERNALFORMAT>,
Glsizei<WIDTH>, GLsize <HEIGHT>, GLint <BORDER>, GLenum <FORMAT>, GLenum
<TYPE>, GLvoid <PIXELS>);

<TARGET> iseither GL_TEXTURE 2D, or GL_PROXY_TEXTURE_2D;
<LEVEL> is0 or the number of texture resolutions to be used

<INTERNALFORMAT> isthetexture format supported by the Intel740 and is GL_RGB5 or
GL_RGBA4, or GL_RGB5 Al

<WIDTH> and <HEIGHT> correspond to the dimensions of the texture; <BORDER>
indicates the width of the border which is either O (if thereis no border) or 1

<FORMAT> and <TY PE> describe the format and data type of the texture image data

<PIXELS>isapointer to the texture image data. This data describes the texture image itself as
well asits border.

Intel740 Software Developer’s Manual 2-27

Hardware Capabilities inu
®

2.2.5.2

When put together, creating and enabling a texture surface is done by the following:
gl Enabl e(GL_TEXTURE_2D) ;

gl GenTextures(1l, &texture_nane);

gl Bi ndText ure(GL_TEXTURE_2D, texture_nane);

gl Texl mage2D(GL_TEXTURE_2D, 0, GL_RGBA16, wi dth, height, 0, G._RGBA1S6,
GL_UNSI GNED_BYTE, i nage_pointer);

Thevariableimage_pointer pointsto the memory location where theimage datais currently stored.
Subsequent uses of the same image data need only use the glEnable() and the glBindTexture()
calls.

Texture Map Blending

The Intel 740 supports texture map blending modes that can be used to modify the pixel color by
blending atextured surface with the underlying vertex color.

Example 2-19. Enabling Texture Blending with DirectX

2-28

DirectX texture blending modes are shown in Table 2-3. Each mode’s behavior depends on

whether a texture alpha is provided (RGB or RGBA). The color and alpha equations are given for

each case. These equations employ the following definitions:

Cf intrinsic (flat or Gouraud Interpolated) color of feature
Af intrinsic (flat or Gouraud Interpolated) alpha of feature
Ct color from texture data

At alpha from texture data

Am Isb of nearest-neighbor alpha from texture data

Co color output of texture blend function

Ao alpha output of texture blend function

Some of the modes degenerate to the same function if a texture alpha is not provided.

Intel740 Software Developer’'s Manual

Hardware Capabilities

intel.

Table 2-3. DirectX Texture Map Blending Functions

Mode Texture Mode Pixel Color Alpha Dsl(DDgeDXétEeN'\gi?es

Decal RGB Co=_Ct Ao = Af DECAL
Decal RGBA Co=_Ct Ao = At
Modulate RGB Co=Cf*Ct Ao = Af MODULATE
Modulate RGBA Co=Cf*Ct Ao = At
Decal Alpha RGB Co=_Ct Ao = Af DECALALPHA
Decal Alpha RGBA Co = (1-At)*Cf + At*Ct | Ao = Af
Modulate Alpha RGB Co=Cf*Ct Ao = Af MODULATEALPHA
Modulate Alpha RGBA Co=Cf*Ct Ao = Af * At
Decal Mask RGB Co=_Ct Ao = Af DECALMASK
Decal Mask RGBA If (Am) Co=Ct Ao = Af

Else Co=Cf
Modulate Mask RGB Co=Cf*Ct Ao = Af MODULATEMASK
Modulate Mask | RGBA If(Am) Co=Cr=Ct | o= At

Else Co=Cf

Each of the DirectX texture blend statesis described in detail below:
DECAL

In the Decd state, the output color isthe texture color. The output alphais the feature a pha with an
RGB texel format and the texture a pha with an RGBA texel format.

MODULATE

In the Modul ate state, the output color is the product of the texture color and the feature color. The
output alphais the feature alphawith an RGB texel format and is the texture alpha with an RGBA
texel format.

DECALALPHA

In the Decal Alpha state, the output color is the texture color with an RGB texel format andisa
texture al pha blended combination of the feature color and the texture color with an RGBA texel
format. The output alphais the feature a pha.

MODULATEALPHA

In the Modulate Alpha state, the output color is the product of the texture color and the feature
color. The output alphaisthe feature alpha with an RGB texel format and is the product of the
feature alpha and the texture alpha, with an RGBA texel format.

DECALMASK

In the Decal Mask state, the output color isthe texture color with an RGB texel format. With an
RGBA texel format, the output color isthe texture color if the nearest neighbor texel alphalsbis 1
and is the feature color if the nearest neighbor texel alphalsb is 0. The output aphais the feature
alpha.

Intel740 Software Developer’s Manual 2-29

Hardware Capabilities inu
®

MODULATEMASK

In the Modulate Mask state, the output color isthe product of the feature color and the texture col or
with an RGB texel format. With an RGBA texel format, the output color is the product of the
feature color and the texture color if the nearest neighbor texel alphalsbis1 and isthefeature color
if the nearest neighbor texel alphalsb is 0. The output alphaisthe feature apha.

In order to use the texture map blending features with DirectX, first obtain a handle to the texture
surface to be used for blending:

D3DTEXTUREHANDLE HTex;

| pTextureSurface->Get Handl e(| pD3Ddevi ce, HTex);

Set Render St at e(D3DRENDERSTATE_TEXTUREHANDLE, &HTex) ;

Set Render St at e(D3DRENDERSTATE_TEXTUREMAPBLEND, <D3DTEXTUREBLEND>);

Where the D3ADTEXTUREBLEND values are (D3DTBLEND_) DECAL, DECALALPHA,
DECALMASK, MODULATE, MODULATEALPHA, MODULATEMASK, or COPY..

Example 2-20. Enabling Texture Blending with OpenGL

Table 2-4 states the texture blend functions for OpenGL which the Intel 740 supports.

Table 2-4. OpenGL Texture Blend Modes and Equations

Mode Texture Mode Pixel Color Alpha OpenGL Mode
DECAL RGB Co=Ct Ao = Af GL_DECAL
DECAL RGBA Co = Cf(1-At)+Ct*At Ao = Af GL_DECAL
MODULATE RGB Co=Cf*Ct Ao = Af GL_MODULATE
MODULATE RGBA Co=Cf*Ct Ao = Af*At GL_MODULATE

To enable texture map blending in OpenGL, the following code is used:
gl Enabl e(GL_TEXTURE_2D) ;

gl Bi ndText ure(GL_TEXTURE_2D, textureNane);

gl TexEnvf (GL_TEXTURE_ENV, GL_TEXTURE_NEV_MODE , <MODE>);

where <MODE> is stated as being either GL_DECAL or GL_MODULATE.

2.2.5.3 Texture Map Chroma Keying and Color Keying

Chroma Keying is analogous to the Hollywood “blue screen” effect whereby a color can be
selected in the destination texture through which the source can be made visible on top. The source
texture defines a color to be made transparent so that the destination texture appears to be visible
through where that color is defined in the source texture. Both texture map chroma keying and
color keying were designed to give the user the ability to make portions of a texture invisible so
that the underlying scene can show through. The difference between texture map chroma keying
and color keying is that chroma keying is used for non-palettized textures. Texture map color
keying is used with palettized texture where the user specifies one value from the color palette for
both the high and low range. Texture map chroma keying is used with RGB(A) textures where the
user specifies a 16 bit value which represents the transparent color (usually black) for both the hi
and low range.

2-30 Intel740 Software Developer’'s Manual

Hardware Capabilities
intel.

Figure 2-15. A Color Keyed Splash

Example 2-21. Enabling Texture Map Chroma Keying and Color Keying with DirectX

To enable chroma/color keying with DirectX, the user fillsin aD3DCOLORKEY structure with
either avalue range for chroma keying or a single palette value for color keying as follows:
typedef struct D3DCOLORKEY{
DWORD dwCol or SpaceLowval ue;
DWORD dwCol or SpaceHi ghVal ue;
} DDCOLORKEY;
DDCOLORKEY Col or Keyl nf o;
/1 for non-palettized textures
Col or Keyl nf 0. dwCol or SpaceLowal ue = 0x0000;
Col or Keyl nf 0. dwCol or SpaceHi ghval ue = 0x0000;
/1 for palettized textures
Col or Keyl nf 0. dwCol or SpaceLowal ue = O;
Col or Keyl nf 0. dwCol or SpaceHi ghVal ue = 0;
| pText ur eSur f ace- >Set Col or Key(<dwFl ags>, &Col or Keyl nf o) ;

Where the <dwFlags> are either, DDCKEY_DESTBLT, DDCKEY_DESTOVERLAY, or
DDCKEY_SRCBLT. The SetColorKey function takes as its first parameter a DWORD flag which
can specify whether the color key isfor a source blit, a destination blit, or a destination overlay.

To enable the color/chromakeying, the user needs to set the appropriate render state:
Set Render St at e(D3DRENDERSTATE_COLORKEYENABLE, TRUE) ;

To actually see color keying, use one of the DirectX Blt functions as shown:

| pBackBuf f er - >Bl t Fast (Xpos, Ypos, |pOfifscreenSurface, &Rectangle,
DDBLTFAST_SRCCOLORKEY) ;

Intel740 Software Developer’s Manual 2-31

Hardware Capabilities H
intel.
2254

Texture Wrapping Formats

Applications can specify different texture-wrapping formats for either or both of the U and V
directions.

Example 2-22. Enabling Texture Wrapping with DirectX

The Intel 740 supports the following DirectX texture wrap formats:

Table 2-5. Supported DirectX Texture Wrap Formats

Texture Wrap U Texture Wrap V D3DTEXTUREADDRESS

Wrap Wrap D3DTADDRESS_WRAP
Mirror Mirror D3DTADDRESS_MIRROR
Clamp Clamp D3DTADDRESS_CLAMP

WRAP

The wrap mode creates an effect in which the texture map looks like it is repeated over and over in
the selected region. Inwrap mode, textures appear to betiled. If either WRAPU or WRAPV is set,
the texture is an infinite cylinder with a circumference of 1.0. Texture coordinates greater than 1.0
arevalid only in the dimension that is not wrapped.

MIRROR

The mirror mode creates an effect where the texture map looks flipped or “mirrored.” It is
equivalent to the wrap mode’s “tiling” effect except that the texture is flipped at every integer
junction. For instance, between 0 and 1 the texture is normal, then between 1 and 2 the texture is
flipped, and between 2 and 3 it is normal, then between 3 and 4 it is flipped, etc.

CLAMP

In clamp mode, the texture coordinates greater than or equal to 1.0 are set to (impasses - 1)/
mapsize, and values less than 0.0 are set to 0.0.

In DirectX, the default texture wrap format is D3SDADDRESS_WRAP. To change the texture map
format with DirectX API, first set the appropriate texture address type:
Set Render St at e(D3DRENDERSTATE_TEXTUREADDRESS, <D3DTEXTUREADDRESS>) ;

Where the D3ADTEXTUREADDRESS is either D3ADTADDRESS_WRAP,
D3DTADDRESS_MIRROR, or D3SDTADDRESS_CLAMP.

Then enable texture wrapping in either the U or V direction by setting the following:
Set Render St at e(D3DRENDERSTATE_WRAPU, TRUE) ;
Set Render St at e(D3DRENDERSTATE_WRAPV, TRUE) ;

Example 2-23. Enabling Texture Wrapping with OpenGL

The Intel740 supports the following OpenGL texture wrap formats:

Table 2-6. Supported OpenGL Texture Wrap Formats

GL_TEXTURE_WRAP_S GL_TEXTURE_WRAP_T VALUE
Clamp Clamp GL_CLAMP
Repeat Repeat GL_REPEAT

Intel740 Software Developer’'s Manual

2.25.5

Hardware Capabilities

In OpenGL, the texture wrap methods are defined as follows:
CLAMP

Any values greater than 1.0 are set to 1.0, and any vaues less than 0.0 are set to 0.0. Clamping is
useful for applications where you want a single copy of the texture to appear on alarge surface. If
the surface-texture coordinates range from 0.0 to 10.0 in both directions, one copy of the texture
appears in the lower corner of the surface.

REPEAT

Any values outside the range of [0,1] will be repeated in the texture map. With repeating textures,
if you have alarge texture surface with coordinates from 0.0 to 10.0 in both directions, then 100
copies of the texture will be tiled on the screen.

To enable a texture mapping method, the following calls should be made:
gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_WRAP_S, <WRAP_MODE>);
gl TexPar anet er | (GL_TEXTURE_2D, GL_TEXTURE_WRAP_T, <WRAP_MODE>);

Where <WRAP_MODE> is either GL_CLAMP or GL_REPEAT.

Texture Map Filtering

Texture map filtering enables the user to choose the method the hardware uses to calculate the

output pixel color as it corresponds to the texture’s texel color at the mapped location. Factors
which determine the user’s screen pixel color include the distance of the object from the viewer
and the size of the texture map in relation to the size of the object. In some applications where
texture filtering is not used, a close up object can cause a texture to look blocky because each texel
is repeated over a square range of pixels.

The Intel740 supports the following texture filtering modes for both DirectX and OpenGL:
Nearest, Linear, Mip Nearest, Mip Linear, Linear Mip Nearest and Linear Mip Linear. The Mip
modes will be discussed in the Texture Mipmapping section.

NEAREST

The nearest texture filtering mode is also known as “point filtering.” In this mode, the texel with
coordinates nearest to the desired pixel value are used. The output can result in blocky textures as
the object becomes larger to the viewer.

LINEAR

The linear texture filtering mode is also known as “bilinear filtering.” In this mode, a weighted
average of a 2-by-2 area of texels surrounding the desired pixel is used. The output results in a
smoother representation of the texture without blockyness.

Intel740 Software Developer’s Manual 2-33

Hardware Capabilities inu
®

Figure 2-16. Point Filtering VS. Bilinear Filtering

Example 2-24. Enabling Texture Map Filtering with DirectX

To enable texture filtering with DirectX, there are two cases which must be addressed. First is
when the texture map is minified because the texel is smaller than one pixel. The second caseis
when the texture map is magnified and atexel islarger than one pixel. To enable texture filtering
with DirectX, the following render states must be set:

Set Render St at e(D3DRENDERSTATE_TEXTUREM N, <D3DTEXTUREFI LTER>) ;

Set Render St at e(D3DRENDERSTATE_TEXTUREMAG, <D3DTEXTUREFI LTER>);

Where the D3DTEXTUREFILTER can be set to either D3DFILTER_NEAREST,
D3DFILTER_LINEAR, D3DFILTER_MIPNEAREST, D3DFILTER_MIPLINEAR,
D3DFILTER_LINEARMIPNEAREST, or D3DFILTER_LINEARMIPLINEAR.

Example 2-25. Enabling Texture Map Filtering with OpenGL

2.2.5.6

2-34

To enable texture filtering with OpenGL, the following calls are made:
gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_M N_FI LTER, <FI LTER_MODE>);
gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_MAG FI LTER, <FILTER MODE>);

Where FILTER_MODE iseither GL_NEAREST, GL_LINEAR, GL_MIPMAP_NEAREST,
GL_MIPMAP_LINEAR, GL_LINEAR_MIPMAP_NEAREST, or
GL_LINEAR_MIPMAP_LINEAR.

Texture Mipmapping

Because textured objects can be viewed at different distances from the viewer in 3D space, itis

possible for atexture object to become smaller than the texture image. This occurrence will cause

the texture map to be under-sampled during rasterization. As a result, the texture mapping may

display artifacts or “noise.” The purpose of trilinear interpolating and mipmapping is to minimize
this effect. With mipmapping, software provides a series of pre-filtered texture maps of decreasing
resolutions, called “mipmaps” and stores them in memory. When a 3D object is larger because of
its close proximity to the viewer, a corresponding texture map is used. As the object moves farther
away from the viewer, Intel740 determines which mipmap to use and switches to a smaller texture
size.

Intel740 Software Developer’'s Manual

Hardware Capabilities
intel.

Figure 2-17. An Example of Five Levels of Mipmapped Texture

Intel 740 supports 11 mipmaps ranging from 1024 x 1024 down toal X 1 texel map. Each
successive level has 1/2 the resolution of the previous level inthe U and V directionsuntil a 1x1
texture isreached. Both dimensions of the mipmap must be a power of 2 although they do not have
to be square. Two forms of mipmap texture filtering can be selected in either DirectX or OpenGL
they are:

MIP NEAREST

Similar to the texture filtering Nearest form except that Mip Nearest uses the appropriate mipmap
for texel selection.

MIPLINEAR

Similar to the texture filtering Linear form except that Mip Linear uses the appropriate mipmap for
texel selection.

LINEAR MIP NEAREST

The two closest mipmap levels are chosen and then alinear blend is used between point filtered
samples of each level.

LINEAR MIP LINEAR

The two closest mipmap levels are chosen and then combined using abilinear filter.

Intel740 Software Developer’s Manual 2-35

Hardware Capabilities inu
®

2-36

Example 2-26. Mipmap Enabling with DirectX

To enable texture mipmapping using DirectX, a mipmapped surface must first be created and

loaded with the appropriate texture maps. To do this with DirectX Immediate Mode, specify that

the surfaceisa TEXTURE surface and also aMIPMAP surface. The user can specify the mipmap

count, but this is not necessary. When the “CreateSurface” call is made, DirectX generates all the
levels on its own, down to 1x1.

Start by creating the mipmap surfaces:

HRESULT ddres;

DDSURFACEDESC ddsd;

LPDI RECTDRAWSURFACE3 | pDDM pMap;

Zer oMenor y(&ddsd, si zeof (ddsd));

ddsd. dwSi ze = si zeof (ddsd);

ddsd. dwFl ags = DDSD_CAPS | DDSD_M PMAPCOUNT; ddsd. dwM pMapCount = 5;

ddsd. ddsCaps. dwCaps = DDSCAPS TEXTURE | DDSCAPS M PMAP | DDSCAPS_COMPLEX
| DDSCAPS_VI DEOVEMORY | DDSCAPS_NONLOCALVI DVEM

ddsd. dwW dt h = 256;

ddsd. dwHei ght = 256;

Then call the CreateSurface function to build the mipmap chain of surfaces:
ddres = | pDD- >Cr eat eSur f ace(&ddsd, & pDDM pMap) ;

Now five subsequent mipmapped surfaces have been created. The next step is to load an image
onto each surface. This can be done by traversing the surfaces with the DirectX
GetAttachedSurface call and then copying a bitmap which has already been loaded to the current
mipmap level surface using the DDCopyBitmap function. See the DirectX SDK manuals and on-
line help for more in-depth information.

Finally, enable the mipmap filtering mode by setting the following render state in DirectX:
Set Render St at e(D3DRENDERSTATE_TEXTUREM N, <D3DTEXTUREFI LTER>) ;
Set Render St at e(D3DRENDERSTATE_TEXTUREMAG, <D3DTEXTUREFI LTER>) ;

Where D3DTEXTUREFILTER is D3DFILTER_MIPNEAREST, D3DFILTER_MIPLINEAR,
D3DFILTER_LINEARMIPNEAREST, or D3DFILTER_LINEARMIPLINEAR.

Example 2-27. Enabling Mipmapping with OpenGL

OpenGL has a function which generates all the mipmaps from the dimensions of the mipmap
specified down to 1x1. The dimensions of the mipmap can be any power of 2. The following call is
used:

gl uBui | d2DM prmaps(G.enum target, dint conponents, dint width, dint height,

G enumformat, G enumtype, void *data);

This function is like the glTexiImage2D() which creates a texture map surface as mentioned in the
section above.

Then, enable either the mip-nearest or mip-linear filtering mode with the following function call:
gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_M N_FI LTER, <FI LTER_MODE>);
gl TexPar anet eri (GL_TEXTURE_2D, GL_TEXTURE_MAG FI LTER, <FILTER MODE>);

Where FILTER_MODE is GL_MIPMAP_NEAREST or GL_MIPMAP_LINEAR,
GL_LINEAR_MIPMAP_NEAREST, or GL_LINEAR_MIPMAP_LINEAR.

Intel740 Software Developer’'s Manual

2.2.6

Hardware Capabilities

Drawing Formats

The Intel 740 supports the following Drawing Formats:

Solid The output to the screen is atriangle, either solid color or patterned by a
texture map.
Wire-frame The output to the screen is aline drawing, either solid color or patterned

by a texture map.

Example 2-28. Enabling Drawing Formats with DirectX

To enable drawing formats with DirectX, the following render state call is used:
Set Render St at e(D3DRENDERSTATE_FI LLMODE, <D3DFI LLMODE>) ;

Where D3DFILLMODE iseither D3DFILL_WIREFRAME or D3DFILL_SOLID.

Example 2-29. Enabling Drawing Formats with OpenGL

2.2.7

To enable drawing formats with OpenGL, the following call is made:
gl Pol ygonMbde(<FACE>, <MODE>);

where FACE is GL_FRONT_AND_BACK, GL_FRONT or GL_BACK and MODE is either
GL_LINE, or GL_FILL.

Buffers

The Intel 740 supports many buffer typesincluding:
* A back buffer, which can be placed in either local video memory or AGP memory
* A front buffer, which should be placed in local video memory

* A Z-buffer, which must be placed in local video memory
The Intel 740 also supports two back buffer surfaces needed for triple buffering.

In OpenGL, the buffers are created by selecting the proper pixel format. The pixel formats and the
corresponding buffers they create are as follows:

Table 2-7. Pixel Formats and Buffers

Back Buffer Depth (Z) Buffer
NO NO
NO YES
YES NO
YES YES

When creating buffers with the DirectX API, the user uses the “CreateSurface” call and sets
appropriate DDSD flags and capabilities.

Intel740 Software Developer’s Manual 2-37

Hardware Capabilities inu
®

2.2.7.1

2.2.7.2

Double and Triple Buffering

Intel 740 permits the use of both double and triple buffering, where one buffer is the primary buffer
used for display and one or two are the back buffer(s) used for rendering. With double buffering, an
application typically constructs a scene in the back buffer while the front buffer isbeing displayed.
With triple buffering, a flipping chain of buffersis used which gives added buffering between
drawing to the back buffer and rendering which can help increase performance. For double
buffering, when the scene in the back buffer is complete and it is time to display, the application
flips the two buffers or rather, switches the roles of the two buffers so that the drawn-to buffer
becomes the rendering buffer and vice versa. In the case of triple buffering, when flipping of the
buffersis performed, the application makes the second to last drawn-to buffer the rendering
(primary) buffer and draws to the last buffer used for rendering.

Z-Buffering

The Z-buffer contains 16 bits of depth information for each pixel in the display buffer. The use of
the Z-buffer is optional. Figure 2-18 below shows the use of the Z-buffer.

Figure 2-18. Z-Buffering Off vs. Z-Buffering On

2-38

When enabled, the Z-buffer function performs a depth compare between the pixel Z (known as
source Z or ZS) and the Z value read from the Z-buffer at the current pixel address (known as
destination Z or ZD). If the test is not enabled, it is assumed the Z test always passes. The Z vaue
is only written to the Z-buffer when the results of the Z test are true. It is always necessary to clear
the Z-buffer before each new frame isdrawn.

The Intel 740 uses alogarithmic method for Z-buffering. The logarithmic approach makes those
objects closer to the viewer ook better than does the linear approach.

Intel740 Software Developer’'s Manual

intel.

Hardware Capabilities

Example 2-30. Enabling Z-Buffering with DirectX

To Create a Z-buffer with DirectX the followi ng surface nust be created:
DDSURFACEDESC ddsd;

| DI RECTDRAW | pdd;

| DI RECTDRAWSURFACE* | pZSur f ace;

HRESULT ddr val ;

ddsd. dwSi ze = si zeof (ddsd);

ddsd. dwHei ght = wi ndow_hei ght ;

ddsd. dwwW dt h = wi ndow_wi dt h;

ddsd. dwZBuf ferBit Depth = 16;

ddsd. wrl ags = DDSD_CAPS | DDSD_HElI GHT | DDSD_W DTH | DDSD_ZBUFFERBI TDEPTH,
ddsd. ddsCaps = DDSCAPS_ZBUFFER | DDSCAPS_VI DEOVEMORY | DDSCAPS_LOCALVI DVEM
ddrval = | pdd->CreateSurface(&ddsd, & pZSurface, NULL);

To enable Z-buffering with DirectX, the following render states must be set:
Set Render St at e(D3DRENDERSTATE_ZENABLE, TRUE);

Set Render St at e(D3DRENDERSTATE_ZWRI TEENABLE, TRUE) ;

Set Render St at e(D3DRENDERSTATE_ZFUNC, <D3DCMPFUNC>) ;

D3DCMPFUNC isD3DCMP_NEVER, D3ADCMP_LESS, D3ADCMP_EQUAL,
D3DCMP_GREATEREQUAL, D3DCMP_LESSEQUAL, D3DCMP_GREATER,
D3DCMP_NOTEQUAL, or D3ADCMP_ALWAYS.

The application also must clear the Z-Buffer using the following DirectX function call:

| pZSur f ace->BI t (| pDest Rect, | pDDSrcSurface, | pSrcRec, DDBLT_DEPTHFI LL,
dwFi | | Dept h);

Example 2-31. Enabling Z-Buffering with OpenGL

2.2.8

In order to enable Z-Buffering with OpenGL, the following code is used:
gl Enabl e(GL_DEPTH_TEST) ;
gl Dept hFunc(<FUNCTI ON>) ;

FUNCTION is GL_NEVER, GL_ALWAYS, GL_LESS, GL_LEQUAL, GL_EQUAL,
GL_GEQUAL, GL_GREATER, or GL_NOTEQUAL.

Antialiasing

Aliasing is one of the artifacts that degradesimage quality. In its simplest manifestation, aliasing
causes the jagged staircase effects on sloped lines and polygon edges. More subtle effects are
observed in animation, where very small primitives blink in and out of view.

One of the possible solutions to the aliasing problem, area sampling, treats primitives (e.g., points
and lines) as primitives with an area, rather than as zero-dimensional geometric entities. This
method permits rasterizers to compute the fraction of a pixel that a primitive covers and blend the
area-weighted color or the pixel with the color in the frame buffer.

For antialiasing to work properly on the Intel 740, polygons (triangles) must be sorted from back to
front. Antialiasing can be used with Z-buffering.

Intel740 Software Developer’s Manual 2-39

Hardware Capabilities inu
®

Figure 2-19. Effects of Antialiasing

Example 2-32. Enabling Antialiasing with DirectX

To enable antialiasing with DirectX, the following render state is enabled:
Set Render St at e(D3DRENDERSTATE_ANTI ALI AS, SORTDEPENDENT) ;

When using execute buffers, an edge flag can be set to enable edge antialiasing.

Example 2-33. Enabling Antialiasing with OpenGL

2.2.9

To enable antialiasing with OpenGL, the user must first enable al pha blending and set the source
and destination blends properly:

gl Enabl e(GL_BLEND) ;

gl Bl endFunc(GL_SRC_ALPHA, GL_ONE_M NUS_SRC_ALPHA);

gl Enabl e(GL_POLYGON_SMOOTH) ;

Back Face Culling

One of the stages in the 3D Pipeline which can be performed in either the software geometry stage

or in the hardware rendering stage isthat of back face culling which consists of the removal of

surfaces of 3D objects which cannot be seen from the user’s viewpoint. The Intel740 supports back
face culling. Because every surface has a surface normal which is a vector perpendicular to its
surface, the normals of each surface can be tested to see if they point backwards away from the
viewer. Back face culling saves processing time since culled surfaces will not need to be rendered.
When using color alpha blending, be sure to disable back face culling because alpha blending looks
better when the back facing polygons are also rendered and are visible through the translucent
alpha blended portions.

Example 2-34. Enabling Back Face Culling with DirectX

To enable back face culling with DirectX, the following renderstate is set:
Set Render St at e(D3DRENDERSTATE_CULLMODE, <MODE>) ;

MODE is D3DCULL_CCW for counter clockwise culling, or D3DCULL_CW for clockwise
culling.

Example 2-35. Enabling Back Face Culling with OpenGL

2-40

To enable back face culling with OpenGL:
gl Enabl e(GL_CULL_FACE) ;
gl Cul | Face(<MODE>) ;

MODE is GL_FRONT, GL_BACK, or GL_FRONT_AND_BACK.

Intel740 Software Developer’'s Manual

2.3.1

2.3.2

2.3.3

Hardware Capabilities

2D Capabilities

In this section the 2D capabilities of the Intel 740 are discussed:
* “BitBLT Engine” (below)
* “Stretch BLT Engine” (below)
* “Color Expansion” (below)
* “Hardware Cursor” on page 2-42

* “Video Display Resolutions” on page 2-42

BitBLT Engine

The term BitBLT refers to block transfers of pixel data between memory locations. Intel740’s high
performance 64-bit BitBLT engine provides hardware acceleration for many common Windows
operations. To facilitate these, there are two primary BitBLT functions in the Intel740: regular
BitBLT and stretch BitBLT. Regular BitBLT involves transferring blocks of data from one
memory location to another. The capability of performing raster operations on the data using a
pattern is also included. Stretch BitBLT can stretch source data in the X and Y directions to a
destination larger or smaller than the source. Stretch BitBLT functionality expands a region of
memory into a larger or smaller region using replication and interpolation.

If required, Intel740 will expand monochrome data into color data. This new data will be
destination aligned. The main feature of the BitBLT is to take a stored pattern and expand it to the
destination color space while destination aligning it. Intel740’s raster opcode engine supports all
256 Microsoft-defined raster operations (ROPS) including transparent BitBLT.

Stretch BLT Engine

The Stretch BLT Engine allows a source memory region to be blitted to a destination region which
is larger, smaller or the same size as the source region by replacing or removing pixels. Expansion
and shrinking can occur in both the horizontal and vertical directions.

An additional feature of the Stretch BLT Engine is the ability to transparently place the source data
over some destination data by masking. This is useful for sprites in 3D games.

Color Expansion

During a BLT operation, source color depth may not be the same as destination color depth. The
Intel740 supports monochrome data as well as 8, 16, and 24 bit color data. The BLT engine has the
ability to expand source monochrome data into a color depth of 8, 16, or 24. Color expansion can
be either opaque or transparent. When opaque, a foreground and background color are both
transferred to the destination in the new color depth. When transparent, only the foreground color
is specified. This is very useful for text data. Text data can be stored as one bit per pixel color
(monochrome), and expanded to the correct color later.

Intel740 Software Developer’s Manual 2-41

Hardware Capabilities

234

2.3.5

Hardware Cursor

intel.

The Intel 740 allows atotal of 16 cursor patternsto be stored in 4 Kbytes. Six modes are provided

for the cursor:

* 32x32 2 bpp 2-plane mode (Solid Color, Inverted Solid Color, Transparent, Inverted)
* 128x128 1 bpp 2-color mode
* 128x128 1 bpp 1-color and transparency mode

* 64x64 2 bpp 3-color and transparency mode
* 64x64 2 bpp 2-plane mode (Solid Color, Inverted Solid Color, Transparent, Inverted)
* 64x64 2 bpp 4-color mode

Video Display Resolutions

The Intel740’s video function provides analog output for use with a monitor or a 8/12-bit digital
output to interface to a TV output chip. Integrated into the Intel740 i“Gaimterface to facilitate

this capability. Video synchs and timings are fully programmable. Any overlays are merged with
data from the frame buffer during output and can be scaled in the X and Y directions. Gamma
correction can be applied on the video output. Resolutions supported for display ranges are shown
in Table 2-8. In addition to the standard VGA modes, the Intel740 also supports the following
extended modes with the stated memory and refresh timings:

Table 2-8. Display Resolutions

2-42

Colors/Color

Minimum Memory Configuration

Vertical Refresh

Resolution Bits per Pixel (64-Bit SDRAM) Rates (MHz)
256/8-bit palettized 1 Mbyte
640x480 64K/16 1 Mbyte 60, 75, 85
16M/24 1 Mbyte
16/4 1 Mbyte
256/8-bit palettized 1 Mbyte
800x600 56, 60, 75, 85
64K/16 1 Mbyte
16M/24 2 Mbyte
256/8-bit palettized 1 Mbyte
1024x768 64K/16 2 Mbyte 430, 60, 75, 85
16M/24 4 Mbyte
256/8-bit palettized 2 Mbyte
1280x1024 43", 60, 75
64K/16 4 Mbyte
NOTE:

1. The 3D hardware only rasterizes to 16-bit surface

The video display controller is responsible for the horizontal and vertical timings of the monitor,
accessing data from memory, preparing data for display, and presenting the results to the monitor

or TV. The Intel740 can convert YUV(4:2:2) to RGB format. A@

connection to some chips.

Bus is provided for easier

Intel740 Software Developer’'s Manual

2.4

24.1

Hardware Capabilities

The display engine a so contains an overlay unit. The overlay (full motion video) unit is capable of
converting from YUV 4:2:2 format to 24 bpp RGB. Line widths to 720 pixels are supported. X,Y
interpolation can be performed on the overlay window if the sourceis smaller or larger than the
destination display size. Intel 740 performs filtering/smoothing when interpolating in the horizontal
and vertical directions. The data may be scaled in both the horizontal or vertical direction using a
six bit expansion value. On output, the datais scaled up. Theimage isincreased in size only. This
expansion is smoothed/filtered before being passed to the display.

When stretching is performed, the horizontal filter is 1-1. The vertical interpolation is either

deblocking (average on change only) or 1-2-1 running average. Chromakeying is performed so

that pixels of a selected color are transparent. (This editing effect is sometimes known as “blue
screening.”)

The Intel740 contains a separate hardware cursor for Windows. The cursor information is not

stored within the frame buffer but is combined with the screen image immediately before the image

is displayed. Functionality built into the cursor allows it to be enabled or disabled. Up to 16 cursor
patterns (depending on size) may be stored in separate cursor data space. Cursor modes supported
are: 32x32x2bpp and 64x64x2bpp pixel plane modes (for Microsoft Windows), 64x64x2bpp four
color mode, 64x64x2bpp three color transparency mode, 128x128x1bpp two color mode, and
128x128x1bpp one color transparency mode.

The combined result from the hardware cursor, overlay, and primary display is performed by the
RAMDACSs. There are three 8-bit DACs (one for controlling red, one for green, and one for blue).
Each DAC has a 256x8 palette RAM is responsible for storing information about the colors to be
displayed. The Intel740 is optimized for a 2D output resolution of 1024x768 and a 3D display
resolution of 640x480. Within the 2D section, the horizontal sync, vertical sync, and blanking
signals are fully programmable.

Video, VBI, and Intercast Capabilities

The Intel740’s Video, VBI and Intercast capabilities are discussed in the following subsections:
* “Video Capture Port” (below)
* “Video Overlay” on page 2-44
* “VBI and Intercast” on page 2-44

Video Capture Port

The PC video interface to Intel740 is a uni-directional digital input port that accepts 16-bit wide
data, two synchronizing signals (HREF, VFREF), and a pixel rate clock (VCLK). The video
capture port can be configured as a VMI/VAFC interface. Taking the digital video data from this
video port, Intel740 can perform video functions such as color space conversion, scaling, zooming,
interpolation, and video playback. The data input to this port can be in RGB-15, RGB-16, or YUV
4:2:2 format.

Devices that output an analog signal can be connected to the video capture port through a third
party chip that provides digital output. Digital camera video conferencing applications are
supported permitting the user to have an unflipped/mirrored view. This port provides support for
Intercast technology and POTS (Plain Old Telephone Set) video conferencing. Note that an
external third party VBI decoder chip is needed for Intercast technology. For POTS video
conferencing, the port interfaces to a camera.

Intel740 Software Developer’s Manual 2-43

Hardware Capabilities inu
®

To provide smooth overlay, the captured frame can be assembled before being displayed. The
Intel 740 al so allows incoming video frames to be copied to disk for later playback (via hardware
and software). Because software can write to the video capture buffer directly, playback can occur
directly from CD-ROM, or disk. During playback, software can use status bits to indicate to the
Intel 740 when the frame is ready to be displayed.

To facilitate digital cameraapplications, the Intel 740 can perform backward writes. Thisallowsthe
user to see amirrored or non-mirrored view on screen.

Gamma correction is also provided. When in 8-bit-per-pixel mode or smaller, the graphics datais
expanded by a palette. If analog to digital conversion is needed, an externa chip creates the digital
signal sent to the Intel 740.

2.4.2 Video Overlay

The maximum line width of the overlay is 720 pixels wide. However, the overlay engine can
enlarge apicture using a 6-bit expansion value. The datain the overlay can usea 1-2-1 FIR filter in
the horizontal direction and either line replication, a smoothing at line boundaries, or a continuous
running average filter in the vertical direction. Using the overlay, the data in the capture buffer can
be displayed while capture is occurring. Overlay data does not necessarily have to originate from
the capture port. The data can come from AGP memory. Unlike the capture port, the overlay
engine can support 4-bit indexed, 8-bit indexed, 15-bit RGB, 16-bit RGB, and 24-bit RGB color
formats. The capability to do color keying isincluded in the overlay.

2.4.3 VBI and Intercast

Television has two main formats: NTSC and PAL/SECAM. The NTSC signal is composed of two
fields made up of 720 pixels and 525 lines every 1/30 of a second. PAL/SECAM hastwo fields of

720 pixelsand 625 lines every 1/25 of a second. Lines 1-22 of the NTSC signal are used for VBI

data and the other lines 23 - 525 are used for the actual video data. The Intel740 has the ability to
capture the NTSC dataand placeit in a buffer where the video data can be displayed and the VBI

data can be sent to the ISV'’s Intercast software to be interpreted. An ISV can then create an
application which displays both the video and the VBI data which is sent by some television cable
channels as HTML files which complement the currently viewed program. One example is the
cable TV music video channel, MTV 2, which sends HTML files in the VBI stream showing
poetry, photos, and other information along with the currently broadcasting artist which can be
viewed in an HTML browser side by side with the video.

2-44 Intel740 Software Developer’'s Manual

intel.

Hardware Capabilities

Figure 2-20. Content of an NTSC Video Frame

2431

Note:

Lines1-9 Vertical Synchronization Region
Lines 10-20 Vertical Blanking Interval (VBI)
Line 21 for Closed Caption
Field 1
Lines 21-263 Video Image Region
Lines 264-273(1-9) Vertical Synchronization Region T
Lines 274-283 (10-20) Vertical Blanking Interval (VBI)
Line 284 for Extended Data Service)

--- Field 2

Lines 283-525 (20-262) Video Image Region

VBI Data Format

VBI enabled video decoders, like Brooktree Bt829, are capable of passing through the ancillary
datain the VBI region for later processing by software. Specifically, the raw digitized VBI data
stream bypasses the decimation filter, Y/C separation filters, and the interpolation filter of the
video decoder, and are sent to the Intel 740 video capture port along with therest of the active video
lines.

The Intel 740 video capture engine views the incoming VBI and video data lines as the same for
each frame, fetching the same amount of pixels per line and storing to the same local memory
locations. As shown in Figure 2-21, one complete video frame captured in the local memory starts
with about 10 lines of full VBI data (say 800 pixels), followed by active video lines with smaller
amounts of valid video pixels (640 for full resolution and 320 for half resolution).

Since DirectDraw does not alow the width of DD surface in secondary buffer bigger than primary
buffer, the graphics resolution has to be at least 800x600. Also the video decoder has to be able to
deliver 800-pixe or lesswide VBI lines.

Since the VBI data stream is not pipeline-delayed to match the Y UV 4:2:2 video output datawith
respect to horizonta timing (HSYNC signal), it arrives earlier than valid video data related to the
HSYNC signal. Therefore, the leading pixelsin active video lines are invalid. The tail pixelsare
also invalid, since VBI lines are wider than video lines. The boundary of valid video data can be
calculated from the scaling factors of the video decoder. The memory pointer for the active video
frame can be calculated from the number of VBI lines and the video capture span.

The video capture VSYNC is field based (60 per second for NTSC). The VBI Capture VxD
maintains a counter to indicate the field number. VVBI Capture VxD handles the VBI data only for
odd field VSYNC.

Intel740 Software Developer’s Manual 2-45

Hardware Capabilities inu
®

Figure 2-21. Configuration of Video Capture Memory with VBI

800 pixels

20lines

A

Interlaced VBI Data

500 lines 480 lines

»(White strip: field 1
Dark strip: field 2

Deinterlaced Video Data

ry

640 pixels

The Intel 740 VBI Capture VxD is responsible for capturing raw VBI datainto system memory
(regular cacheable system memory). Allocation of system memory is the responsibility of The
Intel 740 VBI Capture VxD. The format of raw VBI datain system memory is per Intercast
specification. Intercast VBI decoder requires VBI data to be organized into fields (each field
corresponds to one and only one television field) in system memory. However, the Intel 740 Video
Capture Engine is frame-based (i.e., the odd and even fields of avideo frame, including VBI data,
are automatically de-interlaced before storing in local memory). To avoid data overrun, hardware
double buffering is activated. Four VBI field buffers are allocated in system memory by the

Intel 740 VBI Capture VxD. Two for frame n and another two for frame n+1. Asshownin

Figure 2-22, there are two fields of VBI data ready for decoding for frame n, and two for frame
n+1. Note that the two fields of aframe can be all ocated together as long as the correct pointer is
sent to the VBI decoder.

Alternatively, the interlaced VVBI frame data can al so be directly copied to system memory without
reordering. In this case, a correct pointer and a correct line span (twice the input line span) needs to
be sent to the VBI decoder.

Figure 2-22. VBI Buffering Scheme

Interlaced Interlaced

VBI Framen VBI Frame n+1
Local Memory

VBI Field 1 VBI Field 1

of Frame n of Frame n+1

VBI Field 2 VBI Field 2

of Frame n of Frame n+1
System Memory

2-46 Intel740 Software Developer’'s Manual

2.4.3.2

2.4.3.3

2434

2.5

251

Hardware Capabilities

VBI Data Flow

The Intel740 VBI Capture VXD movesraw VBI data from local memory to system memory. No
format conversion or data processing is done. There are about 34 Kbytes of VBI data per frame
second (~800 pixelg/line* 2 bytes/pixel * ~22 lines/frame) and the total VBI data bandwidth is
about 1 Mbyte (30 frames/second).

CC and EDS

According to the EIA-608 standard, two bytes of information are presented on line 21 (field 1) for
Closed Captioning (CC) and an additional two bytes are presented on line 284 (field 2) for
Extended Data Services (EDS). The Intel 740 VBI Capture VxD delivers raw datafor CC/EDS
lines as other VBI linesto the Intercast VBI decoder VxD.

Direct CC and EDS Capture

Some video decoders (Brooktree Bt829, Philips 7111A) can provide decoded CC/EDS data
through the 1°C interface. When valid data is detected, the video decoder stores the datain an 1°C
dataregister. An 1°C status register provides data valid and data ready flags.

An application can access CC/EDS data from the video decoder through asynchronous reading of
the I“C bus. The application polls the Close Caption Valid bit in the video decofi@rsdtus
register. The polling frequency has to be slightly higher than the field frequency of 60 Hz for
NTSC. Since there are only two bytes of CC or EDS data per frame and a video decoder can
provide a FIFO for storing the bytes, there is typically sufficient time to fetch this data.

The direct CC/EDS capture is convenient for TV viewing applications that do not require full VBI
decoding. The low data-rate CC/EDS data needs to be delivered to system memory.

DVD Capabilities

DVD (Digital Video Disk) discs are the media for next generation laserdisc players. DVD format
specifies MPEG-2 standard for video compression, and AC-3 (NTSC) or MPEG (PAL) for audio
compression. MPEG-2 uses the YUV4:2:0 format, also known as YUV12; U and V are

subsampled by 2 in both horizontal and vertical directions. A YUV12 macroblock consists of a
16x16 block of Y data (256 bytes) and two 8x8 blocks (2x64 bytes) for the U and V data. Each
macroblock stores 256 pixels in 384 bytes, or 12 bits/pixel. Backward compatible with the CD,

DVD allows a single side storage of 8.5 Gbytes. DVD is used to play movies, interactive games,
and training on the PC using Dolby* AC-3 (3D sound) surround sound audio. DVD uses MPEG-2
encoding and special encryption. Once the encryption and MPEG-2 are decoded, the output can be
sent directly to the Intel740 using the YUV 4:2:2 encoding.

Hardware DVD/MPEG-2 Movie Playback

A DVD decoder chip located on the PCI bus receives the raw DVD stream (including compressed
video and audio data) and decompresses the data. The decompressed audio stream is sent to the
audio subsystem through a dedicated digital audio port. The decoded video stream is sent from the
DVD decoder chip to the Intel740 through the video capture port. The incoming video stream to
the Intel740 is in YUV2 format with resolution of 720x480 at 30 frames per second following the
CCIR601 standard. The Intel740 drivers, DirectDraw HAL and DDVPE HAL, handle video

display for DVD.

Intel740 Software Developer’s Manual 2-47

Hardware Capabilities inu
®

2.6 TV Out Interface

The Intel 740 has a digital TV out interface multiplexed with the BIOS address lines. When using
the TV out interface, normal VGA display cannot be used. The 12-bit digital interface is designed
to interface with an external TV encoder, which incorporates a high quality flicker filter and
performs overscan compensation.

2.7 AGP Interface

The Intel 740 is AGP 1.0 and PCI 2.1 compliant. Optimized for AGP, the Intel 740 runs effectively

at 133 MHz on a 32-bit bus, allowing 533 M byte/s peak data throughput. The Intel 740 supports

AGP sideband extensions, permitting demultiplexed address/data transfers. The Intel740's AGP
interface allows memory reads to equal the throughput of memory writes. The use of this graphics
port overcomes the read latency of PCI by making reads zero wait state, just like writes. Because of
this dedicated high bandwidth port, the Intel740 is able to use system memory for graphics
purposes more effectively than PCI.

2.7.1 AGP Primer

The Accelerated Graphics Port (AGP) brings new levels of performance and realism to next-
generation 3D graphics accelerators. The principal benefit comes from the graphics accelerator
having high speed access to surface textures and other graphics surfaces in main system memory.
Special performance oriented AGP features allow much faster read/write access to these surfaces
than has been possible in the past. The basic memory architecture of an AGP system is illustrated
in Figure 2-23 below.

Figure 2-23. Intel740 Connects to System Memory Over AGP

Pentium® 1
Processor

EDO or 66 MHZ SDRAM
AGP 440LX Memory _I

3.3v/32 bit 66 Mhz Chipset 33vieabit | DRAM

Intel740

AGP Advantages - | e
3.3V/32 bit 33 Mhz
AGP bus: 66 Mhz
Pipelining
2X data transfers
Side Band Addressing PlIX4

AGP Memory: GART remapping 324 MBGA uss

WriteCombining uDMA !
N

Super || B ||
| /o Audio ([BIOS

U

3.3VEIO (E

j

KBC
pentlr

2-48 Intel740 Software Developer’'s Manual

2.7.2

Hardware Capabilities

Graphics software infrastructure requires that AGP memory be contiguous, which means a page
based system memory must have a graphics address remapping table (GART) capability. Thisis
because the operating system ordinarily allocates randomly located pages of memory whereas
graphics software requires its memory to be contiguous.

The trandlation facility gives each memory page a second aliased address. All the addresses are
adjacent, making this part of system memory closely resemble conventional video memory.
Memory accessible through the GART isreferred to as non-local video memory, meaning video
memory that is not local to the Intel 740.

Non-local memory can be accessed by the host processor, by the Intel 740, and in current AGP
systems by other PCI devices. In future systems, the GART trandlation will only be used by AGP
graphics devices and the host processor will perform a corresponding address translation.

AGP Software Architecture

DirectDraw applications request space for graphics surfaces by calling the DirectDraw function
“CreateSurface.” Space for the surface is obtained from heaps defined by the graphics driver.
Memory for non-local memory heaps is obtained from the operating system. When more non-local
video memory is needed, DirectDraw can obtain additional memory from the operating system.
Memory is locked in place and mapped into the proper GART address range. The surface is aligned
and its memory type established as specified in the graphics heap template. Requests to expand
AGP memory are honored so long as the total amount of AGP memory does not exceed a limit set
by the operating system.

Initialization details are attended to at the time the operating system is loaded. The operating
system calls the chipset miniport which initializes AGP port parameters, allocates space for the
GART translation table and initializes the GART hardware. The interaction of these functions is
summarized below.

Figure 2-24. New Services in Windows Work with DirectDraw to Support AGP Applications

Application
Windows* 95 T Surface(s)
Operating Memory &
System Limit Policy Direct 3D*
7 DirectDraw*
GART | mapping —
AGP Chipset T Attributes
MiniPort _
GFx driver

Initialize: AGP port, GART
Runtime: GART management

* Other brands and names are the property of their respective owners.

Intel740 Software Developer’s Manual 2-49

Hardware Capabilities inu
®

2.8 BIOS Interface

The Intel 740 supports a maximum video BIOS size of 256K x 8. Flash can be used.

2.9 Local Memory

The Intel 740 uses SDRAM technology and can interface to SGRAM through its 32-bit or 64-bit
memory interface. Memory Bus speeds range from 66 MHz, 83 MHz, and 100 MHz while
configurations of 1, 2, 4 and 8 Mbytes are supported. Using a 64-bit interface, up to 800 Mbytes/s
peak bandwidth is supported. The Intel 740 allows operands to be placed in either loca video
memory or AGP memory. It isrecommended that the Z, display, and Render buffers, video capture
and M Peg overlay be located in local video memory, however when space becomes limited, the
Render buffer should be relocated into AGP memory.

2-50 Intel740 Software Developer’'s Manual

intel.

Programming Environment 3

3.1

3.1.1

Note:

OpenGL Programming Environment

OpenGL is an application programming interface (API) which is used by a software application to
interface with the graphics hardware. OpenGL consists of approximately 120 different commands
which are used to specify graphical objects and the operations applied to the objects which are
required by 3D applications. OpenGL isa streamlined, hardware-independent interface designed to
make applications portable from one hardware platform to another. For more information on the
OpenGL function commands, see the OpenGL Specification document which can be obtained from

the SGI web site at http://www.sgi.com. Also see Section 4.3, “OpenGL Performance Guidelines”
on page 4-26, for the Intel740-specific OpenGL performance information.

Model

The MCD interfaces with the following external entities: Microsoft Mini-Client Driver Interface,
Intel740 2D display driver, WIN32 GDI Escape Mechanism, Microsoft Windows Registry, and the
Intel740 Interface Language (AIL). The Configuration Applet, along with any Diagnostic/Test
application, will interface with the MCD through the GDI device-dependent escapes defined by the
driver. Figure 3-1 demonstrates the MCD architecture context diagram.

In this chapter, the termpass andpunt have special meaning: “pass” control or data to a lower
level on the software chain; “punt” back to a higher level on the software chain.

Figure 3-1. MCD Architecture

MCDFUNCS escapes are passed to
MCDSRV32.DLL for processing

| OpenGL Application |

!

OPENGL32.DLL

!

| MCD32.DLL

User Mode

Via ExtEscape() Kernal Mode

GFX40.DLL i MCDSRV32.DLL

Display Driver (dynamically loaded by the display driver)
MCD]
AGP «— CMM AlIL Via MCD-provided function pointers
Memory
l l MCDrvGetEntryPoints()

Controls Intel740 video To Intel740 FIFOs
memory usage

Intel740 Software Developer’s Manual 3-1

Programming Environment

3.1.2

Table 3-1.

Supported OpenGL MCD States

Supported OpenGL MCD Enables (Sheet 1 of 2)
MCD Enables Intel 740 State(s) Notes
ALPHA_TEST ALPHA_TEST_ENABLE
BLEND BLEND_ENABLE
INDEX_LOGIC_OP n/a color index not supported
DITHER DITHER_ENABLE
DEPTH_TEST Z_ENABLE
FOG FOG_ENABLE
LIGHTING" n/a
COLOR_MATERIAL' n/a
Intel740 hardware acceleration cannot
LINE_STIPPLE n/a be used for line stipple except in the
case where the stipple pattern is solid
EDGE_ANTIALIAS
LINE_AA_REGION
LINE_SMOOTH - -

BOUNDING_BOX_EXPANSION

POINT_SMOOTH

n/a

Antialiased points are punted to
software

POLYGON_SMOOTH

EDGE_ANTIALIAS
POLY_AA_REGION
BOUNDING_BOX_EXPANSION

Antialiased lines wider than three are
punted to software

Also uses the cullFaceMode and

CULL_FACE CULL_MODE frontFace items in the
MCDRENDERSTATE structure
Intel740 buffer stipple will be used to

POLYGON_STIPPLE STIPPLE mimic polygon stipple. Hardware
stipple will be disabled when lines and
points are rasterized.
Scissor rectangles that are smaller

SCISSOR_TEST n/a that the window size are punted to
software

STENCIL TEST MCD will punt gnless the stencil test is

- a trivial operation

textureEnabled Boolean in the
MCDRENDERSTATE structure

TEXTURE_1D See Notes controls whether textures are to be
used during rasterization

TEXTURE_2D See Notes See Notes above

TEXTURE_GEN_s' n/a

TEXTURE_GEN_TT' n/a

TEXTURE_GEN_R' n/a

TEXTURE_GEN_Z' n/a

NORMALIZE" nia

AUTO_NORMAL' n/a

Intel740 Software Developer’'s Manual

Programming Environment

intel.

Table 3-1. Supported OpenGL MCD Enables (Sheet 2 of 2)

MCD Enables Intel740 State(s) Notes

MCD will calculate the appropriate
offset and apply to the vertices before
passing to the Intel740 hardware

POLYGON_OFFSET_POINT | n/a

POLYGON_OFFSET_LINE n/a See above

POLYGON_OFFSET_FILL n/a

See above

COLOR_LOGIC_OP

n/a

MCD will punt the rendering to the
software implementation unless the
logical operation is GL_COPY

t Not currently used by MCD.

Table 3-2. Supported OpenGL MCD States (Sheet 1 of 2)

MCD State Intel740 State Notes
textureEnabled TEXTURE_ENABLE
fogColor FOG_COLOR
fogindex n/a
fogDensity n/a
The fog component of the MCDVERTEX
fogStart n/a structure takes into account the fogStart
and fogEnd components.
fogEnd n/a
GL_LINEAR fog will be accelerated,;
fogMode GL_EXP and GL_EXP2 exponential fog will
9 not be accelerated if FOG_HINT is set to
GL_NICEST.
shadeModel SHADE_MODE
GFXTLTRIANGLES will be used to simulate
pointSize GL_POINTS with pointSize greater than
one.
If lineWidth is greater than three,
linewidth LINE_WIDTH GFXTLTRIANGLES will be used to
simulate.
lineStipplePattern na MCD W|_II punt to §0ftware implementation if
pattern is not solid
lineStippleRepeat n/a See above
cullFaceMode CULL_MODE Also depends on frontFace
frontFace CULL_MODE Also depends on cullFaceMode
polygonModeFront FILL_MODE
polygonModeBack FILL_MODE
olvaonStiple GFXPALSTIPPROC_STIPPLE_
polygonstipp PATTERN
The zOffsetFactor and zOffsetUnits will be
zOffsetFactor n/a used to calculate an offset to apply to the z
component of each primitive
ZOffsetUnits n/a see zOffsetFactor above
StencilTestFunc n/a MCD will punt unless trivial operation

Intel740 Software Developer’s Manual

Programming Environment

Table 3-2.

Supported OpenGL MCD States (Sheet 2 of 2)
MCD State Intel740 State Notes

stencilMask n/a

stencilRef n/a

stencilFail n/a

stencilDepthFail n/a

stencilDepthPass n/a

alphaTestFunc ALPHA_FUNC

alphaTestRef ALPHA_REF

depthTestFunc Z_FUNC

blendSrc SRC_BLEND

blendDst DST_BLEND

logicOpMode n/a

drawBuffer n/a

indexMask n/a

colorWriteMask n/a

depthWriteMask Z_WRITE_ENABLE

stencilWriteMask n/a

colorClearValue n/a used to clear the back and/or front buffers
indexClearValue n/a

depthClearValue n/a used to clear the depth buffer
stencilClearValue n/a

TwoSided na ggzlt{i}—g;;zr:err;(:]zgr:i%gvill be used for two
userClipPlanes n/a

perspectiveCorrectionHint | n/a All textures are perspective-corrected

pointSmoothHint

Antialiasing-related

lineSmoothHint

Antialiasing-related

polygonSmoothHint

Antialiasing-related

fogHint

If fogHint is GL_NICEST and the fogMode
is GL_EXP or GL_EXP2 the MCD will punt
the rendering to the software
implementation

Intel740 Software Developer’'s Manual

intel Programming Environment
®

3.1.3 Supported OpenGL MCD Primitives

Table 3-3. Supported OpenGL MCD Primitives

MCD Render Primitive Intel740 Primitive Notes
Points are converted to sub-pixel length lines.
GL_POINTS LINE or TRIANGLE) . i
- Wide points are converted to two triangles.
GL_LINES LINE
GL_LINE_STRIP LINE Line strips are converted to individual lines
The MCD Helper library automatically converts line
GL_LINE_LOOP LINE loops to line strips. The MCD will never actually receive
line loops.
GL_TRIANGLES TRIANGLE
GL_TRIANGLE_STRIP TRIANGLE Triangle strips converted to individual triangles
GL_TRIANGLE_FAN TRIANGLE Triangle fans converted to individual triangles
GL_QUADS TRIANGLE Quads are triangulated into individual triangles
GL_QUAD_STRIP TRIANGLE Quad strips are triangulated into individual triangles
GL_POLYGON TRIANGLE Polygons are triangulated into individual triangles

Intel740 Software Developer’s Manual 3-5

Programming Environment

3.14

3.1.5

Supported OpenGL MCD Texture States

Table 3-4. Supported OpenGL MCD Texture States

MCD Texture State

Intel740 Texture State

Notes

GL_LINEAR_MIPMAP_NEAREST
GL_LINEAR_MIPMAP_LINEAR

LINEAR_MIPMAP_NEAREST
LINEAR_MIPMAP_LINEAR

Supported

sWrapMode WRAP U The Intel740 wrap states

> MIRROR, CLAMP_TRANSPARENT,
GL_CLAMP S and WRAP_SHORTEST aren't used
GL_REPEAT WRAP by the MCD.
tWrapMode WRAP V The Intel740 wrap states

> MIRROR, CLAMP_TRANSPARENT,
. CLAMP and WRAP_SHORTEST aren't by the
GL_REPEAT WRAP MCD.
minFilter TEXTURE_MIN
GL_NEAREST NEAREST
GL_LINEAR GLINEAR
GL_NEAREST_MIPMAP_NEAREST | MIP_NEAREST
GL_NEAREST_MIPMAP_LINEAR MIP_LINEAR

magFilter TEXTURE_MAG

GL_NEAREST NEAREST

GL_LINEAR LINEAR

borderColor n/a Texture border colors are not

supported

Supported OpenGL MCD Texture Environment States

Table 3-5. Supported OpenGL MCD Texture Environment States

MCD Texture Environment Intel740 Texture State
Notes
State Supported
texEnvMode MAP_BLEND The Intel740 Texture map blend modes
GL REPLACE DECAL MODULATE, DECAL_MASK,

- MODULATE_MASK and the other more
GL_DECAL DECAL_ALPHA obscure blend modes aren’t used in the
GL_MODULATE MODULATE_ALPHA MCD.

GL_BLEND Not Supported (see note) | GL_BLEND mode is punted
The texEnvColor is used when the MCD
texEnvColor n/a (see note) mimics GL_BLEND

Intel740 Software Developer’'s Manual

Programming Environment

DirectX Programming Environment

This chapter explains the relationship between the Intel 740 APl and the Microsoft Windows*
support driver environment (Microsoft Windows95* /Windows98* /WindowsNT* 5.0). References
are made to existing standards documents. Intel 740 extensions or behaviors that differ from the
standard are described in detail.

The Intel 740 video support driversinclude DirectDraw* (Overlay) driver, DirectDraw V PE driver,
and VBI Capture VxD. The Intel 740 DirectDraw Driver (DDHAL/DDHAL VPE) interfaces with
the following external entities: Microsoft DirectX* API, and AGP Memory driver. The Intel740
VBI Capture VxD interfaces with the Intel VBI Decoder VXD, DDHAL VPE driver, AGP Memory
driver. Table 3-2 shows the Intel 740 driver architecture.

The Intel740 Direct3D device driver interfaces with the following external entities: Microsoft
DirectX AP, Intel 740 2D display driver, WIN32 GDI Escape Mechanism, Windows 95 Registry,
and AGP Memory driver. The Configuration Applet along with any Diagnostic/Test applications
will interface with the Intel 740 Direct3D device driver through the GDI device-dependent graphics
escapes defined by the driver. Figure 3-2 shows the Intel 740 Direct3D driver architecture.

Figure 3-2. Intel740 Software Architecture

Win32 Applications
Microsoft Intel Intercast
‘ Stream Decoder(s) ‘
Direct Video | Active Movie Ring
‘ Intercast Stack | 3
GDI DirectDraw | DirectDraw VPE Direct3D Rin
‘ VBI Decode VxD | 09
Intel740
GDI Driver | | DDHAL / DDHAL VPE D3D HAL VBI Capture VxD
Intel740

Intel740 Hardware

Intel740 Software Developer’s Manual 3-7

Programming Environment

3.3

3.3.1

3.3.1.1

3-8

Table 3-6.

Mini Interface Drivers

Mini Display Driver

Structures Exported to GDI

Device Technology—dpTechnology (Sheet 1 of 2)

Function

Supported

DT_PLOTTER(0)

DT_RASDISPLAY(1)

DT_RASPRINTER (2)

Raster Capabilities—dpRaster

RC_BITBLT (0001h)

O (8 BPP, 16 BPP, 24BPP)

RC_BANDING (0002h)

RC_SCALING (0004h)

RC_SAVEBITMAP (0040h)

RC_PALETTE (0100h)

O (8 BPP)

RC_DIBTODEYV (0200h)

O (8 BPP, 16 BPP, 24BPP)

RC_BIGFONT (0400h)

O (8 BPP, 16 BPP, 24BPP)

RC_STRETCHBLT (0800h)

O (8 BPP, 16 BPP, 24BPP)

RC_FLOODFILL (1000h)

RC_STRETCHDIB (2000h)

O (8 BPP, 16 BPP, 24BPP)

RC_DEVBITS (8000h)

O (8 BPP, 16 BPP, 24BPP)

Level of text support the device driver provides—dpText

TC_OP_CHARACTER (0001h)

TC_OP_STROKE (0002h)

TC_CP_STROKE (0004h)

TC_CR_90 (0008h)

TC_CR_ANY (0010h)

TC_SF_X_YINDEP (0020h)

TC_SA_DOUBLE (0040h)

TC_SA_INTEGER (0080h)

TC_SA_CONTIN (0100h)

TC_EA_DOUBLE (0200h)

TC_IA_ABLE (0400h)

TC_UA_ABLE (0800h)

TC_SO_ABLE (1000h)

TC_RA_ABLE (2000h)

TC_VA_ABLE (4000h)

Intel740 Software Developer’'s Manual

intel.

Table 3-6.

Device Technology—dpTechnology (Sheet 2 of 2)

Programming Environment

Additional raster abilities—dpCapsl

C1_TRANSPARENT (0001h)

TC_TT_ABLE (0002h)

C1_TT_CR_ANY (0004h)

C1_EMF_COMPLIANT (0008h)

C1_DIBENGINE (0010h) O
C1_GAMMA_RAMP (0020h) 0
C1_ICM (0040h)

C1_REINIT_ABLE (0080h)

C1_GLYPH_INDEX (0100h) 0
C1_BIT_PACKED (0200h)

C1_BYTE_PACKED (0400h) 0
C1_COLORCURSOR (0800h) 0

C1_CMYK_ABLE (1000h)

C1_SLOW_CARD (2000h)

Polyline and line-drawing

capabilities—dpLines

LC_POLYGONSCANLINE (0001h) 0
LC_POLYLINE (0002h) 0
LC_WIDE (0010h)

LC_STYLED (0020h) 0

LC_WIDESTYLED (0040h)

LC_INTERIORS (0080h)

Polygon-, rectangle-, and scan-line drawing capabilities- dpPolygonals

PC_ALTPOLYGON (0001h)

0

PC_RECTANGLE (0002h)

PC_WINDPOLYGON (0004h)

PC_SCANLINE (0008h)

PC_WIDE (0010h)

PC_STYLED (0020h)

PC_WIDESTYLED (0040h)

PC_INTERIORS (0080h)

PC_POLYPOLYGON (0100h)

PC_PATHS (0200h)

Intel740 Software Developer’s Manual

Programming Environment

intel.

3.4 DirectDraw Display Driver Interface

This section explains the interfaces of Intel 740 2D drivers. It does not cover the whole 2D driver
interface, sinceit is aready defined by Microsoft in the Windows95 or Windows98 DDK. This
section specifies the interfaces of display driver, mini-V DD, DirectDraw HAL, DirectDraw VPE

3.4.1

Table 3-7. dwCaps—Specifies Driver-Specific Capabilities

3-10

HAL and version information.

Directdraw Hal Capabilities

Function

Supported

DDCAPS_3D

DDCAPS_ALIGNBOUNDARYDEST

DDCAPS_ALIGNBOUNDARYSRC

DDCAPS_ALIGNSIZEDEST

DDCAPS_ALIGNSIZESRC

DDCAPS_ALIGNSTRIDE

DDCAPS_ALPHA

DDCAPS_BANKSWITCHED

DDCAPS_BLT

DDCAPS_BLTCOLORFILL

DDCAPS_BLTDEPTHFILL

DDCAPS_BLTFOURCC

DDCAPS_BLTQUEUE

DDCAPS_BLTSTRETCH

DDCAPS_CANBLTSYSMEM

DDCAPS_CANCLIP

DDCAPS_CANCLIPSTRETCHED

DDCAPS_COLORKEY

DDCAPS_COLORKEYHWASSIST

DDCAPS_GDI

DDCAPS_NOHARDWARE

DDCAPS_OVERLAY

0

DDCAPS_OVERLAYCANTCLIP

0

DDCAPS_OVERLAYFOURCC

0 (YUV4:2:2, RBG555 and RGB565)

DDCAPS_OVERLAYSTRETCH o
DDCAPS_PALETTE

DDCAPS_PALETTEVSYNC

DDCAPS_READSCANLINE O

DDCAPS_STEREOVIEW

DDCAPS_VBI

DDCAPS_ZBLTS

DDCAPS_ZOVERLAYS

DDCAPS_ZOVERLAYS

Intel740 Software Developer’'s Manual

In

tel

Table 3-8. dwCaps2—Specifies More Driver-Specific Capabilities

Programming Environment

Function

Supported

DDCAPS2_CERTIFIED

DDCAPS2_NO2DDURING3DSCENE

DDCAPS2_VIDEOPORT

DDCAPS2_AUTOFLIPOVERLAY

DDCAPS2_CANBOBINTERLEAVED

DDCAPS2_WIDESURFACES

o o I |

DDCAPS2_NOPAGELOCKREQUIRED

Table 3-9. dwCKeyCaps—Color Key Capabilities

Function

Supported

DDCKEYCAPS_DESTBLT

DDCKEYCAPS_DESTBLTCLRSPACE

DDCKEYCAPS_DESTBLTCLRSPACEYUV

DDCKEYCAPS_DESTBLTYUV

DDCKEYCAPS_DESTOVERLAY

DDCKEYCAPS_DESTOVERLAYCLRSPACE

DDCKEYCAPS_DESTOVERLAYCLRSPACEYUV

DDCKEYCAPS_DESTOVERLAYONEACTIVE

DDCKEYCAPS_DESTOVERLAYYUV

DDCKEYCAPS_NOCOSTOVERLAY

DDCKEYCAPS_SRCBLT

o o I |

DDCKEYCAPS_SRCBLTCLRSPACE

DDCKEYCAPS_SRCBLTCLRSPACEYUV

DDCKEYCAPS_SRCBLTYUV

DDCKEYCAPS_SRCOVERLAY

DDCKEYCAPS_SRCOVERLAYCLRSPACE

DDCKEYCAPS_SRCOVERLAYCLRSPACEYUV

DDCKEYCAPS_SRCOVERLAYONEACTIVE

DDCKEYCAPS_SRCOVERLAYYUV

Intel740 Software Developer’s Manual

3-11

Programming Environment

3-12

Table 3-10. dwFXCaps—Specifies Driver-Specific Stretching and Effects Capabilities

Function

Supported

DDFXCAPS_BLTARITHSTRETCHY

DDFXCAPS_BLTARITHSTRETCHYN

DDFXCAPS_BLTMIRRORLEFTRIGHT

DDFXCAPS_BLTMIRRORUPDOWN

DDFXCAPS_BLTROTATION

DDFXCAPS_BLTROTATION90

DDFXCAPS_BLTSHRINKX

DDFXCAPS_BLTSHRINKXN

DDFXCAPS_BLTSHRINKY

DDFXCAPS_BLTSHRINKYN

DDFXCAPS_BLTSTRETCHX

DDFXCAPS_BLTSTRETCHXN

DDFXCAPS_BLTSTRETCHY

DDFXCAPS_BLTSTRETCHYN

DDFXCAPS_OVERLAYARITHSTRETCHY

DDFXCAPS_OVERLAYARITHSTRETCHYN

DDFXCAPS_OVERLAYMIRRORLEFTRIGHT

DDFXCAPS_OVERLAYMIRRORUPDOWN

DDFXCAPS_OVERLAYSHRINKX

DDFXCAPS_OVERLAYSHRINKXN

DDFXCAPS_OVERLAYSHRINKY

DDFXCAPS_OVERLAYSHRINKYN

DDFXCAPS_OVERLAYSTRETCHX

DDFXCAPS_OVERLAYSTRETCHXN

DDFXCAPS_OVERLAYSTRETCHY

DDFXCAPS_OVERLAYSTRETCHYN

Table 3-11.

dwPalCaps—Specifies Palette Capabilities

Function

Supported

DDPCAPS_1BIT

DDPCAPS_2BIT

DDPCAPS_4BIT

DDPCAPS_8BIT

Oo|jo|jo|o

DDPCAPS_B8BITENTRIES

DDPCAPS_ALLOW256

DDPCAPS_PRIMARYSURFACE

DDPCAPS_PRIMARYSURFACELEFT

DDPCAPS_VSYNC

Intel740 Software Developer’'s Manual

In

tel

Programming Environment

Table 3-12. ddsCaps.dwCaps—Specifies The Capabilities Of The Surface

Function

Supported

DDSCAPS_3D

O (Enabled if 3D is detected)

DDSCAPS_3DDEVICE

0

DDSCAPS_ALLOCONLOAD

0

DDSCAPS_ALPHA

DDSCAPS_BACKBUFFER

DDSCAPS_COMPLEX

DDSCAPS_FLIP

DDSCAPS_FRONTBUFFER

Oo|o|go|a

DDSCAPS_HWCODEC

DDSCAPS_LIVEVIDEO

DDSCAPS_MIPMAP

DDSCAPS_MODEX

DDSCAPS_OFFSCREENPLAIN

DDSCAPS_OVERLAY

Oo|o|lo|oa| o

DDSCAPS_OWNDC

DDSCAPS_PALETTE

O

DDSCAPS_PRIMARYSURFACE

O

DDSCAPS_PRIMARYSURFACELEFT

DDSCAPS_SYSTEMMEMORY

DDSCAPS_TEXTURE

DDSCAPS_VIDEOMEMORY

DDSCAPS_VISIBLE

Oo|o|o|a

DDSCAPS_WRITEONLY

DDSCAPS_ZBUFFER

O

DDSCAPS_NONLOCALVIDMEM

Intel740 Software Developer’s Manual

3-13

Programming Environment

3.5
35.1

Table 3-13. General Device Capabilities

3-14

Direct3D Interface

Supported Direct3D Capabilities

Function Supported

Device Color Model

RGB g

Mono O
Device Capabilities

FloatTLVertex 0

SortincreasingZ

SortDecreasingZ

SortExact

ExecuteSystemMemory

ExecuteVideoMemory

TLVertexSystemMemory

TLVertexVideoMemory

TextureSystemMemory

TextureVideoMemory O

Transform Capabilities

Clip
Lighting Capabilities
RGBModel
MonoModel
Point
Spot
Directional
ParallelPoint
GLSpot
Clipping

True
False 0

Render Bit Depth
16-bit ‘ 0

Z Buffer Bit Depth
16-bit ‘ 0

Intel740 Software Developer’'s Manual

intel.

Table 3-14. Texture Capabilities

Programming Environment

Format Width Height B.il_t:XZ?r R/Y Mask | G/U Mask | B/V Mask | Alpha Mask
RGB 565 1024 1024 16 F800h 07EOh 001Fh 0000h
RGBa 5551 1024 1024 16 7C00h 03EOh 001Fh 8000h
RGBa 4444 1024 1024 16 OF00Oh 00FOh 000Fh FOO0Oh
YUV 422 1024 1024 8 FOh 0Ch 03h 00h
Palette Indexed 1 | 1024 1024 1
Palette Indexed 2 | 1024 1024 2
Palette Indexed 4 | 1024 1024 4
Palette Indexed 8 | 1024 1024 8

Table 3-15. Primitive Capabilities Supported (Sheet 1 of 3)
Capability Lines Triangles
Misc. Capabilities
MaskPlanes
Maskz 0 0
LinePatternRep
Conformant
CullNone
Cullcw
CullcCw
Raster Capabilities
Dither 0 0
Rop2
Xor
Pat
Ztest
Subpixel
SubpixelX
FogVertex a o
FogTable
Stipple 0 0
Z/AlphaCompare Capabilities Z/ Alpha Z | Alpha
Never o/0 o/0
Less o/0 o/0o
Equal o/g /g
LessEqual /g /g
Greater o/0 o/0o
Intel740 Software Developer’s Manual 3-15

Programming Environment inu
®

Table 3-15. Primitive Capabilities Supported (Sheet 2 of 3)

Capability Lines Triangles

NotEqual o/0o o/0o
GreaterEqual o/0o o/0
Always o/0o o/0

Source/Destination Blend Capabilities Src / Dst Src / Dst
Zero o/0o o/0o
One o/0o o/0
SrcColor o/0o o/0o
InvSrcColor o/0o o/0o
SrcAlpha o/g o/g
IncSrcAlpha o/g o/g
DestAlpha
InvDestAlpha
IncSrcAlpha o/g o/g
InvDestColor o/0o o/0o
SrcAlphaSat
BothSrcAlpha o/g o/g
BothlnvSrcAlpha o/g o/g

Shade Capabilities

ColorFlatMono 0 0
ColorFlatRGB 0 0
ColorGouraudMono 0 0
ColorGouraudRGB 0 0
ColorPhongMono

ColorPhongRGB

SpecularFlatMono O O
SpecularFlatRGB O O
SpecularGouraudMono O O
SpecularGouraudRGB O O

SpecularPhongMono
SpecularPhongRGB
AlphaFlatBlend
AlphaFlatStippled
AlphaGouraudBlend

AlphaGouraudStippled
AlphaPhongBlend
AlphaPhongStippled

FogFlat

FogGouraud

3-16 Intel740 Software Developer’'s Manual

In

tel

Table 3-15. Primitive Capabilities Supported (Sheet 3 of 3)

Programming Environment

Capability

Lines

Triangles

FogPhong

Texture Capabilities

Perspective

Pow2

Alpha

Transparency

Oo|o|la|a

Oo|o|la|a

Border

SquareOnly

Texture Filter Capabilities

Nearest

Linear

MipNearest

MipLinear

LinearMipNearest

LinearMipLinear

Oo|lo|lgo|o|ofo

Oo|o|lgo|o|olo

Texture Blend Capabilities

Decal

Modulate

DecalAlpha

ModulateAlpha

DecalMask

Oo|o|lo|o| o

Oo|o|lo|o| o

ModulateMask

Copy

Texture Address Capabilities

Wrap

Mirror

Clamp

Intel740 Software Developer’s Manual

3-17

Programming Environment

3.5.2

Table 3-16. DIRECT3D RenderState Hardware / Software Support (Sheet 1 of 3)

3-18

Supported RenderState

Supported Supported
State in SW in HW Values Notes
NEVER
LESS
EQUAL
LESSEQUAL
ALPHAFUNC O O
GREATER
NOTEQUAL
GREATEREQUAL
ALWAYS
ALPHAREF 8-bit value
ALPHATESTENABLE TRUE / FALSE
SORTDEPENDENT /
ANTIALIAS O O NONE
ALPHABLENDENABLE O O TRUE / FALSE
NONE
CULLMODE O O Ccw
CCw
ZERO
ONE
SRCCOLOR
INVSRCCOLOR
SRCALPHA
DESTBLEND O O
INVSRCALPHA
DESTCOLOR
INVDESTCOLOR
BOTHSRCALPHA
BOTHINVSRCALPHA
DITHERENABLE O O TRUE / FALSE
WIREFRAME -
FILLMODE O O
SOLID
FOGENABLE O O TRUE / FALSE
lower 24-bits of a 32-bit
FOGCOLOR O O value
FOGTABLEDENSITY NO NO
FOGTABLEEND NO NO
FOGTABLEMODE NO NO
FOGTABLESTART NO NO
LASTPIXEL NO NO TRUE / FALSE
LINEPATTERN NO NO 32-hit value
MONOENABLE O O TRUE / FALSE
PLANEMASK NO NO 32-bit value

Intel740 Software Developer’'s Manual

In

tel

Table 3-16. DIRECT3D RenderState Hardware / Software Support (Sheet 2 of 3)

Programming Environment

State

Supported
in SW

Supported
in HW

Values

Notes

ROP2

NO

NO

SHADEMODE

0

0

FLAT
GOURAUD

SPECULARENABLE

TRUE / FALSE

SRCBLEND

ZERO

ONE

SRCCOLOR
INVSRCCOLOR
SRCALPHA
INVSRCALPHA
DESTCOLOR
INVDESTCOLOR
BOTHSRCALPHA
BOTHINVSRCALPHA

STIPPLEDALPHA

NO

NO

STIPPLEENABLE

TRUE / FALSE

STIPPLEPATTERNO0-31

32-bit values

SUBPIXEL

NO

NO

SUBPIXELX

NO

NO

TEXTUREADDRESS

WRAP
MIRROR
CLAMP

TEXTUREHANDLE

32-bit value

TEXTUREMAG

NEAREST

LINEAR
MIPNEAREST
MIPLINEAR
LINEARMIPNEAREST
LINEARMIPLINEAR

TEXTUREMAPBLEND

DECAL
MODULATE
DECALALPHA
MODULATEALPHA
DECALMASK
COPY

TEXTUREMIN

NEAREST

LINEAR
MIPNEAREST
MIPLINEAR
LINEARMIPNEAREST
LINEARMIPLINEAR

TEXTURE
PERSPECTIVE

TRUE

Intel740 Software Developer’s Manual

3-19

Programming Environment

3.5.3

3-20

Table 3-16. DIRECT3D RenderState Hardware / Software Support (Sheet 3 of 3)

Supported

Supported

State in SW in HW Values Notes
WRAPUV TRUE / FALSE
WRAPV TRUE / FALSE
ZENABLE O O TRUE / FALSE

NEVER

LESS

EQUAL

LESSEQUAL
ZFUNC O O

GREATER

NOTEQUAL

GREATEREQUAL

ALWAYS
ZVISIBLE NO NO TRUE / FALSE
ZWRITEENABLE O O TRUE / FALSE

Supported RenderPrimitives

Table 3-17. DIRECT3D RenderPrimitive Hardware / Software Support

Primitive Suppé)\;\tled in Suppl_(l)\r/\tled in Notes
POINT O NO Implemented as a 0 length line
LINE g
TRIANGLE g
SPAN O NO Implemented with a line
STRIP O NO Implemented with a triangle
FAN O NO Implemented with a triangle

Intel740 Software Developer’'s Manual

intel Programming Environment
®

3.6 Video Interface

All VW Capture Messages are supported by the Intel 740 video capture driver.

Table 3-18. VfW Capture Driver Capability

VW Capture Message Supported

DRV_LOAD

DRV_FREE

DRV_OPEN

DRV_CLOSE

DRV_ENABLE

DRV_DISABLE
DRV_QUERYCONFIGURE
DRV_CONFIGURE
DRV_INSTALL

DRV_REMOVE
DRV_GETVIDEOAPIVER
DVM_GETERRORTEXT
DVM_DIALOG

DVM_PALETTE
DVM_FORMAT
DVM_PALETTERGB555
DVM_SRC_RECT
DVM_DST_RECT
DVM_UPDATE
DVM_CONFIGURE_STORAGE
DVM_FRAME
DVM_GET_CHANNEL_CAPS
DVM_STREAM_INIT
DVM_STREAM_FINI
DVM_STREAM_GETERROR
DVM_STREAM_GETPOSITION
DVM_STREAM_ADDBUFFER
DVM_STREAM_PREPAREHEADER
DMV_STREAM_UNPREPAREHEADER
DVM_STREAM_RESET
DVM_STREAM_START
DVM_STREAM_STOP

Oo|lo|lo|o|o|jo|lo|jo|jojo|jo|jojo|o|jo|jojo|o|o|joyoyo|o|o|lo|joyjo|jo|lo|jolof o

Intel740 Software Developer’s Manual 3-21

Programming Environment inu
®

3.7 GDI Escape Interface

The Intel 740 Direct3D Driver supportsthe GDI Escape interface that allows dynamic alterations of
operational parameters as well as debugging and performance monitoring. Access to these device
capabilities which are specific to Intel 740 3D functionality is achieved using the following

function call:

Ext Escape(HDC, //handle to W ndows device context
int, //1ntel 740 3D escape function nunber (1234h)
int, [/ number of bytes in input structure

LPCSTR, //pointer to input structure
//typedef struct AubControl | nBuffer

I { DwWord EscapeNunber;

/1 DWbrdSubFuncti on;

/1 DwWordDat aPoi nter;

/1 }
int, [/ number of bytes in output structure
LPSTR) ; //pointer to output structure

11 typedef struct AubControl QutBuffer

I { DwordEscapeNunber;

/1 DWbrdSubFuncti on;

/1 DwWordDat aPoi nter;

/1 }

The following sections define the available subfunctions along with a definition for each
DataPointer associated with the input and/or output structures. Data types which arein bold italic
text are defined by Microsoft in the DirectX documentation.

Table 3-19. Functionality Control

3-22

AubControlOutBuffer

Sub-function Description AubControlinBuffer Data Data

DWord StateNumber

01h-FFh - As defined by
D3DRENDERSTATETYPE

100h - Texture LOD Bias

101h Set State Variable 101h - Texture LOD Dither void
weight

102h - Alpha in Z buffer
103h - QWord fetch mode
DWord StateValue

D3DDEVICEDESC
D3Dcapabilities

102h Set Capabilities void

D3DDEVICEDESC

103h Get Capabilities void D3Dcapabilities

Get AGP Config

10AN Registers

void DWord Reg[3]

Table 3-20. Device Driver Debugging Control

Sub-function Description AubControlinBuffer Data AubContg;It(;utBuffer
. DWord Level .
200h Set Debug Logging Level void
0..MaxDebugLevel

Intel740 Software Developer’'s Manual

intel.

Performance Considerations 4

4.1

4.1.1

This chapter describes programming approaches to maximize performance, report Intel 740
performance test results, and introduce creative programming techniques which take advantage of
the Intel 740 features.

Performance Strategies And Measurements

All performance statistics outlined in this section were gathered using Intel’'s RasM (Raster Metric)
2.0 software. RasM, a raster speed measurement tool, measures the rasterization speed of a
hardware accelerator vs. the scene complexity of an application. The system configuration used for
gathering the data shown in this document is as follows:

* 300 MHz Pentium® Il processor with MMX™ technology
¢ Atlanta motherboard with PhoenixBIOS*

® 440L X Chipset

* Intel 740 AGP graphics card with 200 BIOS

* Windows95 operating system (OSR2.1)

* 64 Mbytes system memory (SDRAM, 66 MHZz)

* 4 Mbytelocal video memory (SDRAM, 100 MHZz)

* 640x480x16 bits per pixel screen resolution

* 60 Hz refresh rate

Intel740 Performance Capabilities

The Intel 740 supports the next generation of high-content applications. 3D games will use more
realistic models with more triangles of smaller size. The Intel 740 providesits peak performance for
these types of games.

The recommended game detail target for the Intel 740 is 10,000 triangles per frame, between 75 and
175 pixels per triangle, at 30 frames per second. 10,000 triangles per scene requires atriangle rate
of approximately 300,000. The Intel740 can render 366,000 full featured triangles per second with
an average of 105 pixels per triangle.

Required_Tri_Per_Sec =Tri_Per_Scene / (1/Frames_per_Second - Tover_head)

The following sections include Intel 740 performance results along with descriptions of how the
results can be used to predict frame rates for particular applications and scene complexities.

Intel740 Software Developer’s Manual 4-1

Performance Considerations inu
®

4.1.2

Using CPU/Intel740 Concurrency

Applications should be designed to take advantage of the concurrency allowed by the Intel 740 and
AGP system architecture. The Intel 740 can be thought of as a second processor for rasterization,
optimized for maximum parallelism with the CPU. The benefit given to the application is that the
CPU isfree to do more Al, physics, lighting, and geometry. The Intel 740 drivers minimize CPU
overhead, balance the system, and allow for maximum system concurrency.

Many of the performance results included in this chapter report the driver duty cycle for the CPU.
The duty cycleistheratio of CPU time used by the Intel 740 driver divided by the length of time
the Intel 740 requires to render the scene. It is a measure of how much time an application can
spend on lighting, geometry, and game controls while not causing the CPU to limit performance.

In systems with software rasterization only, atypical application used 90% of CPU cycles for
rasterization alone. Because the I ntel 740 renders much faster than software engines and because of

the system'’s available concurrency, a system with an Intel740 gains a tremendous performance
advantage.

Figure 4-1 shows the usage model for the Intel740 and the CPU during one and a half frames of a
typical application cycle.

Figure 4-1. Intel740/CPU Usage Model

CPU = | Intel740 Driver | | Game Control Light & Geom. | | Intel740 Driver | | Game Controls... |
Intel740 = | Raster Triangles | | Raster Triangles.... |
j: One Frame :

Applications should be structured such that CPU cycles are not wasted waiting for synchronization
with the Intel740. Forcing flips or blits to surfaces being rendered cause the CPU to sit idle until
rendering has completed. Figure 4-2 illustrates how an improperly placed flip or blit can drastically
reduce frame rate.

Figure 4-2. Improper Usage Model

4-2

Reune"s’,)t —l Flip Occurs —l

CPU & | Game Control Light & Geom. | | Intel740 Driver | | ...CPU Idle... |
Intel740 + { —Intel740 Ide... | | Raster Triangles |
;: One Frame >

In this case, only minimal concurrency is achieved. The problem can be alleviated by simply
rearranging the flow so that the CPU processing for the following frame is completed before the
render target is flipped. Similar problems will be seen by code that issues blit commands for 2D
effects directly after sending a 3D scene.

Intel740 Software Developer’'s Manual

.tel Performance Considerations
®

4.1.3 Performance Test Results

4,131 Raster Speed Test Method

This section describes the tests used to measure the performance numbers reported in this
document.

Figure 4-3 shows the system usage while RasM is running. The time that RasM waits for the
Intel 740 to complete will be used for Al, game contral, lighting, geometry, and anything else the
application needs to do before sending the next frame off to be rendered. To attain the maximum
frame rate, applications should be optimized to finish all computations during thistime.

Figure 4-3. RasM Intel740/CPU Usage Model

CPU->| Intel740 Driver || ...Waiting for Intel 740... | | Intel740 Driver | | ...Waiting... |

Intel740 —» | Raster Triangles | | Raster Triangles... |

4——— OneFrame————— ¥

The program execution can be broken down into two phases called consecutively by aloop that
sequences through all the triangle sizes to be tested:

Loop (for all triangle sizes do)
Phase 1: Build execute buffers
Phase 2: Execute the buffers and time the hardware

The first phase creates and fills execute buffers with 512 triangles each. The total number of
triangles depends on triangle size, depth complexity (DC) goal, and percent Z-buffering (%2) goal.
Unless otherwise stated, the sweeps reported in this document have a constant DC of 2.5 and 50%
Z across the triangle size sweeps. For example, the 120 pixel/triangle data point contains about
13,300 randomly distributed triangles per scene:

Triangles_per_Scene = (Screen.W * Screen.H * Avg_DC_Goal / Percent_Z_Goal) / Pix_per_Tri

To achieve a predefined DC and %Z goal, a “survival of the fittest” algorithm is implemented: 10
randomly placed and oriented triangles are generated for each required triangle, and the triangle

that brings the scene the closest to its DC and %Z goals is selected.

Game scenes often have some percentage of triangles use specular and alpha blend. Many of the
sweeps in this document test scenes with specular and blend enabled for only a fraction of the
triangles. RasM always puts the triangles with specular and blend in the last portion of the scene.
The rationale here is that games using only a small percent specular or alpha blend will be applying
highlights to the scene near the end of their triangle lists. Unless otherwise stated, textures are
mipmapped with 16-bit color. When multiple textures are used in a scene, they are distributed
equally thoughout the scene. A scene with 10,000 triangles, three textures, 30% specular, and 20%
alpha blend would generate 20 execute buffers, 3,400 triangles per texture; the last 2,000 triangles

would use specular and alpha blend, and the preceding 1,000 would use just specular.

The second phase of the loop executes the buffers created in the first phase, and then clocks the
driver and hardware raster speed. The scene is clocked, displayed, and recorded 15 times; the
middle five times are averaged to get the final result. Figure 4-4 shows pseudo-code from the

timing/display loop.

Intel740 Software Developer’s Manual 4-3

Performance Considerations

4-4

Figure 4-4. RasM Pseudo-Code

TO:
For All Execute — Exec(...)
I AT, EndScene()
T1:
AT
2 RenderBuffer — Lock(...)

T2:

Triangles_per_Second = (Triangles_per_Scene) / AT,
Pixels_per_Second = (Triangles_per_Scene) * Pix_per_Triangle / AT,
Duty Cycle =AT, /AT,

The reported results are divided into sections: Result Summary, Basic Sweeps, Advanced Sweeps,
and Full Sweeps. The Result Summary contains data taken directly from the set of sweeps. It is
intended to be used as just a summary or for quick reference. Section 4.1.3.2 contains more
detailed information that can be used to predict application frame rates.

The basic sweep compares Gouraud only to Gouraud with Z-Buffer and, finally, Gouraud with Z-
Buffer and Textures (GZT). The advanced sweepstakesthe GZT features from the last basic sweep
and teststhe sensitivity to fog, alphablending, specular, and anti-aliasing. The full sweeps combine

al features.

Table 4-1. Result Summary

Set-u o .
Gouraud | Fog | Blend | Spec ,':Fti' Z-Buff | MipMap Li_miteei (#i)aSngPI:eXs-L:r (iligeiag:r
ias 50% Z | 16 BBP (Triangles Second) Second)
per Second)

X 675k 482k 65.7M
X X 672k 385k 59.1M
X X X 577k 349k 54.2M
X X X X 535k 349k 53.8M
X 20% X X 568k 340k 53.8M
X 100% X X 535k 300k 48.2M
X 30% X X 539k 348k 53.7M
X 100% X X 468k 347k 54.2M
X 20% X X 372k 253k 51.4M
X X 20% 30% X X 496k 338k 53.2M
X X 100% 100% X X 415k 298k 48.0M

Intel740 Software Developer’'s Manual

intel.

Table 4-2. Symbol Key

Performance Considerations

Symbol Definition
G Gouraud Shading
Fg Vertex Fog Enabled 100% of Scene

A20 and A100

Alpha Blend Enabled for 20% and 100% of Scene

S30 and S100

Specular Highlights Enabled for 30% and 100% of Scene

Aa20 Anti-Aliasing enabled for 20% of Scene
z Z-Buffer enabled. Cleared at beginning of Scene
T 256X256 MipMap BiLinear Filter, ARGB 0565 Format (unless otherwise stated)

Intel740 Software Developer’s Manual

Performance Considerations

4-6

intel.

The graphsin Figure 4-5 show triangles per second, pixels per second, and duty cycle for Gouraud
only, Gouraud with Z-Buffer and Gouraud with Z-Buffer and Textures.

Figure 4-5. Basic Feature Sweeps

——G —B— GZ (50% Z) —&— GZT (50% 2)
7.00E+05 .
6.00E+05 - | Triangles Per Second
|
5.00E+05 | |
4.00E+05 | |
3.00E+05 \\
2.00E+05 \;\\
1.00E+05 - ——
0.00E+00
0 100 200 300 400 500
—— P PixelsPer Triangle
——G —m— GZ (50% Z) —&— GZT (50% Z)
7.00E+07 .
6.00E+07 - | —* "
| |
| | m
. b | ———] A
5.00E+07 | d:”“ - &
4.00E+07 - | r‘/‘/l |
3.00E+07 | |
| |
2.00E+07 | | target range |
1.00E+07 - |< >|
0.00E+00 | | Pixels Per Second
0 50 100 150 200 250 300 350 400 450 500
——— P PixelsPer Triangle
——G —m— GZ (50% Z) —&— GZT (50% Z)
1.00E+02 - o« .
9.00E+01 |a. .\ | Duty Cycle
8.00E+01 A‘_‘\ | |
7.00E+01 | \ |
6.00E+01
5.00E+01 - | \
4.00E+01 | ~e__|
3.00E+01 1 T~
2.00E+01 - | Groetrange | —
1.00E+01 - | |
0.00E+00 ' '
0 50 100 150 200 250 300 350 400 450 500
—— P PixelsPer Triangle

Intel740 Software Developer’'s Manual

In

= .tel Performance Considerations
®

The graphsin Figure 4-6 show triangles per second, pixels per second, and duty cycle. The feature
sets start with the GZT features set from the last basic sweep and display the sensitivity to fog,
alpha blending, specular, and anti-aliasing.

Figure 4-6. Advanced Feature Sweeps

—— GZT (50% Z) —-— GF ZT (50% Z% —A— GA20ZT (50% z%
—<— GA100ZT (50% Z "% Gsdoz (50% 2) —e— GS100ZT (50% 2)
—+— GAa20ZT (50% Z
6.00E+05 i |
5 OOE+05 | | Triangles Per Second
|
4.00E+05 |
|

3.00E+05 J’\
2.00E+05 - |
| target range |
1.00E+05 - |<4% .
|

0.00E+00
0 100 200 300 400 500
———— P PixelsPe Triangle
—o— GZT (50% Z) ZT (50% Z% —A— GA20ZT (50% %
—— GA100ZT (50% Z +GS 0ZT (50% Z) —@— GS100ZT (50% Z)
—+— GAa20ZT (50% Z
6.00E+07 |
5.00E+07 + | —

!
|
|
4.00E+07 - |

3.00E+07

2.00E+07 |
1.00E+07 | >|
0.00E+00 | | Pixgels Per Second
0 50 100 150 200 250 300 350 400 450 500
——— P PixelsPer Triangle
—e— GZT (50% 2) ZT (50% z% —A— GA20ZT (50% Z %
—— GA100ZT (50% Z 0ZT (50% 2) —e— GS100ZT (50% 2)
—+— GAa20ZT (50% Z
1.00E+02
.\ Duty Cycle
8.00E+01 - s
6.00E+01 -
4.00E+01 -
2.00E401 - E%sﬂ
0.00E+H00 ‘
0 50 100 150 200 250 300 350 400 450 500

—— P PixelsPer Triangle

Intel740 Software Developer’s Manual 4-7

Performance Considerations inu
®

4-8

The graphsin Figure 4-7 show triangles per second, pixels per second, and duty cycle with full

feature sets.

Figure 4-7. Full Feature Sweeps

—e—GZT(50% Z) —m— GFgA20S30ZT (50% Z) —&— GFgA100S100ZT (50% Z)

6.00E+05

0.00E+00

5.00E+05

4.00E+05 -

3.00E+05

2.00E+05

1.00E+05 +

Triangles Per Second

0 100 200 300 400 500
—— P PixdsPer Triangle

—e—GZT(50% Z) —®— GFgA20S30ZT (50% Z) —A— GFgA100S100ZT (50% Z)

6.00E+07 | |
5.00E+07 - | |

| —— N
4.00E+07 - — &

| ‘/L‘—/“"/—‘k’_
3.00E+07 | //‘/W |
2.00E+07 - | |

| target range |
1.00E+07 - |< g>|

| Pixels Per Second
0.00E+00 !
0 50 100 150 200 250 300 350 400 450 500

——— P PixdsPer Triangle

—e—GZT(50%Z) —m— GFgA20S30ZT (50% Z) —A— GFgA100S100ZT (50% Z)

1.00E+02

0.00E+00

9.00E+01 -
8.00E+01 \
7.00E+01 -
6.00E+01 -
5.00E+01 -
4.00E+01
3.00E+01 -
2.00E+01 -
1.00E+01 -

Duty Cycle
T~
A
—
0 50 100 150 200 250 300 350 400 450 500

——— P PixelsPer Triangle

Intel740 Software Developer’'s Manual

4.1.3.2

Performance Considerations

Implications and Analysis

This section suggests how the reported results can be translated into performance for individual
applications. The tests are raster speed only. Because of system concurrency, if the application

code executed between scenes preserves the duty cycle, the stated triangle and fill rates will be
achieved.

Average and percent Z are a good measure of scene complexity from the graphics card’s point of
view. They actually define the number of pixels that will be processed by the graphics accelerator,
per scene. Pixels per scene and desired frames per second give the fill rate that is required of the
graphics accelerator to hit that frame rate.

Pixels_per_Scene = (Screen.W * Screen.H * Avg_DC_Goal / Percent_Z_Goal)
Required_Fill_Rate = Pixels_per_Scene / (1/Frames_per_Second - Tover_head)

Tover_head is the overhead time which may be required to clear the Z-buffer, render buffers, or
blit a background. The number and size of triangles per scene may be more convenient for a game
designer to work with, but it is not a difficult conversion between the two.

Avg_DC_Goal = Triangles_per_Scene * Pix_per_Tri * Percent_Z_Goal / (Screen.W * Screen.H)

The %Z goal is really just how well the triangles are ordered before being sent to the Intel740
graphics accelerator. 50% Z assumes that half of the pixels contained in the processed triangles will
actually not be written to the screen because they are behind the previous pixel in the z-order. Note
that for a constant number of pixels per scene, if %Z goes up (a higher number of Z-values are
written) then the DC also goes up. Even though the pixels per scene remains the same, the fill rate
will change because it is a function of %Z.

A scene complexity of 2.5 DC and 50% Z was chosen because it is predicted that typical games
will have a similar complexity. However, not all games will follow this pattern.

Depth complexity is really a measure of pixels per scene. Increasing DC does not affect the triangle
rate or the actual fill rate, but will affect the pixels per scene and the required fill rate according to
the equations mentioned above.

Percent Z occlusion does affect the triangle and fill rates. Basically, decreasing %Z increases fill
rate, and vice versa. Sorting triangles from front to back produces higher graphic card performance.
Implementing a sorting algorithm is only recommended when the Intel740 fill rate becomes the
system performance bottleneck. The following graph illustrates the performance with changing
scene %Z occlusion.

Intel740 Software Developer’s Manual 4-9

Performance Considerations inu
®

Figure 4-8. Performance vs. Percent Z Occlusion

—&— ZBuffer On (Write Never) —#— ZBuffer On (10% Z) —aA— ZBuffer On (25% Z)

—>— ZBuffer On (50% Z) —X¥— ZBuffer On (70% Z) —e— ZBuffer On (Write Alw ays)
6.00E+07 T
5.00E+07 | | %E
4.,00E+07 - —
3.00E+07 +
2.00E+07 +
1.00E+07
0.00E+00 | Pixels Per Second

0 100 200 300 400 500
——— P PixelsPer Triangle

Very few gameswill havejust one triangle size per scene, but it is useful to analyze just one size at
atime because it supplies many of the building blocks required to approximate triangle rate, fill
rate, and duty cycle for more complex scenes. This example uses agame scene of 7,000 triangles of
75 pixels and 3,000 triangles of 175 pixels, hasa50% Z, uses afull feature set of GFgA20S30ZT,
has a Tover_head of about 1 ms, and requires 30 frames per second. The average DC for the scene
comesto 2.34, the pixels per sceneis 1.2M, and it requires afill rate of 37.1M pixels per second.

Avg_DC_Goal = (75 * 7,000 + 175 * 3,000) * .5/ (640 * 480) = 1.71
Required_Fill_Rate = 1.05M / (1/30 - .001) = 32.5M

Thefill rate for thistype of sceneisnot explicitly quoted in the graphsincluded in this document,
but aweighted average based on numbers of pixels can be used to extrapolate the | ntel 740 resultant
fill rate. For the previous example, the extrapolated fill rate of the Intel 740 is 35.2M pixels/s.

Pixels_per_Second (estimate) = (525k * 30.4M + 525k * 40.0M) / 1.2M = 35.2M Pix/s

RasM can be used to test scenes with non-constant triangle sizes. When the hardware was tested for
this case, the actual fill rate was reported to be 34.2M pixels/s. Most of the discrepancy can be
attributed to the scene depth complexity in this example being below that of the quoted tests. For
more information on how DC (or total packet size) can affect performance, see Table 4.1.4.2
“Triangle Packet Size” on page 4-12.

4-10 Intel740 Software Developer’'s Manual

4141

Performance Considerations

Special Performance Considerations

This section contains descriptions of subtle application design choices which can have
considerable effects on performance.

Direct3D DrawPrimitive vs. Execute Buffers

Direct3D immediate mode allows programmers to choose between execute buffers and draw
primitive methods of sending commands to the graphics hardware. The Intel 740 performance and
CPU driver duty cycle are both nearly identical for either sets of methods. Thisis the case aslong
as other considerations such as concurrency and packet size are not ignored. The following full
feature sweeps (Fog, 20% Alpha, 30% Specular, MipMap Textures, 2.5 DC, 50% Z) use execute
buffers, draw indexed primitive, draw primitive with trianglelists, and draw primitive with discrete
triangles. Each of the instructions sending groups of triangles (includes al but draw primitive with
discrete triangles) issues 500 triangles per instruction.

Figure 4-9. Performance of DrawPrimitive vs. Execute Buffer

—&— ExecBuff —— Draw IndexedPrim
—4— Draw Prim TRLLIST % — Draw Prim Single Tris
6.00E+07 | |
5.00E+07 + | | I
| | ,_/x:_fgf—f’/'X””i | &
4.00E+07 | | al
ol
3.00E+07 | a
| X |
2.00E+07 P |
B | target range |
1.00E+07 - |< >|
Pixels Per Second
0.00E+00 - : '
0 50 100 150 200 250 300 350 400 450 500

— P PixdsPer Triangle

—o— ExecBuff —m— Draw IndexedPrim —a— Draw Prim TRI_LIST —¢— Draw Prim Single Tris
1.00E+02 |
9.00E+01 ,‘\|§ Duty CYCIe
8.00E+01 | \
5.00E+01
4.00E+01 | |
3.00E+01 + ! | E!S
1.00E+01 + |
0.00E+00 i
0 50 100 150 200 250 300 350 400 450 500

7.00EH01 +
2.00E+01 | | larget range | —
———— P PixelsPer Triangle

6.00E+01 +
niliis

Intel740 Software Developer’s Manual 4-11

Performance Considerations inu
®

41.4.2

4-12

Each method has an associated CPU overhead. Execute buffers have the lowest, followed by draw
primitive with triangle lists. Sending a single triangle with each draw primitive command has a
very high overhead; below about 200 pixels per triangle the CPU is unableto send enough triangles
down per second to keep the Intel 740 busy.

It isimportant to note that execute buffers tend to force applications to group triangle execution
commands, which is advantageous for the Intel 740 and its driver. For more information on
Performance vs. triangle packet size see Section 4.1.4.2, “Triangle Packet Size” on page 4-12.

Triangle Packet Size

Software designers should try to bunch triangle packets sent to the Intel740 driver. Because of the
overhead associated with starting the flow of command packets, sending a small number of
triangles in a packet decreases performance. By sending out large triangle packets, the overhead is
amortized over the rasterization time of all triangles. As a result, higher triangle and fill rates are
achieved. Grouping rastered triangles is also critical to maintaining a high level of CPU/Intel740
concurrency. For more information on concurrency, see Section 4.1.2, “Using CPU/Intel740
Concurrency” on page 4-2.

This section addresses both performance vs. execute buffer/draw primitive buffer size, and
performance vs. total packet size. The total packet size is the total number of triangles sent between
breaks caused by game controls, lighting, or other CPU tasks. It consists of all the execute buffer/
draw primitive buffers sent down one right after the other.

The following graphs illustrate the performance vs. execute buffer size, draw indexed primitive
triangle list size, and draw primitive list size. All of these sweeps are full feature sweeps (Fog, 20%
Alpha, 30% Specular, MipMap Textures) and have a constant 10,000 triangle total packet size. The
Intel740 fill rate is not affected; the following graphs show duty cycle (CPU overhead).

Intel740 Software Developer’'s Manual

In

= .tel Performance Considerations
®

Figure 4-10. Performance vs. Buffer Size (Duty Cycle)

—&— ExecBuff 500 —8— ExecBuff 100 ExecBuff 20 ExecBuff 4 —k— ExecBuff 2
1.00E+02 KKK—K—HK— KKKk
' I Duty Cycle
8.00E+01 + | |
AATASIN — |
6.00E+01 | Teds I | | B
4.00E+01 + | = |
el A
2.00E+01 | <grget range, e |
0.00E+00 ! ' '
0 50 100 150 200 250 300 350 400 450 500
—— P PixelsPer Triangle
—e— Draw Prim TRI_LIST500 —#— Draw Prim TRI_LIST 100 Draw Prim TRI_LIST 20
Draw Prim TRICLIST 4 —¥— Draw Prim TRICLIST 2
1.00E+02 :
8.00E+01 Duty Cycle
6.00E+01 P, T
4.00E+01 i o A | —
L —_— "
2.00E+01 rget ra% i
0.00E+00 ' '
0 50 100 150 200 250 300 350 400 450 500
——— P PixelsPer Triangle
—&— Draw IndexedPrim 500 —&— Draw IndexedPrim 100 Draw IndexedPrim 20
Draw IndexedPrim 4 —%— Draw IndexedPrim 2
1.00E+02 :
8.00E+01 ‘ Duty Cycle
6.00E+01 | | T
4.00E+01 | M Te— ' E—
2.00E+01 gy get range, T T
0.00E+00 ! ' '
0 50 100 150 200 250 300 350 400 450 500

——— P PixdsPer Triangle

Optimal D3D execute-buffer size on a Pentium® Il processor system with an Intel740 has been
determined to be 512 triangles. Keeping a buffer size above about 50 triangles may be considerably
easier to implement and will only cost a few percent performance degradation.

The second and equally important concern is performance vs. total packet size. Applications need
to have a minimum of about 2,000 triangles per packet (which if organized efficiently is equal to
triangles per scene) to achieve near maximum system performance. The following graph illustrates
how sending small numbers of triangles in a packet can drastically reduce performance. An
example of how this can happen is an application with a render loop which sends many small
triangle packets divided up by game controls. Note that the following curves have 100% Z writes in
order to keep the %Z constant with changing triangle packet size.

Intel740 Software Developer’s Manual 4-13

Performance Considerations

intel.

Figure 4-11. Performance vs. Total Packet Size

41.4.3

—— GFgA20S30ZT glOk Tri) —8— GFgA20S30ZT €2k Trlg —aA— GFgA20S30ZT (400 Tri)

GFgA20S30ZT (80 Tri) —¥— GFgA20S30ZT (16 Tr
5.00E+07 | | - =
Pixels Per Second
4.00E+07 - | | —
| —A—
3.00E+07 - —

2.00E+07 1

1.00E+07 1 | target range |
0.00E+00 M - > |
0 50 100 150 200 250 300 350 400 450 500
—— P PixelsPer Triangle

Texture Sizes

Theratio of texture-mapped areato triangle area can have avery significant performance impact.
M apping large non-mipmapped textures onto small triangles forces the Intel 740 to scan through
much of thetexturefor just afew texels. When a textured triangle can be viewed up close aswell as
far away, mipmapping is an excellent choice. Using mipmapped textures, in addition to looking
better, alleviates this problem by selecting atexture map size which is close to the textured triangle
size.

The following graph demonstrates how performance can be degraded by texture to triangle size
mismatches.

Figure 4-12. Performance vs. Texture Size

4-14

—e— MipMap g512x512 to 1x1) —=— MipMap 5_128x128 to 1x1)
—A— BltMap 12x512 —— BltMap 28x128)
—¥— BitMap (32x32) —e— BitMap (8x8)
6.00E+07 -
Pixels Per Second
5.00E+07 - —h—
4.00E+07 - |
3.00E+07 M
2.00E+07 - |
1.00E+07 1 A A A
0.00E+00 AT T T 1
0 100 200 300 400 500
——— P PixdsPer Triangle

A 32x32 bitmap maps directly onto a 512 pixel triangle. Notice that this size bitmap considerably
degrades performance of triangles smaller than about 300 pixels (about half of the direct mapped
triangle size). In general, the bitmap area being mapped onto a triangle should be no larger that
twice the triangle area in order to maintain high performance. The mipmapped textures (512x512
and 128x128) achieve high performance by allowing the Intel 740 to select the texture size.

Intel740 Software Developer’'s Manual

4.1.4.4

Performance Considerations

Palette Changes

The Intel740 is optimized for 16-bit textures. It is recommended that applications use 16-bit
textures over 8-bit palettized textures. Palettized textures are supported with arelatively low
overhead. The following graph reports the performance of afull-featured scene (Fog, 20% Alpha,
30% Specular, 2.5 DC, 50% Z) with avaried number of palette changes per scene.

Figure 4-13. Performance vs. Palette Changes

4.1.4.5

—&— 25 Pal Changes —— 100 Pal Changes
—aA— 400 Pal Changes —>— 1600 Pal Changes
6.00E+07 : : - -
Pixels Per Second
5.00E+07 - | |
4.00E+07 - | —%
3.00E+07 | :
2.00E+07 | |
target range
1.00E+07 - ,< k'
0.00E+00 . L
0 50 100 150 200 250 300 350 400 450 500
——— P PixelsPer Triangle
—&— 25 Pal Changes —— 100 Pal Changes
—aA— 400 Pal Changes —>— 1600 Pal Changes
1.00E+02 : |
| | Duty Cycle
8.00E+01
M |
6.00E+01 - Ny
4.00E+01 | K\M\(\
.00E+01 - S %
| target range —
g —
2.00E+01 - ﬂ &|
0.00E+00 ! '
0 50 100 150 200 250 300 350 400 450 500

————— P PixelsPer Triangle

Application developers can use these graphs as an indicator of when to sort palettized textured
triangles by texture handle. If an application is CPU limited, sorting by texture handle will degrade
performance in most cases.

Untiled Textures for Procedural Texture Animation

Directly modifying texture surfacesin AGP memory can be used as a powerful method for creating
many types of stunning effects. This section describes the performance implication of using untiled
textures. For more information on how to create effects with procedural animation and on Intel 740
tiling, see Section 4.2.1.4, “Animated Texture Effects” on page 4-21.

Triangles which use untiled textures will be processed with some performance degradation.
Figure 4-14 illustrates the performance difference between triangles using tiled and untiled
textures.

Intel740 Software Developer’s Manual 4-15

Performance Considerations inu
®

Figure 4-14. Performance with Untiled Textures

—e— BitMap €128x 128) —m— BitMap €32x3_2)
—aA— BitMap (No Tile, 128x128) —— BitMap (No Tile, 32x32)
6.00E+07
—
5.00E+07 - = /
4.00E+07 - /
3.00E+07 ///
2.00E+07 //
1.00E+07 |
Pixels Per Second
0.00E+00 %
0 1000 2000 3000 4000 5000
——— P PixdsPer Triangle
—e— MipMap €512x_512 to 1x1 —— MipMap €128x128 to 1x1
—a— MipMap (No Tile, 512x512 to 1x1) —>— MipMap (No Tile, 128x128 to 1x1)
6.00E+07 1|
5.00E+07 — 84— X
4.00E+07
3.00E+07
2.00E+07
1.00E+07
0.00E+00 1 Pixels Per Second
0 1000 2000 3000 4000 5000

———— P PixelsPer Triangle

Untiled textures can degrade performance when large texture maps are used or when large triangle
to texture map size mismatches are present. Note that in the case of mipmaps, only a small
performance degradation is seen for both 512x512 and 128x128. Thisis because the triangle to
texture size mismatch is minimized, so only the degradation with large texture maps is seen. For
more information on performance of triangle to texture size mismatch, see Section 4.1.4.3,
“Texture Sizes” on page 4-14.

41.4.6 High Performance Transparency

Methods of implementing transparency include: chroma keying, alpha testing, and alpha blending.
If performance is the primary concern, chroma keying or alpha testing should be used over alpha
blending. The Intel740 implements both without any performance degradation. When translucency
is desired, alpha blending is supported with only a minor performance decrease.

The following graph illustrates the performance of chroma keying, alpha testing, and alpha
blending. The sweeps use a feature set of Gouraud, Mipmapped Textures, 2.5 DC, and 50% Z.

4-16 Intel740 Software Developer’'s Manual

intel Performance Considerations
®

Figure 4-15. Performance vs. Transparency

—e— None —— Chroma Key —a— Alpha Test —— Alpha Blend
6.00E+07
5.00E+07 1
4.00E+07]
3.00E+07 1
2.00E+07 1
1.00E+07 H

Pixels Per Second

0.00E+00 - ;

0 50 100 150 200 250 300 350 400 450 500

——— P PixelsPer Triangle

4.1.4.7 Screen Resolutions

The Intel740 3D performanceis optimized for 640x480 and it is recommended that applications
target 3D graphic intensive applications for this resolution. The following graph illustrates
performance scaling for greater resolutions. The tests are full-feature sweeps (Fog, 20% Alpha,
30% Specular, Mipmapped Textures, 2.5 DC, 50% Z). This test isrun with 8 Mbytes of video
memory to enable 1280x1024 to fit both the render and Z-Buffer in local video.

Figure 4-16. Performance vs. Screen Resolution

—e— Full (640x480) —=m— Full (800x600) —a— Full (1024x768) —s— Full (1280x1024)
6.00E+07 : .
5.00E+07 - | |
| | S N
4.00E+07 1 —
| 7
3.00E+07 Mx«l—*’#‘
2.00E+07 /X’% |
| target range |
1.00E+07
™ " Pixels Per Second
0.00E+00 ! I ‘ ixels Per $econ
0 50 100 150 200 250 300 350 400 450 500
——— P PixelsPer Triangle

Note that 1280x1024 mode is actually faster than 1024x768 mode because it isinterlaced, which
does not require as much local memory bandwidth.

Intel740 Software Developer’s Manual 4-17

Performance Considerations

4.1.5

Budgeting CPU Clock Cycles

For an application to achieve a sustainable high frame rate, the CPU must calcul ate lighting,
geometry, and game controls, and send the triangle information off to the Intel740 — all within
each frame period. Budgeting CPU clock cycles to fit within the Intel740 duty cycle is imperative

to this task.

For the Intel740, it is suggested that developers of 3D applications target 10,000 triangles per
frame at 30 frames per second. The numbers listed in Figure 4-3 show a conservative analysis of
the needed CPU clock cycles and assumptions. The user can anticipate good overall performance

when implementing full features of the Intel740 and using these targets.

Assumptions:

* Intel 740 state and operand(s) change overhead not considered
* No Page-Miss on Execute Buffer Reads

* No FP to MMX™ instruction alignment cycles considered

* Theoretical full bandwidth of memory bus available
¢ Definition of 24 DWords/triangle (96 bytes)

Table 4-3. CPU Cycle Targets

4.1.6

Function Description Notes
Frames per Sec 30
CPU Speed 233 MHz
CPU Clocks/Triangle 200
Triangles/Sec 300,000 Triangles/Frame * Frames/Second
Triangles/Frame 10,000
CPU Clocks/Frame 2,000,000 Triangles/Second * CPU Clocks/Triangle

Video Performance

Figure 4-17. Available Memory Bandwidth on a Pentium® Il Processor System

4-18

Memory Access Chart
CPU
WC WR Cacheable RD/WR
(up to 180 MB/s) WC/MMX RD (370 MB/s)
_ (upto 24 MB/s)
WC WR WC/MMX RD
Frame Buffer (370 MB/s) (62 MBJs) System Memory
U DMA .
AGP Master Platfqrm.
ey (300 MB/s) Pentiun® 11
¢ s) AGP Video Memory Processor/440LX
(AGP Aperture)

Intel740 Software Developer’'s Manual

intel.

Performance Considerations

Table 4-4 shows the video/data rates for some typical applications. The highest data rate for video
capture isin application of video conferencing on a200 kbps ISDN line. The highest video display
datarate is 20 Mbyte/sin DVD/MPEG-2 playback applications.

Table 4-4. Typical Video/Data Capture Applications

Application Format Frame Rate Resolutipn Frame Size Bandwidth
(fps) hor*vert*pixdep (bytes) (Mbytes/s)
Intercast (VBI) Raw Data 30 800 x 22 x 2 35,200 1.0
POTS Video Conf Sub-QCIF 15 128 x 96 x 2 24,576 0.37
POTS VC QCIF 12 176 x 144 x 2 50,688 0.6
ISDN VC (128kbps) CIF 12 352 x 288 x 2 202,752 24
ISDN VC (200kbps) CIF 15 352 x 288 x 2 202,752 3.0
DVD/MPEG-2 DCIF 30 720 x 480 x 2 691,200 20

Table 4-5 shows the CPU usage for those applications, which can be cal culated based on the
memory bandwidth. Note that most applications will benefit from the higher read bandwidth of
AGP aperture, if the video or VBI data can be routed through the AGP aperture. In this case, the
CPU usage for data capturing will be under 5%, making the capture 1/0O aless degradation factor
for the applications. Similarly, the high CPU write bandwidth of AGP aperture can also be useful
for DVD/MPEG-2 playback applications.

Table 4-5. CPU Usage for Some Typical Applications

Video/Data Stream CPU Usage (%)
Format Frame BW FB Read (BW= | AGP Read (BW= | FB Write (BW= | AGP Write (BW=
Rate (Mbytes/s) 24Mbytes/s) 62Mbytes/s) 180Mbytes/s) 360Mbytes/s)
VBI 30fps 1.0 4.2% 1.6%
SQCIF 15 .37 1.5% 0.6%
QCIF 12 0.6 2.5% 1.0%
CIF 12 2.4 10% 3.9%
CIF 15 3.0 13% 4.8%
DCIF 30 20 11% 5.6%
Intel740 Software Developer’s Manual 4-19

Performance Considerations inu
®

4.2

42.1

4211

4-20

Other Programming Tips

Texture and Surface Effects

Several aspects of texture usage are discussed in this section including:
* “Texture Formats” on page 4-20
* “Texture Sizes” on page 4-21
* “Texture Storage” on page 4-21
* “Animated Texture Effects” on page 4-21

* “Multi-pass Texture Effects” on page 4-22

Texture Formats

Because AGP allows high bandwidth for texture execution, and virtually unlimited storage
potential (based on the amount of system RAM available) the application developer is no longer
limited to small 8-bit palettized textures. There is a whole new world of texture formats which can
be experimented with to increase the look and feel of the application. These texture formats are
discussed below:

16-bit RGB(A) Using 16-bit RGB(A) textures is highly recommended because it frees
the application from dependence upon the single hardware palette and it
allows for a wider span of colors in each texture. Frequent changes of the
hardware palette can put a slight strain on the overall performance.

8-bit YUV &

16-bit AYUV Using YUV textures may provide the user with a new look. When using
8-bit YUV 4:2:2 texture format, storage space is minimized. Also the
textures can be input as 16-bit YUV(A) with more colors and more
intensities of color as well as alpha. An advantage of YUV is that 8 bits
can be represented without the overhead of a palette. YUV is a format
that favors the human eye’s sensitivity to color because it compresses the
chrominance and luminance of a color rather than a degradation between
colors. Usually the outcome is a picture which has kept its detail but
which is slightly different in color values than the original. Like
RGB(A), YUV(A) allows for a much larger range of colors than does a
palette.

1, 2, 4, & 8 bit palettized Sometimes it is good to use a palette for a texture because only a small
amount of colors are employed. For instance, if the sky is mainly shades
of blue mixed with white, a 4-bit palette could work very well. Because
the palette is kept in the hardware, it is not as easy to animate palettes as
it is in software. Every time the palette is changed, there is a change in
state which causes a performance decrease. This performance decrease
is estimated at about 1% if there are 30 palette changes in a frame with
10,000 triangles with full features on.

Live Video Capture Live Video Capture can be used for a surface texture when combined
with 2D Chroma Keying. It might make an astonishing effect if a game
incorporated live input of the game player as they are playing the game!

Intel740 Software Developer’'s Manual

4212 Texture Sizes

Performance Considerations

Intel 740 supports texture sizes ranging from 1024 x 1024 all the way down to 1 x 1 and any power
of two-sided rectangle in between. It is recommended that afew large surface areas take advantage
of the large map sizes to show-off this ability where it counts, such as when a background
landscape is shown, or to get high resolution detail of a painting. It is best to balance the usage of
large and small texture mapsto object surfaces that can best utilize them without taking up memory
resources when it is not necessary to have that large of atexture.

4.2.1.3 Texture Storage

Intel740 is optimized for texture storage in AGP memory because it allows simultaneous
throughput of up to 533 Mbyte/s of textures with the 800 Mbyte/s of local video memory which
may contain the display, render and Z-buffer. This equatesto 1.3 Gbyte/s total throughput. Thisis
agreat advantage over non-AGP graphics accel erator hardware which must keep all the texturesin
local video memory equating to significantly fewer textures and less local video memory bus
bandwidth because it has to share with display, frame and Z-buffers. It is not possible to store
texturesin local video memory on the Intel740. With DirectX it is easy to allocate atexturein
AGP memory (also known as non-local memory) asit isin local video memory.

4214 Animated Texture Effects

There are many strategies which can be used in animating textures. Each is described below:

UV Coordinates

Texture Frames

Specular Lighting

Fogging

Alpha Blending

Procedural Textures

Intel740 Software Developer’s Manual

One way to animate atexture is to change the texture U, V coordinates
as they map on to the vertices for each frame. This method of animation
is extremely fast since it does not cause any change of state for the
hardware and therefore does not cause any performance degradation.

Several frames can be loaded into AGP for one object and then the

object’s texture pointer can be changed to cycle through the different
textures and give the effect of the textures changing. The drawback is
that extra storage space is nheeded although with more space available for
texture storage due to AGP, storing more textures is not a problem.

By changing the specular highlighting values along each vertex over
time, a change in lighting patterns over an object to simulate water or
flickering lights can be produced. Intel740 also allows the Specular
Color value to be any R.G.B. color, which means that the colors could be
animated to get different effects.

As with Specular Highlight animation, Fogging values can be varied
over time to produce new and unusual effects such as a whale jumping
out of the water and the fog comes off of its body as it hits air and could
be replaced with more shininess (specular highlights).

By changing the blending factors over time for each frame, the texture
can appear more opaque or more translucent over time. This could allow
for an effect such as a figure starting out as a ghost object and becoming
more visible over time.

A procedural texture is one where texel values are changed between
renders by a mathematical formula to produce such effects as ripples in
water. When creating the texture surface in DirectX, the user needs to
specify the DDSCAPS_3DDEVICE so that the surface will not be tiled
if using AGP non local video memory. The texture can be written on by
locking the texture surface and getting a pointer to it. Then the user can

4-21

Performance Considerations inu
®

traverse the texture memory space and apply their changes. Thisisa
great way to represent fire or water in atexture and utilizesthe extra CPU
cycles while scene rendering is being done by the hardware. Textures
should be stored in AGP memory to take advantage of the Direct
Memory Execution (DME) abilities of the Intel 740.

4.2.1.5 Multi-pass Texture Effects

There are afew more texture effects worth mentioning that can be obtained with multi-pass
algorithms. Multi-pass means that the scene is rendered twice for each frame, hence causes a 2x
slower performance. The different effects are listed below:

Z-Buffer Shadowing First the camera must view the scene from the point of view of alight
source. The sceneisrendered using Z-buffering. On the second pass, the
sceneisrendered from the rea point of view of the camera, and then the
old Z-buffer values are read with a color atering agorithm which is
applied to the pixel values being rendered at the samex, y location, thus
creating a shadow.

Dual Texture Rendering Thefirst sceneisrendered with textures in their correct places, then the
second scene is rendered with a common pattern (possibly using one of
the animated texture techniques) such as atranslucent lighting effect. In
thisway underwater rocks, plants, and animals could all appear to be
affected by the samelight patterns.

4.2.2 Software Strategies
This section describes how to optimize applications which take advantage of the many features of
the Intel 740. Topics of discussion include:
e Z-Buffering
* Antialiasing
* Minimizing State Transitions
* Dynamic AGP Buffer Placement
* Texture Palettes
* Using Mipmapping
* Designing for Sub Pixel Accuracy
* Using Color/Chromakeying Over Alpha Blended Textures
* Avoiding Stippling Errors
* Avoiding Flipping Errors
* Texture Sorting is Not Required

4-22 Intel740 Software Developer’'s Manual

4221

4222

4223

4.2.2.4

Performance Considerations

Z-Buffering

The Intel740 performs all of an application’s 3D depth compare in the hardware. This means that
the hardware will correctly write all of the triangles in the scene as they overlap, without the need
for breaking them up into smaller triangles or expensive sorting algorithms. What the programmer
must remember is that if the polygons (triangles) are sorted from back to front in the application
and then sent to the hardware with the Z-buffering enabled, this will give worse case results
because the hardware Z-buffer algorithm checks each pixel in an x, y position against the last, and
if it is in front of the last according to its z value, it will write over it. It is best not to sort at all if the
Z-buffer is enabled. However, enabling anti-aliasing or alpha blending requires that the triangles be
sorted from back to front. In this case Z-buffering may cause a performance hit which becomes a
trade-off for rendering any intersecting triangles properly.

The Intel740 supports a 16-bit Z-buffer. Sometimes an application’s scene depth complexity will
cause rounding of the z bits resulting in unwanted tears along some polygons. To alleviate this
problem the user could disable Z-buffering for background items and render them first. Another
solution is to make the scene’s z coordinates fit within a 16-bit range.

Antialiasing

It is very easy to implement anti-aliasing. Simply enable it. Sort the polygons/triangles back to

front, and render the scene. The user should be cautioned to use anti-aliasing sparingly as it causes
a performance slow down. The user should also note that anti-aliasing and Z-buffering can both be
enabled at the same time. One strategy for rendering a scene with anti-aliasing and Z-buffering
acceleration would be to render the background separately without anti-aliasing or Z-buffering
enabled, then sort back to front the forefront items, enable both anti-aliasing and Z-buffering and
then render the rest of the scene.

Minimizing State Transitions

Itis encouraged that as much of the features of the Intel740 be utilized during the execution of a 3D
program as is needed to achieve the maximum visual effect. There is little overhead for enabling all
of the Intel740 3D features with the exception of alpha blending and anti-aliasing which should

only be enabled as needed. Each time a feature is enabled or disabled, a state change must take
place within the hardware. State changes cause a slight decrease in overall bandwidth and so causes
a slight performance hit. Best performance will be ensured if triangles to be rendered are ordered
according to their state or the set of features they have enabled. For the most part, state changes do
not affect the Intel740. The only state changes which cause a pipeline flush are palette and stippling
changes.

Dynamic AGP Buffer Placement

The Intel740 supports dynamic AGP Buffer Placement. Alternate buffers can be relocated from
local video memory into AGP memory when necessary to allow full functionality. When there is
two Mbytes of local video memory, at 640 x 480 x 16 the front buffer, back buffer and Z-buffer can
all be placed in local video memory. When the resolution is changed to 800 x 600 x 16 or higher,
then the back buffer can be relocated to AGP memory. The Intel740 supports rendering to the back
buffer in AGP memory. Putting the back buffer into AGP memory can free up local video memory
for MPEG Overlay as well.

Intel740 Software Developer’s Manual 4-23

Performance Considerations inu
®

Figure 4-18. Dynamic AGP Buffer Placement

4225

4.2.2.6

4-24

Pentium® 11
Processor

VIR

Textures
~ Back Buffer
x| -

Memory

Intel740

Y

[

Front Back
Buffer Buffer

.04GBJ] Mpeg Overlay
A .6mb
s

Z-Buffer

Texture Palettes

It is best not to use palettized textures, because the Intel 740 supports many formats of ARGB,
YUV and AY UV, which allows more colors without the overhead of palette loads and changes. To
use palettized textures, minimize changes in palettes. The hardware only supports one pal ette and
to change it requires a state change and a pipeline flush, which slows overall performance. There
are ways to combine many texture palettes into one with the use of atool such as Debabelizer*
which can find acommon pal ette among many textures. It isbest to use texture formats that require
no palette at all.

Using Mipmapping

An application not only increases visual quality but can also increase performance of the
application by using mipmapped textures. When an object becomes very small or distant and it has
alarge texture map associated with it, the ratio of texel look-up to texels used in rendering can be 8
to 1 because the Intel 740 drivers are acquiring 16 bytes from a section of the texture map but only
2 bytes are actually being rendered. Mipmapping will giveal to 1 ratio of texture texelsread from
an image to those texels rendered in the scene. Mipmapping usually improves overall application
performance by at least 10%.

Mipmapping provides better looking graphical representation of a scene by allowing the user to
create various texture maps, which the hardware will choose to map onto the object based on how
far the object is from the viewer. So if a scene has a patterned texture which is mapped onto an
object, the user would want to create variations of that pattern which would get smaller and smaller
to correspond with each mipmapping level. The user then sets a pointer to each level of mipmap so
that the hardware will choose the correct texture based on the distance from the viewer. The

Intel 740 supports tri-linear mipmapping for added visual quality.

Intel740 Software Developer’'s Manual

4.2.2.7

4.2.2.8

4.2.2.9

4.2.2.10

4.2.2.11

Performance Considerations

Designing For Sub Pixel Accuracy

Users of the Intel 740 need to make sure that their polygon meshes are created so that no triangle

sides are disjointed and to avoid triangle sides with “T”s because the Intel740 sub pixel accuracy
for texture mapping will magnify this type of application error. This means that “floating”

geometry pieces made to intersect other pieces as part of the scenery are highly discouraged. It is
also important to make sure that clipping algorithms are working correctly and that all edges of
adjoining polygons are free of gaps.

Using Color/chroma Keying Over Alpha Blended Textures

When using both alpha blending and chroma/colorkeying together in a rendered frame there are
some renderstates which must be enabled to ensure that all textures are rendered properly. Use the
following DirectX render states:

Set Render St at e(D3DRENDERSTATE_ALPHATESTENABLE, TRUE);

Set Render St at e(D3DRENDERSTATE_ALPHAFUNC, D3DCMP_NOTEQUAL) ;

Set Render St at e(D3DRENDERSTATE_ALPHAREF, 0);

At the same time, chroma/color keying should also be enabled using the DirectX function,
SetColorKey() and setting the dwColorSpacelLowValue and dwColorSpaceHighValue properly.
Remember that for color keying, both values should be the same color palette index value, and for
chroma keying, the both values should be the same value for high and low as to how the RGB has
been defined.

Avoiding Stippling Errors

Some developers have set D3ADRENDERSTATE_STIPPLEENABLE to TRUE which sets the
default value of 0 to be set for all stippled patterns from
D3DRENDERSTATE_STIPPLEPATTERNOO to D3DRENDERSTATE_STIPPLEPATTERNS31.

The result of enabling stippling without setting any values will be a black screen since all of the
values are by default set to zero. If developers are not going to be using stippling, they should not
use this render state at all. If they are going to use stippling, they should be sure to set the stippling
values for all the D3ADRENDERSTATE_STIPPLEPATTERX When stippling is not to be in

use, developers should make sure to set D3SDRENDERSTATE_STIPPLEENABLE to FALSE.

Avoiding Flipping Errors

When using the DirectX API, it is important to always use the BeginScene and EndScene calls at
the beginning and end of each frame to be written. These calls ensure that flipping errors such as
blanking screens do not occur.

Texture Sorting Is Not Required

With the Intel740, the user does not have to sort textures because even though changing the texture
pointer is a state change, it does not cause a pipeline flush and will not noticeably slow down the
rendering. The application would be much slower at sorting textures than the Intel740 would be at
swapping handles. If texture sorting for static geometry can be done once to affect many frames, it
might be useful to do so. If palettized textures are used, a performance hit may result because each
pixel written could change palettes many times when relying on hardware Z-buffering for sorting.
Because hardware Z-buffering will always be faster than software sorting algorithms, it is
recommended that the user move toward RGBA or YUV textures, which will not have a
performance impact.

Intel740 Software Developer’s Manual 4-25

Performance Considerations inu
®

4.3

4.3.1

4-26

Note:

Note:

OpenGL Performance Guidelines

OpenGL implementations must be complete. They must support all commands and parameters as
specified in The OpenGL Graphics System: A Specification. Typically this requires the OpenGL
implementation to be divided between the CPU and the graphics subsystem, in varying degrees
according to the operations involved and the functionality and performance of those system
components. This characteristic of OpenGL implementationsis desirabl e because the application is
not required to understand the division of labor (and its resultant performance).

In many instances, the performance of a software implementation cannot be tol erated because
minimum frame rates cannot be attained. This document specifies which functiong/features of
OpenGL V1.1 will be hardware-accelerated (vs. performed in software or require software
rasterization) by the Intel 740 OpenGL implementation. By using accelerated features and avoiding
software rasterization, a developer can gain some assurance that the application will run at a high
level of performance. An application still needs to be tuned to ensure the highest level of
performance. That the Intel740 OpenGL implementation is “complete” and contains all the
required functionality.

OpenGL Feature Classification

For the Intel740 OpenGL implementation, OpenGL “features” fall into three categories:

1. Features supported directly by graphics hardware (such as setup and most per-fragment

operations). These features are rated “G” for “graphics accelerated.”

2. Features not supported by graphics hardware which would require software rasterization (such
as stencil operations). These features are rated “X” for “excluded from the performance set.”

Obviously these features should be avoided or, at best, used sparingly.

3. “CPU-supported” features (geometry, lighting, display lists, etc.) which, although not

particularly accelerated by graphics hardware, are likely to provide a level of performance
equal to (or greater) than similar functions performed in the application. These features are
considered “PG” for “Programmer’s Discretion is Advised” since their use is not necessarily

detrimental to performance. This rating is also used for “hybrid” (software + hardware)
support.

The programmer must consider all the pertinent state variables in order to understand what will be
hardware accelerated — a single mode might preclude acceleration of all primitive rasterization.

In some situations the definition of “hardware acceleration” can become ambiguous, since some

features may require a hybrid solution (a mixture of software and hardware algorithms).

Intel740 Software Developer’'s Manual

intel Performance Considerations
®

4.3.2 Feature Overview
The following table lists (at a high level) the rating of the OpenGL features.

Table 4-6. Rating OpenGL Features (Sheet 1 of 2)

Function Ratir\gJT Comments

Pixel Formats
RGBA

Color Index X

Vertex Specification

Begin/End PG

Vertex Array PG
Evaluator PG
Model-view Transform PG
Lighting PG
Texture Generation PG
Texture Transform PG
User Clip Planes PG
Projection Transform PG
View Volume Clipping PG
Perspective Divide PG
Viewport Transform PG
Current Raster Position PG
Pixel Operations X

Point Rasterization
Width PG

Anti-aliasing X

Line Rasterization

Width G/PG G: Width=1.0

Smoothing G

Stippling G/X G: for trivial patterns
Polygon Rasterization

Culling G

Stippling G

Smoothing G

Fill Mode G

Point Mode PG

Line Mode G

Depth Offset PG
Pixel Rectangles / Bitmaps GIX G: simple copy operations

t “G”indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.

Intel740 Software Developer’s Manual 4-27

Performance Considerations

4-28

Table 4-6. Rating OpenGL Features (Sheet 2 of 2)

Function FeatingJT Comments
Texturing
Texlmage* PG
CopyTex PG
TexSublmage PG
CopyTexSublmage PG
Wrap G
Bilinear Filtering
Trilinear Filtering X
Border
Texture Objects PG
Replace, Modulate, Decal
Modes G
Blend Mode X
Fog
Per-Vertex
Per-Pixel
Per-Fragment Operations
Pixel Ownership X when drawing to occluded front buffer
Scissor X
Alpha Test G
Stencil X
Depth Buffer Test G
Blending G EISftfi:rNo destination alpha buffer with depth
Dithering
Logical Op X except for trivial operations
Whole Frame Buffer Operations
FRONT_AND_BACK PG driver must draw twice
Stereo Buffers n/a Not supported
Auxiliary Buffers n/a Not supported
Buffer Masks G/X X: different R,G,B,A masks
Clear G
Accumulation Buffer PG accumulation performed in software
Read Pixels PG
Copy Pixels G/X G: simple copies
Selection PG
Feedback PG
State Requests PG

t “G” indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.

Intel740 Software Developer’'s Manual

Note:

4.3.3

4331

4.3.3.2

4.3.3.3

4.3.3.4

4.3.3.5

4.3.3.6

4.3.3.7

Performance Considerations

The remainder of this chapter is structured as an “annotation” of the OpenGL V1.1 specification
and specific extensions. Only performance notes will be discussed and included here, so one
probably needs to read this document alongside the OpenGL specification.

OpenGL Operation

The following sections describe the classification of OpenGL features.

Begin/End Paradigm
There are no primitive (object) types excluded from hardware acceleration. Points, line segments,
line segment loops, separated line segments, polygons, triangle strips, triangle fans, separated

triangles, quadrilateral strips, and separated triangles are all candidates for hardware acceleration.
This includes the specification of polygon edge flags.

Vertex Specification

All vertex and associated auxiliary data specifications are included in the performance set, with the
following exceptions:

Since color index mode is not supported. Index specification is not of particular interest

Vertex Arrays

Vertex array specification is included in the performance set, and is the preferred means to describe
objects with a large number of vertices.

Rectangles

Rectangles are included in the performance set.

Coordinate Transformation

The Intel740 does not provide hardware acceleration for transformations, although vertex, normal,
and texture coordinate transformations are supported and optimized for the target platform. These
operations are therefore rated PG.

Application designers wishing to perform these operations internally are referred to the “OpenGL
Correctness Tips” provided in ti@penGL Programming Guide; directions are given to allow 2D
rasterization specification. Note that the viewport transformation is always enabled and thus must
be set to properly generate the proper window coordinates.

Clipping
The Intel740 OpenGL implementation does not provide hardware acceleration for view-volume or

client clip plane clipping. These operations will require a software clipping stage prior to
rasterization.

Current Raster Position

Not all operations which rely on the current raster position are hardware accelerated.

Intel740 Software Developer’s Manual 4-29

Performance Considerations inu
®

4.3.3.8

4.3.4

4341

4.3.4.2

4.3.4.3

4.3.4.4

4.3.4.5

4.3.4.6

4.3.4.7

4-30

Colors and Coloring

The Intel 740 does not provide hardware accelerated lighting operations. Although lighting is
supported, applications wishing to perform these operationsinternally should ensurethat lighting is
disabled in OpenGL.

Both flat shading modes (SMOOTH and FLAT) are supported by the Intel 740 hardware.

Rasterization

Antialiasing

Line and polygon smoothing is supported by the Intel 740 hardware.

Points

Aliased points are rendered by the Intel 740 hardware using short lines or triangles. Antialiased
points will require software rasterization.

Line Segments
Only unit-width aliased or anti-aliased lines are supported by the Intel 740 hardware. Stippled and/

or wide lines are not supported by the hardware and will require a software or hybrid rasterization
phase.

Polygons
Polygon culling is supported by the Intel 740 hardware, as are stippled and/or anti-aliased polygons.

FILL and LINE polygon modes are supported by the Intel 740 hardware. Depth offset is not directly
supported by the hardware, but does not require software rasterization.

Pixel Rectangles

Pixel rectangles are not supported by the Intel 740 hardware and will require software rasterization.

Bitmaps

Bitmaps are not supported by the Intel 740 hardware and will require software rasterization.

Texturing

All texture mapping functions are supported by the Intel 740 hardware, with the following
exceptions:

* Border colors are ignored (textures are clamped to the edges)

* BLEND texture function requires software rasterization

Intel740 Software Developer’'s Manual

intel Performance Considerations
®

4.3.4.8 Fog

The Intel 740 hardware supports linear interpolation of the fog factor. Setting the FOG_HINT to
NICEST when EXP or EXP2 modes are selected will require software rasterization.

4.3.4.9 Antialiasing Application

Line and polygon smoothing is supported by the Intel 740 hardware.

4.3.5 Fragments And The Frame Buffer

4.35.1 Per-Fragment Operations

The following table defines which pre-fragment operations are included or excluded from the
performance set.

Table 4-7. Included and Excluded Pre-Fragment Operations

Operation RatingJT

Pixel Ownership

X (when drawing to an occluded front buffer)

Scissor X
Alpha Test G
Stencil X
Depth Buffer Test G

Blending G, though destination alpha buffer is not supported
Dithering G
Logical Operation X

t “G”indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.

4.35.2 Whole Framebuffer Operations

Drawing to the FRONT_AND_BACK will require two rasterization passes (internal to the

OpenGL implementation). Stereo and auxiliary buffers are not supported.

Use of ColorMask should be limited to enabling or disabling all the color components
concurrently. Software rasterization will be required if only some of the color components masked.

Those “whole frame buffer” operations related to stencil or accumulation buffers will require

software rasterization.

4.35.3 Drawing, Reading, and Copying Pixels

Only “pure” copy pixel operations are hardware accelerated. Pixel reads will be performed in

software.

Intel740 Software Developer’s Manual

4-31

Performance Considerations inu
®

4.3.6 Special Functions

The special functions (listed below) are all performed by the CPU and are therefore rated “PG.”
* Display lists
® Flush and Finish
* Evauators
* Selection
* Feedback

4.3.7 State And State Requests

All of the state request commands are performed in software are therefore rated “PG.”

4.3.8 GL Command Summary

The following table provides “performance ratings” on a per-command basis, with notes on
parameter settings.

Table 4-8. Command Performance Ratings (Sheet 1 of 5)

Command/Feature Rating" Comment/Exception
glAccum PG
glAlphaFunc G
glAreTexturesResident PG
glArrayElement PG
glBegin PG
gIBindTexture PG
gIBitmap X
glBlendFunc
glCallList PG
glCallLists PG
glClear G
glClearAccum X
glClearColor G
glClearDepth G
glClearindex X color index not supported
glClearStencil X
glClipPlane PG requires software clipping
glColor PG
glColorMask GIX S;;Jgdvzgggtﬁ!rchannels are masked or

t “G”indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.

4-32 Intel740 Software Developer’'s Manual

intel.

Performance Considerations

Table 4-8. Command Performance Ratings (Sheet 2 of 5)

Command/Feature FeatingJT Comment/Exception
glColorMaterial PG
glColorPointer PG
glCopyPixels GIX G: for simple copies
glCopyTex* GI/X G: for simple copies
glCullFace G
glDeleteLists PG
glDeleteTextures PG
glDepthFunc G
glDepthMask G
glDepthRange PG
glDisable - see glEnable
glDisableClientState PG
glDrawArrays PG
glDrawBuffer G/IPG G: only NONE, FRONT or BACK
glDrawElements PG
glDrawPixels GIX G: for simple copies
glEdgeFlag G
glEdgeFIAGPointer PG
glEnable
*_ARRAY PG
ALPHA_TEST G
AUTO_NORMAL PG
BLEND GIX X: destination alpha buffer not supported
CLIP_PLANEiI PG
COLOR_MATERIAL PG
CULL_FACE G
DEPTH_TEST G
DITHER G
FOG GIX)L(I:NV\I/ETS EJ(;G_HINT == NICEST and not
LIGHTI PG
LIGHTING PG
LINE_SMOOTH G
LINE_STIPPLE GIX G: trivial patterns
* LOGIC_OP G/X G: trivial operations
MAP* PG
NORMALIZE PG

t “G”indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.

Intel740 Software Developer’s Manual

4-33

Performance Considerations

4-34

intel.

Table 4-8. Command Performance Ratings (Sheet 3 of 5)

Command/Feature RatingfT Comment/Exception
POINT_SMOOTH X
POLYGON_OFFSET* PG
POLYGON_SMOOTH G
POLYGON_STIPPLE G
SCISSOR_TEST
STENCIL_TEST
TEXTURE_*D PG
TEXTURE_GEN* PG
glEnd -
glEndList PG
glEval* PG
glFeedbackBuffer PG
glFinish PG
glFlush PG
glFog GIX)L(I:NV\IIEhAea FOG_HINT == NICEST and not
glFrontFace G
glFrustrum PG
glGenLists PG
glGenTextures PG
glGet* PG
glHint - depends on hint
glindex* X color index not supported
glinitNames PG
glinterleavedArrays PG
glls* PG
glLight PG
glLightModel PG
glLineStipple GIX G: when solid
glLineWidth GIX G: when 1.0
glListBase PG
glLoadldentity PG
glLoadMatrix PG
glLoadName PG
glLogicOp GIX G: when CLEAR, COPY or SET
glMap* PG
glMaterial PG

t “G”indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.

Intel740 Software Developer’'s Manual

intel Performance Considerations
®

Table 4-8. Command Performance Ratings (Sheet 4 of 5)

Command/Feature FeatingJT Comment/Exception
glMatrixMode PG
gIMultMatrix PG
gINewList PG
gINormal PG
gINormalPointer PG
glOrtho PG
glPassThrough PG
glPixelMap GI/X G: trivial operations
glPixelStore GI/X G: trivial operations
glPixelTransfer GIX G: trivial operations
glPixelZoom X
glPointSize G/IPG G: only for unit width
glPolygonMode G/PG G: when FILL or LINE
glPolygonOffset PG
glPolygonStipple G
glPopAttrib PG
glPopMatrix PG
glPopName PG
glPrioritizeTextures PG
glPushAttrib PG
glPushMatrix PG
glPushName PG
glRasterPos PG
glReadBuffer X
glReadPixels X
glRect G
glRenderMode G/IPG G: RENDER; PG: SELECT or FEEDBACK
glRotate PG
glScale PG
glScissor X
glSelectBuffer PG
glShadeModel
glStencil* X
glTexCoord
glTexEnv GIX X: BLEND
glTexGen PG
glTeximageld PG border colors ignored

t “G”indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.

Intel740 Software Developer’s Manual 4-35

Performance Considerations

4-36

Table 4-8. Command Performance Ratings (Sheet 5 of 5)

Command/Feature FeatingJT Comment/Exception
glTexImage2d PG border colors ignored
giTexParameter oix TEXTURE. BORDER. COLOR
glTextureSublmage* PG
glTranslate PG
glVertex PG
glVertexPointer PG
glViewport PG

t “G”indicates “graphics accelerated”, “X” indicates “excluded from the performance set”, “PG” indicates
“Programmer’s Discretion is Advised”. See also Section 4.3.1.

Intel740 Software Developer’'s Manual

intel.

Glossary

Accelerated
Graphics Port (AGP)

Alpha Blending

Antialiasing

Bitmap

BitPlane

Buffer

Clipping

Depth Cueing

Direct3D (D3D)

DirectDraw

Intel740 Software Developer’s Manual

A scalable architecture that increases the bandwidth available
to a graphics controller and provides the performance
necessary for a graphics controller to do texturing directly from
system memory.

Uses a fourth color component which is not displayed but which
corresponds to the opacity of a surface to control the amount of
color of a pixel in the source surface to be blended with a pixel
in the destination surface.

An algorithm designed to reduce the stair-stepping artifacts
(sometimes called jaggies) that result from drawing graphic
primitives on a raster grid. The solution usually relies on the
multi-bit raster’s ability to display a number of pixel intensities. If
the intensities of the neighboring pixels lie between the
background and line intensities, the line becomes slightly
blurred, and the jagged appearance is thereby diffused.

A representation, consisting of rows and columns of dots, of a
graphics image in computer memory. The value of each dot
(whether it is filled in or not) is stored in one or more bits of data.
For simple monochrome images, one bit is sufficient to
represent each dot, but for colors and shades of gray, each dot
requires more than one bit of data. The more bits used to
represent a dot, the more colors and shades of gray that can be
represented.

A rectangular array of bits mapped one-to-one with pixels. The
framebuffer is a stack of bitplanes.

A group of bitplanes that store a single component (such as
depth or red) or a single index (such as the color index).

A three dimensional operation that reduces the number of
drawing calculations the CPU makes by eliminating any objects,
or portions of objects, outside the viewing area.

Reducing an object’s color and intensity as a function of its
distance from the observer. For instance, a bright, shiny red ball
may look duller and darker the farther away it is from the
observer.

An Application Programming Interface (API) for manipulating
and displaying 3-dimensional objects. Developed by Microsoft,
Direct3D provides programmers with a way to develop 3-D
programs abstracted from the hardware layer, but which can
utilize 3-D capabilities of the underlying graphics accelerated
hardware.

Microsoft's new 2D library of graphics API's, enabling access to
hardware’s Blitting, clipping and flipping capabilities. DirectDraw
provides low-level access to the frame buffer and advanced
features of the display adapter.

Glossary-1

Glossary

DirectDraw Video
Port Extension
(VPE)

Direct Memory
Execution (D.M.E.)

Double Buffering

Fogging

Frame Buffer

GDI

Gouraud shading

H.324

HAL

Hyper Pipelined
Architecture

12C*

Lighting

Glossary-2

intel.

Microsoft’'s extension of DirectDraw to control the flow of data
from a hardware video port device to a DirectDraw surface in
video memory. As the VPE specification is finalized, it will be
merged with the rest of the DirectDraw documentation.

Utilization of the entire AGP bandwidth through deep buffering
and 2x side band signaling with write combining which provides
the highest sustained data transfer rates across AGP.

The process of using two frame buffers for smooth animation.
Graphical contents of one frame buffer are displayed while
updates occur on the other buffer. When the updates are
complete, the buffers are switched. Only complete images are
displayed, and the process of drawing is not shown. The result
is the appearance of smooth animation.

The alteration of the visibility of what is seen, depending on how
far one is from the object.

A block of graphics memory that represents the display screen.

The Windows Graphics Device Interface, a library of video
display and printer functions for 2D graphics.

Smooth interpolation of colors across a polygon or line segment.
Colors are assigned at vertices and linearly interpolated across
the primitive to produce a relatively smooth variation in color.

New communications standard for sharing video, voice and data
over a single analog telephone line.

Hardware Abstraction Layer. A specification of a graphics
hardware’s functionality. Generally implemented into a device
driver software program.

An architecture designed so that many operations are executed
in parallel to improve performance.

I2C* (Inter-Integrated Circuit) is a two-wire serial bus/protocol. A
serial clock line (IICCLK) and serial data line (IICDAT) are used
to transfer data between a bus master and a slave device. The
maximum data rate is 100 Kbits/s. A slave may slow down the
bus by inserting wait states. In the Intel740 a single bus master
can be implemented by using two of Intel740’s GPIO pins; one
for IICCLK and one for ICDAT. Multiple slaves can be
connected to this system (e.g., a TV tuner, video decoder, and
digital TV encoder). However, only one I2C* master is allowed
(Intel740). The timing for the I12C* is derived from Intel740’s PCI
clock.

A mathematical formula for approximating the physical effect of
light from various sources striking objects. Typical lighting
models use light sources, an object’s position & orientation and
surface type.

Intel740 Software Developer's Manual

Mipmapping

MMX™ Technology

Pixel

POTS Video

Raster

Rendering

Setup
Shading

Texel

Intel740 Software Developer’s Manual

Glossary

When viewing a distant texture-mapped object in a 3D world,
many texels make up each pixel seen on the screen, causing
the textures to often appear aliased or distorted, if point
sampling, the most common texture-mapping technique, is
used. Mipmapping solves that problem by precomputing (that is,
prefiltering) different levels of detail of your texture image, and
accessing the appropriate level according to the object’s
distance from the camera. For example, a texture image which
is 16x16 texels, will have four more mipmaps at lower
resolutions, 8x8, 4x4, 2x2 and 1x1. Bilinear mipmapping
chooses the closest mipmap image to your pixel's level of detail,
then performs a bilinear interpolation upon that texture image to
get the color value for the pixel. Trilinear mipmapping requires
over twice the computational cost, as it chooses the two closest
mipmaps, performs a bilinear interpolation on each, then
averages the two results to arrive at the final screen pixel value.

A set of 57 multimedia instructions built into Intel's newest
microprocessors. MMX™ Technology-enabled microprocessors
can handle many common multimedia operations, such as
digital signal processing (DSP), that are normally handled by a
separate sound or video card. However, only software
especially written to call MMX™ Instructions can take
advantage of the MMX Instruction set.

Short for picture element. The bits at location (x, y) of all the
bitplanes in the framebuffer constitute the single pixel (x, y). Itis
the smallest discrete unit of a computer or TV tube that can be
assigned a specific color, the “dots” that make up TV and
computer screen pictures.

Low cost video conferencing over Plain Old Telephone Service
(POTS).

A rectangular grid of picture elements, or pixels. The graphical
data to be displayed on the raster is stored by the frame buffer.
Raster operations can be performed on some portion or all of
the raster. Such operations aid in the efficient handling of blocks
of pixel data.

The process of computing a graphical model’s surface qualities,
such as color, shading, smoothness, and texture, and creating a
raster image.

Stage responsible for the precalculation of various derivatives
used by inner loops of rendering algorithms.

The process of interpolating color within the interior of a
polygon, or between the vertices of a line, during rasterization.

A texture element. A texel is obtained from texture memory and
represents the color of the texture to be applied to a
corresponding fragment.

Glossary-3

Glossary

Glossary-4

Texture antialiasing

Texture mapping

Three Dimensional
Graphics

VxD

WDM

Z-buffer

intel.

Bilinear or trilinear filtering. Also known as sub-texel positioning.
If a pixel is between texels, the program choses the color of the
pixel by averaging the adjacent texels’ colors instead of
assigning it the exact color of one single texel. Without bilinear
or trilinear filtering, the texture gets very blocky up close as
multiple pixels get the exact same texel coloring, while the
texture shimmers at a distance because small position changes
keep producing large texel changes.

The process of superimposing a 2-D texture or pattern over the
surface of a 3-D graphical object. This is an efficient method of
producing the appearance of texture, such as that of wood or
stone, on a large surface area.

The display of objects and scenes with height, width, and depth
information. The information is calculated in a coordinate
system that represents three dimensions via x, y, and z axes.

Virtual Device Driver.

Win32 Driver Model (WDM) provides a common set of /O
services and binary-compatible device drivers for both Windows
NT and future Windows operating systems. WDM will maximize
system responsiveness and throughput by providing extremely
low services and fewer ring transitions that interactive
applications demand. All WDM drivers execute in Ring 0 and
have access to low latency services. For backward
compatibility, a Windows virtualization driver can be
implemented to interface a hardware-specific legacy application
to WDM.

The depth buffer in 3-D graphics. The z-buffer memory
locations, like those in the frame buffer, correspond to the pixels
on the screen. The z-buffer, however, contains information
relating only to the z-axis (or depth axis). The z-buffer is used in
hidden surface removal algorithms, so that for each pixel
written, the depth of the pixel is stored in the z-buffer. When
subsequent objects attempt to draw that pixel, that object’s z
value is compared with the number in the z-buffer, and the write
is omitted if the object is farther away from the eye.

Intel740 Software Developer's Manual

	Intel740 Graphics Accelerator
	Contents
	Figures
	Figure 2-1. System Block Diagram with Intel740
	Figure 2-2. Intel740 Architectural Interfaces
	Figure 2-3. The Intel740 Implementation of Sideban...
	Figure 2-4. Batch Processing on the Intel740 - A C...
	Figure 2-5. The Intel740’s Ability to Execute Text...
	Figure 2-6. The Intel740 Functioning as Two Memory...
	Figure 2-7. 3D Pipeline for DirectX
	Figure 2-8. 3D Pipeline for OpenGL
	Figure 2-9. Triangle as the Intel740 Driver Sees I...
	Figure 2-10. Effects of Fogging Off vs Fogging On
	Figure 2-11. Effects of Using Specular Highlightin...
	Figure 2-12. Effects of Using Alpha Blending
	Figure 2-13. Effects of Flat Shading vs. Smooth Sh...
	Figure 2-14. Getting 1.3 Gbytes of Concurrent Thro...
	Figure 2-15. A Color Keyed Splash
	Figure 2-16. Point Filtering VS. Bilinear Filterin...
	Figure 2-17. An Example of Five Levels of Mipmappe...
	Figure 2-18. Z-Buffering Off vs. Z-Buffering On
	Figure 2-19. Effects of Antialiasing
	Figure 2-20. Content of an NTSC Video Frame
	Figure 2-21. Configuration of Video Capture Memory...
	Figure 2-22. VBI Buffering Scheme
	Figure 2-23. Intel740 Connects to System Memory Ov...
	Figure 2-24. New Services in Windows Work with Dir...
	Figure 3-1. MCD Architecture
	Figure 3-2. Intel740 Software Architecture
	Figure 4-1. Intel740/CPU Usage Model
	Figure 4-2. Improper Usage Model
	Figure 4-3. RasM Intel740/CPU Usage Model
	Figure 4-4. RasM Pseudo-Code
	Figure 4-5. Basic Feature Sweeps
	Figure 4-6. Advanced Feature Sweeps
	Figure 4-7. Full Feature Sweeps
	Figure 4-8. Performance vs. Percent Z Occlusion
	Figure 4-9. Performance of DrawPrimitive vs. Execu...
	Figure 4-10. Performance vs. Buffer Size (Duty Cyc...
	Figure 4-11. Performance vs. Total Packet Size
	Figure 4-12. Performance vs. Texture Size
	Figure 4-13. Performance vs. Palette Changes
	Figure 4-14. Performance with Untiled Textures
	Figure 4-15. Performance vs. Transparency
	Figure 4-16. Performance vs. Screen Resolution
	Figure 4-17. Available Memory Bandwidth on a Penti...
	Figure 4-18. Dynamic AGP Buffer Placement

	Tables
	Table 1-1. Intel740 Feature Summary
	Table 2-1. Data Formats
	Table 2-2. Alpha Blend Functions for OpenGL & Dire...
	Table 2-3. DirectX Texture Map Blending Functions
	Table 2-4. OpenGL Texture Blend Modes and Equation...
	Table 2-5. Supported DirectX Texture Wrap Formats
	Table 2-6. Supported OpenGL Texture Wrap Formats
	Table 2-7. Pixel Formats and Buffers
	Table 2-8. Display Resolutions
	Table 3-1. Supported OpenGL MCD Enables (Sheet 2 o...
	Table 3-2. Supported OpenGL MCD States (Sheet 2 of...
	Table 3-3. Supported OpenGL MCD Primitives
	Table 3-4. Supported OpenGL MCD Texture States
	Table 3-5. Supported OpenGL MCD Texture Environmen...
	Table 3-6. Device Technology—dpTechnology (Sheet 2...
	Table 3-7. dwCaps—Specifies Driver-Specific Capabi...
	Table 3-8. dwCaps2—Specifies More Driver-Specific ...
	Table 3-9. dwCKeyCaps—Color Key Capabilities
	Table 3-10. dwFXCaps—Specifies Driver-Specific Str...
	Table 3-11. dwPalCaps—Specifies Palette Capabiliti...
	Table 3-12. ddsCaps.dwCaps—Specifies The Capabilit...
	Table 3-13. General Device Capabilities
	Table 3-14. Texture Capabilities
	Table 3-15. Primitive Capabilities Supported (Shee...
	Table 3-16. DIRECT3D RenderState Hardware / Softwa...
	Table 3-17. DIRECT3D RenderPrimitive Hardware / So...
	Table 3-18. VfW Capture Driver Capability
	Table 3-19. Functionality Control
	Table 3-20. Device Driver Debugging Control
	Table 4-1. Result Summary
	Table 4-2. Symbol Key
	Table 4-3. CPU Cycle Targets
	Table 4-4. Typical Video/Data Capture Applications...
	Table 4-5. CPU Usage for Some Typical Applications...
	Table 4-6. Rating OpenGL Features (Sheet 2 of 2)
	Table 4-7. Included and Excluded Pre-Fragment Oper...
	Table 4-8. Command Performance Ratings (Sheet 5 of...

	Introduction 1
	1.1 About This Manual
	1.2 Intel740 Features
	1.3 Related Documents

	Hardware Capabilities 2
	2.1 Architectural Overview
	2.2 3D Capabilities
	2.2.1 3D Pipeline
	2.2.2 3D Primitives
	Example 2�1. Sending Data to the Intel740 Using Di...
	Example 2�2. Sending Data to the Intel740 Using Op...

	2.2.3 Data Formats
	2.2.4 Surface Color Attributes
	2.2.4.1 Fogging
	Example 2�3. Enabling Fogging with DirectX
	Example 2�4. Enabling Fogging with OpenGL

	2.2.4.2 Specular Highlighting
	Example 2�5. Enabling Specular Highlighting with D...
	Example 2�6. Enabling Specular Highlighting with O...

	2.2.4.3 Alpha Blending
	Example 2�7. Enabling Alpha Blending with DirectX
	Example 2�8. Enabling Alpha Blending with OpenGL

	2.2.4.4 Alpha Testing
	Example 2�9. Enabling Alpha Testing Functions With...
	Example 2�10. Enabling Alpha Testing Functions Wit...

	2.2.4.5 Color Dithering
	Example 2�11. Enabling Color Dithering with Direct...
	Example 2�12. Enabling Color Dithering with OpenGL...

	2.2.4.6 Shading
	Example 2�13. Enabling Shading with DirectX
	Example 2�14. Enabling Shading with OpenGL

	2.2.4.7 Stippled Pattern
	Example 2�15. Enabling Stippled Patterns with Dire...
	Example 2�16. Enabling Stippled Patterns with Open...

	2.2.5 Texture Map Attributes
	2.2.5.1 Texture Map Formats
	Example 2�17. Creating a Texture Surface with Dire...
	Example 2�18. Creating a Texture Surface with Open...

	2.2.5.2 Texture Map Blending
	Example 2�19. Enabling Texture Blending with Direc...
	Example 2�20. Enabling Texture Blending with OpenG...

	2.2.5.3 Texture Map Chroma Keying and Color Keying...
	Example 2�21. Enabling Texture Map Chroma Keying a...

	2.2.5.4 Texture Wrapping Formats
	Example 2�22. Enabling Texture Wrapping with Direc...
	Example 2�23. Enabling Texture Wrapping with OpenG...

	2.2.5.5 Texture Map Filtering
	Example 2�24. Enabling Texture Map Filtering with ...
	Example 2�25. Enabling Texture Map Filtering with ...

	2.2.5.6 Texture Mipmapping
	Example 2�26. Mipmap Enabling with DirectX
	Example 2�27. Enabling Mipmapping with OpenGL

	2.2.6 Drawing Formats
	Example 2�28. Enabling Drawing Formats with Direct...
	Example 2�29. Enabling Drawing Formats with OpenGL...

	2.2.7 Buffers
	2.2.7.1 Double and Triple Buffering
	2.2.7.2 Z-Buffering
	Example 2�30. Enabling Z-Buffering with DirectX
	Example 2�31. Enabling Z-Buffering with OpenGL

	2.2.8 Antialiasing
	Example 2�32. Enabling Antialiasing with DirectX
	Example 2�33. Enabling Antialiasing with OpenGL

	2.2.9 Back Face Culling
	Example 2�34. Enabling Back Face Culling with Dire...
	Example 2�35. Enabling Back Face Culling with Open...

	2.3 2D Capabilities
	2.3.1 BitBLT Engine
	2.3.2 Stretch BLT Engine
	2.3.3 Color Expansion
	2.3.4 Hardware Cursor
	2.3.5 Video Display Resolutions

	2.4 Video, VBI, and Intercast Capabilities
	2.4.1 Video Capture Port
	2.4.2 Video Overlay
	2.4.3 VBI and Intercast
	2.4.3.1 VBI Data Format
	2.4.3.2 VBI Data Flow
	2.4.3.3 CC and EDS
	2.4.3.4 Direct CC and EDS Capture

	2.5 DVD Capabilities
	2.5.1 Hardware DVD/MPEG-2 Movie Playback

	2.6 TV Out Interface
	2.7 AGP Interface
	2.7.1 AGP Primer
	2.7.2 AGP Software Architecture

	2.8 BIOS Interface
	2.9 Local Memory

	Programming Environment 3
	3.1 OpenGL Programming Environment
	3.1.1 Model
	3.1.2 Supported OpenGL MCD States
	3.1.3 Supported OpenGL MCD Primitives
	3.1.4 Supported OpenGL MCD Texture States
	3.1.5 Supported OpenGL MCD Texture Environment Sta...

	3.2 DirectX Programming Environment
	3.3 Mini Interface Drivers
	3.3.1 Mini Display Driver
	3.3.1.1 Structures Exported to GDI

	3.4 DirectDraw Display Driver Interface
	3.4.1 Directdraw Hal Capabilities

	3.5 Direct3D Interface
	3.5.1 Supported Direct3D Capabilities
	3.5.2 Supported RenderState
	3.5.3 Supported RenderPrimitives

	3.6 Video Interface
	3.7 GDI Escape Interface

	Performance Considerations 4
	4.1 Performance Strategies And Measurements
	4.1.1 Intel740 Performance Capabilities
	4.1.2 Using CPU/Intel740 Concurrency
	4.1.3 Performance Test Results
	4.1.3.1 Raster Speed Test Method
	4.1.3.2 Implications and Analysis

	4.1.4 Special Performance Considerations
	4.1.4.1 Direct3D DrawPrimitive vs. Execute Buffers...
	4.1.4.2 Triangle Packet Size
	4.1.4.3 Texture Sizes
	4.1.4.4 Palette Changes
	4.1.4.5 Untiled Textures for Procedural Texture An...
	4.1.4.6 High Performance Transparency
	4.1.4.7 Screen Resolutions

	4.1.5 Budgeting CPU Clock Cycles
	4.1.6 Video Performance

	4.2 Other Programming Tips
	4.2.1 Texture and Surface Effects
	4.2.1.1 Texture Formats
	4.2.1.2 Texture Sizes
	4.2.1.3 Texture Storage
	4.2.1.4 Animated Texture Effects
	4.2.1.5 Multi-pass Texture Effects

	4.2.2 Software Strategies
	4.2.2.1 Z-Buffering
	4.2.2.2 Antialiasing
	4.2.2.3 Minimizing State Transitions
	4.2.2.4 Dynamic AGP Buffer Placement
	4.2.2.5 Texture Palettes
	4.2.2.6 Using Mipmapping
	4.2.2.7 Designing For Sub Pixel Accuracy
	4.2.2.8 Using Color/chroma Keying Over Alpha Blend...
	4.2.2.9 Avoiding Stippling Errors
	4.2.2.10 Avoiding Flipping Errors
	4.2.2.11 Texture Sorting Is Not Required

	4.3 OpenGL Performance Guidelines
	4.3.1 OpenGL Feature Classification
	4.3.2 Feature Overview
	4.3.3 OpenGL Operation
	4.3.3.1 Begin/End Paradigm
	4.3.3.2 Vertex Specification
	4.3.3.3 Vertex Arrays
	4.3.3.4 Rectangles
	4.3.3.5 Coordinate Transformation
	4.3.3.6 Clipping
	4.3.3.7 Current Raster Position
	4.3.3.8 Colors and Coloring

	4.3.4 Rasterization
	4.3.4.1 Antialiasing
	4.3.4.2 Points
	4.3.4.3 Line Segments
	4.3.4.4 Polygons
	4.3.4.5 Pixel Rectangles
	4.3.4.6 Bitmaps
	4.3.4.7 Texturing
	4.3.4.8 Fog
	4.3.4.9 Antialiasing Application

	4.3.5 Fragments And The Frame Buffer
	4.3.5.1 Per-Fragment Operations
	4.3.5.2 Whole Framebuffer Operations
	4.3.5.3 Drawing, Reading, and Copying Pixels

	4.3.6 Special Functions
	4.3.7 State And State Requests
	4.3.8 GL Command Summary

	Glossary

