
estec
esa european space research

and technology centre

Prepared by J.Gaisler
Spacecraft Control and Data System Division
Automation and Informatics Department
ESA/ESTEC

Ref: WDI/JG/2105/NL
Issue 4, 20-11-1995

Keplerlan 1 - Noordwijk - Netherlands
Mail address: Postbus 299 - 2200 AG - Noordwijk - The Netherlands

Tel: 071-5656565 - Telex: 39098 - Fax: 071-5656040

Benchmarking of 32-bit processors for space
applications



2

WDI/JG/2105/NL

1 Introduction

In 1992, the European Space Agency begun the development of an 32-bit processing core for
embedded space applications. The processing core, ERC32, is based on the SPARC V7 archi-
tecture and is developed by a consortium consisting of Matra MHS, Matra Marconi Space and
Saab Ericsson Space. At about the same time, Saab Ericsson Space developed a second, pro-
prietary 32-bit processor called THOR. The THOR is a stack based processor also targeted to-
wards embedded applications, and includes hardware support for ADA tasking. Various
performance claims have been made but very few actual tests has been performed until now.
This evaluation has therefore been performed to measure and verify the performance of the
two processors.

The evaluation was performed with the following objectives:

• To measure the computing performance using benchmarks with realistic work-loads,
representative of on-board applications.

• To measure the code size of the benchmarks

• To perform the measurements using hardware and software configurations representa-
tive of on-board applications

The major conclusions of the evaluation can be summarized in the following points:

• The ERC32 delivers between two and three times higher system performance than
THOR.

• The code-size of the benchmarks were the same for ERC32 and THOR.

• The usage of a optimising state-of-the-art compiler is crucial for optimum system per-
formance.

The following paragraphs describe the benchmarked systems and results in detail.



3

WDI/JG/2105/NL

2 Target systems

2.1 ERC32

The tests have been run on an ERC32 simulator, developed at ESTEC. The IU and FPU has
been modelled to execute the instructions in the same number of clock cycles as defined in the
ERC32 data sheets [MHS 94]. The execution time of the floating-point instructions is in some
cases data-dependent, and in these cases the typical values have been used. The simulator
has been characterised against the real ERC32 chip-set and the timing differences are below
0.5% for both integer and floating-point applications. To provide a reference, the benchmarks
were also run on the on a Sparcstation 1. The table below summarises the two systems:

Two ADA compilers were available for the SPARC architecture; Telesoft ADA and Gnu ADA
(Gnat). The Telesoft compiler is targeted to the Sun4 architecture and could not be used as a
cross-compiler for the ERC32. The Gnat however, provides object files which can be linked
with libraries for the ERC32 and can therefore be used as a cross-compiler. The following ta-
ble shows the compile switches:

Name Description CPU/FPU CACHE MEMORY

SS1 Sparcstation 1 L64801/W3170 @ 20 MHz 32 KByte 16 MB @ 80 ns

ERC32 ERC32 simulator 90C601E/90C602E @ 14 MHz, 0 ws 0 4MB @ 40 ns

Table 1: Benchmarked SPARC systems

Compiler Version Switches Comments

GNU ADA 2.07 -O3 -ffast-math Maximum optimization, run-time checks enabled

Telesoft ADA 4.1 --O prIA Maximum optimization

Table 2: Compilers and switches - SPARC



4

WDI/JG/2105/NL

2.2 THOR

The current version of the THOR processor is characterised up to 10 MHz operations. With
40 ns memories and ACT address and data buffers, zero-waitstate operation can be achieved
at 8 MHz, operation at 10 MHz will require one waitstate. THOR includes a 256-byte data
cache on-chip. The cache is not protected by parity or EDAC checksums and therefore vulner-
able for SEU’s. The cache may also affect the predictability of the real-time performance. The
following THOR configurations have therefore been used:

An evaluation board for THOR was available but the test were run on the THOR simulator,
since some benchmarks did not run on the board. The only available ADA compiler for THOR
is Oden ADA, developed by Saab Ericsson Space. There are no optional optimization switches,
partial run-time checking is always generated. No C-compiler is available for THOR.

Description CPU CACHE MEMORY

SAAB THOR THOR @ 8 MHz 256 Byte 0.5MB @40 ns

SAAB THOR THOR @ 8 MHz, no cache 0 0.5MB @40 ns

SAAB THOR THOR @ 10 MHz, one waitstate 256 Byte 0.5MB @40 ns

SAAB THOR THOR @ 10 MHz, one ws, no cache 0 0.5MB @40 ns

Table 3: THOR configurations

Compiler Version Switches Comments

THOR Oden 0.5.1 - Run-time checks enabled

Table 4: Oden ADA compiler



5

WDI/JG/2105/NL

3 Benchmarks and results

The benchmarks are divided in two groups, the ESTEC MIX and RUDSTONE. The results
are given as execution times for one iteration of the benchmark, even if more iteration have
been run in order to obtain a better resolution of the execution time. In a previous version of
this document, a benchmark mix known as the ‘SAAB MIX’ was used. After careful analysis
of this benchmark mix, it was found that the benchmark mix has no connection to real appli-
cations and gives misleading results. The SAAB MIX will therefore not further be used. As an
example, the DAIS benchmark from the SAAB MIX consists of two case-statements, two if-
statements, a few assignments and some simple arithmetic operations (add, sub, mul and
div). There are no subroutine calls, no array handling, no records or other complex statements
which are typical for most applications.

3.1 ESTEC MIX

The ESTEC MIX v1.0 consists of four benchmarks derived from real applications; kalman,
cap, era and estec-b. The kalman and cap benchmarks are taken from the jiawg mix; they
consists of kalman filtering (kalman) and target capture and tracking (cap). The era bench-
mark consists of the joint calculations during free motion movement of ERA, the European
Robot Arm. Estec-b is a benchmark which performs image compression and decompression
using the Estec-B algorithm. All four benchmarks are self-checking, so that any compiler op-
timization that would affect the result is detected.

The table shows that the performance of ERC32 is approximately equal to a Sparcstation 1.
The best THOR system runs about 3 times slower that the ERC32. The difference is too large
to depend only on the architectural differences; it is clear that the Oden compiler does not pro-
duce very optimized code. It can also be noted that the Telesoft and GNU compilers are iden-
tical from a performance point of view. The cost of run-time checking can be substantial, tests
showed that pure integer benchmarks such as kalman and estec-b runs about 50% faster
without checking. For the floating-point intensive benchmarks, the impact of run-time check-
ing is less noticeable. The estec-b and era benchmarks failed during compilation and could
not be run on THOR.

System Kalman Cap Era Estec-B GEO.
MEAN

Sparcstation 1, Telesoft ADA 112 1.8 0.39 48 7.8

Sparcstation 1, GNU ADA 125 2.1 0.36 39 7.8

ERC32 @ 14 MHz, GNU ADA 137 2.0 0.32 44 7.9

THOR @ 8 MHz, cache enabled 410 failed 0.99 failed failed

THOR @ 8 MHz, cache disabled 761 failed 1.67 failed failed

THOR @ 10 MHz, 1 ws, cache enabled 457 failed 1.0 failed failed

THOR @ 10 MHz, 1 ws, cache disabled 1,045 failed 2.2 failed failed

Table 5: JIAWG benchmark results in milliseconds



6

WDI/JG/2105/NL

3.2 Rudstone

The Rudstone benchmark is derived from a satellite ground control system witch performs
detection and tracking of orbital objects. The ground control system is developed by Aerospace
Corporation (US) and the benchmark was used to compare various ADA compilers. The orig-
inal benchmark reads sensor data from a file and then performs detection and tracking of sat-
ellites. To be able to run the benchmark on embedded targets without file systems, the input
data was coded into the program. The original benchmark used double precision floating point
calculations; this had to be changed since THOR does not support double precision floats. The
change in precision actually affected the detection and tracking results, however as a bench-
mark the program is still functional. The algorithm of Rudstone uses predominately trigono-
metric and hyperbolic functions, often using the sqrt() function. The ERC32 includes a
hardware sqrt(), and the Rudstone was run both with and without the hardware sqrt() ena-
bled. The hardware sqrt() speeds up the overall program with about 50%. The Rudstone has
not yet been run on a THOR system since it is a large application (2.5 Mbyte) and no THOR
system with that amount of memory was available.

3.3 Code size measurement

Special precautions were made when the code size was measured. To remove any size differ-
ences in the TEXT_IO library, a version without TEXT_IO was derived of each benchmark.
Since different compilers provide different amount of run-time support, a “null” program was
first compiled and the size was then subtracted from the code size of the benchmarks. With
this approach, only the size of the benchmark code is measured, excluding all run-time sup-
port. This is especially important for small benchmarks, such as the ESTEC-MIX, which are
often smaller than the run-time library. In a real application, the overhead of the run-time
library is less noticeable.

System Rudstone
(S/W sqrt)

Rudstone
(H/W sqrt)

Sparcstation 1, Telesoft ADA failed failed

Sparcstation 1, GNU ADA 227 150

ERC32, GNU ADA 156 106

THOR, Oden ADA, 8 MHz, cache enabled - -

THOR, Oden ADA, 8 MHz, cache disabled - -

THOR, Oden ADA, 10 MHz, 1 ws, cache enabled - -

THOR, Oden ADA, 10 MHz, 1 ws, cache disabled - -

Table 6: Rudstone execution times in seconds



7

WDI/JG/2105/NL

The SPARC V7 architecture does not include a multiplication or division instruction. Instead,
these routines are performed in software. The code size overhead of the multiplication and
division routines can be significant in small programs, such as the ESTEC-MIX, but is negli-
gible in programs with realistic size. When the code size of the ESTEC-MIX was measured,
the individual benchmarks were therefore combined in one program.

Since the ESTEC-MIX did not compile completely on THOR, only the Rudstone could be used
for code size comparison. For the Rudstone benchmark, the code size generated by GNU ADA
and Oden ADA are approximately equal. The Telesoft compiler failed compiling Rudstone.
Note that all used benchmarks were purely sequential, i.e. no tasking was used. When task-
ing is used, a much larger part of the run-time system has to be included, and the total code
size depends strongly on the implementation of the kernel. Also, the required stack size was
not included in the code size since it was not possible to obtain this figure from GNU ADA.

Program ESTEC-MIX Rudstone Total

SPARC, Telesoft ADA 73,728 + 22,576 failed failed

SPARC, Gnu ADA 53,632 + 23,984 116,360 + 436,432 630,408

THOR, Oden ADA failed 137,228 + 437,436 failed

Table 7: Code size measurements (code + data) in bytes



8

WDI/JG/2105/NL

4 Conclusions and comments

The following table summarizes the measured performance for kalman and era, no other re-
sults were available for THOR. The results have been normalised relative to the best THOR
value.

It is difficult to make a proper analysis of the performance of the two processors, since only a
few benchmarks could be executed on THOR. Nevertheless, the performed test indicate a
clear advantage for ERC32, which delivers up to 3 times higher system performance than
THOR. The code size measurements indicate that the Oden and GNU ADA compilers gener-

1.0

2.0

3.0

Performance

THOR 8 MHz, cache enabled

0.53

4.0

Kalman

THOR 8 MHz, cache disabled

THOR 10 MHz, 1 ws, cache enabled

THOR 10 MHz, 1 ws, cache disabled

ERC32 14 MHz, checks enabled

1.0

0.87

0.39

3.0

0.59

ERA

1.00.99

0.31

3.1



9

WDI/JG/2105/NL

ated approximately the same code size for a given program, run-time system excluded. It can
be assumed that the run-time system for THOR is smaller than for ERC32, since parts of the
tasking mechanisms are in hardware. Whether this difference is significant compared to the
size of a typical application is yet to be studied.

During this benchmarking exercise, it has become apparent that computational requirements
can never be expressed in MIPS figure using a particular assembly level instruction mix. For
the ERC32, benchmarks were compiled and run both with and without optimization. The as-
sembly level instruction mix was equal in both cases, even though the un-optimized bench-
marks executed more that twice as slow. Performance requirement for systems where high-
level languages are to be used should therefore be expressed as a maximum execution time of
a test program written in the same language. It is also important that the selected test pro-
gram uses similar language elements and calculations as the target application.

References:

[Gomez 91] M. de Jong and F. Gomez-Molinero. “Benchmarking of compilers for
space embedded real-time systems”, ESA-STR-223, ESA/ESTEC 1991

[Saab 90] Saab Space AB. “RISC Evaluation study - final report” RIS/TRP/0010/
SAAB, 1990

[MHS 90] Matra MHS SA,.“IU-RT device specification”, “FPU-RT device specifica-
tion”, Issue 7, 1995


