libbfd

The Binary File Descriptor Library

First Edition—BFD version < 3.0
April 1991

Steve Chamberlain
Cygnus Support

Cygnus Support
sac@cygnus.com
BFD, Revision: 1.29
TEXinfo 2.218

Copyright (© 1991 Free Software Foundation, Inc.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the
conditions for verbatim copying, subject to the terms of the GNU General Public License,
which includes the provision that the entire resulting derived work is distributed under the
terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions.

Table of Contents
1 Introduction............ceeieineenneennn. 1
1.1 History . ..o 1
1.2 How ToUse BFD 1
1.3 What BFD Version2 Can Do 2
1.3.1 Information Loss, 2
1.3.2 The BFD canonical object-file format 3
2 BFDfrontend............ciiiiiein... 5
21 typedef bfd.......)
2.2 Errorreporting 8
2.2.1 Typebfd_error_type...............ooiiiin... 8
2211 bfd_get_error........................ 9
2.2.1.2 bfd_set_error........... ..., 9
2213 bfd_errmsg.............ccciiiii... 9
2214 bfd_perror, 9
222 BFDerrorhandler............................. 10
2.2.2.1 bfd_set_error_handler.............. 10
2.2.2.2 bfd_set_error_program_name......... 10
2.3 Symbols.o 10
2.3.0.1 bfd_get_reloc_upper_bound.......... 10
2.3.0.2 bfd_canonicalize_reloc............. 10
2.3.0.3 bfd_set_reloCc.............covui... 11
2.3.0.4 Dbfd_set_file_flags.................. 11
2.3.0.5 bfd_set_start_address.............. 11
2.3.0.6 bfd_get_mtime....................... 12
2.3.0.7 bfd_get_size........................ 12
2.3.0.8 bfd_get_gp_size..................... 12
2.3.0.9 bfd_set_gp_size..................... 12
2.3.0.10 bfd_scan_vma....................... 13
2.3.0.11 bfd_copy_private_bfd_data......... 13
2.3.0.12 bfd_merge_private_bfd_data........ 13
2.3.0.13 bfd_set_private_flags............. 13
23.0.14 stuff............ 14
24 Memory USAZE . ..ottt 15
2.5 Imitialization.............. ... 16
2.5.0.1 bfd_init............coiiiiiii... 16
2.6 SECHIONS . v vt 16
2.6.1 Section input..............iiiiiiiiii... 16
2.6.2 Section outputl 17
2.6.3 Linkorders, 17
2.6.4 typedefasection................. ... 17
2.6.5 Section prototypes..........c.ociiiiiiiii.. 24

2.7 Symbols
2.7.1
2.7.2
2.7.3
2.74
2.7.5

2.8 Archives

2.9 File formats

2.10 Relocations

2.10.1

2.6.5.1
2.6.5.2
2.6.5.3
2.6.5.4
2.6.5.5
2.6.5.6
2.6.5.7
2.6.5.8
2.6.5.9
2.6.5.10

bfd_get_section_by_name............
bfd_make_section_old_way...........
bfd_make_section_anyway............
bfd_make_section....................
bfd_set_section_flags..............
bfd_map_over_sections..............
bfd_set_section_size...............
bfd_set_section_contents...........
bfd_get_section_contents...........

bfd_copy_private_section_data....

Reading symbols,
Writing symbols..........
Mini Symbolsoo
typedef asymbol
Symbol handling functions

2.7.5.1
2.7.5.2
2.7.5.3
2.7.5.4
2.7.5.5
2.7.5.6
2.7.5.7
2.7.5.8
2.7.5.9
2.7.5.10
2.7.5.11

2.8.0.3

2.9.0.1
2.9.0.2
2.9.0.3
2.9.04

bfd_get_symtab_upper_bound.........
bfd_is_local_label..................
bfd_is_local_label _name............
bfd_canonicalize_symtab............
bfd_set_symtab......................
bfd_print_symbol_vandf
bfd_make_empty_symbol
bfd_make_debug_symbol
bfd_decode_symclass
bfd_symbol_info....................
bfd_copy_private_symbol_data.....
bfd_get_next_mapent
bfd_set_archive_head...............
bfd_openr_next_archived_file......

bfd_check_format....................
bfd_check_format_matches...........
bfd_set_format......................
bfd_format_string...................

typedef arelent

2.10.1.1
2.10.1.2
2.10.1.3
2.10.1.4
2.10.1.5
2.10.1.6
2.10.1.7

enum complain_overflow............
reloc_howto_type...................
The HOWTO Macro.....................
bfd_get_reloc_size................
arelent_chain......................
bfd_perform_relocation............
bfd_install_relocation............

2.11 The howto managercooovieiniineeen...

2.11.0.1
2.11.0.2

bfd_reloc_code_type...............
bfd_reloc_type_lookup.............

il

2.11.0.3 bfd_default_reloc_type_lookup.... 55
2.11.04 bfd_get_reloc_code_name........... 95
2.11.0.5 bfd_generic_relax_section......... 95
2.11.0.6 bfd_generic_get_relocated_section_
contentsl 95
212 Corefiles.. ... 56
2.12.0.1 bfd_core_file_failing_command.... 56
2.12.0.2 bfd_core_file_failing_signal..... o6
2.12.0.3 core_file_matches_executable_p... 56
213 Targets. 56
2.13.1 bfdtarget....... ..o o7
2.13.1.1 bfd_set_default_target............ 64
2.13.1.2 bfd_find_target.................... 64
2.13.1.3 bfd_target_list.................... 64
2.14 Architectureso 64
2.14.1 bfd architecture 65
2.14.2 bfdarchinfo 67
2.14.2.1 bfd_printable_name................ 67
2.14.2.2 bfd_scan_arch...................... 68
21423 bfd_arch_list...................... 68
2.14.2.4 bfd_arch_get_compatible........... 68
2.14.2.5 bfd_default_arch_struct........... 68
2.14.2.6 bfd_set_arch_info.................. 68
2.14.2.7 bfd_default_set_arch_mach......... 69
21428 bfd_get_arch....................... 69
21429 bfd_get_mach....................... 69
2.14.2.10 bfd_arch_bits_per_byte........... 69
2.14.2.11 bfd_arch_bits_per_address........ 69
2.14.2.12 bfd_default_compatible........... 70
2.14.2.13 bfd_default_scan.................. 70
2.14.2.14 bfd_get_arch_info................ 70
2.14.2.15 bfd_lookup_arch................... 70
2.14.2.16 bfd_printable_arch_mach.......... 70
2.15 Opening and closing BFDs............................. 71
2.15.0.1 bfd_openr 71
2.15.0.2 bfd_fdopenr........................ 71
2.15.0.3 bfd_openstreamr.................... 71
2.15.04 bfd_openwoiiiiiiiai... 71
2.15.0.5 bfd_closeciiiiin... 72
2.15.0.6 bfd_close_all done................ 72
2.15.0.7 bfd_create......................... 72
2.15.0.8 bfd_alloc.........covviiiinnn.. 73
2.16 Internal functions i, 73
2.16.0.1 bfd_write_bigendian_4byte_int.... 73
2.16.0.2 bfd_put_size....................... 73
2.16.0.3 bfd_get_size....................... 73
2.16.0.4 bfd_h_put_size..................... 74
2.16.0.5 bfd_log2...........ciiiiiiiii. 75

i1

2.17 Filecaching........ ... i 76
2.17.0.1 BFD_CACHE_MAX OPENmacro.......... 76

2.17.0.2 bfd_last_cache..................... 76

2.17.0.3 bfd_cache_lookup................... 76

2.17.0.4 bfd_cache_init..................... 76

2.17.0.5 bfd_cache_close.................... 7

2.17.0.6 bfd_open_file...................... 7

2.17.0.7 bfd_cache_lookup_worker........... 7

2.18 Linker Functions i, 7
2.18.1 Creating a linker hash table 78

2.18.2 Adding symbols to the hash table.............. 78
2.18.2.1 Differing file formats 78

2.18.2.2 Adding symbols from an object file.... 79

2.18.2.3 Adding symbols from an archive 80

2.18.3 Performing the final link 80
2.18.3.1 Information provided by the linker 81

2.18.3.2 Relocating the section contents........ 81

2.18.3.3 Writing the symbol table 82

2.18.3.4 bfd_link_split_section............ 82

219 Hash Tables........ ..o 82
2.19.1 Creating and freeing a hash table.............. 83

2.19.2 Looking up or entering a string 83

2.19.3 Traversing a hash table 84

2.19.4 Deriving a new hash table type................ 84
2.19.4.1 Define the derived structures.......... 84

2.19.4.2 Write the derived creation routine. 84

2.19.4.3 Write other derived routines 86

3 BFDbackends................covviea.... 87
3.1 aoutbackends............. ... 87
3.1.1 Relocationscccoiiiiiiii... 88

3.1.2 Internal entry points........................... 88

3.1.2.1 aout_size_swap_exec_header_in...... 88

3.1.2.2 aout_size_swap_exec_header_out..... 88

3.1.2.3 aout_size_some_aout_object_p....... 89

3.1.2.4 aout_size_mkobject................... 89

3.1.2.5 aout_size_machine_type.............. 89

3.1.2.6 aout_size_set_arch_mach............. 89

3.1.2.7 aout_size_new_section_hook.......... 90

3.2 coff backends 90
3.2.1 Porting to a new version of coff 90

3.2.2 How the coff backend works 91

3.22.1 Filelayout.............. 91

3.2.2.2 Bit twiddling 91

3.2.2.3 Symbolreading 92

3.2.2.4 Symbol writing 92

3.2.2.5 coff_symbol_type.................... 93

3.2.2.6 bfd_coff_backend_data.............. 94

v

3.2.2.7
3.2.2.8
3.2.2.9

3.3 ELF backends ..

3.3.0.1

Writing relocations................... 100
Reading linenumbers................. 101
Reading relocations 101
...................................... 101
bfd_elf_find_section.............. 102
......................... 103

Chapter 1: Introduction 1

1 Introduction

BFD is a package which allows applications to use the same routines to operate on object
files whatever the object file format. A new object file format can be supported simply by
creating a new BFD back end and adding it to the library.

BFD is split into two parts: the front end, and the back ends (one for each object file
format).

e The front end of BFD provides the interface to the user. It manages memory and
various canonical data structures. The front end also decides which back end to use
and when to call back end routines.

e The back ends provide BFD its view of the real world. Each back end provides a set of
calls which the BFD front end can use to maintain its canonical form. The back ends
also may keep around information for their own use, for greater efficiency.

1.1 History

One spur behind BFD was the desire, on the part of the GNU 960 team at Intel Oregon, for
interoperability of applications on their COFF and b.out file formats. Cygnus was providing
GNU support for the team, and was contracted to provide the required functionality.

The name came from a conversation David Wallace was having with Richard Stallman
about the library: RMS said that it would be quite hard—David said “BFD”. Stallman was
right, but the name stuck.

At the same time, Ready Systems wanted much the same thing, but for different object file
formats: TEEE-695, Oasys, Srecords, a.out and 68k coff.

BFD was first implemented by members of Cygnus Support; Steve Chamberlain (sac@cygnus. com)]
John Gilmore (gnu@cygnus .com), K. Richard Pixley (rich@cygnus.com) and David Henkel-
Wallace (gumby@cygnus.com).

1.2 How To Use BFD

To use the library, include ‘bfd.h’ and link with ‘1ibbfd.a’.

BFD provides a common interface to the parts of an object file for a calling application.
When an application sucessfully opens a target file (object, archive, or whatever), a pointer
to an internal structure is returned. This pointer points to a structure called bfd, described
in ‘bfd.h’. Our convention is to call this pointer a BFD, and instances of it within code
abfd. All operations on the target object file are applied as methods to the BFD. The
mapping is defined within bfd.h in a set of macros, all beginning with ‘bfd_’ to reduce
namespace pollution.

For example, this sequence does what you would probably expect: return the number of
sections in an object file attached to a BFD abfd.

#include "bfd.h"

unsigned int number_of_sections(abfd)
bfd *abfd;

Chapter 1: Introduction 2

{
return bfd_count_sections(abfd);

}
The abstraction used within BFD is that an object file has:
e a header,
e a number of sections containing raw data (see Section 2.6 [Sections], page 16),
e a set of relocations (see Section 2.10 [Relocations], page 38), and

e some symbol information (see Section 2.7 [Symbols], page 27).

Also, BFDs opened for archives have the additional attribute of an index and contain
subordinate BFDs. This approach is fine for a.out and coff, but loses efficiency when
applied to formats such as S-records and IEEE-695.

1.3 What BFD Version 2 Can Do

When an object file is opened, BFD subroutines automatically determine the format of the
input object file. They then build a descriptor in memory with pointers to routines that
will be used to access elements of the object file’s data structures.

As different information from the the object files is required, BFD reads from different
sections of the file and processes them. For example, a very common operation for the
linker is processing symbol tables. Each BFD back end provides a routine for converting
between the object file’s representation of symbols and an internal canonical format. When
the linker asks for the symbol table of an object file, it calls through a memory pointer
to the routine from the relevant BFD back end which reads and converts the table into a
canonical form. The linker then operates upon the canonical form. When the link is finished
and the linker writes the output file’s symbol table, another BFD back end routine is called
to take the newly created symbol table and convert it into the chosen output format.

1.3.1 Information Loss

Information can be lost during output. The output formats supported by BFD do not
provide identical facilities, and information which can be described in one form has nowhere
to go in another format. One example of this is alignment information in b.out. There is
nowhere in an a.out format file to store alignment information on the contained data, so
when a file is linked from b.out and an a.out image is produced, alignment information
will not propagate to the output file. (The linker will still use the alignment information
internally, so the link is performed correctly).

Another example is COFF section names. COFF files may contain an unlimited number of
sections, each one with a textual section name. If the target of the link is a format which
does not have many sections (e.g., a.out) or has sections without names (e.g., the Oasys
format), the link cannot be done simply. You can circumvent this problem by describing
the desired input-to-output section mapping with the linker command language.

Information can be lost during canonicalization. The BFD internal canonical form of the
external formats is not exhaustive; there are structures in input formats for which there is
no direct representation internally. This means that the BFD back ends cannot maintain

Chapter 1: Introduction 3

all possible data richness through the transformation between external to internal and back
to external formats.

This limitation is only a problem when an application reads one format and writes another.
Each BFD back end is responsible for maintaining as much data as possible, and the internal
BFD canonical form has structures which are opaque to the BFD core, and exported only
to the back ends. When a file is read in one format, the canonical form is generated for
BFD and the application. At the same time, the back end saves away any information
which may otherwise be lost. If the data is then written back in the same format, the back
end routine will be able to use the canonical form provided by the BFD core as well as the
information it prepared earlier. Since there is a great deal of commonality between back
ends, there is no information lost when linking or copying big endian COFF to little endian
COFF, or a.out to b.out. When a mixture of formats is linked, the information is only
lost from the files whose format differs from the destination.

1.3.2 The BFD canonical object-file format

The greatest potential for loss of information occurs when there is the least overlap between
the information provided by the source format, that stored by the canonical format, and
that needed by the destination format. A brief description of the canonical form may help
you understand which kinds of data you can count on preserving across conversions.

files Information stored on a per-file basis includes target machine architecture, par-
ticular implementation format type, a demand pageable bit, and a write pro-
tected bit. Information like Unix magic numbers is not stored here—only the
magic numbers’ meaning, so a ZMAGIC file would have both the demand page-
able bit and the write protected text bit set. The byte order of the target is
stored on a per-file basis, so that big- and little-endian object files may be used
with one another.

sections Each section in the input file contains the name of the section, the section’s
original address in the object file, size and alignment information, various flags,
and pointers into other BFD data structures.

symbols Each symbol contains a pointer to the information for the object file which
originally defined it, its name, its value, and various flag bits. When a BFD
back end reads in a symbol table, it relocates all symbols to make them relative
to the base of the section where they were defined. Doing this ensures that
each symbol points to its containing section. Each symbol also has a varying
amount of hidden private data for the BFD back end. Since the symbol points
to the original file, the private data format for that symbol is accessible. 1d can
operate on a collection of symbols of wildly different formats without problems.

Normal global and simple local symbols are maintained on output, so an output
file (no matter its format) will retain symbols pointing to functions and to
global, static, and common variables. Some symbol information is not worth
retaining; in a.out, type information is stored in the symbol table as long
symbol names. This information would be useless to most COFF debuggers;
the linker has command line switches to allow users to throw it away.

Chapter 1: Introduction 4

There is one word of type information within the symbol, so if the format
supports symbol type information within symbols (for example, COFF, IEEE,
Oasys) and the type is simple enough to fit within one word (nearly everything
but aggregates), the information will be preserved.

relocation level

Each canonical BFD relocation record contains a pointer to the symbol to re-
locate to, the offset of the data to relocate, the section the data is in, and
a pointer to a relocation type descriptor. Relocation is performed by passing
messages through the relocation type descriptor and the symbol pointer. There-
fore, relocations can be performed on output data using a relocation method
that is only available in one of the input formats. For instance, Oasys provides
a byte relocation format. A relocation record requesting this relocation type
would point indirectly to a routine to perform this, so the relocation may be
performed on a byte being written to a 68k COFF file, even though 68k COFF
has no such relocation type.

line numbers
Object formats can contain, for debugging purposes, some form of mapping
between symbols, source line numbers, and addresses in the output file. These
addresses have to be relocated along with the symbol information. Each symbol
with an associated list of line number records points to the first record of the list.
The head of a line number list consists of a pointer to the symbol, which allows
finding out the address of the function whose line number is being described.
The rest of the list is made up of pairs: offsets into the section and line numbers.

Any format which can simply derive this information can pass it successfully
between formats (COFF, IEEE and Oasys).

Chapter 2: BFD front end)

2 BFD front end

2.1 typedef bfd

A BFD has type bfd; objects of this type are the cornerstone of any application using BFD.
Using BFD consists of making references though the BFD and to data in the BFD.

Here is the structure that defines the type bfd. It contains the major data about the file
and pointers to the rest of the data.

struct _bfd

{
/* The filename the application opened the BFD with. */
CONST char *filename;

/* A pointer to the target jump table. x/
const struct bfd_target *xvec;

/* To avoid dragging too many header files into every file that
includes ‘bfd.h’, IOSTREAM has been declared as a '"char
x'" and MTIME as a "long". Their correct types, to which they
are cast when used, are "FILE *" and "time_t". The iostream
is the result of an fopen on the filename. However, if the
BFD_IN_MEMORY flag is set, then iostream is actually a pointer
to a bfd_in_memory struct. */

PTR iostream;

/* Is the file descriptor being cached? That is, can it be closed as|]
needed, and re-opened when accessed later? x*/

boolean cacheable;

/* Marks whether there was a default target specified when the
BFD was opened. This is used to select which matching algorithm
to use to choose the back end. */

boolean target_defaulted;

/* The caching routines use these to maintain a
least-recently-used list of BFDs */

struct _bfd *lru_prev, *lru_next;

/* When a file is closed by the caching routines, BFD retains
state information on the file here: */

file_ptr where;

Chapter 2: BFD front end

/* and here: (‘‘once’’ means at least once) */
boolean opened_once;

/* Set if we have a locally maintained mtime value, rather than
getting it from the file each time: */

boolean mtime_set;

/* File modified time, if mtime_set is true: */

long mtime;

/* Reserved for an unimplemented file locking extension.*/

int ifd;

/* The format which belongs to the BFD. (object, core, etc.) */

bfd_format format;

/* The direction the BFD was opened withx/

enum bfd_direction {no_direction = 0,
read_direction =

s’
write_direction = 2,
both_direction = 3} direction;

1

/* Format_specific flags*/

flagword flags;

/* Currently my_archive is tested before adding origin to
anything. I believe that this can become always an add of
origin, with origin set to O for non archive files. */

file_ptr origin;

/* Remember when output has begun, to stop strange things
from happening. */

boolean output_has_begun;

/* Pointer to linked list of sections*/
struct sec *sectiomns;

/* The number of sections */
unsigned int section_count;

Chapter 2: BFD front end 7

/* Stuff only useful for object files:
The start address. */
bfd_vma start_address;

/* Used for input and output*/
unsigned int symcount;

/* Symbol table for output BFD (with symcount entries) */
struct symbol_cache_entry **outsymbols;

/* Pointer to structure which contains architecture information*/
const struct bfd_arch_info *arch_info;

/* Stuff only useful for archives:*/

PTR arelt_data;

struct _bfd *my_archive; /* The containing archive BFD. %/
struct _bfd *next; /* The next BFD in the archive. x*/
struct _bfd *archive_head; /* The first BFD in the archive. %/
boolean has_armap;

/* A chain of BFD structures involved in a link. x*/
struct _bfd *link_next;

/* A field used by _bfd_generic_link_add_archive_symbols. This will
be used only for archive elements. */
int archive_pass;

/* Used by the back end to hold private data. */

union
{
struct aout_data_struct *aout_data;
struct artdata *aout_ar_data;
struct _oasys_data *oasys_obj_data;
struct _oasys_ar_data *oasys_ar_data;
struct coff_tdata *coff_obj_data;
struct pe_tdata *pe_obj_data;
struct xcoff_tdata *xcoff_obj_data;
struct ecoff_tdata *ecoff_obj_data;
struct ieee_data_struct *ieee_data;
struct ieee_ar_data_struct *ieee_ar_data;
struct srec_data_struct *srec_data;
struct ihex_data_struct *ihex_data;
struct tekhex_data_struct *tekhex_data;
struct elf_obj_tdata *elf_obj_data;
struct nlm_obj_tdata *nlm_obj_data;
struct bout_data_struct *bout_data;
struct sun_core_struct *sun_core_data;

Chapter 2: BFD front end 8

struct trad_core_struct *trad_core_data;
struct som_data_struct *som_data;

struct hpux_core_struct *hpux_core_data;
struct hppabsd_core_struct *hppabsd_core_data;
struct sgi_core_struct *sgi_core_data;
struct lynx_core_struct *lynx_core_data;
struct osf_core_struct *osf_core_data;
struct cisco_core_struct *cisco_core_data;
struct versados_data_struct *versados_data;
struct netbsd_core_struct *netbsd_core_data;
PTR any;

} tdata;

/* Used by the application to hold private datax/
PTR usrdata;

/* Where all the allocated stuff under this BFD goes. This is a
struct objalloc *, but we use PTR to avoid requiring the inclusion off]
objalloc.h. */
PTR memory;
s

2.2 Error reporting

Most BFD functions return nonzero on success (check their individual documentation for
precise semantics). On an error, they call bfd_set_error to set an error condition that
callers can check by calling bfd_get_error. If that returns bfd_error_system_call, then
check errno.

The easiest way to report a BFD error to the user is to use bfd_perror.

2.2.1 Type bfd_error_type

The values returned by bfd_get_error are defined by the enumerated type bfd_error_
type.

typedef enum bfd_error

{
bfd_error_no_error = 0,
bfd_error_system_call,
bfd_error_invalid_target,
bfd_error_wrong_format,
bfd_error_invalid_operation,
bfd_error_no_memory,
bfd_error_no_symbols,
bfd_error_no_armap,
bfd_error_no_more_archived_files,

Chapter 2: BFD front end 9

bfd_error_malformed_archive,
bfd_error_file_not_recognized,
bfd_error_file_ambiguously_recognized,
bfd_error_no_contents,
bfd_error_nonrepresentable_section,
bfd_error_no_debug_section,
bfd_error_bad_value,
bfd_error_file_truncated,
bfd_error_file_too_big,
bfd_error_invalid_error_code

} bfd_error_type;

2.2.1.1 bfd_get_error

Synopsis

bfd_error_type bfd_get_error (void);
Description
Return the current BFD error condition.

2.2.1.2 bfd_set_error

Synopsis

void bfd_set_error (bfd_error_type error_tag);
Description
Set the BFD error condition to be error_tag.

2.2.1.3 bfd_errmsg

Synopsis
CONST char *bfd_errmsg (bfd_error_type error_tag);
Description
Return a string describing the error error_tag, or the system error if error_tag is bfd_error_
system_call.

2.2.1.4 bfd_perror

Synopsis

void bfd_perror (CONST char *message);
Description
Print to the standard error stream a string describing the last BFD error that occurred, or
the last system error if the last BFD error was a system call failure. If message is non-NULL
and non-empty, the error string printed is preceded by message, a colon, and a space. It is
followed by a newline.

Chapter 2: BFD front end

2.2.2 BFD error handler

Some BFD functions want to print messages describing the problem. They call a BFD error
handler function. This function may be overriden by the program.

The BFD error handler acts like printf.

typedef void (*bfd_error_handler_type) PARAMS ((const char *, ...));

2.2.2.1 bfd_set_error_handler

Synopsis

bfd_error_handler_type bfd_set_error_handler (bfd_error_handler_type);
Description
Set the BFD error handler function. Returns the previous function.

2.2.2.2 bfd_set_error_program_name

Synopsis

void bfd_set_error_program_name (const char *);
Description
Set the program name to use when printing a BFD error. This is printed before the error
message followed by a colon and space. The string must not be changed after it is passed
to this function.

2.3 Symbols

2.3.0.1 bfd_get_reloc_upper_bound

Synopsis
long bfd_get_reloc_upper_bound(bfd *abfd, asection #*sect);
Description
Return the number of bytes required to store the relocation information associated with
section sect attached to bfd abfd. If an error occurs, return -1.

2.3.0.2 bfd_canonicalize_reloc

Synopsis
long bfd_canonicalize_reloc
(bfd *abfd,
asection *sec,
arelent **loc,

Chapter 2: BFD front end

asymbol x*syms) ;
Description
Call the back end associated with the open BFD abfd and translate the external form of the
relocation information attached to sec into the internal canonical form. Place the table into
memory at loc, which has been preallocated, usually by a call to bfd_get_reloc_upper_
bound. Returns the number of relocs, or -1 on error.

The syms table is also needed for horrible internal magic reasons.

2.3.0.3 bfd_set_reloc

Synopsis
void bfd_set_reloc
(bfd *abfd, asection *sec, arelent **rel, unsigned int count)
Description
Set the relocation pointer and count within section sec to the values rel and count. The
argument abfd is ignored.

2.3.0.4 bfd_set_file_flags

Synopsis

boolean bfd_set_file_flags(bfd *abfd, flagword flags);
Description
Set the flag word in the BFD abfd to the value flags.

Possible errors are:
e bfd_error_wrong_format - The target bfd was not of object format.
e bfd_error_invalid_operation - The target bfd was open for reading.

e bfd_error_invalid_operation - The flag word contained a bit which was not appli-
cable to the type of file. E.g., an attempt was made to set the D_PAGED bit on a BFD
format which does not support demand paging.

2.3.0.5 bfd_set_start_address

Synopsis
boolean bfd_set_start_address(bfd *abfd, bfd_vma vma);
Description
Make vma the entry point of output BFD abfd.
Returns
Returns true on success, false otherwise.

Chapter 2: BFD front end

2.3.0.6 bfd_get_mtime

Synopsis
long bfd_get_mtime(bfd *abfd) ;
Description
Return the file modification time (as read from the file system, or from the archive header
for archive members).

2.3.0.7 bfd_get_size

Synopsis

long bfd_get_size(bfd *abfd);
Description
Return the file size (as read from file system) for the file associated with BFD abfd.
The initial motivation for, and use of, this routine is not so we can get the exact size of the
object the BFD applies to, since that might not be generally possible (archive members for
example). It would be ideal if someone could eventually modify it so that such results were
guaranteed.
Instead, we want to ask questions like "is this NNN byte sized object I'm about to try
read from file offset YYY reasonable?" As as example of where we might do this, some
object formats use string tables for which the first sizeof (long) bytes of the table contain
the size of the table itself, including the size bytes. If an application tries to read what it
thinks is one of these string tables, without some way to validate the size, and for some
reason the size is wrong (byte swapping error, wrong location for the string table, etc.), the
only clue is likely to be a read error when it tries to read the table, or a "virtual memory
exhausted" error when it tries to allocate 15 bazillon bytes of space for the 15 bazillon byte
table it is about to read. This function at least allows us to answer the quesion, "is the size
reasonable?".

2.3.0.8 bfd_get_gp_size

Synopsis
int bfd_get_gp_size(bfd *abfd);
Description
Return the maximum size of objects to be optimized using the GP register under MIPS
ECOFF. This is typically set by the -G argument to the compiler, assembler or linker.

2.3.0.9 bfd_set_gp_size

Synopsis
void bfd_set_gp_size(bfd *abfd, int i);
Description
Set the maximum size of objects to be optimized using the GP register under ECOFF or
MIPS ELF. This is typically set by the -G argument to the compiler, assembler or linker.

Chapter 2: BFD front end

2.3.0.10 bfd_scan_vma

Synopsis

bfd_vma bfd_scan_vma(CONST char *string, CONST char **end, int base);
Description
Convert, like strtoul, a numerical expression string into a bfd_vma integer, and return
that integer. (Though without as many bells and whistles as strtoul.) The expression is
assumed to be unsigned (i.e., positive). If given a base, it is used as the base for conversion.
A base of 0 causes the function to interpret the string in hex if a leading "0x" or "0X" is
found, otherwise in octal if a leading zero is found, otherwise in decimal.

Overflow is not detected.

2.3.0.11 bfd_copy_private_bfd_data

Synopsis
boolean bfd_copy_private_bfd_data(bfd *ibfd, bfd *obfd);
Description
Copy private BFD information from the BFD ibfd to the the BFD obfd. Return true on
success, false on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_copy_private_bfd_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_copy_private_bfd_data, \
(ibfd, obfd))

2.3.0.12 bfd_merge_private_bfd_data

Synopsis
boolean bfd_merge_private_bfd_data(bfd *ibfd, bfd *obfd);
Description
Merge private BFD information from the BFD ibfd to the the output file BFD obfd when
linking. Return true on success, false on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_merge_private_bfd_data(ibfd, obfd) \
BFD_SEND (obfd, _bfd_merge_private_bfd_data, \
(ibfd, obfd))

2.3.0.13 bfd_set_private_flags

Synopsis
boolean bfd_set_private_flags(bfd *abfd, flagword flags);

Chapter 2: BFD front end

Description
Set private BFD flag information in the BFD abfd. Return true on success, false on error.
Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for obfd.

#define bfd_set_private_flags(abfd, flags) \
BFD_SEND (abfd, _bfd_set_private_flags, \
(abfd, flags))

2.3.0.14 stuff

Description
Stuff which should be documented:
#define bfd_sizeof_headers(abfd, reloc) \
BFD_SEND (abfd, _bfd_sizeof_headers, (abfd, reloc))

#define bfd_find_nearest_line(abfd, sec, syms, off, file, func, line) \
BFD_SEND (abfd, _bfd_find_nearest_line, (abfd, sec, syms, off, file, func, line)

/* Do these three do anything useful at all, for any back end? */J]
#define bfd_debug_info_start(abfd) \
BFD_SEND (abfd, _bfd_debug_info_start, (abfd))

#define bfd_debug_info_end(abfd) \
BFD_SEND (abfd, _bfd_debug_info_end, (abfd))

#define bfd_debug_info_accumulate(abfd, section) \
BFD_SEND (abfd, _bfd_debug_info_accumulate, (abfd, section))
#define bfd_stat_arch_elt(abfd, stat) \

BFD_SEND (abfd, _bfd_stat_arch_elt,(abfd, stat))

#define bfd_update_armap_timestamp(abfd) \
BFD_SEND (abfd, _bfd_update_armap_timestamp, (abfd))

#define bfd_set_arch_mach(abfd, arch, mach)\
BFD_SEND (abfd, _bfd_set_arch_mach, (abfd, arch, mach))

#define bfd_relax_section(abfd, section, link_info, again) \
BFD_SEND (abfd, _bfd_relax_section, (abfd, section, link_info, again))]]

#define bfd_link_hash_table_create(abfd) \
BFD_SEND (abfd, _bfd_link_hash_table_create, (abfd))

#define bfd_link_add_symbols(abfd, info) \
BFD_SEND (abfd, _bfd_link_add_symbols, (abfd, info))

Chapter 2: BFD front end

#define bfd_final_link(abfd, info) \
BFD_SEND (abfd, _bfd_final_link, (abfd, info))

#define bfd_free_cached_info(abfd) \
BFD_SEND (abfd, _bfd_free_cached_info, (abfd))

#define bfd_get_dynamic_symtab_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_dynamic_symtab_upper_bound, (abfd))

#define bfd_print_private_bfd_data(abfd, file)\
BFD_SEND (abfd, _bfd_print_private_bfd_data, (abfd, file))

#define bfd_canonicalize_dynamic_symtab(abfd, asymbols) \
BFD_SEND (abfd, _bfd_canonicalize_dynamic_symtab, (abfd, asymbols))

#define bfd_get_dynamic_reloc_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_dynamic_reloc_upper_bound, (abfd))

#define bfd_canonicalize_dynamic_reloc(abfd, arels, asyms) \
BFD_SEND (abfd, _bfd_canonicalize_dynamic_reloc, (abfd, arels, asyms))

extern bfd_byte *bfd_get_relocated_section_contents
PARAMS ((bfd *, struct bfd_link_info *,

struct bfd_link_order *, bfd_byte *,

boolean, asymbol **));

2.4 Memory usage

BFD keeps all of its internal structures in obstacks. There is one obstack per open BFD
file, into which the current state is stored. When a BFD is closed, the obstack is deleted,
and so everything which has been allocated by BFD for the closing file is thrown away.

BFD does not free anything created by an application, but pointers into bfd structures
become invalid on a bfd_close; for example, after a bfd_close the vector passed to bfd_
canonicalize_symtab is still around, since it has been allocated by the application, but
the data that it pointed to are lost.

The general rule is to not close a BFD until all operations dependent upon data from the
BFD have been completed, or all the data from within the file has been copied. To help
with the management of memory, there is a function (bfd_alloc_size) which returns the
number of bytes in obstacks associated with the supplied BFD. This could be used to select
the greediest open BFD, close it to reclaim the memory, perform some operation and reopen
the BFD again, to get a fresh copy of the data structures.

Chapter 2: BFD front end

2.5 Initialization

These are the functions that handle initializing a BFD.

2.5.0.1 bfd_init

Synopsis
void bfd_init(void);
Description
This routine must be called before any other BFD function to initialize magical internal
data structures.

2.6 Sections

The raw data contained within a BFD is maintained through the section abstraction. A
single BFD may have any number of sections. It keeps hold of them by pointing to the first;
each one points to the next in the list.

Sections are supported in BFD in section.c.

2.6.1 Section input

When a BFD is opened for reading, the section structures are created and attached to the
BFD.

Each section has a name which describes the section in the outside world—for example,
a.out would contain at least three sections, called .text, .data and .bss.

Names need not be unique; for example a COFF file may have several sections named .data.

Sometimes a BFD will contain more than the “natural” number of sections. A back end
may attach other sections containing constructor data, or an application may add a section
(using bfd_make_section) to the sections attached to an already open BFD. For example,
the linker creates an extra section COMMON for each input file’s BFD to hold information
about common storage.

The raw data is not necessarily read in when the section descriptor is created. Some targets
may leave the data in place until a bfd_get_section_contents call is made. Other back
ends may read in all the data at once. For example, an S-record file has to be read once to
determine the size of the data. An IEEE-695 file doesn’t contain raw data in sections, but
data and relocation expressions intermixed, so the data area has to be parsed to get out
the data and relocations.

Chapter 2: BFD front end

2.6.2 Section output

To write a new object style BFD, the various sections to be written have to be created.
They are attached to the BFD in the same way as input sections; data is written to the
sections using bfd_set_section_contents.

Any program that creates or combines sections (e.g., the assembler and linker) must use the
asection fields output_section and output_offset to indicate the file sections to which
each section must be written. (If the section is being created from scratch, output_section
should probably point to the section itself and output_offset should probably be zero.)

The data to be written comes from input sections attached (via output_section pointers)
to the output sections. The output section structure can be considered a filter for the input
section: the output section determines the vma of the output data and the name, but the
input section determines the offset into the output section of the data to be written.

E.g., to create a section "O", starting at 0x100, 0x123 long, containing two subsections, "A"
at offset 0x0 (i.e., at vima 0x100) and "B" at offset 0x20 (i.e., at vma 0x120) the asection
structures would look like:

section name A"

output_offset 0x00

size 0x20

output_section ———----———- > section name "o"

| vma 0x100

section name "B" | size 0x123

output_offset 0x20 [

size 0x103 [

output_section -------- |

2.6.3 Link orders

The data within a section is stored in a link_order. These are much like the fixups in gas.
The link_order abstraction allows a section to grow and shrink within itself.

A link order knows how big it is, and which is the next link order and where the raw data
for it is; it also points to a list of relocations which apply to it.

The link_order is used by the linker to perform relaxing on final code. The compiler creates
code which is as big as necessary to make it work without relaxing, and the user can select
whether to relax. Sometimes relaxing takes a lot of time. The linker runs around the
relocations to see if any are attached to data which can be shrunk, if so it does it on a
link_order by link_order basis.

2.6.4 typedef asection

Here is the section structure:

typedef struct sec

Chapter 2: BFD front end

/* The name of the section; the name isn’t a copy, the pointer is]]
the same as that passed to bfd_make_section. */

CONST char *name;

/* Which section is it; O..nth. */

int index;

/* The next section in the list belonging to the BFD, or NULL. */|Jj

struct sec *next;

/* The field flags contains attributes of the section. Some
flags are read in from the object file, and some are
synthesized from other information. */

flagword flags;

#tdefine

#tdefine

#tdefine

#tdefine

#if O
#tdefine
#tendif

#tdefine

#tdefine

#tdefine

SEC_NO_FLAGS 0x000

/* Tells the 0S to allocate space for this section when loading.
This is clear for a section containing debug information
only. */

SEC_ALLOC 0x001

/* Tells the 0S to load the section from the file when loading.
This is clear for a .bss section. */
SEC_LOAD 0x002

/* The section contains data still to be relocated, so there is
some relocation information too. */
SEC_RELOC 0x004

/* Obsolete ? x/
SEC_BALIGN 0x008

/* A signal to the 0S that the section contains read only
data. */
SEC_READONLY 0x010

/* The section contains code only. */
SEC_CODE 0x020

/* The section contains data only. */
SEC_DATA 0x040

Chapter 2: BFD front end

#tdefine

#tdefine

#tdefine
#tdefine
#tdefine

#tdefine

#tdefine

#tdefine

/* The section will reside in ROM. */
SEC_ROM 0x080

/* The section contains constructor information. This section
type is used by the linker to create lists of constructors and]]
destructors used by g++. When a back end sees a symbol
which should be used in a constructor list, it creates a new
section for the type of name (e.g., __CTOR_LIST__), attaches
the symbol to it, and builds a relocation. To build the lists
of constructors, all the linker has to do is catenate all the
sections called __CTOR_LIST__ and relocate the data
contained within - exactly the operations it would peform on
standard data. */

SEC_CONSTRUCTOR 0x100

/* The section is a constuctor, and should be placed at the
end of the text, data, or bss section(?). */

SEC_CONSTRUCTOR_TEXT 0x1100

SEC_CONSTRUCTOR_DATA 0x2100

SEC_CONSTRUCTOR_BSS 0x3100

/* The section has contents - a data section could be
SEC_ALLOC | SEC_HAS_CONTENTS; a debug section could be
SEC_HAS_CONTENTS */

SEC_HAS_CONTENTS 0x200

/* An instruction to the linker to not output the section
even if it has information which would normally be written. */|J]
SEC_NEVER_LOAD 0x400

/* The section is a COFF shared library section. This flag is
only for the linker. If this type of section appears in
the input file, the linker must copy it to the output file
without changing the vma or size. FIXME: Although this
was originally intended to be general, it really is COFF
specific (and the flag was renamed to indicate this). It
might be cleaner to have some more general mechanism to
allow the back end to control what the linker does with
sections. */

SEC_COFF_SHARED_LIBRARY 0x800

/* The section contains common symbols (symbols may be defined
multiple times, the value of a symbol is the amount of
space it requires, and the largest symbol value is the one
used). Most targets have exactly one of these (which we

translate to bfd_com_section_ptr), but ECOFF has two. */

#tdefine

SEC_IS_COMMON 0x8000

Chapter 2: BFD front end

/* The section contains only debugging information. For
example, this is set for ELF .debug and .stab sections.
strip tests this flag to see if a section can be
discarded. */

#define SEC_DEBUGGING 0x10000

/* The contents of this section are held in memory pointed to
by the contents field. This is checked by
bfd_get_section_contents, and the data is retrieved from
memory if appropriate. */

#define SEC_IN_MEMORY 0x20000

/* The contents of this section are to be excluded by the
linker for executable and shared objects unless those
objects are to be further relocated. */
#define SEC_EXCLUDE 0x40000

/* The contents of this section are to be sorted by the
based on the address specified in the associated symbol
table. */

#define SEC_SORT_ENTRIES 0x80000

/* When linking, duplicate sections of the same name should be
discarded, rather than being combined into a single section as
is usually done. This is similar to how common symbols are
handled. See SEC_LINK_DUPLICATES below. */

#define SEC_LINK_ONCE 0x100000

/* If SEC_LINK_ONCE is set, this bitfield describes how the linker
should handle duplicate sections. */
#define SEC_LINK_DUPLICATES 0x600000

/* This value for SEC_LINK_DUPLICATES means that duplicate
sections with the same name should simply be discarded. */
#define SEC_LINK_DUPLICATES_DISCARD 0x0

/* This value for SEC_LINK_DUPLICATES means that the linker
should warn if there are any duplicate sections, although
it should still only link one copy. */

#define SEC_LINK_DUPLICATES_ONE_ONLY 0x200000

/* This value for SEC_LINK_DUPLICATES means that the linker
should warn if any duplicate sections are a different size. */
#define SEC_LINK_DUPLICATES_SAME_SIZE 0x400000

/* This value for SEC_LINK_DUPLICATES means that the linker
should warn if any duplicate sections contain different

Chapter 2: BFD front end

contents. */
#tdefine SEC_LINK_DUPLICATES_SAME_CONTENTS 0x600000

/* This section was created by the linker as part of dynamic
relocation or other arcane processing. It is skipped when
going through the first-pass output, trusting that someone
else up the line will take care of it later. */

#define SEC_LINKER_CREATED 0x800000

/* End of section flags. */
/* Some internal packed boolean fields. */

/* See the vma field. */
unsigned int user_set_vma : 1;

/* Whether relocations have been processed. */
unsigned int reloc_done : 1;

/* A mark flag used by some of the linker backends. */
unsigned int linker_mark : 1;

/* End of internal packed boolean fields. */

/* The virtual memory address of the section - where it will be
at run time. The symbols are relocated against this. The
user_set_vma flag is maintained by bfd; if it’s not set, the
backend can assign addresses (for example, in a.out, where
the default address for .data is dependent on the specific
target and various flags). */

bfd_vma vma;
/* The load address of the section - where it would be in a
rom image; really only used for writing section header
information. */
bfd_vma 1lma;
/* The size of the section in bytes, as it will be output.
contains a value even if the section has no contents (e.g., thell
size of .bss). This will be filled in after relocation */
bfd_size_type _cooked_size;
/* The original size on disk of the section, in bytes. Normally this|]

value is the same as the size, but if some relaxing has
been done, then this value will be bigger. */

Chapter 2: BFD front end

bfd_size_type _raw_size;

/* If this section is going to be output, then this value is the
offset into the output section of the first byte in the input
section. E.g., if this was going to start at the 100th byte in]}
the output section, this value would be 100. */

bfd_vma output_offset;

/* The output section through which to map on output. */

struct sec *output_section;

/* The alignment requirement of the section, as an exponent of 2 -J]
e.g., 3 aligns to 273 (or 8). */

unsigned int alignment_power;

/* If an input section, a pointer to a vector of relocation
records for the data in this section. */

struct reloc_cache_entry *relocation;

/* If an output section, a pointer to a vector of pointers to
relocation records for the data in this section. */

struct reloc_cache_entry **orelocation;
/* The number of relocation records in one of the above */
unsigned reloc_count;

/* Information below is back end specific - and not always used
or updated. */

/* File position of section data */
file_ptr filepos;

/* File position of relocation info */
file_ptr rel_filepos;

/* File position of line data */

file_ptr line_filepos;

Chapter 2: BFD front end

/* Pointer to data for applications */
PTR userdata;
/* If the SEC_IN_MEMORY flag is set, this points to the actual
contents. */
unsigned char *contents;
/* Attached line number information */
alent *lineno;
/* Number of line number records */

unsigned int lineno_count;

/* When a section is being output, this value changes as more
linenumbers are written out */

file_ptr moving_line_filepos;

/* What the section number is in the target world =*/
int target_index;
PTR used_by_bfd;

/* If this is a constructor section then here is a list of the
relocations created to relocate items within it. */

struct relent_chain *constructor_chain;
/* The BFD which owns the section. */

bfd *owner;
/* A symbol which points at this section only */

struct symbol_cache_entry *symbol;

struct symbol_cache_entry **symbol_ptr_ptr;

struct bfd_link_order *1link_order_head;

struct bfd_link_order *1link_order_tail;
} asection ;

/* These sections are global, and are managed by BFD. The application]]

and target back end are not permitted to change the values in
these sections. New code should use the section_ptr macros rather

Chapter 2: BFD front end

than referring directly to the const sections. The const sections]]
may eventually vanish. x*/

#define BFD_ABS_SECTION_NAME "*ABS*"

#define BFD_UND_SECTION_NAME "*UND*"

#define BFD_COM_SECTION_NAME "*COMx"

#define BFD_IND_SECTION_NAME "*IND*"

/* the absolute section */
extern const asection bfd_abs_section;
#define bfd_abs_section_ptr ((asection *) &bfd_abs_section)
#define bfd_is_abs_section(sec) ((sec) == bfd_abs_section_ptr)
/* Pointer to the undefined section */
extern const asection bfd_und_section;
#define bfd_und_section_ptr ((asection *) &bfd_und_section)
#define bfd_is_und_section(sec) ((sec) == bfd_und_section_ptr)
/* Pointer to the common section */
extern const asection bfd_com_section;
#define bfd_com_section_ptr ((asection *) &bfd_com_section)
/* Pointer to the indirect section */
extern const asection bfd_ind_section;
#define bfd_ind_section_ptr ((asection *) &bfd_ind_section)
#define bfd_is_ind_section(sec) ((sec) == bfd_ind_section_ptr)

extern const struct symbol_cache_entry * const bfd_abs_symbol;
extern const struct symbol_cache_entry * const bfd_com_symbol;
extern const struct symbol_cache_entry * const bfd_und_symbol;
extern const struct symbol_cache_entry * const bfd_ind_symbol;
#define bfd_get_section_size_before_reloc(section) \
(section—->reloc_done ? (abort(),1): (section)->_raw_size)
#define bfd_get_section_size_after_reloc(section) \
((section->reloc_done) ? (section)->_cooked_size: (abort(),1))

2.6.5 Section prototypes

These are the functions exported by the section handling part of BFD.

2.6.5.1 bfd_get_section_by_name

Synopsis

asection *bfd_get_section_by_name(bfd *abfd, CONST char *name);
Description
Run through abfd and return the one of the asections whose name matches name, other-
wise NULL. See Section 2.6 [Sections], page 16, for more information.

This should only be used in special cases; the normal way to process all sections of a given
name is to use bfd_map_over_sections and strcmp on the name (or better yet, base it on
the section flags or something else) for each section.

Chapter 2: BFD front end

2.6.5.2 bfd_make_section_old_way

Synopsis

asection *bfd_make_section_old_way(bfd *abfd, CONST char *name);
Description
Create a new empty section called name and attach it to the end of the chain of sections for
the BFD abfd. An attempt to create a section with a name which is already in use returns
its pointer without changing the section chain.

It has the funny name since this is the way it used to be before it was rewritten....
Possible errors are:
e bfd_error_invalid_operation - If output has already started for this BFD.

e bfd_error_no_memory - If memory allocation fails.

2.6.5.3 bfd_make_section_anyway

Synopsis

asection *bfd_make_section_anyway(bfd *abfd, CONST char *name);
Description
Create a new empty section called name and attach it to the end of the chain of sections
for abfd. Create a new section even if there is already a section with that name.

Return NULL and set bfd_error on error; possible errors are:
e bfd_error_invalid_operation - If output has already started for abfd.

e bfd_error_no_memory - If memory allocation fails.

2.6.5.4 bfd_make_section

Synopsis

asection *bfd_make_section(bfd *, CONST char *name) ;
Description
Like bfd_make_section_anyway, but return NULL (without calling bfd_set_error ()) without
changing the section chain if there is already a section named name. If there is an error,
return NULL and set bfd_error.

2.6.5.5 bfd_set_section_flags

Synopsis

boolean bfd_set_section_flags(bfd *abfd, asection *sec, flagword flags);
Description
Set the attributes of the section sec in the BFD abfd to the value flags. Return true on
success, false on error. Possible error returns are:

Chapter 2: BFD front end

e bfd_error_invalid_operation - The section cannot have one or more of the at-
tributes requested. For example, a .bss section in a.out may not have the SEC_HAS_
CONTENTS field set.

2.6.5.6 bfd_map_over_sections

Synopsis
void bfd_map_over_sections(bfd *abfd,
void (*func) (bfd *abfd,
asection *sect,
PTR obj),
PTR obj);
Description
Call the provided function func for each section attached to the BFD abfd, passing obj as
an argument. The function will be called as if by
func(abfd, the_section, obj);
This is the prefered method for iterating over sections; an alternative would be to use a
loop:
section *p;
for (p = abfd->sections; p != NULL; p = p->next)
func(abfd, p, ...)

2.6.5.7 bfd_set_section_size

Synopsis

boolean bfd_set_section_size(bfd *abfd, asection *sec, bfd_size_type val);]]
Description
Set sec to the size val. If the operation is ok, then true is returned, else false.

Possible error returns:

e bfd_error_invalid_operation - Writing has started to the BFD, so setting the size
is invalid.

2.6.5.8 bfd_set_section_contents

Synopsis
boolean bfd_set_section_contents
(bfd *abfd,
asection *section,
PTR data,
file_ptr offset,

Chapter 2: BFD front end

bfd_size_type count);
Description
Sets the contents of the section section in BFD abfd to the data starting in memory at
data. The data is written to the output section starting at offset offset for count bytes.

Normally true is returned, else false. Possible error returns are:

e bfd_error_no_contents - The output section does not have the SEC_HAS_CONTENTS
attribute, so nothing can be written to it.

e and some more too

This routine is front end to the back end function _bfd_set_section_contents.

2.6.5.9 bfd_get_section_contents

Synopsis
boolean bfd_get_section_contents
(bfd *abfd, asection *section, PTR location,
file_ptr offset, bfd_size_type count);
Description
Read data from section in BFD abfd into memory starting at location. The data is read at
an offset of offset from the start of the input section, and is read for count bytes.

If the contents of a constructor with the SEC_CONSTRUCTOR flag set are requested or if the
section does not have the SEC_HAS_CONTENTS flag set, then the location is filled with zeroes.
If no errors occur, true is returned, else false.

2.6.5.10 bfd_copy_private_section_data

Synopsis
boolean bfd_copy_private_section_data(bfd *ibfd, asection *isec, bfd *obfd, asection *
Description
Copy private section information from isec in the BFD ibfd to the section osec in the BFD
obfd. Return true on success, false on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for osec.

#define bfd_copy_private_section_data(ibfd, isection, obfd, osection) \
BFD_SEND (obfd, _bfd_copy_private_section_data, \
(ibfd, isection, obfd, osection))

2.7 Symbols

BFD tries to maintain as much symbol information as it can when it moves information
from file to file. BFD passes information to applications though the asymbol structure.
When the application requests the symbol table, BFD reads the table in the native form and
translates parts of it into the internal format. To maintain more than the information passed

Chapter 2: BFD front end

to applications, some targets keep some information “behind the scenes” in a structure only
the particular back end knows about. For example, the coff back end keeps the original
symbol table structure as well as the canonical structure when a BFD is read in. On output,
the coff back end can reconstruct the output symbol table so that no information is lost,
even information unique to coff which BFD doesn’t know or understand. If a coff symbol
table were read, but were written through an a.out back end, all the coff specific information
would be lost. The symbol table of a BFD is not necessarily read in until a canonicalize
request is made. Then the BFD back end fills in a table provided by the application with
pointers to the canonical information. To output symbols, the application provides BFD
with a table of pointers to pointers to asymbols. This allows applications like the linker
to output a symbol as it was read, since the “behind the scenes” information will be still
available.

2.7.1 Reading symbols

There are two stages to reading a symbol table from a BFD: allocating storage, and the
actual reading process. This is an excerpt from an application which reads the symbol table:
long storage_needed;
asymbol **symbol_table;
long number_of_symbols;
long i;

storage_needed = bfd_get_symtab_upper_bound (abfd);

if (storage_needed < 0)
FAIL

if (storage_needed == 0) {
return ;
}

symbol_table = (asymbol **) xmalloc (storage_needed);

number_of_symbols =
bfd_canonicalize_symtab (abfd, symbol_table);

if (number_of_symbols < 0)
FATL

for (i = 0; i < number_of_symbols; i++) {
process_symbol (symbol_table[i]);
}
All storage for the symbols themselves is in an objalloc connected to the BFD; it is freed
when the BFD is closed.

Chapter 2: BFD front end

2.7.2 Writing symbols

Writing of a symbol table is automatic when a BFD open for writing is closed. The appli-
cation attaches a vector of pointers to pointers to symbols to the BFD being written, and
fills in the symbol count. The close and cleanup code reads through the table provided and
performs all the necessary operations. The BFD output code must always be provided with
an “owned” symbol: one which has come from another BFD, or one which has been created
using bfd_make_empty_symbol. Here is an example showing the creation of a symbol table
with only one element:

#include "bfd.h"

main()

{
bfd *abfd;
asymbol *ptrs[2];
asymbol *new;

abfd = bfd_openw("foo","a.out-sunos-big");
bfd_set_format (abfd, bfd_object);
new = bfd_make_empty_symbol(abfd);

new->name = "dummy_symbol";

new->section = bfd_make_section_old_way(abfd, ".text");
new->flags = BSF_GLOBAL;

new->value = 0x12345;

ptrs[0] = new;
ptrs[1i] (asymbol *)0;

bfd_set_symtab(abfd, ptrs, 1);
bfd_close(abfd);
}

. /makesym

nm foo

00012345 A dummy_symbol
Many formats cannot represent arbitary symbol information; for instance, the a.out object
format does not allow an arbitary number of sections. A symbol pointing to a section which
is not one of .text, .data or .bss cannot be described.

2.7.3 Mini Symbols

Mini symbols provide read-only access to the symbol table. They use less memory space,
but require more time to access. They can be useful for tools like nm or objdump, which
may have to handle symbol tables of extremely large executables.

The bfd_read_minisymbols function will read the symbols into memory in an internal
form. It will return a void * pointer to a block of memory, a symbol count, and the size
of each symbol. The pointer is allocated using malloc, and should be freed by the caller
when it is no longer needed.

Chapter 2: BFD front end

The function bfd_minisymbol_to_symbol will take a pointer to a minisymbol, and a pointer
to a structure returned by bfd_make_empty_symbol, and return a asymbol structure. The
return value may or may not be the same as the value from bfd_make_empty_symbol which
was passed in.

2.7.4 typedef asymbol
An asymbol has the form:

typedef struct symbol_cache_entry
{
/* A pointer to the BFD which owns the symbol. This information
is necessary so that a back end can work out what additional
information (invisible to the application writer) is carried
with the symbol.

This field is *almost* redundant, since you can use section->owner
instead, except that some symbols point to the global sections
bfd_{abs,com,und}_section. This could be fixed by making

these globals be per-bfd (or per-target-flavor). FIXME. x/

struct _bfd *the_bfd; /* Use bfd_asymbol_bfd(sym) to access this field. */J]

/* The text of the symbol. The name is left alone, and not copied; the
application may not alter it. */
CONST char *name;

/* The value of the symbol. This really should be a union of a
numeric value with a pointer, since some flags indicate that
a pointer to another symbol is stored here. */
symvalue value;

/* Attributes of a symbol: */
#define BSF_NO_FLAGS 0x00

/* The symbol has local scope; static in C. The value
is the offset into the section of the data. */
#define BSF_LOCAL 0x01

/* The symbol has global scope; initialized data in C. The
value is the offset into the section of the data. */
#define BSF_GLOBAL 0x02

/* The symbol has global scope and is exported. The value is
the offset into the section of the data. */
#define BSF_EXPORT BSF_GLOBAL /* no real difference */

Chapter 2: BFD front end

/* A normal C symbol would be one of:
BSF_LOCAL, BSF_FORT_COMM, BSF_UNDEFINED or
BSF_GLOBAL */

/* The symbol is a debugging record. The value has an arbitary
meaning. */
#define BSF_DEBUGGING 0x08

/* The symbol denotes a function entry point. Used in ELF,
perhaps others someday. */
#define BSF_FUNCTION 0x10

/* Used by the linker. */
#define BSF_KEEP 0x20
#define BSF_KEEP_G 0x40

/* A weak global symbol, overridable without warnings by
a regular global symbol of the same name. */
#define BSF_WEAK 0x80

/* This symbol was created to point to a section, e.g. ELF’s
STT_SECTION symbols. */
#define BSF_SECTION_SYM 0x100

/* The symbol used to be a common symbol, but now it is
allocated. */
#define BSF_OLD_COMMON 0x200

/* The default value for common data. */
#tdefine BFD_FORT_COMM_DEFAULT_VALUE O

/* In some files the type of a symbol sometimes alters its
location in an output file - ie in coff a ISFCN symbol
which is also C_EXT symbol appears where it was
declared and not at the end of a section. This bit is set

by the target BFD part to convey this information. */

#define BSF_NOT_AT_END 0x400

/* Signal that the symbol is the label of constructor section. */
#define BSF_CONSTRUCTOR 0x800

/* Signal that the symbol is a warning symbol. The name is a
warning. The name of the next symbol is the one to warn about;
if a reference is made to a symbol with the same name as the next
symbol, a warning is issued by the linker. x*/

#define BSF_WARNING 0x1000

Chapter 2: BFD front end

/* Signal that the symbol is indirect. This symbol is an indirect
pointer to the symbol with the same name as the next symbol. */
#define BSF_INDIRECT 0x2000

/* BSF_FILE marks symbols that contain a file name. This is used
for ELF STT_FILE symbols. */
#define BSF_FILE 0x4000

/* Symbol is from dynamic linking information. */
#define BSF_DYNAMIC 0x8000

/* The symbol denotes a data object. Used in ELF, and perhaps
others someday. */
#define BSF_0BJECT 0x10000

flagword flags;

/* A pointer to the section to which this symbol is
relative. This will always be non NULL, there are special
sections for undefined and absolute symbols. */
struct sec *section;

/* Back end special data. */
union

{
PTR p;
bfd_vma i;
} udata;

} asymbol;

2.7.5 Symbol handling functions

2.7.5.1 bfd_get_symtab_upper_bound

Description
Return the number of bytes required to store a vector of pointers to asymbols for all the
symbols in the BFD abfd, including a terminal NULL pointer. If there are no symbols in
the BFD, then return 0. If an error occurs, return -1.
#define bfd_get_symtab_upper_bound(abfd) \
BFD_SEND (abfd, _bfd_get_symtab_upper_bound, (abfd))

Chapter 2: BFD front end

2.7.5.2 bfd_is_local_label

Synopsis
boolean bfd_is_local_label(bfd *abfd, asymbol *sym);
Description
Return true if the given symbol sym in the BFD abfd is a compiler generated local label,
else return false.

2.7.5.3 bfd_is_local_label_name

Synopsis
boolean bfd_is_local_label_name(bfd *abfd, const char *name);
Description
Return true if a symbol with the name name in the BFD abfd is a compiler generated local
label, else return false. This just checks whether the name has the form of a local label.
#define bfd_is_local_label_name(abfd, name) \
BFD_SEND (abfd, _bfd_is_local_label_name, (abfd, name))

2.7.5.4 bfd_canonicalize_symtab

Description
Read the symbols from the BFD abfd, and fills in the vector location with pointers to the
symbols and a trailing NULL. Return the actual number of symbol pointers, not including
the NULL.
#define bfd_canonicalize_symtab(abfd, location) \
BFD_SEND (abfd, _bfd_canonicalize_symtab,\
(abfd, location))

2.7.5.5 bfd_set_symtab

Synopsis

boolean bfd_set_symtab (bfd *abfd, asymbol **location, unsigned int count);]j
Description
Arrange that when the output BFD abfd is closed, the table location of count pointers to
symbols will be written.

2.7.5.6 bfd_print_symbol_vandf

Synopsis

void bfd_print_symbol_vandf (PTR file, asymbol *symbol) ;
Description
Print the value and flags of the symbol supplied to the stream file.

Chapter 2: BFD front end

2.7.5.7 bfd_make_empty_symbol

Description
Create a new asymbol structure for the BFD abfd and return a pointer to it.

This routine is necessary because each back end has private information surrounding the
asymbol. Building your own asymbol and pointing to it will not create the private infor-
mation, and will cause problems later on.
#define bfd_make_empty_symbol (abfd) \
BFD_SEND (abfd, _bfd_make_empty_symbol, (abfd))

2.7.5.8 bfd_make_debug_symbol

Description
Create a new asymbol structure for the BFD abfd, to be used as a debugging symbol.
Further details of its use have yet to be worked out.
#define bfd_make_debug_symbol(abfd,ptr,size) \
BFD_SEND (abfd, _bfd_make_debug_symbol, (abfd, ptr, size))

2.7.5.9 bfd_decode_symclass

Description
Return a character corresponding to the symbol class of symbol, or ’?’ for an unknown
class.
Synopsis
int bfd_decode_symclass(asymbol *symbol);

2.7.5.10 bfd_symbol_info

Description
Fill in the basic info about symbol that nm needs. Additional info may be added by the
back-ends after calling this function.
Synopsis
void bfd_symbol_info(asymbol *symbol, symbol_info *ret);

2.7.5.11 bfd_copy_private_symbol_data

Synopsis
boolean bfd_copy_private_symbol_data(bfd *ibfd, asymbol *isym, bfd *obfd, asymbol *osy
Description
Copy private symbol information from isym in the BFD ibfd to the symbol osym in the
BFD obfd. Return true on success, false on error. Possible error returns are:

e bfd_error_no_memory - Not enough memory exists to create private data for osec.

#define bfd_copy_private_symbol_data(ibfd, isymbol, obfd, osymbol) \
BFD_SEND (obfd, _bfd_copy_private_symbol_data, \

Chapter 2: BFD front end

(ibfd, isymbol, obfd, osymbol))

2.8 Archives

Description
An archive (or library) is just another BFD. It has a symbol table, although there’s not
much a user program will do with it.

The big difference between an archive BFD and an ordinary BFD is that the archive doesn’t
have sections. Instead it has a chain of BFDs that are considered its contents. These BFDs
can be manipulated like any other. The BFDs contained in an archive opened for reading
will all be opened for reading. You may put either input or output BFDs into an archive
opened for output; they will be handled correctly when the archive is closed.

Use bfd_openr_next_archived_file to step through the contents of an archive opened
for input. You don’t have to read the entire archive if you don’t want to! Read it until you
find what you want.

Archive contents of output BFDs are chained through the next pointer in a BFD. The
first one is findable through the archive_head slot of the archive. Set it with bfd_set_
archive_head (q.v.). A given BFD may be in only one open output archive at a time.

As expected, the BFD archive code is more general than the archive code of any given
environment. BFD archives may contain files of different formats (e.g., a.out and coff) and
even different architectures. You may even place archives recursively into archives!

This can cause unexpected confusion, since some archive formats are more expressive than
others. For instance, Intel COFF archives can preserve long filenames; SunOS a.out archives
cannot. If you move a file from the first to the second format and back again, the filename
may be truncated. Likewise, different a.out environments have different conventions as
to how they truncate filenames, whether they preserve directory names in filenames, etc.
When interoperating with native tools, be sure your files are homogeneous.

Beware: most of these formats do not react well to the presence of spaces in filenames.
We do the best we can, but can’t always handle this case due to restrictions in the format
of archives. Many Unix utilities are braindead in regards to spaces and such in filenames
anyway, so this shouldn’t be much of a restriction.

Archives are supported in BFD in archive.c.

2.8.0.1 bfd_get_next_mapent

Synopsis

symindex bfd_get_next_mapent(bfd *abfd, symindex previous, carsym **sym);]]
Description
Step through archive abfd’s symbol table (if it has one). Successively update sym with the
next symbol’s information, returning that symbol’s (internal) index into the symbol table.

Chapter 2: BFD front end

Supply BFD_NO_MORE_SYMBOLS as the previous entry to get the first one; returns BFD_NO_
MORE_SYMBOLS when you’ve already got the last one.

A carsym is a canonical archive symbol. The only user-visible element is its name, a null-
terminated string.

2.8.0.2 bfd_set_archive_head

Synopsis

boolean bfd_set_archive_head(bfd *output, bfd *new_head);
Description
Set the head of the chain of BFDs contained in the archive output to new_head.

2.8.0.3 bfd_openr_next_archived_file

Synopsis

bfd *bfd_openr_next_archived_file(bfd *archive, bfd *previous);
Description
Provided a BFD, archive, containing an archive and NULL, open an input BFD on the
first contained element and returns that. Subsequent calls should pass the archive and the
previous return value to return a created BFD to the next contained element. NULL is
returned when there are no more.

2.9 File formats

A format is a BFD concept of high level file contents type. The formats supported by BFD
are:

e bfd_object

The BFD may contain data, symbols, relocations and debug info.
e bfd_archive

The BFD contains other BFDs and an optional index.

e bfd_core

The BFD contains the result of an executable core dump.

2.9.0.1 bfd_check_format

Synopsis
boolean bfd_check_format (bfd *abfd, bfd_format format) ;
Description
Verify if the file attached to the BFD abfd is compatible with the format format (i.e., one
of bfd_object, bfd_archive or bfd_core).

Chapter 2: BFD front end

If the BFD has been set to a specific target before the call, only the named target and
format combination is checked. If the target has not been set, or has been set to default,
then all the known target backends is interrogated to determine a match. If the default
target matches, it is used. If not, exactly one target must recognize the file, or an error
results.

The function returns true on success, otherwise false with one of the following error codes:
e bfd_error_invalid_operation - if format is not one of bfd_object, bfd_archive
or bfd_core.
e bfd_error_system_call - if an error occured during a read - even some file mismatches
can cause bfd_error_system_calls.
e file_not_recognised - none of the backends recognised the file format.

e bfd_error_file_ambiguously_recognized - more than one backend recognised the
file format.

2.9.0.2 bfd_check_format_matches

Synopsis

boolean bfd_check_format_matches(bfd *abfd, bfd_format format, char ***matching);]j
Description
Like bfd_check_format, except when it returns false with bfd_errno set to bfd_error_
file_ambiguously_recognized. In that case, if matching is not NULL, it will be filled
in with a NULL-terminated list of the names of the formats that matched, allocated with
malloc. Then the user may choose a format and try again.

When done with the list that matching points to, the caller should free it.

2.9.0.3 bfd_set_format

Synopsis

boolean bfd_set_format(bfd *abfd, bfd_format format);
Description
This function sets the file format of the BFD abfd to the format format. If the target set
in the BFD does not support the format requested, the format is invalid, or the BFD is not
open for writing, then an error occurs.

2.9.0.4 bfd_format_string

Synopsis
CONST char *bfd_format_string(bfd_format format);
Description
Return a pointer to a const string invalid, object, archive, core, or unknown, depending
upon the value of format.

Chapter 2: BFD front end

2.10 Relocations

BFD maintains relocations in much the same way it maintains symbols: they are left alone
until required, then read in en-mass and translated into an internal form. A common routine
bfd_perform_relocation acts upon the canonical form to do the fixup.

Relocations are maintained on a per section basis, while symbols are maintained on a per
BFD basis.

All that a back end has to do to fit the BFD interface is to create a struct reloc_cache_
entry for each relocation in a particular section, and fill in the right bits of the structures.

2.10.1 typedef arelent

This is the structure of a relocation entry:

typedef enum bfd_reloc_status
{
/* No errors detected */
bfd_reloc_ok,

/* The relocation was performed, but there was an overflow. */
bfd_reloc_overflow,

/* The address to relocate was not within the section supplied. */|j
bfd_reloc_outofrange,

/* Used by special functions */
bfd_reloc_continue,

/* Unsupported relocation size requested. */
bfd_reloc_notsupported,

/* Unused */
bfd_reloc_other,

/* The symbol to relocate against was undefined. */
bfd_reloc_undefined,

/* The relocation was performed, but may not be ok - presently
generated only when linking i960 coff files with i960 b.out
symbols. If this type is returned, the error_message argument
to bfd_perform_relocation will be set. */

bfd_reloc_dangerous
¥
bfd_reloc_status_type;

Chapter 2: BFD front end

typedef struct reloc_cache_entry

{
/* A pointer into the canonical table of pointers */
struct symbol_cache_entry **sym_ptr_ptr;

/* offset in section */
bfd_size_type address;

/* addend for relocation value */
bfd_vma addend;

/* Pointer to how to perform the required relocation */
reloc_howto_type *howto;

} arelent;
Description
Here is a description of each of the fields within an arelent:

e sym_ptr_ptr

The symbol table pointer points to a pointer to the symbol associated with the relocation
request. It is the pointer into the table returned by the back end’s get_symtab action. See
Section 2.7 [Symbols], page 27. The symbol is referenced through a pointer to a pointer so
that tools like the linker can fix up all the symbols of the same name by modifying only
one pointer. The relocation routine looks in the symbol and uses the base of the section
the symbol is attached to and the value of the symbol as the initial relocation offset. If the
symbol pointer is zero, then the section provided is looked up.

e address

The address field gives the offset in bytes from the base of the section data which owns
the relocation record to the first byte of relocatable information. The actual data relocated
will be relative to this point; for example, a relocation type which modifies the bottom two
bytes of a four byte word would not touch the first byte pointed to in a big endian world.

e addend

The addend is a value provided by the back end to be added (!) to the relocation offset. Its
interpretation is dependent upon the howto. For example, on the 68k the code:
char fool[];
main()
{
return foo[0x12345678];
}
Could be compiled into:
linkw fp,#-4
moveb Q#12345678,d0

extbl dO
unlk fp
rts

This could create a reloc pointing to foo, but leave the offset in the data, something like:
RELOCATION RECORDS FOR [.text]:

Chapter 2: BFD front end

offset type value

00000006 32 _foo

00000000 4e56 fffc ; linkw fp,#-4
00000004 1039 1234 5678 ; moveb @#12345678,d0
0000000a 49c0 ; extbl dO

0000000c 4ebe ; unlk fp

0000000e 4e75 ; Tts

Using coff and an 88k, some instructions don’t have enough space in them to represent the
full address range, and pointers have to be loaded in two parts. So you’d get something
like:

or.u r13,r0,hil6(_foo+0x12345678)
1d.b r2,r13,1016(_foo+0x12345678)
jmp rl

This should create two relocs, both pointing to _foo, and with 0x12340000 in their addend
field. The data would consist of:
RELOCATION RECORDS FOR [.text]:

offset type value

00000002 HVRT16 _f00+0x12340000

00000006 LVRT16 _foo+0x12340000

00000000 5da05678 ; or.u r13,r0,0x5678
00000004 1c4d5678 ; 1d.b r2,r13,0x5678
00000008 £400c001 ; jmp ril

The relocation routine digs out the value from the data, adds it to the addend to get the
original offset, and then adds the value of _foo. Note that all 32 bits have to be kept around
somewhere, to cope with carry from bit 15 to bit 16.

One further example is the sparc and the a.out format. The sparc has a similar problem
to the 88k, in that some instructions don’t have room for an entire offset, but on the sparc
the parts are created in odd sized lumps. The designers of the a.out format chose to not
use the data within the section for storing part of the offset; all the offset is kept within the
reloc. Anything in the data should be ignored.

save %sp,-112,%sp

sethi %hi(_foo+0x12345678),%g2

ldsb [}g2+%lo(_foo+0x12345678)],%i0

ret

restore
Both relocs contain a pointer to foo, and the offsets contain junk.

RELOCATION RECORDS FOR [.text]:

offset type value

00000004 HI22 _foo+0x12345678

00000008 L0O10 _foo+0x12345678

00000000 9de3bf90 ; save %sp,-112,%sp

00000004 05000000 ; sethi %hi(_foo+0),%g2
00000008 £048a000 ; ldsb [%g2+%lo(_foo+0)]1,%i0

0000000c 81c7e008 ; ret

Chapter 2: BFD front end

00000010 81e80000 ; restore
e howto

The howto field can be imagined as a relocation instruction. It is a pointer to a structure
which contains information on what to do with all of the other information in the reloc
record and data section. A back end would normally have a relocation instruction set and
turn relocations into pointers to the correct structure on input - but it would be possible
to create each howto field on demand.

2.10.1.1 enum complain_overflow

Indicates what sort of overflow checking should be done when performing a relocation.

enum complain_overflow

{

/* Do not complain on overflow. */
complain_overflow_dont,

/* Complain if the bitfield overflows, whether it is considered
as signed or unsigned. */
complain_overflow_bitfield,

/* Complain if the value overflows when considered as signed
number. */
complain_overflow_signed,

/* Complain if the value overflows when considered as an
unsigned number. */
complain_overflow_unsigned

s
2.10.1.2 reloc_howto_type

The reloc_howto_type is a structure which contains all the information that libbfd needs
to know to tie up a back end’s data.
.struct symbol_cache_entry; /* Forward declaration */

struct reloc_howto_struct
{

/* The type field has mainly a documentary use - the back end can]]
do what it wants with it, though normally the back end’s
external idea of what a reloc number is stored
in this field. For example, a PC relative word relocation
in a coff environment has the type 023 - because that’s
what the outside world calls a R_PCRWORD reloc. */

unsigned int type;

/* The value the final relocation is shifted right by. This drops]]

Chapter 2: BFD front end

unwanted data from the relocation. */
unsigned int rightshift;

/* The size of the item to be relocated. This is *not* a
power-of-two measure. To get the number of bytes operated
on by a type of relocation, use bfd_get_reloc_size. */

int size;

/* The number of bits in the item to be relocated. This is used
when doing overflow checking. */
unsigned int bitsize;

/* Notes that the relocation is relative to the location in the
data section of the addend. The relocation function will
subtract from the relocation value the address of the locationll
being relocated. */

boolean pc_relative;

/* The bit position of the reloc value in the destination.
The relocated value is left shifted by this amount. */
unsigned int bitpos;

/* What type of overflow error should be checked for when
relocating. */
enum complain_overflow complain_on_overflow;

/* If this field is non null, then the supplied function is
called rather than the normal function. This allows really
strange relocation methods to be accomodated (e.g., i960 callj
instructions). */

bfd_reloc_status_type (*special_function)
PARAMS ((bfd *abfd,
arelent *reloc_entry,
struct symbol_cache_entry *symbol,|]
PTR data,
asection *input_section,
bfd *output_bfd,
char **xerror_message));

/* The textual name of the relocation type. */
char *name;

/* When performing a partial link, some formats must modify the
relocations rather than the data - this flag signals this.*/
boolean partial_inplace;

/* The src_mask selects which parts of the read in data
are to be used in the relocation sum. E.g., if this was an 8 bit}]

Chapter 2: BFD front end

bit of data which we read and relocated, this would be
0x000000ff. When we have relocs which have an addend, such as
sun4 extended relocs, the value in the offset part of a
relocating field is garbage so we never use it. In this case
the mask would be 0x00000000. */

bfd_vma src_mask;

/* The dst_mask selects which parts of the instruction are replaced]
into the instruction. In most cases src_mask == dst_mask,
except in the above special case, where dst_mask would be
0x000000ff, and src_mask would be 0x00000000. x/
bfd_vma dst_mask;

/* When some formats create PC relative instructions, they leave
the value of the pc of the place being relocated in the offset
slot of the instruction, so that a PC relative relocation can
be made just by adding in an ordinary offset (e.g., sun3 a.out).]]
Some formats leave the displacement part of an instruction
empty (e.g., m88k bcs); this flag signals the fact.*/
boolean pcrel_offset;

};
2.10.1.3 The HOWTO Macro

Description
The HOWTO define is horrible and will go away.
#define HOWTO(C, R,S,B, P, BI, 0, SF, NAME, INPLACE, MASKSRC, MASKDST, PC) \H
{(unsigned)C,R,S,B, P, BI, 0,SF,NAME,INPLACE,MASKSRC,MASKDST,PC}

Description
And will be replaced with the totally magic way. But for the moment, we are compatible,

so do it this way.
#define NEWHOWTO(FUNCTION, NAME,SIZE,REL,IN) HOWT0(0,0,SIZE,0,REL,0,complain_overflow

Description
Helper routine to turn a symbol into a relocation value.
#define HOWTO_PREPARE(relocation, symbol)
{
if (symbol != (asymbol *)NULL) {
if (bfd_is_com_section (symbol->section)) { \

~ -

relocation = 0; \

} \
else { \
relocation = symbol->value; \

} \
} \

Chapter 2: BFD front end

2.10.1.4 bfd_get_reloc_size

Synopsis
int bfd_get_reloc_size (reloc_howto_type *);
Description
For a reloc_howto_type that operates on a fixed number of bytes, this returns the number
of bytes operated on.

2.10.1.5 arelent_chain

Description
How relocs are tied together in an asection:
typedef struct relent_chain {
arelent relent;
struct relent_chain *next;
} arelent_chain;

2.10.1.6 bfd_perform_relocation

Synopsis
bfd_reloc_status_type
bfd_perform_relocation
(bfd =*abfd,
arelent *reloc_entry,
PTR data,
asection *input_section,
bfd *output_bfd,
char **error_message) ;
Description
If output_bfd is supplied to this function, the generated image will be relocatable; the
relocations are copied to the output file after they have been changed to reflect the new
state of the world. There are two ways of reflecting the results of partial linkage in an output
file: by modifying the output data in place, and by modifying the relocation record. Some
native formats (e.g., basic a.out and basic coff) have no way of specifying an addend in the
relocation type, so the addend has to go in the output data. This is no big deal since in
these formats the output data slot will always be big enough for the addend. Complex reloc
types with addends were invented to solve just this problem. The error_message argument
is set to an error message if this return bfd_reloc_dangerous.

Chapter 2: BFD front end

2.10.1.7 bfd_install_relocation

Synopsis
bfd_reloc_status_type
bfd_install_relocation
(bfd *abfd,
arelent *reloc_entry,
PTR data, bfd_vma data_start,
asection *input_section,
char **error_message) ;
Description
This looks remarkably like bfd_perform_relocation, except it does not expect that the
section contents have been filled in. l.e., it’s suitable for use when creating, rather than
applying a relocation.

For now, this function should be considered reserved for the assembler.

2.11 The howto manager

When an application wants to create a relocation, but doesn’t know what the target machine
might call it, it can find out by using this bit of code.

2.11.0.1 bfd_reloc_code_type

Description

The insides of a reloc code. The idea is that, eventually, there will be one enumerator for
every type of relocation we ever do. Pass one of these values to bfd_reloc_type_lookup,
and it’ll return a howto pointer.

This does mean that the application must determine the correct enumerator value; you
can’t get a howto pointer from a random set of attributes.
Here are the possible values for enum bfd_reloc_code_real:

BFD_RELOC_64
BFD_RELOC_32
BFD_RELOC_26
BFD_RELOC_24
BFD_RELOC_16
BFD_RELOC_14
BFD_RELOC._8

Basic absolute relocations of N bits.

Chapter 2: BFD front end

BFD _RELOC_64_ PCREL

BFD _RELOC_32 PCREL

BFD_RELOC_24 PCREL

BFD_RELOC_16_PCREL

BFD_RELOC_12_PCREL

BFD _RELOC_8_PCREL
PC-relative relocations. Sometimes these are relative to the address of the relo-
cation itself; sometimes they are relative to the start of the section containing
the relocation. It depends on the specific target.

The 24-bit relocation is used in some Intel 960 configurations.

BFD_RELOC_32_GOT_PCREL
BFD_RELOC_16_ GOT_PCREL
BFD_RELOC_8_GOT_PCREL
BFD_RELOC_32_GOTOFF
BFD_RELOC_16_GOTOFF
BFD_RELOC_LO16_GOTOFF
BFD_RELOC_HI16_ GOTOFF
BFD_RELOC_HI16_S_GOTOFF
BFD_RELOC_8_GOTOFF
BFD_RELOC_32_PLT_PCREL
BFD_RELOC_24_PLT_PCREL
BFD_RELOC_16_PLT_PCREL
BFD_RELOC_8_PLT_PCREL
BFD_RELOC_32_PLTOFF
BFD_RELOC_16_PLTOFF
BFD_RELOC_LO16_PLTOFF
BFD_RELOC_HI16_PLTOFF
BFD_RELOC_HI16_S_PLTOFF
BFD_RELOC_8_PLTOFF

For ELF.

BFD_RELOC_68K_GLOB_DAT

BFD_RELOC_68K_JMP_SLOT

BFD_RELOC_68K_RELATIVE
Relocations used by 68K ELF.

BFD_RELOC_32_BASEREL
BFD_RELOC_16_BASEREL
BFD_RELOC_LO16_.BASEREL
BFD_RELOC_HI16_BASEREL
BFD_RELOC_HI16_S_BASEREL
BFD_RELOC_8_BASEREL
BFD_RELOC_RVA

Linkage-table relative.

BFD_RELOC_8_FFnn

Absolute 8-bit relocation, but used to form an address like OxFFnn.

Chapter 2: BFD front end

BFD_RELOC_32_PCREL_S2

BFD_RELOC_16_PCREL_S2

BFD_RELOC_23_PCREL_S2
These PC-relative relocations are stored as word displacements — i.e., byte dis-
placements shifted right two bits. The 30-bit word displacement (<<32_PCREL_S2>> |
— 32 bits, shifted 2) is used on the SPARC. (SPARC tools generally refer to
this as <<WDISP30>>.) The signed 16-bit displacement is used on the MIPS,
and the 23-bit displacement is used on the Alpha.

BFD_RELOC_HI22

BFD_RELOC_LO10
High 22 bits and low 10 bits of 32-bit value, placed into lower bits of the target
word. These are used on the SPARC.

BFD_RELOC_GPREL16

BFD_RELOC_GPREL32
For systems that allocate a Global Pointer register, these are displacements off
that register. These relocation types are handled specially, because the value
the register will have is decided relatively late.

BFD_RELOC_1960_CALLJ
Reloc types used for i960/b.out.

BFD_RELOC_NONE
BFD_RELOC_SPARC_WDISP22
BFD_RELOC_SPARC22
BFD_RELOC_SPARC13
BFD_RELOC_SPARC_GOT10
BFD_RELOC_SPARC_GOT13
BFD_RELOC_SPARC_GOT22
BFD_RELOC_SPARC_PC10
BFD_RELOC_SPARC_PC22
BFD_RELOC_SPARC_WPLT30
BFD_RELOC_SPARC_COPY
BFD_RELOC_SPARC_GLOB_DAT
BFD_RELOC_SPARC_JMP_SLOT
BFD _RELOC_SPARC_RELATIVE
BFD_RELOC_SPARC_UA32
SPARC ELF relocations. There is probably some overlap with other relocation
types already defined.

BFD_RELOC_SPARC_BASE13
BFD_RELOC_SPARC_BASE22
I think these are specific to SPARC a.out (e.g., Sun 4).

Chapter 2: BFD front end

BFD_RELOC_SPARC_64
BFD_RELOC_SPARC_10
BFD_RELOC_SPARC_11
BFD_RELOC_SPARC_OLO10
BFD_RELOC_SPARC_HH22
BFD_RELOC_SPARC_HM10
BFD_RELOC_SPARC_LM22
BFD_RELOC_SPARC_PC_HH22
BFD_RELOC_SPARC_PC_HM10
BFD_RELOC_SPARC_PC_LM22
BFD_RELOC_SPARC_WDISP16
BFD_RELOC_SPARC_WDISP19
BFD_RELOC_SPARC_GLOB_JMP
BFD_RELOC_SPARC_7
BFD_RELOC_SPARC_6
BFD_RELOC_SPARC_.5

Some relocations we’re using for SPARC V9 — subject to change.

BFD_RELOC_ALPHA _GPDISP_HI16
Alpha ECOFF and ELF relocations. Some of these treat the symbol or "ad-
dend" in some special way. For GPDISP_HI16 ("gpdisp") relocations, the sym-
bol is ignored when writing; when reading, it will be the absolute section sym-
bol. The addend is the displacement in bytes of the "lda" instruction from the
"ldah" instruction (which is at the address of this reloc).

BFD_RELOC_ALPHA _GPDISP_LO16
For GPDISP_LO16 ("ignore") relocations, the symbol is handled as with
GPDISP_HI16 relocs. The addend is ignored when writing the relocations out,
and is filled in with the file’s GP value on reading, for convenience.

BFD_RELOC_ALPHA _GPDISP
The ELF GPDISP relocation is exactly the same as the GPDISP_HI16 reloca-
tion except that there is no accompanying GPDISP_LO16 relocation.

BFD_RELOC_ALPHA _LITERAL

BFD _RELOC_ALPHA ELF_LITERAL

BFD _RELOC_ALPHA LITUSE
The Alpha LITERAL/LITUSE relocs are produced by a symbol reference; the
assembler turns it into a LDQ instruction to load the address of the symbol,
and then fills in a register in the real instruction.
The LITERAL reloc, at the LDQ instruction, refers to the .lita section symbol.
The addend is ignored when writing, but is filled in with the file’s GP value on
reading, for convenience, as with the GPDISP_LO16 reloc.
The ELF_LITERAL reloc is somewhere between 16_GOTOFF and GPDISP_L.O16. |
It should refer to the symbol to be referenced, as with 16_ GOTOFF, but it
generates output not based on the position within the .got section, but relative
to the GP value chosen for the file during the final link stage.

Chapter 2: BFD front end

The LITUSE reloc, on the instruction using the loaded address, gives informa-
tion to the linker that it might be able to use to optimize away some literal
section references. The symbol is ignored (read as the absolute section sym-
bol), and the "addend" indicates the type of instruction using the register: 1
- "memory" fmt insn 2 - byte-manipulation (byte offset reg) 3 - jsr (target of
branch)

The GNU linker currently doesn’t do any of this optimizing.

BFD_RELOC_ALPHA _HINT
The HINT relocation indicates a value that should be filled into the "hint" field
of a jmp/jsr/ret instruction, for possible branch- prediction logic which may be
provided on some processors.

BFD _RELOC_ALPHA LINKAGE
The LINKAGE relocation outputs a linkage pair in the object file, which is
filled by the linker.

BFD_RELOC_ALPHA_CODEADDR
The CODEADDR relocation outputs a STO_CA in the object file, which is
filled by the linker.

BFD_RELOC_MIPS_JMP
Bits 27..2 of the relocation address shifted right 2 bits; simple reloc otherwise.

BFD_RELOC_MIPS16_JMP
The MIPS16 jump instruction.

BFD_RELOC_MIPS16_GPREL
MIPS16 GP relative reloc.

BFD_RELOC_HI16
High 16 bits of 32-bit value; simple reloc.

BFD_RELOC_HI16_S
High 16 bits of 32-bit value but the low 16 bits will be sign extended and added
to form the final result. If the low 16 bits form a negative number, we need to

add one to the high value to compensate for the borrow when the low bits are
added.

BFD_RELOC_LO16
Low 16 bits.

BFD_RELOC_PCREL_HI16_S
Like BED_RELOC_HI16_S, but PC relative.

BFD_RELOC_PCREL_LO16
Like BFD_RELOC_LO16, but PC relative.

BFD_RELOC_MIPS_GPREL

Relocation relative to the global pointer.

Chapter 2: BFD front end

BFD_RELOC_MIPS_LITERAL

Relocation against a MIPS literal section.

BFD_RELOC_MIPS_GOT16
BFD_RELOC_MIPS_CALL16
BFD_RELOC_MIPS_GPREL32
BFD_RELOC_MIPS_GOT_HI16
BFD_RELOC_MIPS_GOT_LO16
BFD_RELOC_MIPS_CALL_HI16
BFD_RELOC_MIPS_CALL_LO16
MIPS ELF relocations.

BFD_RELOC_386_GOT32
BFD_RELOC_386_PLT32
BFD_RELOC_386_COPY
BFD_RELOC_386_GLOB_DAT
BFD_RELOC_386_JUMP_SLOT
BFD_RELOC_386_RELATIVE
BFD_RELOC_386_GOTOFF
BFD_RELOC_386_GOTPC

1386 /elf relocations

BFD_RELOC_NS32K_IMM._8
BFD_RELOC_NS32K_IMM_16
BFD_RELOC_NS32K_IMM_32
BFD_RELOC_NS32K_IMM_8 PCREL
BFD_RELOC_NS32K_IMM_16_PCREL
BFD_RELOC_NS32K_IMM_32_PCREL
BFD_RELOC_NS32K_DISP_8
BFD_RELOC_NS32K_DISP_16
BFD_RELOC_NS32K_DISP _32
BFD_RELOC_NS32K_DISP_8_PCREL
BFD_RELOC_NS32K_DISP_16_PCREL
BFD_RELOC_NS32K_DISP_32_PCREL

ns32k relocations

Chapter 2: BFD front end

BFD_RELOC_PPC_B26
BFD_RELOC_PPC_BA26
BFD_RELOC_PPC_TOC16
BFD_RELOC_PPC_B16
BFD_RELOC_PPC_B16_BRTAKEN
BFD_RELOC_PPC_B16_ BRNTAKEN
BFD_RELOC_PPC_BA16
BFD_RELOC_PPC_BA16_BRTAKEN
BFD_RELOC_PPC_BA16_BRNTAKEN
BFD_RELOC_PPC_COPY
BFD_RELOC_PPC_GLOB_DAT
BFD_RELOC_PPC_JMP_SLOT
BFD_RELOC_PPC_RELATIVE
BFD_RELOC_PPC_LOCAL24PC
BFD_RELOC_PPC_EMB_NADDR32
BFD_RELOC_PPC_EMB_NADDRI16
BFD_RELOC_PPC_EMB_NADDR16_LO
BFD_RELOC_PPC_EMB_NADDRI16_HI
BFD_RELOC_PPC_EMB_NADDR16_HA
BFD_RELOC_PPC_EMB_SDAI16
BFD_RELOC_PPC_EMB_SDA2I16
BFD_RELOC_PPC_EMB_SDA2REL
BFD_RELOC_PPC_EMB_SDA21
BFD_RELOC_PPC_EMB_MRKREF
BFD_RELOC_PPC_EMB_RELSEC16
BFD_RELOC_PPC_EMB_RELST_LO
BFD_RELOC_PPC_EMB_RELST_HI
BFD_RELOC_PPC_EMB_RELST_HA
BFD_RELOC_PPC_EMB_BIT_FLD
BFD_RELOC_PPC_EMB_RELSDA

Power(rs6000) and PowerPC relocations.

BFD_RELOC_CTOR
The type of reloc used to build a contructor table - at the moment probably
a 32 bit wide absolute relocation, but the target can choose. It generally does
map to one of the other relocation types.

BFD_RELOC_ARM_PCREL_BRANCH
ARM 26 bit pc-relative branch. The lowest two bits must be zero and are not
stored in the instruction.

Chapter 2: BFD front end

BFD_RELOC_ARM_IMMEDIATE
BFD_RELOC_ARM_OFFSET_IMM
BFD_RELOC_ARM_SHIFT_IMM
BFD_RELOC_ARM_SWI
BFD_RELOC_ARM_MULTI
BFD_RELOC_ARM_CP_OFF_IMM
BFD_RELOC_ARM_ADR_IMM
BFD_RELOC_ARM_LDR_IMM
BFD_RELOC_ARM_LITERAL
BFD_RELOC_ARM_IN_POOL
BFD_RELOC_ARM_OFFSET_IMMS8
BFD_RELOC_ARM _HWLITERAL
BFD_RELOC_ARM_THUMB_ADD
BFD_RELOC_ARM_THUMB_IMM
BFD_RELOC_ARM_THUMB_SHIFT
BFD_RELOC_ARM_THUMB_OFFSET
These relocs are only used within the ARM assembler. They are not (at present)
written to any object files.

BFD _RELOC_SH PCDISP8BY2
BFD_RELOC_SH PCDISP12BY2
BFD_RELOC_SH_IMM4
BFD_RELOC_SH_IMM4BY2
BFD_RELOC_SH_IMM4BY4
BFD_RELOC_SH_IMMS8
BFD_RELOC_SH IMM8BY2
BFD_RELOC_SH_IMMS8BY4
BFD_RELOC_SH_PCRELIMMS8BY2
BFD_RELOC_SH_PCRELIMM8BY4
BFD _RELOC_SH SWITCH16
BFD_RELOC_SH SWITCH32
BFD_RELOC_SH_USES
BFD_RELOC_SH_COUNT
BFD_RELOC_SH_ALIGN
BFD_RELOC_SH_CODE
BFD _RELOC_SH _DATA
BFD_RELOC_SH_LABEL

Hitachi SH relocs. Not all of these appear in object files.

BFD _ RELOC_THUMB PCREL_BRANCHY9
BFD_RELOC_THUMB_PCREL_BRANCH12
BFD_RELOC_THUMB_PCREL_BRANCH23
Thumb 23-, 12- and 9-bit pc-relative branches. The lowest bit must be zero
and is not stored in the instruction.

Chapter 2: BFD front end

BFD_RELOC_ARC_B22 PCREL
Argonaut RISC Core (ARC) relocs. ARC 22 bit pe-relative branch. The lowest
two bits must be zero and are not stored in the instruction. The high 20 bits
are installed in bits 26 through 7 of the instruction.

BFD_RELOC_ARC_B26
ARC 26 bit absolute branch. The lowest two bits must be zero and are not
stored in the instruction. The high 24 bits are installed in bits 23 through 0.

BFD_RELOC_D10V_10_PCREL_R
Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to
be 0.

BFD_RELOC_D10V_10_PCREL_L
Mitsubishi D10V relocs. This is a 10-bit reloc with the right 2 bits assumed to
be 0. This is the same as the previous reloc except it is in the left container,
i.e., shifted left 15 bits.

BFD_RELOC_D10V_18
This is an 18-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_D10V_18_PCREL
This is an 18-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_24
Mitsubishi M32R relocs. This is a 24 bit absolute address.

BFD_RELOC_M32R_10_PCREL
This is a 10-bit pc-relative reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_18 PCREL
This is an 18-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_26_PCREL
This is a 26-bit reloc with the right 2 bits assumed to be 0.

BFD_RELOC_M32R_HI16_ULO
This is a 16-bit reloc containing the high 16 bits of an address used when the
lower 16 bits are treated as unsigned.

BFD_RELOC_M32R_HI16_SLO
This is a 16-bit reloc containing the high 16 bits of an address used when the
lower 16 bits are treated as signed.

BFD_RELOC_M32R_LO16

This is a 16-bit reloc containing the lower 16 bits of an address.

BFD_RELOC_M32R_SDA16
This is a 16-bit reloc containing the small data area offset for use in add3, load,
and store instructions.

Chapter 2: BFD front end

BFD_RELOC_V850_9_PCREL
This is a 9-bit reloc

BFD_RELOC_V850_22_PCREL
This is a 22-bit reloc

BFD_RELOC_V850_.SDA_16_16_OFFSET

This is a 16 bit offset from the short data area pointer.

BFD_RELOC_V850_.SDA_15_16_ OFFSET
This is a 16 bit offset (of which only 15 bits are used) from the short data area
pointer.

BFD_RELOC_V850_.ZDA_16_16_OFFSET

This is a 16 bit offset from the zero data area pointer.

BFD_RELOC_V850_.ZDA_15_16_OFFSET
This is a 16 bit offset (of which only 15 bits are used) from the zero data area
pointer.

BFD_RELOC_V850_.TDA_6_8_OFFSET
This is an 8 bit offset (of which only 6 bits are used) from the tiny data area
pointer.

BFD_RELOC_V850_TDA 7 8 OFFSET
This is an 8bit offset (of which only 7 bits are used) from the tiny data area
pointer.

BFD_RELOC_V850_.TDA_7_7T_OFFSET

This is a 7 bit offset from the tiny data area pointer.

BFD_RELOC_MN10300_32_PCREL
This is a 32bit pcrel reloc for the mn10300, offset by two bytes in the instruction.

BFD_RELOC_MN10300_.16 PCREL
This is a 16bit pcrel reloc for the mn10300, offset by two bytes in the instruction.

typedef enum bfd_reloc_code_real bfd_reloc_code_real_type;
2.11.0.2 bfd_reloc_type_lookup

Synopsis

reloc_howto_type *

bfd_reloc_type_lookup (bfd *abfd, bfd_reloc_code_real_type code);
Description
Return a pointer to a howto structure which, when invoked, will perform the relocation
code on data from the architecture noted.

Chapter 2: BFD front end

2.11.0.3 bfd_default_reloc_type_lookup

Synopsis
reloc_howto_type *bfd_default_reloc_type_lookup
(bfd *abfd, bfd_reloc_code_real_type code);
Description
Provides a default relocation lookup routine for any architecture.

2.11.0.4 bfd_get_reloc_code_name

Synopsis

const char *bfd_get_reloc_code_name (bfd_reloc_code_real_type code);
Description
Provides a printable name for the supplied relocation code. Useful mainly for printing error
messages.

2.11.0.5 bfd_generic_relax_section

Synopsis
boolean bfd_generic_relax_section

(bfd =*abfd,

asection *section,

struct bfd_link_info *,

boolean *);
Description
Provides default handling for relaxing for back ends which don’t do relaxing — i.e., does
nothing.

2.11.0.6 bfd_generic_get_relocated_section_contents

Synopsis
bfd_byte *
bfd_generic_get_relocated_section_contents (bfd *abfd,
struct bfd_link_info *1link_info,
struct bfd_link_order *1link_order,
bfd_byte *data,
boolean relocateable,
asymbol **symbols);
Description
Provides default handling of relocation effort for back ends which can’t be bothered to do
it efficiently.

Chapter 2: BFD front end

2.12 Core files

Description
These are functions pertaining to core files.

2.12.0.1 bfd_core_file_failing_command

Synopsis
CONST char *bfd_core_file_failing_ command(bfd *abfd);
Description
Return a read-only string explaining which program was running when it failed and pro-
duced the core file abfd.

2.12.0.2 bfd_core_file_failing_signal

Synopsis
int bfd_core_file_failing_signal(bfd *abfd);
Description
Returns the signal number which caused the core dump which generated the file the BFD
abfd is attached to.

2.12.0.3 core_file_matches_executable_p

Synopsis
boolean core_file_matches_executable_p
(bfd *core_bfd, bfd *exec_bfd);
Description
Return true if the core file attached to core_bfd was generated by a run of the executable
file attached to exec_bfd, false otherwise.

2.13 Targets

Description

Each port of BFD to a different machine requries the creation of a target back end. All
the back end provides to the root part of BFD is a structure containing pointers to func-
tions which perform certain low level operations on files. BFD translates the applications’s
requests through a pointer into calls to the back end routines.

When a file is opened with bfd_openr, its format and target are unknown. BFD uses

various mechanisms to determine how to interpret the file. The operations performed are:

e Create a BFD by calling the internal routine _bfd_new_bfd, then call bfd_find_
target with the target string supplied to bfd_openr and the new BFD pointer.

Chapter 2: BFD front end

e If a null target string was provided to bfd_find_target, look up the environment
variable GNUTARGET and use that as the target string.

e If the target string is still NULL, or the target string is default, then use the first item
in the target vector as the target type, and set target_defaulted in the BFD to cause
bfd_check_format to loop through all the targets. See Section 2.13.1 [bfd_target],
page 57. See Section 2.9 [Formats|, page 36.

e Otherwise, inspect the elements in the target vector one by one, until a match on target
name is found. When found, use it.

e Otherwise return the error bfd_error_invalid_target to bfd_openr.

e bfd_openr attempts to open the file using bfd_open_file, and returns the BFD.

Once the BFD has been opened and the target selected, the file format may be determined.
This is done by calling bfd_check_format on the BED with a suggested format. If target_
defaulted has been set, each possible target type is tried to see if it recognizes the specified
format. bfd_check_format returns true when the caller guesses right.

2.13.1 bfd_target

Description
This structure contains everything that BFD knows about a target. It includes things like
its byte order, name, and which routines to call to do various operations.

Every BFD points to a target structure with its xvec member.

The macros below are used to dispatch to functions through the bfd_target vector. They
are used in a number of macros further down in ‘bfd.h’, and are also used when calling
various routines by hand inside the BFD implementation. The arglist argument must be
parenthesized; it contains all the arguments to the called function.

They make the documentation (more) unpleasant to read, so if someone wants to fix this
and not break the above, please do.
#define BFD_SEND(bfd, message, arglist) \
((*((bfd)->xvec->message)) arglist)

#ifdef DEBUG_BFD_SEND
#undef BFD_SEND
#define BFD_SEND(bfd, message, arglist) \
(((bfd) && (bfd)->xvec && (bfd)->xvec->message) 7 \
((*((bfd)->xvec—->message)) arglist) : \
(bfd_assert (__FILE LINE__), NULL))
#endif
For operations which index on the BFD format:
#define BFD_SEND_FMT(bfd, message, arglist) \
(((bfd)->xvec->message[(int) ((bfd)->format)]) arglist)

——) ——

#ifdef DEBUG_BFD_SEND
#undef BFD_SEND_FMT

Chapter 2: BFD front end

#define BFD_SEND_FMT(bfd, message, arglist) \

(((bfd) && (bfd)->xvec && (bfd)->xvec->message) 7 \
(((bfd)->xvec—>message[(int) ((bfd)->format)]) arglist) : \
(bfd_assert (__FILE LINE__), NULL))

#endif
This is the structure which defines the type of BFD this is. The xvec member of the struct
bfd itself points here. Each module that implements access to a different target under BFD,
defines one of these.

——) ——

FIXME, these names should be rationalised with the names of the entry points which call
them. Too bad we can’t have one macro to define them both!
enum bfd_flavour {

bfd_target_unknown_flavour,
bfd_target_aout_flavour,
bfd_target_coff_flavour,
bfd_target_ecoff_flavour,
bfd_target_elf_flavour,
bfd_target_ieee_flavour,
bfd_target_nlm_flavour,
bfd_target_oasys_flavour,
bfd_target_tekhex_flavour,
bfd_target_srec_flavour,
bfd_target_ihex_flavour,
bfd_target_som_flavour,
bfd_target_os9k_flavour,
bfd_target_versados_flavour,
bfd_target_msdos_flavour,
bfd_target_evax_flavour

};
enum bfd_endian { BFD_ENDIAN_BIG, BFD_ENDIAN_LITTLE, BFD_ENDIAN_UNKNOWN };H

/* Forward declaration. x*/
typedef struct bfd_link_info _bfd_link_info;

typedef struct bfd_target
{
Identifies the kind of target, e.g., SunOS4, Ultrix, etc.
char *name;
The "flavour" of a back end is a general indication about the contents of a file.
enum bfd_flavour flavour;
The order of bytes within the data area of a file.
enum bfd_endian byteorder;
The order of bytes within the header parts of a file.
enum bfd_endian header_byteorder;
A mask of all the flags which an executable may have set - from the set BFD_NO_FLAGS,
HAS_RELOQOC, ...D_PAGED.
flagword object_flags;

Chapter 2: BFD front end

A mask of all the flags which a section may have set - from the set SEC_NO_FLAGS, SEC_
ALLOC, ...SET_NEVER_LOAD.
flagword section_flags;
The character normally found at the front of a symbol (if any), perhaps ‘.
char symbol_leading_char;
The pad character for file names within an archive header.
char ar_pad_char;
The maximum number of characters in an archive header.
unsigned short ar_max_namelen;
Entries for byte swapping for data. These are different from the other entry points, since
they don’t take a BFD asthe first argument. Certain other handlers could do the same.

bfd_vma (¥bfd_getx64) PARAMS ((const bfd_byte *));
bfd_signed_vma (*bfd_getx_signed_64) PARAMS ((const bfd_byte *));
void (*bfd_putx64) PARAMS ((bfd_vma, bfd_byte *));
bfd_vma (*bfd_getx32) PARAMS ((const bfd_byte *));
bfd_signed_vma (*bfd_getx_signed_32) PARAMS ((const bfd_byte *));
void (*bfd_putx32) PARAMS ((bfd_vma, bfd_byte *));
bfd_vma (*bfd_getx16) PARAMS ((const bfd_byte *));
bfd_signed_vma (*bfd_getx_signed_16) PARAMS ((const bfd_byte *));
void (*bfd_putx16) PARAMS ((bfd_vma, bfd_byte *));

Byte swapping for the headers
bfd_vma (¥bfd_h_getx64) PARAMS ((const bfd_byte *));
bfd_signed_vma (*bfd_h_getx_signed_64) PARAMS ((const bfd_byte *));
void (*bfd_h_putx64) PARAMS ((bfd_vma, bfd_byte *));
bfd_vma (*bfd_h_getx32) PARAMS ((const bfd_byte *));
bfd_signed_vma (*bfd_h_getx_signed_32) PARAMS ((const bfd_byte *));
void (*bfd_h_putx32) PARAMS ((bfd_vma, bfd_byte *));
bfd_vma (*bfd_h_getx16) PARAMS ((const bfd_byte *));
bfd_signed_vma (*bfd_h_getx_signed_16) PARAMS ((const bfd_byte *));
void (*bfd_h_putx16) PARAMS ((bfd_vma, bfd_byte *));

Format dependent routines: these are vectors of entry points within the target vector struc-
ture, one for each format to check.
Check the format of a file being read. Return a bfd_target * or zero.
const struct bfd_target *(x_bfd_check_format[bfd_type_end]) PARAMS ((bfd *));|}
Set the format of a file being written.

boolean (*_bfd_set_format [bfd_type_end]) PARAMS ((bfd *));
Write cached information into a file being written, at bfd_close.
boolean (*_bfd_write_contents[bfd_type_end]) PARAMS ((bfd *));|j

The general target vector.

/* Generic entry points. */
#define BFD_JUMP_TABLE_GENERIC(NAME)\
CAT(NAME, _close_and_cleanup),\
CAT(NAME, _bfd_free_cached_info),\
CAT(NAME, _new_section_hook),\
CAT(NAME, _get_section_contents),\
CAT(NAME, _get_section_contents_in_window)

Chapter 2: BFD front end

/* Called when the BFD is being closed to do any necessary cleanup. */Jj
boolean (*_close_and_cleanup) PARAMS ((bfd *));

/* Ask the BFD to free all cached information. */
boolean (*_bfd_free_cached_info) PARAMS ((bfd *));

/* Called when a new section is created. */

boolean (*_new_section_hook) PARAMS ((bfd *, sec_ptr));
/* Read the contents of a section. */
boolean (*_bfd_get_section_contents) PARAMS ((bfd *, sec_ptr, PTR,|]
file_ptr, bfd_size_type));
boolean (*x_bfd_get_section_contents_in_window)

PARAMS ((bfd *, sec_ptr, bfd_window *,
file_ptr, bfd_size_type));

/* Entry points to copy private data. */
#define BFD_JUMP_TABLE_COPY (NAME)\
CAT(NAME, _bfd_copy_private_bfd_data),\
CAT(NAME, _bfd_merge_private_bfd_data),\
CAT(NAME, _bfd_copy_private_section_data),\
CAT(NAME, _bfd_copy_private_symbol_data),\
CAT(NAME, _bfd_set_private_flags),\
CAT(NAME, _bfd_print_private_bfd_data)\
/* Called to copy BFD general private data from one object file
to another. */
boolean (*_bfd_copy_private_bfd_data) PARAMS ((bfd *, bfd *));
/* Called to merge BFD general private data from one object file
to a common output file when linking. */
boolean (*_bfd_merge_private_bfd_data) PARAMS ((bfd *, bfd *));
/* Called to copy BFD private section data from one object file
to another. */
boolean (*_bfd_copy_private_section_data) PARAMS ((bfd *, sec_ptr,|]
bfd *, sec_ptr));
/* Called to copy BFD private symbol data from one symbol
to another. */
boolean (*_bfd_copy_private_symbol_data) PARAMS ((bfd *, asymbol *,Jj
bfd *, asymbol *));
/* Called to set private backend flags */
boolean (*_bfd_set_private_flags) PARAMS ((bfd *, flagword));

/* Called to print private BFD data */
boolean (x_bfd_print_private_bfd_data) PARAMS ((bfd *, PTR));

/* Core file entry points. */

#define BFD_JUMP_TABLE_CORE (NAME)\

CAT(NAME, _core_file_failing_command),\

CAT(NAME, _core_file_failing_signal),\

CAT(NAME, _core_file_matches_executable_p)
char * (*_core_file_failing_command) PARAMS ((bfd *));
int (x_core_file_failing_signal) PARAMS ((bfd *));

Chapter 2: BFD front end

boolean (*_core_file_matches_executable_p) PARAMS ((bfd *, bfd *));

/* Archive entry points. */
#define BFD_JUMP_TABLE_ARCHIVE (NAME)\
CAT(NAME, _slurp_armap),\
CAT(NAME, _slurp_extended_name_table),\
CAT(NAME, _construct_extended_name_table),\
CAT(NAME, _truncate_arname),\
CAT(NAME, _write_armap),\
CAT(NAME, _read_ar_hdr),\
CAT(NAME, _openr_next_archived_file),\
CAT(NAME, _get_elt_at_index),\
CAT(NAME, _generic_stat_arch_elt),\
CAT(NAME, _update_armap_timestamp)
boolean (*_bfd_slurp_armap) PARAMS ((bfd *));
boolean (*_bfd_slurp_extended_name_table) PARAMS ((bfd *));
boolean (*_bfd_construct_extended_name_table)
PARAMS ((bfd *, char **, bfd_size_type *, const char *x));
void (*_bfd_truncate_arname) PARAMS ((bfd *, CONST char *, char x));l}
boolean (*write_armap) PARAMS ((bfd *arch,
unsigned int elength,
struct orl *map,
unsigned int orl_count,
int stridx));
PTR (*_bfd_read_ar_hdr_fn) PARAMS ((bfd *));
bfd * (xopenr_next_archived_file) PARAMS ((bfd *arch, bfd *prev));
#define bfd_get_elt_at_index(b,i) BFD_SEND(b, _bfd_get_elt_at_index, (b,i))]]
bfd * (x_bfd_get_elt_at_index) PARAMS ((bfd *, symindex));
int (*_bfd_stat_arch_elt) PARAMS ((bfd *, struct stat *));
boolean (*_bfd_update_armap_timestamp) PARAMS ((bfd *));

/* Entry points used for symbols. */

#define BFD_JUMP_TABLE_SYMBOLS (NAME)\

CAT(NAME, _get_symtab_upper_bound) ,\

CAT(NAME, _get_symtab),\

CAT(NAME, _make_empty_symbol),\

CAT(NAME, _print_symbol),\

CAT(NAME, _get_symbol_info),\

CAT(NAME, _bfd_is_local_label_name),\

CAT(NAME, _get_lineno),\

CAT(NAME, _find_nearest_line),\

CAT(NAME, _bfd_make_debug_symbol),\

CAT(NAME, read_minisymbols),\

CAT(NAME, minisymbol_to_symbol)
long (*_bfd_get_symtab_upper_bound) PARAMS ((bfd *));
long (*_bfd_canonicalize_symtab) PARAMS ((bfd *,

struct symbol_cache_entry **));]j

struct symbol_cache_entry *

Chapter 2: BFD front end

(*_bfd_make_empty_symbol) PARAMS ((bfd x));
void (*_bfd_print_symbol) PARAMS ((bfd *, PTR,
struct symbol_cache_entry *,
bfd_print_symbol_type));
#define bfd_print_symbol(b,p,s,e) BFD_SEND(b, _bfd_print_symbol, (b,p,s,e))]]
void (*_bfd_get_symbol_info) PARAMS ((bfd *,
struct symbol_cache_entry x*,
symbol_info *));
#define bfd_get_symbol_info(b,p,e) BFD_SEND(b, _bfd_get_symbol_info, (b,p,e))]]
boolean (*_bfd_is_local_label_name) PARAMS ((bfd *, const char *));

alent * (*_get_lineno) PARAMS ((bfd *, struct symbol_cache_entry x));l}
boolean (*_bfd_find_nearest_line) PARAMS ((bfd *abfd,
struct sec *section, struct symbol_cache_entry **symbols,|]
bfd_vma offset, CONST char **file, CONST char **xfunc,]j
unsigned int *line));

/* Back-door to allow format-aware applications to create debug symbols|]
while using BFD for everything else. Currently used by the assembler]
when creating COFF files. */

asymbol * (*_bfd_make_debug_symbol) PARAMS ((

bfd *abfd,
void *ptr,
unsigned long size));
#define bfd_read_minisymbols(b, d, m, s) \

BFD_SEND (b, _read minisymbols, (b, d, m, s))

long (*_read_minisymbols) PARAMS ((bfd *, boolean, PTR *,

unsigned int *));
#define bfd_minisymbol_to_symbol(b, d, m, f) \

BFD_SEND (b, _minisymbol_to_symbol, (b, d, m, f))

asymbol *(*_minisymbol_to_symbol) PARAMS ((bfd #*, boolean, const PTR,

asymbol *));

/* Routines for relocs. */
#define BFD_JUMP_TABLE_RELOCS(NAME)\
CAT(NAME, _get_reloc_upper_bound),\
CAT(NAME, _canonicalize_reloc),\
CAT(NAME, _bfd_reloc_type_lookup)

long (*_get_reloc_upper_bound) PARAMS ((bfd *, sec_ptr));

long (*_bfd_canonicalize_reloc) PARAMS ((bfd *, sec_ptr, arelent *x,

struct symbol_cache_entry *x*));]j
/* See documentation on reloc types. */
reloc_howto_type *
(*reloc_type_lookup) PARAMS ((bfd *abfd,
bfd_reloc_code_real_type code));

/* Routines used when writing an object file. */
#define BFD_JUMP_TABLE_WRITE (NAME)\
CAT(NAME, _set_arch_mach),\

Chapter 2: BFD front end

CAT(NAME, _set_section_contents)
boolean (*_bfd_set_arch_mach) PARAMS ((bfd *, enum bfd_architecture,]]
unsigned long));
boolean (*x_bfd_set_section_contents) PARAMS ((bfd *, sec_ptr, PTR,]}
file_ptr, bfd_size_type));

/* Routines used by the linker. */
#define BFD_JUMP_TABLE_LINK (NAME)\
CAT(NAME, _sizeof_headers),\
CAT(NAME, _bfd_get_relocated_section_contents),\
CAT(NAME, _bfd_relax_section),\
CAT(NAME, _bfd_link_hash_table_create),\
CAT(NAME, _bfd_link_add_symbols),\
CAT (NAME, _bfd_final_link),\
CAT(NAME, bfd_link_split_section)
int (*_bfd_sizeof_headers) PARAMS ((bfd *, boolean));
bfd_byte * (x_bfd_get_relocated_section_contents) PARAMS ((bfd *,
struct bfd_link_info *, struct bfd_link_order *,
bfd_byte *data, boolean relocateable,
struct symbol_cache_entry **));

boolean (*_bfd_relax_section) PARAMS ((bfd *, struct sec *,
struct bfd_link_info *, boolean *again));

/* Create a hash table for the linker. Different backends store
different information in this table. */
struct bfd_link_hash_table *(*_bfd_link_hash_table_create) PARAMS ((bfd x*));l}

/* Add symbols from this object file into the hash table. */
boolean (*_bfd_link_add_symbols) PARAMS ((bfd *, struct bfd_link_info x));|}

/* Do a link based on the link_order structures attached to each
section of the BFD. x/
boolean (*_bfd_final_link) PARAMS ((bfd *, struct bfd_link_info *));

/* Should this section be split up into smaller pieces during linking. */Jj
boolean (*_bfd_link_split_section) PARAMS ((bfd *, struct sec *));

/* Routines to handle dynamic symbols and relocs. */
#define BFD_JUMP_TABLE_DYNAMIC (NAME)\
CAT(NAME, _get_dynamic_symtab_upper_bound) ,\
CAT(NAME, _canonicalize_dynamic_symtab),\
CAT(NAME, _get_dynamic_reloc_upper_bound),\
CAT(NAME, _canonicalize_dynamic_reloc)
/* Get the amount of memory required to hold the dynamic symbols. */
long (*_bfd_get_dynamic_symtab_upper_bound) PARAMS ((bfd *));
/* Read in the dynamic symbols. */
long (*_bfd_canonicalize_dynamic_symtab)

Chapter 2: BFD front end

PARAMS ((bfd *, struct symbol_cache_entry *x*));
/* Get the amount of memory required to hold the dynamic relocs. */
long (*_bfd_get_dynamic_reloc_upper_bound) PARAMS ((bfd *));
/* Read in the dynamic relocs. */
long (*_bfd_canonicalize_dynamic_reloc)
PARAMS ((bfd *, arelent **, struct symbol_cache_entry **));

Data for use by back-end routines, which isn’t generic enough to belong in this structure.
PTR backend_data;
} bfd_target;

2.13.1.1 bfd_set_default_target

Synopsis
boolean bfd_set_default_target (const char *name) ;
Description
Set the default target vector to use when recognizing a BFD. This takes the name of the
target, which may be a BFD target name or a configuration triplet.

2.13.1.2 bfd_find_target

Synopsis

const bfd_target *bfd_find_target(CONST char *target_name, bfd *abfd);
Description
Return a pointer to the transfer vector for the object target named target_name. If tar-
get_name is NULL, choose the one in the environment variable GNUTARGET; if that is null or
not defined, then choose the first entry in the target list. Passing in the string "default" or
setting the environment variable to "default" will cause the first entry in the target list to
be returned, and "target_defaulted" will be set in the BFD. This causes bfd_check_format
to loop over all the targets to find the one that matches the file being read.

2.13.1.3 bfd_target_list

Synopsis
const char **bfd_target_list(void);
Description
Return a freshly malloced NULL-terminated vector of the names of all the valid BFD
targets. Do not modify the names.

2.14 Architectures

BFD keeps one atom in a BFD describing the architecture of the data attached to the BFD:
a pointer to a bfd_arch_info_type.

Chapter 2: BFD front end

Pointers to structures can be requested independently of a BFD so that an architecture’s
information can be interrogated without access to an open BFD.

The architecture information is provided by each architecture package. The set of default
architectures is selected by the macro SELECT_ARCHITECTURES. This is normally set up
in the ‘config/target.mt’ file of your choice. If the name is not defined, then all the
architectures supported are included.

When BFD starts up, all the architectures are called with an initialize method. It is up to
the architecture back end to insert as many items into the list of architectures as it wants
to; generally this would be one for each machine and one for the default case (an item with
a machine field of 0).

BFD’s idea of an architecture is implemented in ‘archures.c’.

2.14.1 bfd_architecture

Description
This enum gives the object file’s CPU architecture, in a global sense—i.e., what processor
family does it belong to? Another field indicates which processor within the family is in
use. The machine gives a number which distinguishes different versions of the architecture,
containing, for example, 2 and 3 for Intel 1960 KA and 1960 KB, and 68020 and 68030 for
Motorola 68020 and 68030.

enum bfd_architecture

{
bfd_arch_unknown, /* File arch not known */
bfd_arch_obscure, /* Arch known, not one of these */
bfd_arch_m68k, /* Motorola 68xxx */
bfd_arch_vax, /* DEC Vax */
bfd_arch_i960, /* Intel 960 x/

/* The order of the following is important.
lower number indicates a machine type that
only accepts a subset of the instructions
available to machines with higher numbers.
The exception is the '"ca", which is
incompatible with all other machines except
"core". x/

#define bfd_mach_i960_core
#define bfd_mach_i960_ka_sa
#define bfd_mach_i960_kb_sb
#define bfd_mach_i960_mc
#define bfd_mach_i960_xa
#define bfd_mach_i960_ca
#define bfd_mach_i960_jx 7
#define bfd_mach_i960_hx 8

TP WN -

bfd_arch_a29k, /* AMD 29000 */

Chapter 2: BFD front end

bfd_arch_sparc, /* SPARC */
#define bfd_mach_sparc 1

/* The difference between v8plus and v9 is that v9 is a true 64 bit env.

#define bfd_mach_sparc_sparclet 2
#define bfd_mach_sparc_sparclite 3
#define bfd_mach_sparc_v8plus 4

#define bfd_mach_sparc_v8plusa 5 /* with ultrasparc add’ns */

#define bfd_mach_sparc_v9 6

#define bfd_mach_sparc_v9a 7 /* with ultrasparc add’ns */

/* Nonzero if MACH has the v9 instruction set.
#define bfd_mach_sparc_v9_p(mach) \

((mach) >= bfd_mach_sparc_v8plus && (mach) <= bfd_mach_sparc_v9a)

bfd_arch_mips, /* MIPS Rxxxx */
bfd_arch_i386, /* Intel 386 x/
#tdefine bfd_mach_i386_i386 0
#tdefine bfd_mach_i386_i8086 1

bfd_arch_we32k, /* AT&T WE32xxx */
bfd_arch_tahoe, /* CCI/Harris Tahoe */
bfd_arch_i860, /* Intel 860 */
bfd_arch_romp, /* IBM ROMP PC/RT */
bfd_arch_alliant, /* Alliant */
bfd_arch_convex, /* Convex */
bfd_arch_m88k, /* Motorola 88xxx */
bfd_arch_pyramid, /* Pyramid Technology */
bfd_arch_h8300, /* Hitachi H8/300 x/

#tdefine bfd_mach_h8300 1
#tdefine bfd_mach_h8300h 2
#define bfd_mach_h8300s 3

bfd_arch_powerpc, /* PowerPC */
bfd_arch_rs6000, /* IBM RS/6000 */
bfd_arch_hppa, /* HP PA RISC */
bfd_arch_di0v, /* Mitsubishi D10V */
bfd_arch_z8k, /* Zilog Z8000 */

#tdefine bfd_mach_z8001 1
#tdefine bfd_mach_z8002 2

bfd_arch_h8500, /*
bfd_arch_sh, /*
#define bfd_mach_sh
#define bfd_mach_sh3
#define bfd_mach_sh3e
bfd_arch_alpha, /*
bfd_arch_arm, /*
#define bfd_mach_arm_2 1
#define bfd_mach_arm_2a 2
#define bfd_mach_arm_3 3

#tdefine bfd_mach_arm_3M 4

#tdefine bfd_mach_arm_4 5

#tdefine bfd_mach_arm_4T 6

Hitachi H8/500 */
Hitachi SH */
0
0x30
0x3e
Dec Alpha */
Advanced Risc Machines ARM */

Y |

Chapter 2: BFD front end

bfd_arch_ns32k, /* National Semiconductors ns32000 */
bfd_arch_w65, /* WDC 65816 */
bfd_arch_v850, /* NEC V850 */
#define bfd_mach_v850 0
bfd_arch_arc, /* Argonaut RISC Core */
#define bfd_mach_arc_base 0
bfd_arch_m32r, /* Mitsubishi M32R/D */

bfd_arch_mn10200, /* Matsushita MN10200 */
bfd_arch_mn10300, /* Matsushita MN10300 */
bfd_arch_last

};

2.14.2 bfd_arch_info

Description
This structure contains information on architectures for use within BFD.

typedef struct bfd_arch_info
{
int bits_per_word;
int bits_per_address;
int bits_per_byte;
enum bfd_architecture arch;
unsigned long mach;
const char *arch_name;
const char *printable_name;
unsigned int section_align_power;
/* true if this is the default machine for the architecture */
boolean the_default;
const struct bfd_arch_info * (*compatible)
PARAMS ((const struct bfd_arch_info *a,
const struct bfd_arch_info *b));

boolean (*scan) PARAMS ((const struct bfd_arch_info *, const char *));

const struct bfd_arch_info *next;
} bfd_arch_info_type;

2.14.2.1 bfd_printable_name

Synopsis
const char *bfd_printable_name(bfd *abfd);
Description
Return a printable string representing the architecture and machine from the pointer to the

Chapter 2: BFD front end

architecture info structure.

2.14.2.2 bfd_scan_arch

Synopsis
const bfd_arch_info_type *bfd_scan_arch(const char *string);
Description
Figure out if BFD supports any cpu which could be described with the name string. Return
a pointer to an arch_info structure if a machine is found, otherwise NULL.

2.14.2.3 bfd_arch_list

Synopsis
const char *xbfd_arch_list(void);
Description
Return a freshly malloced NULL-terminated vector of the names of all the valid BFD
architectures. Do not modify the names.

2.14.2.4 bfd_arch_get_compatible

Synopsis
const bfd_arch_info_type *bfd_arch_get_compatible(

const bfd *abfd,

const bfd *bbfd);
Description
Determine whether two BFDs’ architectures and machine types are compatible. Calculates
the lowest common denominator between the two architectures and machine types implied
by the BFDs and returns a pointer to an arch_info structure describing the compatible
machine.

2.14.2.5 bfd_default_arch_struct

Description
The bfd_default_arch_struct is an item of bfd_arch_info_type which has been initial-
ized to a fairly generic state. A BFD starts life by pointing to this structure, until the
correct back end has determined the real architecture of the file.

extern const bfd_arch_info_type bfd_default_arch_struct;

2.14.2.6 bfd_set_arch_info

Synopsis
void bfd_set_arch_info(bfd *abfd, const bfd_arch_info_type *arg);

Chapter 2: BFD front end

Description
Set the architecture info of abfd to arg.

2.14.2.7 bfd_default_set_arch_mach

Synopsis
boolean bfd_default_set_arch_mach(bfd *abfd,
enum bfd_architecture arch,
unsigned long mach);
Description
Set the architecture and machine type in BFD abfd to arch and mach. Find the correct
pointer to a structure and insert it into the arch_info pointer.

2.14.2.8 bfd_get_arch

Synopsis
enum bfd_architecture bfd_get_arch(bfd *abfd);
Description
Return the enumerated type which describes the BFD abfd’s architecture.

2.14.2.9 bfd_get_mach

Synopsis

unsigned long bfd_get_mach(bfd *abfd);
Description
Return the long type which describes the BFD abfd’s machine.

2.14.2.10 bfd_arch_bits_per_byte

Synopsis

unsigned int bfd_arch_bits_per_byte(bfd *abfd) ;
Description
Return the number of bits in one of the BFD abfd’s architecture’s bytes.

2.14.2.11 bfd_arch_bits_per_address

Synopsis

unsigned int bfd_arch_bits_per_address(bfd *abfd) ;
Description
Return the number of bits in one of the BFD abfd’s architecture’s addresses.

Chapter 2: BFD front end

2.14.2.12 bfd_default_compatible

Synopsis
const bfd_arch_info_type *bfd_default_compatible
(const bfd_arch_info_type *a,
const bfd_arch_info_type *b);
Description
The default function for testing for compatibility.

2.14.2.13 bfd_default_scan

Synopsis

boolean bfd_default_scan(const struct bfd_arch_info *info, const char *string) |}
Description
The default function for working out whether this is an architecture hit and a machine hit.

2.14.2.14 bfd_get_arch_info

Synopsis

const bfd_arch_info_type * bfd_get_arch_info(bfd *abfd);
Description
Return the architecture info struct in abfd.

2.14.2.15 bfd_lookup_arch

Synopsis
const bfd_arch_info_type *bfd_lookup_arch

(enum bfd_architecture

arch,

unsigned long machine);
Description
Look for the architecure info structure which matches the arguments arch and machine. A
machine of 0 matches the machine/architecture structure which marks itself as the default.

2.14.2.16 bfd_printable_arch_mach

Synopsis
const char *bfd_printable_arch_mach
(enum bfd_architecture arch, unsigned long machine);
Description
Return a printable string representing the architecture and machine type.

This routine is depreciated.

Chapter 2: BFD front end

2.15 Opening and closing BFDs

2.15.0.1 bfd_openr

Synopsis
bfd *bfd_openr (CONST char *filename, CONST char *target);
Description
Open the file filename (using fopen) with the target target. Return a pointer to the created
BFD.

Calls bfd_find_target, so target is interpreted as by that function.

If NULL is returned then an error has occured. Possible errors are bfd_error_no_memory,
bfd_error_invalid_target or system_call error.

2.15.0.2 bfd_fdopenr

Synopsis

bfd *bfd_fdopenr (CONST char *filename, CONST char *target, int fd);
Description
bfd_fdopenr is to bfd_fopenr much like fdopen is to fopen. It opens a BFD on a file
already described by the fd supplied.

When the file is later bfd_closed, the file descriptor will be closed.

If the caller desires that this file descriptor be cached by BFD (opened as needed, closed
as needed to free descriptors for other opens), with the supplied fd used as an initial file
descriptor (but subject to closure at any time), call bfd_set_cacheable(bfd, 1) on the returned
BFD. The default is to assume no cacheing; the file descriptor will remain open until bfd_
close, and will not be affected by BFD operations on other files.

Possible errors are bfd_error_no_memory, bfd_error_invalid_target and bfd_error
system_call.

2.15.0.3 bfd_openstreamr

Synopsis
bfd *bfd_openstreamr(const char *, const char *, PTR);
Description
Open a BFD for read access on an existing stdio stream. When the BFD is passed to
bfd_close, the stream will be closed.

2.15.0.4 bfd_openw

Synopsis

Chapter 2: BFD front end

bfd *bfd_openw(CONST char *filename, CONST char *target);
Description
Create a BFD, associated with file filename, using the file format target, and return a
pointer to it.

Possible errors are bfd_error_system_call, bfd_error_no_memory, bfd_error_invalid_
target.

2.15.0.5 bfd_close

Synopsis

boolean bfd_close(bfd *abfd);
Description
Close a BFD. If the BFD was open for writing, then pending operations are completed and
the file written out and closed. If the created file is executable, then chmod is called to mark
it as such.

All memory attached to the BFD is released.

The file descriptor associated with the BFD is closed (even if it was passed in to BFD by
bfd_fdopenr).

Returns

true is returned if all is ok, otherwise false.

2.15.0.6 bfd_close_all_done

Synopsis

boolean bfd_close_all_done(bfd *);
Description
Close a BFD. Differs from bfd_close since it does not complete any pending operations.
This routine would be used if the application had just used BFD for swapping and didn’t
want to use any of the writing code.

If the created file is executable, then chmod is called to mark it as such.

All memory attached to the BFD is released.
Returns
true is returned if all is ok, otherwise false.

2.15.0.7 bfd_create

Synopsis
bfd *bfd_create(CONST char *filename, bfd *templ);
Description
Create a new BFD in the manner of bfd_openw, but without opening a file. The new BFD
takes the target from the target used by template. The format is always set to bfd_object.

Chapter 2: BFD front end

2.15.0.8 bfd_alloc

Synopsis
PTR bfd_alloc (bfd *abfd, size_t wanted);
Description
Allocate a block of wanted bytes of memory attached to abfd and return a pointer to it.

2.16 Internal functions

Description
These routines are used within BFD. They are not intended for export, but are documented
here for completeness.

2.16.0.1 bfd_write_bigendian_4byte_int

Synopsis
void bfd_write_bigendian_4byte_int(bfd *abfd, int i);
Description
Write a 4 byte integer i to the output BFD abfd, in big endian order regardless of what else
is going on. This is useful in archives.

2.16.0.2 bfd_put_size

2.16.0.3 bfd_get_size

Description

These macros as used for reading and writing raw data in sections; each access (except for
bytes) is vectored through the target format of the BFD and mangled accordingly. The
mangling performs any necessary endian translations and removes alignment restrictions.
Note that types accepted and returned by these macros are identical so they can be swapped
around in macros—for example, ‘libaout.h’ defines GET_WORD to either bfd_get_32 or
bfd_get_64.

In the put routines, val must be a bfd_vma. If we are on a system without prototypes, the
caller is responsible for making sure that is true, with a cast if necessary. We don’t cast
them in the macro definitions because that would prevent 1int or gcc -Wall from detecting
sins such as passing a pointer. To detect calling these with less than a bfd_vma, use gcc
-Wconversion on a host with 64 bit bfd_vma’s.

/* Byte swapping macros for user section data. */

#define bfd_put_8(abfd, val, ptr) \
(*((unsigned char *)(ptr)) = (unsigned char) (val))

Chapter 2: BFD front end

#define bfd_put_signed_8 \

bfd_put_8

#define bfd_get_8(abfd, ptr) \
(*(unsigned char x)(ptr))

#define bfd_get_signed_8(abfd, ptr) \

((*(unsigned char *)(ptr) ~ 0x80) - 0x80)

#define bfd_put_16(abfd, val, ptr) \

BFD_SEND (abfd, bfd_putx16, ((val),(ptr)))
#define bfd_put_signed_16 \
bfd_put_16
#define bfd_get_16(abfd, ptr) \

BFD_SEND (abfd, bfd_getx16, (ptr))
#define bfd_get_signed_16(abfd, ptr) \

BFD_SEND (abfd, bfd_getx_signed_16, (ptr))

#define bfd_put_32(abfd, val, ptr) \
BFD_SEND (abfd, bfd_putx32, ((val),(ptr)))
#define bfd_put_signed_32 \
bfd_put_32
#define bfd_get_32(abfd, ptr) \
BFD_SEND (abfd, bfd_getx32, (ptr))
#define bfd_get_signed_32(abfd, ptr) \
BFD_SEND (abfd, bfd_getx_signed_32, (ptr))

#define bfd_put_64(abfd, val, ptr) \
BFD_SEND (abfd, bfd_putx64, ((val), (ptr)))
#define bfd_put_signed_64 \
bfd_put_64
#define bfd_get_64(abfd, ptr) \
BFD_SEND (abfd, bfd_getx64, (ptr))
#define bfd_get_signed_64(abfd, ptr) \
BFD_SEND(abfd, bfd_getx_signed_64, (ptr))

2.16.0.4 bfd_h_put_size

Description

These macros have the same function as their bfd_get_x bretheren, except that they are
used for removing information for the header records of object files. Believe it or not, some
object files keep their header records in big endian order and their data in little endian
order.

/* Byte swapping macros for file header data. */

#define bfd_h_put_8(abfd, val, ptr) \

Chapter 2: BFD front end

bfd_put_8 (abfd, val, ptr)

#define bfd_h_put_signed_8(abfd, val, ptr) \
bfd_put_8 (abfd, val, ptr)

#define bfd_h_get_8(abfd, ptr) \

bfd_get_8 (abfd, ptr)

#define bfd_h_get_signed_8(abfd, ptr) \
bfd_get_signed_8 (abfd, ptr)

#define bfd_h_put_16(abfd, val, ptr) \

BFD_SEND (abfd, bfd_h_putx16, (val,ptr))
#define bfd_h_put_signed_16 \
bfd_h_put_16
#define bfd_h_get_16(abfd, ptr) \

BFD_SEND(abfd, bfd_h_getx16, (ptr))
#define bfd_h_get_signed_16(abfd, ptr) \
BFD_SEND(abfd, bfd_h_getx_signed_16, (ptr))

#define bfd_h_put_32(abfd, val, ptr) \

BFD_SEND (abfd, bfd_h_putx32, (val,ptr))
#define bfd_h_put_signed_32 \
bfd_h_put_32
#define bfd_h_get_32(abfd, ptr) \

BFD_SEND(abfd, bfd_h_getx32, (ptr))
#define bfd_h_get_signed_32(abfd, ptr) \
BFD_SEND(abfd, bfd_h_getx_signed_32, (ptr))

#define bfd_h_put_64(abfd, val, ptr) \

BFD_SEND (abfd, bfd_h_putx64, (val, ptr))
#define bfd_h_put_signed_64 \
bfd_h_put_64
#define bfd_h_get_64(abfd, ptr) \

BFD_SEND(abfd, bfd_h_getx64, (ptr))
#define bfd_h_get_signed_64(abfd, ptr) \
BFD_SEND(abfd, bfd_h_getx_signed_64, (ptr))

2.16.0.5 bfd_log2

Synopsis
unsigned int bfd_log2(bfd_vma x);
Description
Return the log base 2 of the value supplied, rounded up. E.g., an x of 1025 returns 11.

Chapter 2: BFD front end

2.17 File caching

The file caching mechanism is embedded within BFD and allows the application to open as
many BFDs as it wants without regard to the underlying operating system’s file descriptor
limit (often as low as 20 open files). The module in cache.c maintains a least recently
used list of BFD_CACHE_MAX_OPEN files, and exports the name bfd_cache_lookup, which
runs around and makes sure that the required BFD is open. If not, then it chooses a file to
close, closes it and opens the one wanted, returning its file handle.

2.17.0.1 BFD_CACHE_MAX_OPEN macro

Description
The maximum number of files which the cache will keep open at one time.
#define BFD_CACHE_MAX_OPEN 10

2.17.0.2 bfd_last_cache

Synopsis
extern bfd *bfd_last_cache;
Description
Zero, or a pointer to the topmost BFD on the chain. This is used by the bfd_cache_lookup
macro in ‘1ibbfd.h’ to determine when it can avoid a function call.

2.17.0.3 bfd_cache_lookup

Description
Check to see if the required BFD is the same as the last one looked up. If so, then it can
use the stream in the BFD with impunity, since it can’t have changed since the last lookup;
otherwise, it has to perform the complicated lookup function.
#define bfd_cache_lookup(x) \
((x)==bfd_last_cache? \
(FILE*) (bfd_last_cache->iostream): \
bfd_cache_lookup_worker (x))

2.17.0.4 bfd_cache_init

Synopsis

boolean bfd_cache_init (bfd *abfd);
Description
Add a newly opened BFD to the cache.

Chapter 2: BFD front end

2.17.0.5 bfd_cache_close

Synopsis
boolean bfd_cache_close (bfd *abfd);
Description
Remove the BFD abfd from the cache. If the attached file is open, then close it too.
Returns
false is returned if closing the file fails, true is returned if all is well.

2.17.0.6 bfd_open_file

Synopsis

FILE* bfd_open_file(bfd *abfd);
Description
Call the OS to open a file for abfd. Return the FILE * (possibly NULL) that results from
this operation. Set up the BFD so that future accesses know the file is open. If the FILE *
returned is NULL, then it won’t have been put in the cache, so it won’t have to be removed
from it.

2.17.0.7 bfd_cache_lookup_worker

Synopsis

FILE *bfd_cache_lookup_worker (bfd *abfd);
Description
Called when the macro bfd_cache_lookup fails to find a quick answer. Find a file descriptor
for abfd. If necessary, it open it. If there are already more than BFD_CACHE_MAX_OPEN files
open, it tries to close one first, to avoid running out of file descriptors.

2.18 Linker Functions

The linker uses three special entry points in the BFD target vector. It is not necessary
to write special routines for these entry points when creating a new BFD back end, since
generic versions are provided. However, writing them can speed up linking and make it use
significantly less runtime memory.

The first routine creates a hash table used by the other routines. The second routine adds
the symbols from an object file to the hash table. The third routine takes all the object
files and links them together to create the output file. These routines are designed so that
the linker proper does not need to know anything about the symbols in the object files that
it is linking. The linker merely arranges the sections as directed by the linker script and
lets BFD handle the details of symbols and relocs.

The second routine and third routines are passed a pointer to a struct bfd_link_info
structure (defined in bfdlink.h) which holds information relevant to the link, including
the linker hash table (which was created by the first routine) and a set of callback functions
to the linker proper.

Chapter 2: BFD front end

The generic linker routines are in linker.c, and use the header file genlink.h. As of this
writing, the only back ends which have implemented versions of these routines are a.out (in
aoutx.h) and ECOFF (in ecoff.c). The a.out routines are used as examples throughout
this section.

2.18.1 Creating a linker hash table

The linker routines must create a hash table, which must be derived from struct bfd_
link_hash_table described in bfdlink.c. See Section 2.19 [Hash Tables], page 82 for
information on how to create a derived hash table. This entry point is called using the
target vector of the linker output file.

The _bfd_link_hash_table_create entry point must allocate and initialize an instance
of the desired hash table. If the back end does not require any additional information to
be stored with the entries in the hash table, the entry point may simply create a struct
bfd_link_hash_table. Most likely, however, some additional information will be needed.

For example, with each entry in the hash table the a.out linker keeps the index the symbol
has in the final output file (this index number is used so that when doing a relocateable
link the symbol index used in the output file can be quickly filled in when copying over
a reloc). The a.out linker code defines the required structures and functions for a hash
table derived from struct bfd_link_hash_table. The a.out linker hash table is created
by the function NAME (aout,link_hash_table_create); it simply allocates space for the
hash table, initializes it, and returns a pointer to it.

When writing the linker routines for a new back end, you will generally not know exactly
which fields will be required until you have finished. You should simply create a new
hash table which defines no additional fields, and then simply add fields as they become
necessary.

2.18.2 Adding symbols to the hash table

The linker proper will call the _bfd_link_add_symbols entry point for each object file or
archive which is to be linked (typically these are the files named on the command line, but
some may also come from the linker script). The entry point is responsible for examining
the file. For an object file, BFD must add any relevant symbol information to the hash
table. For an archive, BFD must determine which elements of the archive should be used
and adding them to the link.

The a.out version of this entry point is NAME (aout,link_add_symbols).

2.18.2.1 Differing file formats

Normally all the files involved in a link will be of the same format, but it is also possible
to link together different format object files, and the back end must support that. The

Chapter 2: BFD front end

_bfd_link_add_symbols entry point is called via the target vector of the file to be added.
This has an important consequence: the function may not assume that the hash table is
the type created by the corresponding _bfd_link_hash_table_create vector. All the _
bfd_link_add_symbols function can assume about the hash table is that it is derived from
struct bfd_link_hash_table.

Sometimes the _bfd_link_add_symbols function must store some information in the hash
table entry to be used by the _bfd_final_link function. In such a case the creator field
of the hash table must be checked to make sure that the hash table was created by an object
file of the same format.

The _bfd_final_link routine must be prepared to handle a hash entry without any extra
information added by the _bfd_link_add_symbols function. A hash entry without extra
information will also occur when the linker script directs the linker to create a symbol. Note
that, regardless of how a hash table entry is added, all the fields will be initialized to some
sort of null value by the hash table entry initialization function.

See ecoff_link_add_externals for an example of how to check the creator field before
saving information (in this case, the ECOFF external symbol debugging information) in a
hash table entry.

2.18.2.2 Adding symbols from an object file

When the _bfd_link_add_symbols routine is passed an object file, it must add all ex-
ternally visible symbols in that object file to the hash table. The actual work of adding
the symbol to the hash table is normally handled by the function _bfd_generic_link_
add_one_symbol. The _bfd_link_add_symbols routine is responsible for reading all the
symbols from the object file and passing the correct information to _bfd_generic_link_
add_one_symbol.

The _bfd_link_add_symbols routine should not use bfd_canonicalize_symtab to read
the symbols. The point of providing this routine is to avoid the overhead of converting the
symbols into generic asymbol structures.

_bfd_generic_link_add_one_symbol handles the details of combining common symbols,
warning about multiple definitions, and so forth. It takes arguments which describe the
symbol to add, notably symbol flags, a section, and an offset. The symbol flags include
such things as BSF_WEAK or BSF_INDIRECT. The section is a section in the object file, or
something like bfd_und_section_ptr for an undefined symbol or bfd_com_section_ptr
for a common symbol.

If the _bfd_final_link routine is also going to need to read the symbol information,
the _bfd_link_add_symbols routine should save it somewhere attached to the object file
BFD. However, the information should only be saved if the keep_memory field of the info
argument is true, so that the -no-keep-memory linker switch is effective.

The a.out function which adds symbols from an object file is aout_link_add_object_
symbols, and most of the interesting work is in aout_link_add_symbols. The latter saves
pointers to the hash tables entries created by _bfd_generic_link_add_one_symbol in-
dexed by symbol number, so that the _bfd_final_link routine does not have to call the

Chapter 2: BFD front end

hash table lookup routine to locate the entry.

2.18.2.3 Adding symbols from an archive

When the _bfd_link_add_symbols routine is passed an archive, it must look through the
symbols defined by the archive and decide which elements of the archive should be included
in the link. For each such element it must call the add_archive_element linker callback,
and it must add the symbols from the object file to the linker hash table.

In most cases the work of looking through the symbols in the archive should be done
by the _bfd_generic_link_add_archive_symbols function. This function builds a hash
table from the archive symbol table and looks through the list of undefined symbols to see
which elements should be included. _bfd_generic_link_add_archive_symbols is passed
a function to call to make the final decision about adding an archive element to the link
and to do the actual work of adding the symbols to the linker hash table.

The function passed to _bfd_generic_link_add_archive_symbols must read the symbols
of the archive element and decide whether the archive element should be included in the
link. If the element is to be included, the add_archive_element linker callback routine
must be called with the element as an argument, and the elements symbols must be added
to the linker hash table just as though the element had itself been passed to the _bfd_
link_add_symbols function.

When the a.out _bfd_link_add_symbols function receives an archive, it calls _bfd_
generic_link_add_archive_symbols passing aout_link_check_archive_element as
the function argument. aout_link_check_archive_element calls aout_link_check_
ar_symbols. If the latter decides to add the element (an element is only added if it
provides a real, non-common, definition for a previously undefined or common symbol) it
calls the add_archive_element callback and then aout_link_check_archive_element
calls aout_link_add_symbols to actually add the symbols to the linker hash table.

The ECOFF back end is unusual in that it does not normally call _bfd_generic_link_
add_archive_symbols, because ECOFF archives already contain a hash table of symbols.
The ECOFF back end searches the archive itself to avoid the overhead of creating a new
hash table.

2.18.3 Performing the final link

When all the input files have been processed, the linker calls the _bfd_final_link entry
point of the output BFD. This routine is responsible for producing the final output file,
which has several aspects. It must relocate the contents of the input sections and copy the
data into the output sections. It must build an output symbol table including any local
symbols from the input files and the global symbols from the hash table. When producing
relocateable output, it must modify the input relocs and write them into the output file.
There may also be object format dependent work to be done.

The linker will also call the write_object_contents entry point when the BFD is closed.
The two entry points must work together in order to produce the correct output file.

Chapter 2: BFD front end

The details of how this works are inevitably dependent upon the specific object file format.
The a.out _bfd_final_link routine is NAME (aout,final_link).

2.18.3.1 Information provided by the linker

Before the linker calls the _bfd_final_link entry point, it sets up some data structures
for the function to use.

The input_bfds field of the bfd_link_info structure will point to a list of all the input
files included in the link. These files are linked through the link_next field of the bfd
structure.

Each section in the output file will have a list of Link_order structures attached to the 1ink_
order_head field (the link_order structure is defined in bfdlink.h). These structures
describe how to create the contents of the output section in terms of the contents of various
input sections, fill constants, and, eventually, other types of information. They also describe
relocs that must be created by the BFD backend, but do not correspond to any input file;
this is used to support -Ur, which builds constructors while generating a relocateable object
file.

2.18.3.2 Relocating the section contents

The _bfd_final_link function should look through the link_order structures attached
to each section of the output file. Each link_order structure should either be handled
specially, or it should be passed to the function _bfd_default_link_order which will do
the right thing (_bfd_default_link_order is defined in linker.c).

For efficiency, a 1ink_order of type bfd_indirect_link_order whose associated section
belongs to a BFD of the same format as the output BFD must be handled specially. This
type of link_order describes part of an output section in terms of a section belonging
to one of the input files. The _bfd_final_link function should read the contents of the
section and any associated relocs, apply the relocs to the section contents, and write out
the modified section contents. If performing a relocateable link, the relocs themselves must
also be modified and written out.

The functions _bfd_relocate_contents and _bfd_final_link_relocate provide some
general support for performing the actual relocations, notably overflow checking. Their ar-
guments include information about the symbol the relocation is against and a reloc_howto_
type argument which describes the relocation to perform. These functions are defined in
reloc.c.

The a.out function which handles reading, relocating, and writing section contents is aout_
link_input_section. The actual relocation is done in aout_link_input_section_std
and aout_link_input_section_ext.

Chapter 2: BFD front end

2.18.3.3 Writing the symbol table

The _bfd_final_link function must gather all the symbols in the input files and write
them out. It must also write out all the symbols in the global hash table. This must be
controlled by the strip and discard fields of the bfd_link_info structure.

The local symbols of the input files will not have been entered into the linker hash table.
The _bfd_final_link routine must consider each input file and include the symbols in
the output file. It may be convenient to do this when looking through the link_order
structures, or it may be done by stepping through the input_bfds list.

The _bfd_final_link routine must also traverse the global hash table to gather all the
externally visible symbols. It is possible that most of the externally visible symbols may
be written out when considering the symbols of each input file, but it is still necessary to
traverse the hash table since the linker script may have defined some symbols that are not
in any of the input files.

The strip field of the bfd_link_info structure controls which symbols are written out.
The possible values are listed in bfdlink.h. If the value is strip_some, then the keep_hash
field of the bfd_link_info structure is a hash table of symbols to keep; each symbol should
be looked up in this hash table, and only symbols which are present should be included in
the output file.

If the strip field of the bfd_link_info structure permits local symbols to be written out,
the discard field is used to further controls which local symbols are included in the output
file. If the value is discard_1, then all local symbols which begin with a certain prefix are
discarded; this is controlled by the bfd_is_local_label_name entry point.

The a.out backend handles symbols by calling aout_link_write_symbols on each input
BFD and then traversing the global hash table with the function aout_link_write_other_
symbol. It builds a string table while writing out the symbols, which is written to the output
file at the end of NAME (aout,final_link).

2.18.3.4 bfd_link_split_section

Synopsis
boolean bfd_link_split_section(bfd *abfd, asection *sec);
Description
Return nonzero if sec should be split during a reloceatable or final link.
#define bfd_link_split_section(abfd, sec) \
BFD_SEND (abfd, _bfd_link_split_section, (abfd, sec))

2.19 Hash Tables

BFD provides a simple set of hash table functions. Routines are provided to initialize a
hash table, to free a hash table, to look up a string in a hash table and optionally create an

Chapter 2: BFD front end

entry for it, and to traverse a hash table. There is currently no routine to delete an string
from a hash table.

The basic hash table does not permit any data to be stored with a string. However, a
hash table is designed to present a base class from which other types of hash tables may be
derived. These derived types may store additional information with the string. Hash tables
were implemented in this way, rather than simply providing a data pointer in a hash table
entry, because they were designed for use by the linker back ends. The linker may create
thousands of hash table entries, and the overhead of allocating private data and storing and
following pointers becomes noticeable.

The basic hash table code is in hash.c.

2.19.1 Creating and freeing a hash table

To create a hash table, create an instance of a struct bfd_hash_table (defined in bfd.h)
and call bfd_hash_table_init (if you know approximately how many entries you will
need, the function bfd_hash_table_init_n, which takes a size argument, may be used).
bfd_hash_table_init returns false if some sort of error occurs.

The function bfd_hash_table_init take as an argument a function to use to create new
entries. For a basic hash table, use the function bfd_hash_newfunc. See Section 2.19.4
[Deriving a New Hash Table Type|, page 84 for why you would want to use a different value
for this argument.

bfd_hash_table_init will create an objalloc which will be used to allocate new entries.
You may allocate memory on this objalloc using bfd_hash_allocate.

Use bfd_hash_table_free to free up all the memory that has been allocated for a hash
table. This will not free up the struct bfd_hash_table itself, which you must provide.

2.19.2 Looking up or entering a string

The function bfd_hash_lookup is used both to look up a string in the hash table and to
create a new entry.

If the create argument is false, bfd_hash_lookup will look up a string. If the string is
found, it will returns a pointer to a struct bfd_hash_entry. If the string is not found in
the table bfd_hash_lookup will return NULL. You should not modify any of the fields in
the returns struct bfd_hash_entry.

If the create argument is true, the string will be entered into the hash table if it is not
already there. Either way a pointer to a struct bfd_hash_entry will be returned, either
to the existing structure or to a newly created one. In this case, a NULL return means that
an error occurred.

If the create argument is true, and a new entry is created, the copy argument is used to
decide whether to copy the string onto the hash table objalloc or not. If copy is passed as
false, you must be careful not to deallocate or modify the string as long as the hash table
exists.

Chapter 2: BFD front end

2.19.3 Traversing a hash table

The function bfd_hash_traverse may be used to traverse a hash table, calling a function
on each element. The traversal is done in a random order.

bfd_hash_traverse takes as arguments a function and a generic void * pointer. The
function is called with a hash table entry (a struct bfd_hash_entry *) and the generic
pointer passed to bfd_hash_traverse. The function must return a boolean value, which
indicates whether to continue traversing the hash table. If the function returns false,
bfd_hash_traverse will stop the traversal and return immediately.

2.19.4 Deriving a new hash table type

Many uses of hash tables want to store additional information which each entry in the hash
table. Some also find it convenient to store additional information with the hash table itself.
This may be done using a derived hash table.

Since C is not an object oriented language, creating a derived hash table requires sticking
together some boilerplate routines with a few differences specific to the type of hash table
you want to create.

An example of a derived hash table is the linker hash table. The structures for this are
defined in bfdlink.h. The functions are in linker.c.

You may also derive a hash table from an already derived hash table. For example, the
a.out linker backend code uses a hash table derived from the linker hash table.

2.19.4.1 Define the derived structures

You must define a structure for an entry in the hash table, and a structure for the hash
table itself.

The first field in the structure for an entry in the hash table must be of the type used for an
entry in the hash table you are deriving from. If you are deriving from a basic hash table
this is struct bfd_hash_entry, which is defined in bfd.h. The first field in the structure
for the hash table itself must be of the type of the hash table you are deriving from itself.
If you are deriving from a basic hash table, this is struct bfd_hash_table.

For example, the linker hash table defines struct bfd_link_hash_entry (in bfdlink.h).
The first field, root, is of type struct bfd_hash_entry. Similarly, the first field in struct
bfd_link_hash_table, table, is of type struct bfd_hash_table.

2.19.4.2 Write the derived creation routine

You must write a routine which will create and initialize an entry in the hash table. This
routine is passed as the function argument to bfd_hash_table_init.

In order to permit other hash tables to be derived from the hash table you are creating,
this routine must be written in a standard way.

Chapter 2: BFD front end

The first argument to the creation routine is a pointer to a hash table entry. This may be
NULL, in which case the routine should allocate the right amount of space. Otherwise the
space has already been allocated by a hash table type derived from this one.

After allocating space, the creation routine must call the creation routine of the hash table
type it is derived from, passing in a pointer to the space it just allocated. This will initialize
any fields used by the base hash table.

Finally the creation routine must initialize any local fields for the new hash table type.

Here is a boilerplate example of a creation routine. function_.name is the name of the
routine. entry_type is the type of an entry in the hash table you are creating. base_newfunc
is the name of the creation routine of the hash table type your hash table is derived from.
.struct bfd_hash_entry *
function_name (entry, table, string)
struct bfd_hash_entry *entry;
struct bfd_hash_table *table;
const char *string;
{
struct entry_type *ret = (entry_type *) entry;

/* Allocate the structure if it has not already been allocated by a
derived class. */
if (ret == (entry_type *) NULL)
{
ret = ((entry_type *)
bfd_hash_allocate (table, sizeof (entry_type)));
if (ret == (entry_-type *) NULL)
return NULL;
}

/* Call the allocation method of the base class. x*/
ret = ((entry_type *)
base_newfunc ((struct bfd_hash_entry *) ret, table, string));

/* Initialize the local fields here. x/

return (struct bfd_hash_entry *) ret;
}
Description
The creation routine for the linker hash table, which is in linker.c, looks just like this
example. function_.name is _bfd_link_hash_newfunc. entry_type is struct bfd_link_
hash_entry. base_newfunc is bfd_hash_newfunc, the creation routine for a basic hash
table.

_bfd_link_hash_newfunc also initializes the local fields in a linker hash table entry: type,
written and next.

Chapter 2: BFD front end

2.19.4.3 Write other derived routines

You will want to write other routines for your new hash table, as well.

You will want an initialization routine which calls the initialization routine of the hash table
you are deriving from and initializes any other local fields. For the linker hash table, this
is _bfd_link_hash_table_init in linker.c.

You will want a lookup routine which calls the lookup routine of the hash table you are
deriving from and casts the result. The linker hash table uses bfd_link_hash_lookup in
linker.c (this actually takes an additional argument which it uses to decide how to return
the looked up value).

You may want a traversal routine. This should just call the traversal routine of the hash
table you are deriving from with appropriate casts. The linker hash table uses bfd_link_
hash_traverse in linker.c.

These routines may simply be defined as macros. For example, the a.out backend linker
hash table, which is derived from the linker hash table, uses macros for the lookup and
traversal routines. These are aout_link_hash_lookup and aout_link_hash_traverse in
aoutx.h.

Chapter 3: BFD back ends

3 BFD back ends

All of BFD lives in one directory.

3.1 a.out backends

Description
BFD supports a number of different flavours of a.out format, though the major differences
are only the sizes of the structures on disk, and the shape of the relocation information.

The support is split into a basic support file ‘aoutx.h’ and other files which derive functions
from the base. One derivation file is ‘aoutf1.h’ (for a.out flavour 1), and adds to the basic
a.out functions support for sun3, sun4, 386 and 29k a.out files, to create a target jump
vector for a specific target.

This information is further split out into more specific files for each machine, including
‘sunos.c’ for sun3 and sun4, ‘newsos3.c’ for the Sony NEWS, and ‘demo64.c’ for a demon-
stration of a 64 bit a.out format.

The base file ‘aoutx.h’ defines general mechanisms for reading and writing records to and
from disk and various other methods which BFD requires. It is included by ‘aout32.c’
and ‘aout64.c’ to form the names aout_32_swap_exec_header_in, aout_64_swap_exec_
header_in, etc.

As an example, this is what goes on to make the back end for a sun4, from ‘aout32.c’:
#define ARCH_SIZE 32
#include "aoutx.h"

Which exports names:

aout_32_canonicalize_reloc
aout_32_find_nearest_line
aout_32_get_lineno
aout_32_get_reloc_upper_bound

from ‘sunos.c’:

#define TARGET_NAME "a.out-sunos-big"

#define VECNAME sunos_big_vec

#include "aoutfl.h"
requires all the names from ‘aout32.c’, and produces the jump vector

sunos_big_vec
The file ‘host-aout.c’ is a special case. It is for a large set of hosts that use “more or less
standard” a.out files, and for which cross-debugging is not interesting. It uses the standard
32-bit a.out support routines, but determines the file offsets and addresses of the text, data,
and BSS sections, the machine architecture and machine type, and the entry point address,
in a host-dependent manner. Once these values have been determined, generic code is used
to handle the object file.
When porting it to run on a new system, you must supply:

HOST_PAGE_SIZE
HOST_SEGMENT_SIZE

Chapter 3: BFD back ends

HOST_MACHINE_ARCH (optional)
HOST_MACHINE_MACHINE (optional)
HOST_TEXT_START_ADDR
HOST_STACK_END_ADDR
in the file ‘. ./include/sys/h-XXX.h' (for your host). These values, plus the structures
and macros defined in ‘a.out.h’ on your host system, will produce a BFD target that will
access ordinary a.out files on your host. To configure a new machine to use ‘host-aout.c’,
specify:
TDEFAULTS = -DDEFAULT_VECTOR=host_aout_big_vec
TDEPFILES= host-aout.o trad-core.o
in the ‘config/XXX.mt’ file, and modify ‘configure.in’ to use the ‘XXX.mt’ file (by
setting "bfd_target=XXX") when your configuration is selected.

3.1.1 Relocations

Description
The file ‘aoutx.h’ provides for both the standard and extended forms of a.out relocation
records.

The standard records contain only an address, a symbol index, and a type field. The
extended records (used on 29ks and sparcs) also have a full integer for an addend.

3.1.2 Internal entry points

Description
‘aoutx.h’ exports several routines for accessing the contents of an a.out file, which are
gathered and exported in turn by various format specific files (eg sunos.c).

3.1.2.1 aout_size_swap_exec_header_in

Synopsis
void aout_size_swap_exec_header_in,

(bfd *abfd,

struct external_exec *raw_bytes,

struct internal_exec *execp);
Description
Swap the information in an executable header raw_bytes taken from a raw byte stream
memory image into the internal exec header structure execp.

3.1.2.2 aout_size_swap_exec_header_out

Synopsis

Chapter 3: BFD back ends

void aout_size_swap_exec_header_out
(bfd *abfd,
struct internal_exec *execp,
struct external_exec *raw_bytes);
Description
Swap the information in an internal exec header structure execp into the buffer raw_bytes
ready for writing to disk.

3.1.2.3 aout_size_some_aout_object_p

Synopsis
const bfd_target *aout_size_some_aout_object_p

(bfd *abfd,

const bfd_target *(*callback_to_real_object_p)());
Description
Some a.out variant thinks that the file open in abfd checking is an a.out file. Do some more
checking, and set up for access if it really is. Call back to the calling environment’s "finish
up" function just before returning, to handle any last-minute setup.

3.1.2.4 aout_size_mkobject

Synopsis

boolean aout_size_mkobject, (bfd *abfd);
Description
Initialize BFD abfd for use with a.out files.

3.1.2.5 aout_size_machine_type

Synopsis
enum machine_type aout_size_machine_type
(enum bfd_architecture arch,
unsigned long machine));

Description

Keep track of machine architecture and machine type for a.out’s. Return the machine_
type for a particular architecture and machine, or M_UNKNOWN if that exact architecture and
machine can’t be represented in a.out format.

If the architecture is understood, machine type 0 (default) is always understood.

3.1.2.6 aout_size_set_arch_mach

Synopsis
boolean aout_size_set_arch_mach,
(bfd =*,

Chapter 3: BFD back ends

enum bfd_architecture arch,
unsigned long machine));

Description
Set the architecture and the machine of the BFD abfd to the values arch and machine.
Verify that abfd’s format can support the architecture required.

3.1.2.7 aout_size_new_section_hook

Synopsis
boolean aout_size_new_section_hook,
(bfd *abfd,
asection *newsect));

Description
Called by the BFD in response to a bfd_make_section request.

3.2 coff backends

BFD supports a number of different flavours of coff format. The major differences between
formats are the sizes and alignments of fields in structures on disk, and the occasional extra
field.

Coff in all its varieties is implemented with a few common files and a number of imple-
mentation specific files. For example, The 88k bcs coff format is implemented in the file
‘coff-m88k.c’. This file #includes ‘coff/m88k.h’ which defines the external structure
of the coff format for the 88k, and ‘coff/internal.h’ which defines the internal struc-
ture. ‘coff-m88k.c’ also defines the relocations used by the 88k format See Section 2.10
[Relocations|, page 38.

The Intel 1960 processor version of coff is implemented in ‘coff-i960.c’. This file has
the same structure as ‘coff-m88k.c’, except that it includes ‘coff/i960.h’ rather than
‘coff-m88k.h’.

3.2.1 Porting to a new version of coff

The recommended method is to select from the existing implementations the version of coff
which is most like the one you want to use. For example, we’ll say that i386 coff is the one
you select, and that your coff flavour is called foo. Copy ‘1386coff.c’ to ‘foocoff.c’, copy
‘../include/coff/i386.h’to ‘. ./include/coff/foo.h’, and add the lines to ‘targets.c’
and ‘Makefile.in’ so that your new back end is used. Alter the shapes of the structures in
‘../include/coff/foo.h’ so that they match what you need. You will probably also have
to add #ifdefs to the code in ‘coff/internal.h’ and ‘coffcode.h’ if your version of coff
is too wild.

You can verify that your new BFD backend works quite simply by building ‘objdump’ from
the ‘binutils’ directory, and making sure that its version of what’s going on and your

Chapter 3: BFD back ends

host system’s idea (assuming it has the pretty standard coff dump utility, usually called
att-dump or just dump) are the same. Then clean up your code, and send what you've
done to Cygnus. Then your stuff will be in the next release, and you won’t have to keep
integrating it.

3.2.2 How the coff backend works

3.2.2.1 File layout

The Coff backend is split into generic routines that are applicable to any Coff target and
routines that are specific to a particular target. The target-specific routines are further split
into ones which are basically the same for all Coff targets except that they use the external
symbol format or use different values for certain constants.

The generic routines are in ‘coffgen.c’. These routines work for any Coff target. They
use some hooks into the target specific code; the hooks are in a bfd_coff_backend_data
structure, one of which exists for each target.

The essentially similar target-specific routines are in ‘coffcode .h’. This header file includes
executable C code. The various Coff targets first include the appropriate Coff header file,
make any special defines that are needed, and then include ‘coffcode.h’.

Some of the Coff targets then also have additional routines in the target source file itself.

For example, ‘coff-i960.c’ includes ‘coff/internal.h’ and ‘coff/i960.h’. It then de-
fines a few constants, such as I960, and includes ‘coffcode.h’. Since the 1960 has complex
relocation types, ‘cof£-i1960. ¢’ also includes some code to manipulate the 1960 relocs. This
code is not in ‘coffcode.h’ because it would not be used by any other target.

3.2.2.2 Bit twiddling

Each flavour of coff supported in BFD has its own header file describing the external layout of
the structures. There is also an internal description of the coff layout, in ‘coff/internal.h’.
A major function of the coff backend is swapping the bytes and twiddling the bits to translate
the external form of the structures into the normal internal form. This is all performed in
the bfd_swap_thing _direction routines. Some elements are different sizes between different
versions of coff; it is the duty of the coff version specific include file to override the definitions
of various packing routines in ‘coffcode.h’. E.g., the size of line number entry in coff is
sometimes 16 bits, and sometimes 32 bits. #defineing PUT_LNSZ_LNNO and GET_LNSZ_
LNNO will select the correct one. No doubt, some day someone will find a version of coff
which has a varying field size not catered to at the moment. To port BFD, that person
will have to add more #defines. Three of the bit twiddling routines are exported to gdb;
coff_swap_aux_in, coff_swap_sym_in and coff_swap_linno_in. GDB reads the symbol
table on its own, but uses BFD to fix things up. More of the bit twiddlers are exported

Chapter 3: BFD back ends

for gas; coff_swap_aux_out, coff_swap_sym_out, coff_swap_lineno_out, coff_swap_
reloc_out, coff_swap_filehdr_out, coff_swap_aouthdr_out, coff_swap_scnhdr_out.
Gas currently keeps track of all the symbol table and reloc drudgery itself, thereby saving
the internal BFD overhead, but uses BFD to swap things on the way out, making cross
ports much safer. Doing so also allows BFD (and thus the linker) to use the same header
files as gas, which makes one avenue to disaster disappear.

3.2.2.3 Symbol reading

The simple canonical form for symbols used by BFD is not rich enough to keep all the
information available in a coff symbol table. The back end gets around this problem by
keeping the original symbol table around, "behind the scenes".

When a symbol table is requested (through a call to bfd_canonicalize_symtab), a request
gets through to coff_get_normalized_symtab. This reads the symbol table from the coff
file and swaps all the structures inside into the internal form. It also fixes up all the pointers
in the table (represented in the file by offsets from the first symbol in the table) into physical
pointers to elements in the new internal table. This involves some work since the meanings
of fields change depending upon context: a field that is a pointer to another structure in the
symbol table at one moment may be the size in bytes of a structure at the next. Another
pass is made over the table. All symbols which mark file names (C_FILE symbols) are
modified so that the internal string points to the value in the auxent (the real filename)
rather than the normal text associated with the symbol (".file").

At this time the symbol names are moved around. Coff stores all symbols less than nine
characters long physically within the symbol table; longer strings are kept at the end of the
file in the string table. This pass moves all strings into memory and replaces them with
pointers to the strings.

The symbol table is massaged once again, this time to create the canonical table used by the
BFD application. Each symbol is inspected in turn, and a decision made (using the sclass
field) about the various flags to set in the asymbol. See Section 2.7 [Symbols|, page 27.
The generated canonical table shares strings with the hidden internal symbol table.

Any linenumbers are read from the coff file too, and attached to the symbols which own
the functions the linenumbers belong to.

3.2.2.4 Symbol writing

Writing a symbol to a coff file which didn’t come from a coff file will lose any debugging
information. The asymbol structure remembers the BFD from which the symbol was taken,
and on output the back end makes sure that the same destination target as source target
is present.

When the symbols have come from a coff file then all the debugging information is preserved.

Symbol tables are provided for writing to the back end in a vector of pointers to pointers.
This allows applications like the linker to accumulate and output large symbol tables without
having to do too much byte copying.

Chapter 3: BFD back ends

This function runs through the provided symbol table and patches each symbol marked as
a file place holder (C_FILE) to point to the next file place holder in the list. It also marks
each offset field in the list with the offset from the first symbol of the current symbol.

Another function of this procedure is to turn the canonical value form of BFD into the form
used by coff. Internally, BFD expects symbol values to be offsets from a section base; so a
symbol physically at 0x120, but in a section starting at 0x100, would have the value 0x20.
Coff expects symbols to contain their final value, so symbols have their values changed
at this point to reflect their sum with their owning section. This transformation uses the
output_section field of the asymbol’s asection See Section 2.6 [Sections], page 16.

e coff_mangle_symbols

This routine runs though the provided symbol table and uses the offsets generated by the
previous pass and the pointers generated when the symbol table was read in to create the
structured hierachy required by coff. It changes each pointer to a symbol into the index
into the symbol table of the asymbol.

e coff_write_symbols

This routine runs through the symbol table and patches up the symbols from their internal
form into the coff way, calls the bit twiddlers, and writes out the table to the file.

3.2.2.5 coff_symbol_type

Description
The hidden information for an asymbol is described in a combined_entry_type:

typedef struct coff_ptr_struct
{

/* Remembers the offset from the first symbol in the file for
this symbol. Generated by coff_renumber_symbols. */
unsigned int offset;

/* Should the value of this symbol be renumbered. Used for
XCOFF C_BSTAT symbols. Set by coff_slurp_symbol_table. */
unsigned int fix_value : 1;

/* Should the tag field of this symbol be renumbered.
Created by coff_pointerize_aux. */
unsigned int fix_tag : 1;

/* Should the endidx field of this symbol be renumbered.
Created by coff_pointerize_aux. */
unsigned int fix_end : 1;

/* Should the x_csect.x_scnlen field be renumbered.
Created by coff_pointerize_aux. */
unsigned int fix_scnlen : 1;

Chapter 3: BFD back ends

/* Fix up an XCOFF C_BINCL/C_EINCL symbol. The value is the
index into the line number entries. Set by
coff_slurp_symbol_table. */

unsigned int fix_line : 1;

/* The container for the symbol structure as read and translated
from the file. */

union {
union internal_auxent auxent;
struct internal_syment syment;
Y ou;
} combined_entry_type;

/* Each canonical asymbol really looks like this: */

typedef struct coff_symbol_struct

{
/* The actual symbol which the rest of BFD works with */

asymbol symbol;

/* A pointer to the hidden information for this symbol */
combined_entry_type *native;

/* A pointer to the linenumber information for this symbol */
struct lineno_cache_entry *lineno;

/* Have the line numbers been relocated yet 7 */
boolean done_lineno;
} coff_symbol_type;

3.2.2.6 bfd_coff_backend_data

Special entry points for gdb to swap in coff symbol table parts:
typedef struct

{
void (*_bfd_coff_swap_aux_in) PARAMS ((

bfd *abfd,

PTR ext,

int type,

int class,

int indaux,

int numaux,

PTR in));

void (*_bfd_coff_swap_sym_in) PARAMS ((
bfd *abfd ,

Chapter 3: BFD back ends

PTR ext,
PTR in));

void (*_bfd_coff_swap_lineno_in) PARAMS ((

bfd xabfd,
PTR ext,
PTR in));

Special entry points for gas to swap out coff parts:
unsigned int (*_bfd_coff_swap_aux_out) PARAMS ((
bfd *abfd,

PTR in,

int type,
int class,
int indaux,
int numaux,
PTR ext));

unsigned int (*_bfd_coff_swap_sym_out) PARAMS ((
bfd *xabfd,
PTR in,
PTR ext));

unsigned int (*_bfd_coff_swap_lineno_out) PARAMS ((
bfd *abfd,
PTR in,

PTR ext));

unsigned int (*_bfd_coff_swap_reloc_out) PARAMS ((
bfd *xabfd,
PTR src,

PTR dst));

unsigned int (*_bfd_coff_swap_filehdr_out) PARAMS ((
bfd *abfd,

PTR in,

PTR out));

unsigned int (*_bfd_coff_swap_aouthdr_out) PARAMS ((
bfd +*abfd,

PTR in,

PTR out));

unsigned int (*_bfd_coff_swap_scnhdr_out) PARAMS ((
bfd *abfd,
PTR in,

PTR out));

Chapter 3: BFD back ends

Special entry points for generic COFF routines to call target dependent COFF routines:
unsigned int _bfd_filhsz;
unsigned int _bfd_aoutsz;
unsigned int _bfd_scnhsz;
unsigned int _bfd_symesz;
unsigned int _bfd_auxesz;
unsigned int _bfd_relsz;
unsigned int _bfd_linesz;
boolean _bfd_coff_long_filenames;
boolean _bfd_coff_long_section_names;
unsigned int _bfd_coff_default_section_alignment_power;
void (*_bfd_coff_swap_filehdr_in) PARAMS ((

bfd *abfd,
PTR ext,
PTR in));
void (*_bfd_coff_swap_aouthdr_in) PARAMS ((
bfd *abfd,
PTR ext,
PTR in));
void (*_bfd_coff_swap_scnhdr_in) PARAMS ((
bfd *abfd,
PTR ext,
PTR in));
void (*_bfd_coff_swap_reloc_in) PARAMS ((
bfd *abfd,
PTR ext,
PTR in));
boolean (*_bfd_coff_bad_format_hook) PARAMS ((
bfd *abfd,
PTR internal _filehdr));
boolean (*_bfd_coff_set_arch_mach_hook) PARAMS ((
bfd *abfd,
PTR internal_filehdr));
PTR (*_bfd_coff_mkobject_hook) PARAMS ((
bfd *abfd,
PTR internal_filehdr,
PTR internal _aouthdr));
flagword (*_bfd_styp_to_sec_flags_hook) PARAMS ((
bfd *abfd,
PTR internal_scnhdr,

const char *name));
void (*_bfd_set_alignment_hook) PARAMS ((
bfd *abfd,
asection *sec,
PTR internal_scnhdr));
boolean (*_bfd_coff_slurp_symbol_table) PARAMS ((
bfd *xabfd)) ;
boolean (*_bfd_coff_symname_in_debug) PARAMS ((

Chapter 3: BFD back ends

bfd *xabfd,
struct internal_syment *sym)) ;
boolean (*_bfd_coff_pointerize_aux_hook) PARAMS ((
bfd *abfd,
combined_entry_type *table_base,
combined_entry_type *symbol,
unsigned int indaux,
combined_entry_type *aux));
boolean (*_bfd_coff_print_aux) PARAMS ((
bfd *abfd,
FILE xfile,
combined_entry_type *table_base,
combined_entry_type *symbol,
combined_entry_type *aux,
unsigned int indaux));
void (*_bfd_coff_relocl6_extra_cases) PARAMS ((
bfd *abfd,
struct bfd_link_info *1link_info,
struct bfd_link_order *link_order,
arelent *reloc,
bfd_byte *data,
unsigned int *src_ptr,
unsigned int *dst_ptr));
int (*_bfd_coff_relocl6_estimate) PARAMS ((
bfd *abfd,
asection *input_section,
arelent *r,
unsigned int shrink,
struct bfd_link_info *link_info));
boolean (*_bfd_coff_sym_is_global) PARAMS ((
bfd *abfd,
struct internal_syment *));
boolean (*_bfd_coff_compute_section_file_positions) PARAMS ((
bfd *abfd));
boolean (*_bfd_coff_start_final link) PARAMS ((
bfd *output_bfd,
struct bfd_link_info *info));
boolean (*_bfd_coff_relocate_section) PARAMS ((
bfd *output_bfd,
struct bfd_link_info *info,
bfd *input_bfd,
asection *input_section,
bfd_byte *contents,
struct internal_reloc *relocs,
struct internal_syment *syms,
asection **sections));
reloc_howto_type *(*_bfd_coff_rtype_to_howto) PARAMS ((
bfd *abfd,

Chapter 3: BFD back ends

asection *sec,
struct internal_reloc *rel,
struct coff_link_hash_entry *h,
struct internal_syment *sym,
bfd_vma *addendp)) ;
boolean (*_bfd_coff_adjust_symndx) PARAMS ((
bfd *obfd,
struct bfd_link_info *info,
bfd *ibfd,
asection *sec,
struct internal_reloc *reloc,
boolean *adjustedp));
boolean (*_bfd_coff_link_add_one_symbol) PARAMS ((
struct bfd_link_info *info,
bfd *abfd,
const char *name,
flagword flags,
asection *section,
bfd_vma value,
const char *string,
boolean copy,
boolean collect,
struct bfd_link_hash_entry #**xhashp));

} bfd_coff_backend_data;
#define coff_backend_info(abfd) ((bfd_coff_backend_data *) (abfd)->xvec->backend_data)

#define bfd_coff_swap_aux_in(a,e,t,c,ind,num,i) \
((coff_backend_info (a)->_bfd_coff_swap_aux_in) (a,e,t,c,ind,num,i))]]

#define bfd_coff_swap_sym_in(a,e,i) \
((coff_backend_info (a)->_bfd_coff_swap_sym_in) (a,e,i))

#define bfd_coff_swap_lineno_in(a,e,i) \
((coff_backend_info (a)->_bfd_coff_swap_lineno_in) (a,e,i))

#define bfd_coff_swap_reloc_out(abfd, i, o) \
((coff_backend_info (abfd)->_bfd_coff_swap_reloc_out) (abfd, i, o))

#define bfd_coff_swap_lineno_out(abfd, i, o) \
((coff_backend_info (abfd)->_bfd_coff_swap_lineno_out) (abfd, i, o))

#define bfd_coff_swap_aux_out(a,i,t,c,ind,num,o0) \
((coff_backend_info (a)->_bfd_coff_swap_aux_out) (a,i,t,c,ind,num,0))]]

#define bfd_coff_swap_sym_out (abfd, i,0) \
((coff_backend_info (abfd)->_bfd_coff_swap_sym_out) (abfd, i, 0))f

Chapter 3: BFD back ends

#tdefine

#tdefine

#tdefine

#define
#define
#define
#define
#define
#define
#define
#define
#define

#tdefine

bfd_coff_swap_scnhdr_out(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_out) (abfd, i, o))

bfd_coff_swap_filehdr_out(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_out) (abfd, i, o))]}

bfd_coff_swap_aouthdr_out(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_out) (abfd, i, 0))]]

bfd_coff_filhsz(abfd) (coff_backend_info (abfd)->_bfd_filhsz)
bfd_coff_aoutsz(abfd) (coff_backend_info (abfd)->_bfd_aoutsz)
bfd_coff_scnhsz(abfd) (coff_backend_info (abfd)->_bfd_scnhsz)
bfd_coff_symesz(abfd) (coff_backend_info (abfd)->_bfd_symesz)
bfd_coff_auxesz(abfd) (coff_backend_info (abfd)->_bfd_auxesz)
bfd_coff_relsz(abfd) (coff_backend_info (abfd)->_bfd_relsz)
bfd_coff_linesz(abfd) (coff_backend_info (abfd)->_bfd_linesz)
bfd_coff_long_filenames(abfd) (coff_backend_info (abfd)->_bfd_coff_long_filena
bfd_coff_long_section_names(abfd) \

(coff_backend_info (abfd)->_bfd_coff_long_section_names)
bfd_coff_default_section_alignment_power(abfd) \

(coff_backend_info (abfd)->_bfd_coff_default_section_alignment_power)

#tdefine

#tdefine

#tdefine

#tdefine

#tdefine

#tdefine

#tdefine

#tdefine

#tdefine

bfd_coff_swap_filehdr_in(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_filehdr_in) (abfd, i, o))

bfd_coff_swap_aouthdr_in(abfd, i,o) \
((coff_backend_info (abfd)->_bfd_coff_swap_aouthdr_in) (abfd, i, o))}

bfd_coff_swap_scnhdr_in(abfd, i,o0) \
((coff_backend_info (abfd)->_bfd_coff_swap_scnhdr_in) (abfd, i, o))

bfd_coff_swap_reloc_in(abfd, i, o) \
((coff_backend_info (abfd)->_bfd_coff_swap_reloc_in) (abfd, i, o))J]

bfd_coff_bad_format_hook(abfd, filehdr) \
((coff_backend_info (abfd)->_bfd_coff_bad_format_hook) (abfd, filehdr))l

bfd_coff_set_arch_mach_hook(abfd, filehdr)\

((coff_backend_info (abfd)->_bfd_coff_set_arch_mach_hook) (abfd, filehdr))l}
bfd_coff_mkobject_hook(abfd, filehdr, aouthdr)\

((coff_backend_info (abfd)->_bfd_coff_mkobject_hook) (abfd, filehdr, aouthdr))

bfd_coff_styp_to_sec_flags_hook(abfd, scnhdr, name)\
((coff_backend_info (abfd)->_bfd_styp_to_sec_flags_hook) (abfd, scnhdr, name))

bfd_coff_set_alignment_hook(abfd, sec, scnhdr)\
((coff_backend_info (abfd)->_bfd_set_alignment_hook) (abfd, sec, scnhdr))]]

Chapter 3: BFD back ends 100

#define bfd_coff_slurp_symbol_table(abfd)\
((coff_backend_info (abfd)->_bfd_coff_slurp_symbol_table) (abfd))]]

#define bfd_coff_symname_in_debug(abfd, sym)\
((coff_backend_info (abfd)->_bfd_coff_symname_in_debug) (abfd, sym))]]

#define bfd_coff_print_aux(abfd, file, base, symbol, aux, indaux)\
((coff_backend_info (abfd)->_bfd_coff_print_aux)\
(abfd, file, base, symbol, aux, indaux))

#define bfd_coff_relocl6_extra_cases(abfd, link_info, link_order, reloc, data, src_ptr
((coff_backend_info (abfd)->_bfd_coff_relocl6_extra_cases)\
(abfd, link_info, link_order, reloc, data, src_ptr, dst_ptr))

#define bfd_coff_relocl6_estimate(abfd, section, reloc, shrink, link_info)\ll
((coff_backend_info (abfd)->_bfd_coff_relocl6_estimate)\
(abfd, section, reloc, shrink, link_info))

#define bfd_coff_sym_is_global(abfd, sym)\
((coff_backend_info (abfd)->_bfd_coff_sym_is_global)\
(abfd, sym))

#define bfd_coff_compute_section_file_positions(abfd)\
((coff_backend_info (abfd)->_bfd_coff_compute_section_file_positions)\|]
(abfd))

#define bfd_coff_start_final_link(obfd, info)\
((coff_backend_info (obfd)->_bfd_coff_start_final_link)\
(obfd, info))
#define bfd_coff_relocate_section(obfd,info,ibfd,o,con,rel,isyms,secs)\
((coff_backend_info (ibfd)->_bfd_coff_relocate_section)\
(obfd, info, ibfd, o, con, rel, isyms, secs))
#define bfd_coff_rtype_to_howto(abfd, sec, rel, h, sym, addendp)\
((coff_backend_info (abfd)->_bfd_coff_rtype_to_howto)\
(abfd, sec, rel, h, sym, addendp))
#define bfd_coff_adjust_symndx(obfd, info, ibfd, sec, rel, adjustedp)\
((coff_backend_info (abfd)->_bfd_coff_adjust_symndx)\
(obfd, info, ibfd, sec, rel, adjustedp))
#define bfd_coff_link_add_one_symbol (info,abfd,name,flags,section,value,string,cp,coll
((coff_backend_info (abfd)->_bfd_coff_link_add_one_symbol)\
(info, abfd, name, flags, section, value, string, cp, coll, hashp))|}

3.2.2.7 Writing relocations

To write relocations, the back end steps though the canonical relocation table and create an
internal_reloc. The symbol index to use is removed from the offset field in the symbol
table supplied. The address comes directly from the sum of the section base address and the
relocation offset; the type is dug directly from the howto field. Then the internal_reloc

Chapter 3: BFD back ends 101

is swapped into the shape of an external_reloc and written out to disk.

3.2.2.8 Reading linenumbers

Creating the linenumber table is done by reading in the entire coff linenumber table, and
creating another table for internal use.

A coff linenumber table is structured so that each function is marked as having a line number
of 0. Each line within the function is an offset from the first line in the function. The base
of the line number information for the table is stored in the symbol associated with the
function.

The information is copied from the external to the internal table, and each symbol which
marks a function is marked by pointing its...

How does this work ?

3.2.2.9 Reading relocations

Coff relocations are easily transformed into the internal BFD form (arelent).
Reading a coff relocation table is done in the following stages:
e Read the entire coff relocation table into memory.
e Process each relocation in turn; first swap it from the external to the internal form.

e Turn the symbol referenced in the relocation’s symbol index into a pointer into the
canonical symbol table. This table is the same as the one returned by a call to bfd_
canonicalize_symtab. The back end will call that routine and save the result if a
canonicalization hasn’t been done.

e The reloc index is turned into a pointer to a howto structure, in a back end specific
way. For instance, the 386 and 960 use the r_type to directly produce an index into a
howto table vector; the 88k subtracts a number from the r_type field and creates an
addend field.

3.3 ELF backends

BFD support for ELF formats is being worked on. Currently, the best supported back ends
are for sparc and 1386 (running svr4 or Solaris 2).

Documentation of the internals of the support code still needs to be written. The code is
changing quickly enough that we haven’t bothered yet.

Chapter 3: BFD back ends 102

3.3.0.1 bfd_elf_find_section

Synopsis

struct elf_internal_shdr *bfd_elf_find_section (bfd *abfd, char *name);
Description
Helper functions for GDB to locate the string tables. Since BFD hides string tables from
callers, GDB needs to use an internal hook to find them. Sun’s .stabstr, in particular, isn’t
even pointed to by the .stab section, so ordinary mechanisms wouldn’t work to find it, even
if we had some.

Index

Index

_bfd final link relocate......................... 81
_bfd_generic_link_add_archive_symbols.......... 80
_bfd_generic_link_add_one_symbol 79
_bfd link_add_symbols in target vector 78
_bfdlink final link in target vector............. 80
_bfd link_hash_table_create in target vector..... 78
_bfd_relocate_contents.......................... 81
A

aout_size_machine_type........................ 89
aout_size_mkobject L 89
aout_size_new_section_hook 90
aout_size_set_arch.mach........................ 89
aout_size_some_aout_object_p 89
aout_size_swap-_exec_header_in.................. 88
aout_size_swap_exec_header_out 88
arelent_chaino L 44
B

BED . 1
BFD canonical format 3
bfdallocc.ooeii 72
bfd_arch_bits_per_address 69
bfd_arch_bits_per_byte 69
bfd_arch_get_compatible 68
bfdarch list o i 68
bfd_cacheclose L. 76
bfd_cache_init............. L. 76
bfd_cache_lookup 76
bfd_cache_lookup_worker....................... 7
BFD_CACHE_MAX_OPEN macro............. 76
bfd_canonicalize reloc.......................... 10
bfd_canonicalize_symtab 33
bfd_check format 36
bfd_check format_matches...................... 37
bfdclose ... 72
bfd_close_all. done....................coiii 72
bfd_coff_backend data.......................... 94
bfd_copy_private_bfd data...................... 13
bfd_copy_privatesection_data 27
bfd_copy_private_symbol data.................. 34
bfd_core_file_failing_command 56
bfd_core_file failing signal 56
bfdcreatec. i 72
bfd_decode_symclass........................L. 34

bfd_default_arch_struct......................... 68

103
bfd_default_compatible......................... 69
bfd_default_reloc_typelookup 54
bfd_default_scan 70
bfd_default_set_arch-mach...................... 69
bfd_elf find section 101
bfderrmsg............ ... 9
bfdfdopenr..........l 71
bfdfind_target.................. ... 64
bfd_format_string.................. ...l 37
bfd_generic_get_relocated_section_contents 55
bfd_generic_relax_section....................... 55
bfdgetarch.............l 69
bfd_get_arch_info................ 70
bfd_get_error.............oiiiii 9
bfd_get_gp_size.............ciiiiii i 12
bfd_get_mach............. ... i 69
bfd_get_mtime...............o L 11
bfd_get_next_mapent........................... 35
bfd_get_reloc_.code_name 55
bfd_get_reloc_size oL, 44
bfd_get_reloc_upper_bound 10
bfd_get_section_by name 24
bfd_get_section_contents........................ 27
bfd_getsize................l 12, 73
bfd_get_symtab_upper_bound................... 32
bfd_h putsize 74
bfd_hash_allocate 83
bfd_hash_lookup.............. 83
bfd_hash newfunc............. 83
bfd_hash _tablefree 83
bfd_hash_table_init............................. 83
bfd_hash_table_init n........................... 83
bfd_hash_traverse.............................. 84
bfdinit. ..o 16
bfd_install_relocation........................... 44
bfdis_local label.............. 32
bfd.s_local label name......................... 33
bfdlast_cache oL 76
bfd link_split_section........................... 82
bfdlog2........ 75
bfdlookup-arch 70
bfd_make_debugsymbol 34
bfd_make_empty symbol 33
bfd_make_sectionol 25
bfd_make_section_anyway 25
bfd_make section_old_way 24
bfd_map_over_sections 26

Index

bfd_merge_private_bfd_data 13
bfdopen_file......l 7
bfdopenr 71
bfd_openr_next_archived file.................... 36
bfd_openstreamr.............. 71
bfdopenw. 71
bfd_perform_relocation......................... 44
bfdperror........ 9
bfd_print_symbolvandf........................ 33
bfd_printable_arch.mach 70
bfd_printablename 67
bfd_putsize L. 73
BFD_RELOC_12_PCRELcociiein.. 46
BFD_RELOC_14 e 45
BFD_RELOC_16 45
BFD_RELOC_16_BASEREL 46
BFD_RELOC_16_GOT_PCREL. 46
BFD_RELOC_16_GOTOFF on... 46
BFD_RELOC_16_PCRELcoveon.. 46
BFD_RELOC_16_PCREL_S2................c....... 47
BFD_RELOC_16_PLT_PCREL...................... 46
BFD_RELOC_16_PLTOFF, 46
BFD_RELOC_23_PCREL_S2..............c..con.. 47
BFD_RELOC_24 it 45
BFD_RELOC_24_PCRELc..cooiean.. 46
BFD_RELOC_24_PLT_PCREL...................... 46
BFD_RELOC_26ttt 45
BFD_RELOC_32 45
BFD_RELOC_32_BASERELoun. 46
BFD_RELOC_32_GOT_PCREL...................... 46
BFD_RELOC_32_GOTOFFciiinnn.. 46
BFD_RELOC_32_PCRELccivenn.... 46
BFD_RELOC_32_PCREL_S2............ ..., 47
BFD_RELOC_32_PLT_PCREL...................... 46
BFD_RELOC_32_PLTOFFcooiin... 46
BFD_RELOC_386_COPYccnniieennn.. 50
BFD_RELOC_386_GLOB_DAT.cccovnn... 50
BFD_RELOC_386_GOT32.............cccovnnenn.. 50
BFD_RELOC_386_GOTOFFcoouiinn. 50
BFD_RELOC_386_GOTPCcooniin... 50
BFD_RELOC_386_JUMP_SLOT. 50
BFD_RELOC_386_PLT32............cciiinnnenn.. 50
BFD_RELOC_386_RELATIVE...................... 50
BFD_RELOC_64 45
BFD_RELOC_64_PCRELcc.coveon.. 45
BFD_RELOC_68K_GLOB_DAT.c..coon... 46
BFD_RELOC_68K_JMP_SLOT.ccocnn... 46
BFD_RELOC_68K_RELATIVE...................... 46
BFD_RELOC_8t 45

BFD_RELOC_8_BASEREL 46

104
BFD_RELOC_8_FFnn................oiiiinnn... 46
BFD_RELOC_8_GOT_PCREL 46
BFD_RELOC_8_GOTOFFcooiiiunn.n.. 46
BFD_RELOC_8_PCREL. ...t 46
BFD_RELOC_8_PLT_PCREL....................... 46
BFD_RELOC_8_PLTOFFccoiveniennn.... 46
BFD_RELOC_ALPHA_CODEADDR 49
BFD_RELOC_ALPHA_ELF_LITERAL................ 48
BFD_RELOC_ALPHA_GPDISP...................... 48
BFD_RELOC_ALPHA_GPDISP_HI16................ 48
BFD_RELOC_ALPHA_GPDISP_LO16................ 48
BFD_RELOC_ALPHA_HINT........................ 49
BFD_RELOC_ALPHA_LINKAGE..................... 49
BFD_RELOC_ALPHA_LITERAL..................... 48
BFD_RELOC_ALPHA_LITUSE...................... 48
BFD_RELOC_ARC_B22_PCREL..................... 52
BFD_RELOC_ARC_B26............................ 53
BFD_RELOC_ARM_ADR_IMM....................... 52
BFD_RELOC_ARM_CP_OFF_IMM 52
BFD_RELOC_ARM_HWLITERAL..................... 52
BFD_RELOC_ARM_IMMEDIATE..................... 51
BFD_RELOC_ARM_IN_POOL...........ccovuninn.. 52
BFD_RELOC_ARM_LDR_IMM....................... 52
BFD_RELOC_ARM_LITERAL....................... 52
BFD_RELOC_ARM_MULTIcooiunninn.. 52
BFD_RELOC_ARM_OFFSET_IMM 52
BFD_RELOC_ARM_OFFSET_IMM8 52
BFD_RELOC_ARM_PCREL_BRANCH................. 51
BFD_RELOC_ARM_SHIFT_IMM..................... 52
BFD_RELOC_ARM_SWI.......... ..o, 52
BFD_RELOC_ARM_THUMB_ADD.c.c.o... 52
BFD_RELOC_ARM_THUMB_IMM..................... 52
BFD_RELOC_ARM_THUMB_OFFSET 52
BFD_RELOC_ARM_THUMB_SHIFT 52
bfd_reloc_code_type.............. 45
BFD_RELOC_CTOR . ..ot 51
BFD_RELOC_D1OV_10_PCREL_L 53
BFD_RELOC_D1OV_10_PCREL_R 53
BFD_RELOC_DIOV_18........ ..., 53
BFD_RELOC_D1OV_18_PCREL..................... 53
BFD_RELOC_GPREL16.................oiiiiint, 47
BFD_RELOC_GPREL32. ..., 47
BFD_RELOC_HI16....... ..ot 49
BFD_RELOC_HI16_BASEREL...................... 46
BFD_RELOC_HI16_GOTOFF....................... 46
BFD_RELOC_HI16_PLTOFF....................... 46
BFD_RELOC_HI16_S........ .ot 49
BFD_RELOC_HI16_S_BASEREL 46
BFD_RELOC_HI16_S_GOTOFF..................... 46
BFD_RELOC_HI16_S_PLTOFF..................... 46

Index

BFD_RELOC_HI22............. ..., 47
BFD_RELOC_I960_CALLJ 47
BFD_RELOC_LO10............ ... 47
BFD_RELOC_LO16..........., 49
BFD_RELOC_LO16_BASEREL...................... 46
BFD_RELOC_LO16_GOTOFF 46
BFD_RELOC_LO16_PLTOFF....................... 46
BFD_RELOC_M32R_10_PCREL..................... 53
BFD_RELOC_M32R_18_PCREL..................... 53
BFD_RELOC_M32R_24............................ 53
BFD_RELOC_M32R_26_PCREL. 53
BFD_RELOC_M32R_HI16_SLO..................... 53
BFD_RELOC_M32R_HI16_ULO..................... 53
BFD_RELOC_M32R_LO16......................... 53
BFD_RELOC_M32R_SDA16........................ 53
BFD_RELOC_MIPS_CALL_HI16 50
BFD_RELOC_MIPS_CALL_LO16 50
BFD_RELOC_MIPS_CALL16....................... 50
BFD_RELOC_MIPS_GOT_HI16..................... 50
BFD_RELOC_MIPS_GOT_LO16..................... 50
BFD_RELOC_MIPS_GOT16........................ 50
BFD_RELOC_MIPS_GPREL........................ 49
BFD_RELOC_MIPS_GPREL32...................... 50
BFD_RELOC_MIPS_JMP 49
BFD_RELOC_MIPS_LITERAL...................... 50
BFD_RELOC_MIPS16_GPREL...................... 49
BFD_RELOC_MIPS16_JMP........................ 49
BFD_RELOC_MN10300_16_PCREL 54
BFD_RELOC_MN10300_32_PCREL 54
BFD_RELOC_NONE............ ..., 47
BFD_RELOC_NS32K_DISP_16..................... 50
BFD_RELOC_NS32K_DISP_16_PCREL.............. 50
BFD_RELOC_NS32K_DISP_32..................... 50
BFD_RELOC_NS32K_DISP_32_PCREL.............. 50
BFD_RELOC_NS32K_DISP_8...................... 50
BFD_RELOC_NS32K_DISP_8_PCREL............... 50
BFD_RELOC_NS32K_IMM_16...................... 50
BFD_RELOC_NS32K_IMM_16_PCREL............... 50
BFD_RELOC_NS32K_IMM_32...................... 50
BFD_RELOC_NS32K_IMM_32_PCREL............... 50
BFD_RELOC_NS32K_IMM_8....................... 50
BFD_RELOC_NS32K_IMM_8_PCREL................ 50
BFD_RELOC_PCREL_HI16_S...................... 49
BFD_RELOC_PCREL_LO16........................ 49
BFD_RELOC_PPC_B16.................co.iiu.. 51
BFD_RELOC_PPC_B16_BRNTAKEN................. 51
BFD_RELOC_PPC_B16_BRTAKEN 51
BFD_RELOC_PPC_B26....................ooouna.. 50
BFD_RELOC_PPC_BA16 51

BFD_RELOC_PPC_BA16_BRNTAKEN................ 51

105
BFD_RELOC_PPC_BA16_BRTAKEN................. 51
BFD_RELOC_PPC_BA26 51
BFD_RELOC_PPC_COPY 51
BFD_RELOC_PPC_EMB_BIT_FLD 51
BFD_RELOC_PPC_EMB_MRKREF 51
BFD_RELOC_PPC_EMB_NADDR16 51
BFD_RELOC_PPC_EMB_NADDR16_HA............... 51
BFD_RELOC_PPC_EMB_NADDR16_HI............... 51
BFD_RELOC_PPC_EMB_NADDR16_LO............... 51
BFD_RELOC_PPC_EMB_NADDR32 51
BFD_RELOC_PPC_EMB_RELSDA 51
BFD_RELOC_PPC_EMB_RELSEC16................. 51
BFD_RELOC_PPC_EMB_RELST_HA................. 51
BFD_RELOC_PPC_EMB_RELST_HI................. 51
BFD_RELOC_PPC_EMB_RELST_LO................. 51
BFD_RELOC_PPC_EMB_SDA21..................... 51
BFD_RELOC_PPC_EMB_SDA2I16 51
BFD_RELOC_PPC_EMB_SDA2REL 51
BFD_RELOC_PPC_EMB_SDAI16 51
BFD_RELOC_PPC_GLOB_DAT...................... 51
BFD_RELOC_PPC_JMP_SLOT...................... 51
BFD_RELOC_PPC_LOCAL24PC..................... 51
BFD_RELOC_PPC_RELATIVE...................... 51
BFD_RELOC_PPC_TOC16 51
BFD_RELOC_RVA i 46
BFD_RELOC_SH_ALIGN 52
BFD_RELOC_SH_CODE. 52
BFD_RELOC_SH_COUNT 52
BFD_RELOC_SH_DATA............................ 52
BFD_RELOC_SH_IMM4............................ 52
BFD_RELOC_SH_IMM4BY2........................ 52
BFD_RELOC_SH_IMM4BY4........................ 52
BFD_RELOC_SH_IMM8............................ 52
BFD_RELOC_SH_IMM8BY2........................ 52
BFD_RELOC_SH_IMM8BY4........................ 52
BFD_RELOC_SH_LABEL 52
BFD_RELOC_SH_PCDISP12BY2 52
BFD_RELOC_SH_PCDISP8BY2..................... 52
BFD_RELOC_SH_PCRELIMM8BY2 52
BFD_RELOC_SH_PCRELIMM8BY4 52
BFD_RELOC_SH_SWITCH16....................... 52
BFD_RELOC_SH_SWITCH32....................... 52
BFD_RELOC_SH_USES. 52
BFD_RELOC_SPARC_10 48
BFD_RELOC_SPARC_11 48
BFD_RELOC_SPARC_5............................ 48
BFD_RELOC_SPARC_6..................... ..., 48
BFD_RELOC_SPARC_64 47
BFD_RELOC_SPARC_7............, 48
BFD_RELOC_SPARC_BASE13...................... 47

Index

BFD_RELOC_SPARC_BASE22...................... 47
BFD_RELOC_SPARC_COPY, 47
BFD_RELOC_SPARC_GLOB_DAT 47
BFD_RELOC_SPARC_GLOB_JMP 48
BFD_RELOC_SPARC_GOT10....................... 47
BFD_RELOC_SPARC_GOT13....................... 47
BFD_RELOC_SPARC_GOT22....................... 47
BFD_RELOC_SPARC_HH22covun.. 48
BFD_RELOC_SPARC_HM10..................coon. 48
BFD_RELOC_SPARC_JMP_SLOT 47
BFD_RELOC_SPARC_LM22.............covvvvnnn. 48
BFD_RELOC_SPARC_OLO10.......... ..., 48
BFD_RELOC_SPARC_PC_HH22..................... 48
BFD_RELOC_SPARC_PC_HM10. 48
BFD_RELOC_SPARC_PC_LM22..................... 48
BFD_RELOC_SPARC_PC10.............covvvinn. 47
BFD_RELOC_SPARC_PC22.............ccovvvennn. 47
BFD_RELOC_SPARC_RELATIVE 47
BFD_RELOC_SPARC_UA32, 47
BFD_RELOC_SPARC_WDISP16..................... 48
BFD_RELOC_SPARC_WDISP19..................... 48
BFD_RELOC_SPARC_WDISP22..................... 47
BFD_RELOC_SPARC_WPLT30..........c.cvvvennn.. 47
BFD_RELOC_SPARC13.ottt 47
BFD_RELOC_SPARC22.t 47
BFD_RELOC_THUMB_PCREL_BRANCH12............. 52
BFD_RELOC_THUMB_PCREL_BRANCH23............. 52
BFD_RELOC_THUMB_PCREL_BRANCHO.............. 52
bfd_reloc_type_lookup.............., 54
BFD_RELOC_V850_22_PCREL. 54
BFD_RELOC_V850_9_PCREL...................... 54
BFD_RELOC_V850_SDA_15_16_0OFFSET 54
BFD_RELOC_V850_SDA_16_16_0FFSET 54
BFD_RELOC_V850_TDA_6_8_0OFFSET.............. 54
BFD_RELOC_V850_TDA_7_7_0OFFSET.............. 54
BFD_RELOC_V850_TDA_7_8_OFFSET.............. 54
BFD_RELOC_V850_ZDA_15_16_0OFFSET 54
BFD_RELOC_V850_ZDA_16_16_0FFSET 54
bfdscan_arch...................... 68
bfdscan.vma.............coiiiiiii., 12
bfdset_archinfo............................... 68
bfd_set_archive_head 36

bfd set_default _target.......................... 64

106
bfd_set_error............ 9
bfd_set_error_handler........................... 10
bfd_set_error_program name.................... 10
bfdset fileflags 11
bfd_set format................ 37
bfdset_gpsize..........coiiiiiiii 12
bfd_set_privateflags 13
bfdsetreloc............. il 11
bfd_set_section_contents........................ 26
bfd_set_section_flags............................ 25
bfd_set_section_sizeoa... 26
bfd_set_start_address............... 11
bfdset_symtabl 33
bfd_symbolinfo.............ol 34
bfd_target list e 64
bfd_write_bigendian_4byte_int 73
C
coff_symbol_type........... 93
core_file_matches_executable_p 56
H
Hash tables.......... ... it 82
I
internal object-file format....................... 3
L
Linker..... ..o 77
S
stuff. ..o 14
T
target vector (_bfd_finallink) 80
target vector (_bfd_link_add_symbols) 78
target vector (_bfd_link_hash_table_create)...... 78
The HOWTO Macroooovvvvennenenn.. 43
\%Y%
what iSit7... ... 1

Index

The body of this manual is set in
cmrl0 at 10.95pt,
with headings in cmb10 at 10.95pt

and examples in cmtt10 at 10.95pt.

emitil0 at 10.95pt and
cmsli0 at 10.95pt
are used for emphasis.

107

	Table of Contents
	1 Introduction
	1.1 History
	1.2 How To Use BFD
	1.3 What BFD Version 2 Can Do

	2 BFD front end
	2.1 typedef bfd
	2.2 Error reporting
	2.3 Symbols
	2.4 Memory usage
	2.5 Initialization
	2.6 Sections
	2.7 Symbols
	2.8 Archives
	2.9 File formats
	2.10 Relocations
	2.11 The howto manager
	2.12 Core les
	2.13 Targets
	2.14 Architectures
	2.15 Opening and closing BFDs
	2.16 Internal functions
	2.17 File caching
	2.18 Linker Functions
	2.19 Hash Tables

	3 BFD back ends
	3.1 a.out backends
	3.2 coff backends
	3.3 ELF backends

	Index

