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SUMMARY

This 32-bit Microprocessor and Computer Development programme has developed an
infrastructure of sophisticated hardware components and software tools to support the
development of 32-bit on-board computers for future space applications.

The hardware development resulted in a computer core (ERC32) which was built of
three chips, i.e an Integer Unit, a Floating Point Unit and a Memory Controller. The core
is based on SPARC V7 architecture, including all functionality required to form an
embedded 32-bit on-board computer. By adding only external memory and required I/O
devices a complete system is configured. I.e it is easy to design systems with the ERC32
core.

The software development has resulted in a suite of tools, the “32-bit toolset”, which
support the user in the development and verification of hard real-time software written in
the Ada programming language. The toolset supports the complete Hard Real-Time
software development lifecycle and consequently, can be used from the start of a
programme, for example in the prototyping and conceptual design, through to the final
verification and validation of the application.
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1. EXECUTIVE SUMMARY

The main objective of this 32-bit Microprocessor and Computer Development
Programme was to develop an infrastructure of sophisticated hardware components and
software tools to support the development of 32-bit on-board computers for future space
applications.

The programme was managed by Saab Ericsson Space.

1.1. Hardware Development

The hardware was to be based on a widely supported, open architecture available
without license requirements. The key characteristics were focused on performance,
concurrent error detection and handling capabilities as well as on radiation hardness
technology and power consumption.

The hardware development resulted in a 32-bit Embedded Real-time Computing core
(ERC32) which is based on SPARC V7 architecture amended with built-in error
detection and handling capabilities. The amendments are implemented mainly by parity
checking logic for internal registers and for external data, address and control buses.

The ERC32 is built of the following three chips:

• Integer Unit (IU), the IU is the main computing engine of the ERC32 chipset. The
IU is based on 32-bit RISC architecture, defining execution at a rate of
approaching one instruction per clock cycle.

• Floating Point Unit (FPU), the FPU is a high-performance, single-chip
implementation of the SPARC reference floating-point unit. The FPU executes
single and double-precision floating-point instructions concurrent with execution of
integer instructions by the IU. The FPU is compliant with the ANSI/IEEE-754
floating-point standard.

• Memory Controller (MEC), the MEC interfaces the IU and the FPU to external
memory and I/O units thus forming a system, with which computers for on-board
embedded real-time applications can be built. In order to achieve this the MEC
constitutes all necessary support and on-chip resources.
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The core includes all functionality required to form an embedded 32-bit on-board
computer. Only adding external memory and required I/O devices a complete system is
configured. I.e. it is easy to design systems with the ERC32 core.

The ERC32 chipset is characterized of:

• Performance up to 10 MIPS at 14 MHz clock frequenzy

• Typically more than  95% error detection of ERC32 including memory

• Rad hard latchup free technology up to 70 kRad

• Power consumption below 2,25 W at 5,5 V.

The chipset has passed extensive simulations in VHDL and characterisation tests of
procured prototypes on-site. The functionality has also been verified within frame of 32-
bit Demonstration Breadboard (DEM32) used by both  hardware and software co-
ordinators and by software tools developers.

The ERC32 chipset is now available for procurement for flight application purposes.

1.2. Software Development

The software development has focused on ensuring that requirements for future space
missions are addressed. In particular, effort has been spent to ensure that support is
provided for producing efficient and effective code as well as for the implementation and
verification of the Hard Real-Time (HRT) requirements that are prevalent to on-board
software applications.

These requirements specify that the application must not only operate correctly, but that
the operation is performed within specific time constraints, such that failure to meet the
timing constraints is considered as an operational failure.

The result of the development has been a suite of tools (ERC32 software toolset) which
support the user in the development and verification of hard real-time software written in
the Ada programming language. The tools can be used from the start of a programme,
for example in the prototyping and conceptual design, through to the final verification
and validation of the application.
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The ERC32 toolset is hosted on a Sun SPARC platform running Solaris 2.4 and consists
of:

• An Ada Compilation System, which provides for the generation and cross-
debugging of Ada applications, which utilise tasking mechanisms in an efficient and
effective manner that allows verification of the execution times;

• A Schedulability Analyser to provide for the analysis and verification of the timing
requirements of an application;

• A Scheduler Simulator to provide a visualisation of the execution of the
application, including highlighting the Run-Time operations involved in executing
the application;

• An ERC32 Target Simulator, which provides a highly configurable and detailed
simulation of the ERC32 hardware and its environment, thus allowing
comprehensive testing of an application prior without recourse to the actual
hardware.

The tools have undergone a verification and validation process, which includes both a
limited evaluation performed as part of the programme and a formal validation of each
tool.

The ERC32 toolset is now ready to be used for flight application purposes.
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2. INTRODUCTION

2.1. Scope

This document describes the work which has been carried out under the ESTEC
Contract no 9848/92/NL/FM for 32-bit Microprocessor and Computer Development
programme.

The first chapter will give the background and objectives of the programme as well as the
project history, while subsequent chapters will outline the work which has been
performed and the results received.

Major technical specifications, descriptions and other relevant documents have been
provided in the list of documents and abbreviations used in this report are listed
separately.

2.2. Background

At the time the 32-bit Microprocessor and Computer Development programme started
the availability of ESA supported processors was limited to 16-bit processors.

However, the requirements for computational throughput in on-board computers had
risen almost constantly with each new project. Although the 16-bit processors was
capable of up to 3 MIPS (DAIS), higher demands had been expressed from projects like
Hermes and Columbus. With this background, ESA took a decision to develop a 32-bit
microprocessor together with the necessary support circuits and software development
tools, to be used in high performance on-board computers.

Furthermore, it was requested to "reuse" an existing processor architecture in order
to minimize both software and hardware development cost. Performed ESA and
industrial studies resulted, at that time, in the selection of SPARC instruction set
architecture as the baseline. This was in order to e.g. simplify bread-boarding and
software development.

It was requested that the developed processor, support circuitry and software tools must
support different type of applications with minimum performance penalties, even though
the applications can call for completely different system architectures. This was for cost
reasons for development, qualification and long term support.

The first type of application identified was characterized by strong requirements on
system availability, safety, fault-tolerance and real-time behaviour. High computational
throughput was also a requirement, but the dependability requirements were prioritized.
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In the second type of application, computing throughput was the driving requirement,
and requirements for system availability, fault-tolerance and real-time behaviour were
less emphasized.

On the software side, requirements for an industrial-quality Ada cross compilation
system had been identified. It was requested that the system should be able to generate
efficient code complying with the levels of predictability and efficiency demanded by the
application. Furthermore, the compilation system should interface with the ESA-funded
Ada tasking coprocessor (ATAC).

The need for more sophisticated tools such as symbolic cross-debuggers, target
simulators and real-time oriented tools had also been identified. These requirements were
based on the experiences of previous ESA space programmes and also the academic
research into HRT software development.

The two predecessor projects, the Hard Real Time Operating System Kernel (HRTOSK)
and the Hard Real-Time Embedded Software Support Environment (HESSE) built on
this research. These programmes resulted in a framework for the development of
analysable hard real-time software written in Ada and the identification and prototyping
of tools to perform this analysis.

This project was to be built upon this foundation, incorporating further developments in
the theory, with the intention of moving towards industrialised tools. Thus these tools
were to allow the ERC32 users to immediately begin developing applications.

2.3. Objective

The main objective with this programme was to develop an infrastructure of hardware
and software components to support the development of 32-bit onboard computers for
future space applications.

This was to be done by developing a complete 32-bit Embedded Real-time Computing
core (ERC32) based on a SPARC processor and a companion ASIC targeted for
embedded real-time applications, with built-in concurrent error detection and handling
capabilities. By adding buffers for the address and data bus to the core, ERC32 was to be
capable to interface to different types of memories and peripherals without redesign or
additional hardware.

Three individual chips were foreseen to be developed within the programme; an Integer
Unit (IU), a Floating Point unit (FPU) and a Memory Controller (MEC). An ADA
Tasking Coprocessor (ATAC) chip was under development in a separate contract, and
was to be used as a special purpose peripheral.

To demonstrate the capability of the developed computing core, a 32-bit Demonstration
Breadboard (DEM32) was to be built around the ERC32, configured as a typical on-
board embedded real-time computer.
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Due to the high cost of this programme, strong emphasis had been put on modelling and
simulation of the complete system with all its components before starting the design
phase of the individual devices. The need for precise and unambiguous specifications,
had led to the decision to use VHDL as the primary specification language and,
consequently, for all modelling and simulation. The VHDL models would also ease
system design, by providing a simulation model for board level simulation, and
simplifying any modifications or enhancements of the developed components.

Furthermore, it was requested that in order to avoid any possible export licensing
problems, all developed components should be manufactured and made available by a
European source without any restriction of use within the European space community.
The components were requested to be non-proprietary, i.e. they shall be actively
marketed and supported by the manufacturer, insuring long-term availability of the
components to the European space industry.

The software part of the ERC32 programme had been undertaken to ensure that a
modern development environment is available for flight computer designs using the
ERC32 chipset. Thus, a software toolset was to be developed focusing on hard real-time
software design typical for onboard space applications. The toolset should provide all the
necessary support for the analysis, coding and testing of a real-time software.

The toolset was to include an Ada cross compiler environment, based on Ada83 but with
Ada95-like additions to provide a deterministic solution which could be analysed by
means of the deadline monotonic theory.

To support software development, tools were also needed to be able to analyse the real-
time behaviour of an application with respect to this theory. These tools should be used
during all phases of software development and be able to interface in the coding phase
with the cross compiler, the cross compiler providing input derived from the actual code
to be used for analysis.

Finally, a performant simulator was needed to support embedded software development
before hardware is available. The simulator should interface with the debugger of the
cross compiler system, but also be able to be used as a stand-alone tool.

As with the hardware components, the software tools were requested to be provided to
the European industry without any export or other restrictions.
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2.4. Project Organization

The work has been performed by the following contractors with ESTEC as customer:

* Saab Ericsson Space
405 15  Göteborg
Sweden

* Logica UK Ltd
Space Division
Wyndham Court
94 Portsmouth Road
Cobham
Surrey KT11 3LG
England

* Alsys/Thomson Software Products
Partridge House
Newton Road
Henley-on-Thames
Oxon, RG9 1EN
England

* Spacebel Informatique
111 Rue Colonel Bourg
B-1140  Bruxelles
Belgium

* Matra Marconi Space
37, avenue Louis Breguet - B.P. 1
78146  Vélizy-Villacoublay Cedex
France

*   Matra MHS/Temic
     La Chantrerie - Route de Gachet
     CP 3008
     44087  Nantes Cedex 03
     France
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The project organization is as follows:

Customer

Software
 Consultancy

ESTEC

IU, FPU Spec. and Design
IU, FPU, MEC Manufacturing
IU, FPU MEC Characterization

MHS

Software Lead
Contractor

Logica

MEC Design

MMS-F

MMS-F

Ada Compiler System
and Debugger

Alsys/TSP

Target Simulator

Spacebel

Schedulability Analyser and
Scheduler Simulator

Spacebel

System Specification
MEC Specification

SES

Prime Contractor

SES

DEM32

Figure 1 - The project organization

Saab Ericsson Space have been prime contractor for the 32-bit Microprocessor and
Computer Development Program. The company has co-ordinated, supervised and
reviewed hardware and software development including, among others, activities
required to develop and release an ERC32 based Demonstration Breadboard (DEM32)

The hardware development consisted basically of three ASICs, Integer Unit, Floating
Point Unit and Memory Controller.

MHS modified the design of existing Integer and Floating Point Units.

Saab Ericsson Space specified a Memory Controller and MMS-F made the design of it
based on the VHDL simulation model released during specification phase.

MHS manufactured and performed the characterisation of all ASICs.

Logica have been software lead contractor, providing the overall co-ordination and
management of the tools development as well as the definition of overall models for the
tools and a toolset user manual.

MMS-F performed the functional analysis of the initial overall requirements for the
toolset as well as the compilation of the requirements documents for the individual tools.
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Alsys/TSP have developed the Ada Compilation System, providing also significant input
to the compilation requirements specification and to the analysis for the Worst Case
Execution Time Estimator tool.

Spacebel have developed the Schedulability Analyser, Scheduler Simulator and the
ERC32 Target Simulator, including also the consolidation of the requirements initially
specified for the tools.

2.5. Project History

The  32-bit Microprocessor and Computer Development programme has been basicly
run in two different parallel lines, one for the hardware development and the other one
for software development.

Different inputs from hardware development have been generated for the software
development and vice versa in order to control the correct interfaces between the
development lines.

2.5.1. Hardware Development

The hardware parts of the project has been run during three phases.

In phase 1 an analysis of an ERC32 based computer was made to define key system
characteristics such as performance, concurrent error detection and handling capabilities,
radiation hardness and power consumption.

The analysis resulted in a computer core (ERC32) which was built of three chips, i.e an
Integer Unit (IU), a Floating Point Unit (FPU) and a Memory Controller (MEC).

Device level specifications were established. The ERC32 system was modelled and
simulated in VHDL to consolidate the concept and to verify performance and behaviour.

In phase 2 detailed design and synthesis of the IU, the FPU and the MEC was performed,
and prototypes were manufactured. The 32-bit Demonstration Breadboard, DEM32, was
also defined, manufactured and tested, and integrated with a stand-alone monitor.

However, some revealed bugs inhibited the full use of this board for software developers.
Thus, a rerun of the chipset were initiated and new versions of the prototypes were
manufactured.

In phase 3, called Development Finalisation Phase, all developed prototypes have been
characterized accordingly on-site. The functionality of the devices was also verified
within frame of 32-bit Demonstration Breadboard. This board was also delivered to
software developers which could fully utilize all capabilities of it for the software
verification purposes.
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2.5.2. Software Development

The software part of the project was initially split into three phases, 1, 2 and 3.
Phase 1 was the requirements definition phase and was to result in the tool requirements.
Phase 2 was the implementation of the tools and phase 3 was for the characterisation and
validation of the tools, i.e. benchmarking and Ada Compilation Validation Certificate
(ACVC).

The tools initially identified by the statement of work [AD1] were the Ada Compilation
System, the Schedulability Analyser, the Scheduler Simulator and the ERC32 Target
Simulator.

During phase 1, it was identified that a Worst Case Execution Time Estimator tool
(WCETE) should be included in the set to provide for the semi-automatic generation of
worst case timings for an application’s constituent tasks. A Contract Change Notice,
CCN, was produced and agreed to include such a tool in the toolset.

Completion of phase 1 was delayed due to the addition of the WCETE tool and due to
the major deficiencies being identified in the initial requirements specifications. Following
further work on the specifications and a Preliminary Software Requirements Review,
closer communication links were established to consolidate the requirements process and
phase 1 completed with a Software Requirements Review.

The phase 1 activities were undertaken by Saab Ericsson Space, Logica, Alsys/TSP and
MMS-F. The initial consortium had also included Tecsidel, who were to have been
responsible for the Schedulability Analyser and scheduler simulator. However, following
a response to an Invitation To Tender and discussion between ESTEC and the
consortium, Spacebel were introduced to the consortium for phase 2. In addition, due to
the financial limitations of the programme it was not possible to include the WCETE tool
implementation within the ERC32 programme. This activity was subsequently addressed
through an external programme under the direct control of ESTEC.

The introduction of Spacebel and the delays in both the completion of phase 1 and start
of phase 2, meant that it was necessary to split phase 2 development. Ada Compilation
System was started ahead of official phase 2 kick-off, while the Schedulability Analyser,
Scheduler Simulator and ERC32 Target Simulator development was split into two sub-
phases, 2a and 2b. Phase 2a was introduced to provide for the consolidation of the
requirements documents and to allow Spacebel better understand the development task.
While phase 2b consisted of the development.

The requirements consolidation, phase 2a, was completed and lead to a proposal for
phase 2b for the implementation of the tools.

However, due to the delays in the re-organisation of phase 2 the timescales no longer
made it possible to maintain the original programme timescales and so advanced
deliveries of the tools were introduced to provide early visibility of the tools.
Refinements were agreed to be made as a result of ESTEC evaluation .
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Throughout the period of phase 2, MMS-F have provided consultancy on the ERC32
Target Simulator development.

The ACS development progressed independently of the other tools. However, bugs in
the first version of  the ERC32 chipset inhibited full utilization of the DEM32
breadboard, which was to provide support for the ACS targeting. As a result a CCN was
raised to extend the target testing of the ACS. However, due to programme financial
constraints this caused the formal benchmarking activities, which were to have taken
place at the end of the development, to be removed. Finally it was agreed that the ACS
had to be accepted during phase 2 using a Force SPARC breadboard which used a
commercial chipset and the ESTEC produced simulator SIS.

The phase 3 was redefined to Development Finalisation Phase and the work was
performed in form of individual call-of orders for the ACS, the target simulator and the
HRT tools.

The call-of order for the ACS development was agreed to allow the ACS to be modified
for the new revised ERC32 chipset and to allow testing to be performed on an updated
DEM32 breadboard. At the same time additional ACS functionality was requested by
ESTEC.

The development was completed successfully using the DEM32 V2 board, thus ensuring
that the compiler had been accepted on an actual target. I.e. complete qualification was
reached including running the ACVC and benchmark tests.

The call-of order for the development of HRT tools was to provide for the refinements,
agreed during phase 2, of the Schedulability Analyser and Scheduler Simulator and to
incorporate the new functionalities in the revised ERC32 chipset into the ERC32 Target
Simulator. This led to the final acceptance of the tools.

Logica’s role was re-directed as a result of CCNs and call-off orders for the tools agreed
during  phase 2 and Development Finalisation Phase.

The work was re-directed from toolset integration to include the acceptance of the
individual tools and production of the overall toolset user manual as well as to overall
management of tool development.
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2.7. Documents

2.7.1. Applicable Documents

This section contains the list of the applicable documents for the development.

[AD1] ESA 32-bit Microprocessor and Computer Development Programme Statement
of Work
WDI/JG/1317/NL, Issue 2.1, 28 May 1991

[AD2] ESA Software Engineering Standards
ESA PSS-05-0, Issue 2, Feb 1991

[AD3] Specification for a 32-bit Embedded Computing Core (ERC32)
WDI/JG/1334/NL, Issue 3, 29 May 1991

[AD4] 32-bit Microprocessor ATAC 2.0 Preliminary Interface Definition
Applicable Document 3, Aug 1991

[AD5] Requirements for Evaluation of a Manufacturer for the Manufacture and Supply
of Standard Electronic Components for Space Applications
ESA/SCC Basic Specification No. 20200, Issue 2 Rev B, Jun 1991

[AD6] 32-bit Microprocessor Software Tools Technical Requirements
WDI/1339/FGM/NL, 5 Jun 1991

[AD7] Integrated Circuits, Monolithic
ESA/SCC Generic Specification No. 9000, Issue 7 Rev B, Nov 1991

[AD8] Component Selection, Procurement and Control for ESA Space Systems
ESA PSS-01-60, Issue 2, Nov 1988

[AD9] ESA Preferred Parts List
ESA PSS-01-603, Issue 2 Rev 0, Jun 1985

[AD10] ESA/SCC Qualified Parts List
Issue 91/2, Amendment A, Dec 1991

[AD11] Derating Requirements, Worst Case Analysis and Application Rules for
Electronic Components
ESA PSS-01-301, Issue 2, May 1991

[AD12] Statement of Work for Participation in the ESA 32-bit Microprocessor and
Computer System Development Phase 2 and 3, S/W Part
MCD/SOW/0007/SE, Issue 1, 16 Feb 1994
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2.7.2. Reference Documents

[RD1] Hard Real-Time Operating System Kernel - Volume 1
TP1079 - Volume 1, Feb 1993
ESTEC Contract 9198/90/NL/SF

[RD2] Hard Real-Time Operating System Kernel - Volume 2
TP1079 - Volume 2, Feb 1993
ESTEC Contract 9198/90/NL/SF

[RD3] HMA31750 HESSE Implementation - Final Report
31750-LOG-IMP-TN-011, Nov 1993

[RD4] ERC32 single-event upset test results
WSD/JG/320/NL, Issue 1, 22 Oct 1996

[RD5] Benchmarking of 32-bit processors for space applications
WDI/JG/2105/NL, Issue 4, 20 Nov 1995

2.8. Abbreviations

ACS Ada Compilation System

ACVC Ada Compiler Validation Certificate

ADR Architectural Design Review

ADS Arbitary Deadline Scheduling

AOCS Attitude and Orbit Control System

AR Acceptance Review

ATAC ADA Tasking Accelerator

BCR Baseline Consolidation Review

CCN Contract Change Notice

CUT/KP Code and Unit Test Key Point

CWP Current Window Pointer

DAIS Digital Avionics Instruction Set

DEM32 32-bit Demonstration Breadboard

DMA Direct Memory Access interface

DMS Deadline Monotonic Scheduling

DRC Design Rule Check

EDAC Error Detection And Correction unit

ERC Electrical rule Check
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ERC32 32-bit Embedded Real-time Computing Core

ESD Electrostatic Discharge

ESM Embedded Signature-monitor Technique

FPU Floating Point Unit

HESSE Hard Real-Time Embedded Software Support
Environment

HOOD Hierarchical Object Oriented Design

HRT Hard Real-Time

HRTOSK Hard Real-Time Operating System Kernel

IR Integration Review

IU Integer Unit

LVS Layout versus Schematic

MEC Memory Controller

MIPS Mega instructions per second

MMU Memory Management Unit

NRL Naval Research Laboratory

OBDH On-Board Data Handling

PADR Preliminary Architectural Design Review

PBPS Priority Based Preemptive Scheduling

PCE Priority Ceiling Emulation

PSR Processor Status Register

RMS Rate Monotonic Scheduling

SEU Single Event Upset

SPARC Scalable Processor Architecture

WCETE Worst Case Execution Time Estimator

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuits
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3. DEVELOPMENT OF THE ERC32 HARDWARE

This chapter describes the work performed to develop the ERC32 hardware. The design,
verification and implementation aspects as well as problems encountered are described
separately.

3.1. Description of the work performed

This section summarizes the activities performed for the ERC32 chipset development. By
way of introduction the work package breakdown is presented for phase 1, 2 and
Development Finalisation Phase. This is followed by subsections addressing specific
aspects of the development.

3.1.1. Work Breakdown Structure

3.1.1.1. Phase 1

This phase consisted of five work packages:

• technology selection
• system definition
• system detail design
• system and component level simulation
• device development plan

3.1.1.1.1. Technology Selection

This work package dealt with the task to procure and analyze documentation describing
the SPARC standard and design database.

The work package also dealt with the task to define all components and technologies to
be used in an ERC32 based computer.

Previous ESA studies of various processor architectures, both CISC and RISC, drew as
input to this work package. During these two independent studies, the SPARC
architecture was chosen, mainly because it is a widely supported, open architecture
available without license requirements.

The result of this work package was the selection of the SPARC V.7 architecture , the
processor validation plan [GD55] and the preferred technology list for the ERC32 based
computer [GD56].
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3.1.1.1.2. System Definition

This work package dealt with the task to analyze and review the baseline ERC32
specification [AD3]. The work package also dealt with the task to study and select an
implementation of a high degree of concurrent error detection and handling in the
ERC32.

The baseline ERC32 specification was analyzed and an updated ERC32 specification was
issued. An implementation of the concurrent error detection and handling scheme was
selected and a report of error detection and reliability methods was issued. The
concurrent error detection and handling scheme was based on master-checker circuits,
program flow control, internal register parity, external bus parity and EDAC on memory.

The result of this work package was the updated ERC32 specification [GD58] and the
error detection and reliability methods report [GD57].

3.1.1.1.3. System Detail Design

This work package dealt with the task to define the ERC32 bus architecture and all the
interfaces. A detailed timing of all the interfaces was to be defined and the target was to
achieve maximum computational throughput. The work package also dealt with the task
to define an ERC32 based computer using only components from the ERC32 preferred
parts list. Finally the work package dealt with the task to generate detailed specifications
for all the devices to be developed in phase 2.

The ERC32 bus architecture was analyzed in many aspects; clocking, waitstates,
Memory and I/O bus configuration, bus loading, DMA operation and power
consumption etc. A clocking scheme of one system clock and one double clock was
chosen. A bus architecture of separate Memory and I/O bus was chosen.

The first ERC32 based computer was designed. A detailed memory map was defined and
a signal description with timing was generated. The design consisted of IU, FPU, MEC,
PROM, SRAM, Ada Tasking Co-processor (ATAC) and 2 serial ports.

Finally the preliminary specifications, at a functional level with critical timing of the
circuits was issued. The purpose of these first specifications was to serve as input to the
development of VHDL models of all circuits.

The result of this work package was a specification over the ERC32 bus architecture and
interfaces [GD59], the ERC32 system design document [GD60] and the preliminary
specifications of the IU, FPU and MEC circuits [GD61], [GD62], [GD63].
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3.1.1.1.4. System and Component Level Simulation

This work package dealt with the task to generate VHDL models at behaviour level of
the devices to be developed, and to generate regression test suites for the validation of
the models. The work package also dealt with the task to add timing properties for the
VHDL models. Finally the work package dealt with the development and acceptance of
the system level VHDL model of the ERC32.

An exhaustive amount of work was put into the development of the device VHDL
models and it's regression test suits. During this task most of the ERC32 system design
work performed in previous work packages were ennobled. Timing properties was added
on all output pins and setup and hold time checks on all input pins. The models were
tested against developed regression test suits that were to serve as input to the
development of manufacturing test suites. At the end of the work package ERC32
system level simulations was performed and the individual models were delivered after a
formal acceptance of the VHDL models.

The result of this work package was VHDL models of the devices including regression
test suites, VHDL models test reports [GD64] and an integrated ERC32 system level
model [GD65].

The ERC32 system level VHDL model was after delivery managed by ESTEC [GD66].

3.1.1.1.5. Device Development Plan

This work package dealt with the preparation for the phase 2 activities, generation of a
device development plan and a device verification plan. This work package also dealt
with the task to propose a manufacturer's organization, facilities, production control and
inspection system.
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The result of this work package was the device development and verification plan
[GD67] and the manufacturer's organization for phase 2, see figure below.

Figure 2 - Phase 2 organization

3.1.1.2. Phase 2

This phase consisted of three work packages:

• device detail design
• device manufacturing
• demonstration breadboard definition and manufacturing.

3.1.1.2.1. Device Detail Design

This work package dealt with the task to design the IU, FPU and MEC and verify the
designs against the VHDL models functionally. This work package also dealt with the
task to develop a complete set of test vectors for the devices to be used by the tester
during manufacturing test.

The IU circuit was designed using GDT/Mentor for schematic capture and Cypress test
vectors for database validation. After validation of IU basic functions introduction of
fault tolerant mechanism was done and the RT database were validated.

The FPU circuit was designed using Verilog hardware description language and a
modified set of Meiko test vectors for database validation. After validation of FPU basic
functions introduction of fault tolerant mechanism was done and the RT database was
validated.

The MEC circuit was designed using VHDL hardware description language and VHDL
test vectors generated during system level simulations in phase 1 for database validation.
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The result of this work package was the design data package including netlists of each
device, updated VHDL models and manufacturing test vectors [GD68], [GD69],
[GD70]. The specifications of the IU and FPU devices was issued in updated versions
and for the MEC a new specification was issued [GD71].

3.1.1.2.2. Device Manufacturing

This work package dealt with the task to manufacture the devices in a number enough to
start initial testing and characterization.

The result of this work package was 25 manufactured samples of each device tested and
delivered of which 5 chipsets where delivered after electrical characterization in
Development Finalisation Phase.

The validation of the devices was reported in the product validation reports [GD72],
[GD73].

3.1.1.2.3. Demonstration Breadboard Definition and Manufacturing

This work package dealt with the task to define and manufacture a 32-bit Demonstration
Breadboard, DEM32, based on the developed components and additional memory and
peripherals from the preferred parts list.

A DEM32 for use in laboratory environment was developed based on :

• ERC32 computing core,
• 2 x 2 Mbyte RAM (EDAC protected) with 1 x 2 Mbyte redundant RAM
• 512 kByte EEPROM
• ATAC
• Two serial ports (RS232C)

The DEM32 was equipped with an adapted version of the SPARCmon monitor from
Sun.
Complete schematics and timing analysis was produced. The computer was tested and
was later used in the development of the ERC32 software tools.

The result of this work package was the ERC32 system overview [GD74] including
DEM32 schematics and timing analysis. A DEM32 board including user's manual
[GD75] and test report [GD76] delivered.
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3.1.1.3. Development Finalisation Phase

This phase consisted of two work packages:
• the electrical and radiation characterization of the devices
• system testing and benchmarking.

3.1.1.3.1. Electrical and Radiation Characterization

In this work package, all manufactured device types were to be characterized. Especially
all timing parameters were to be tested against the specifications and all DC parameters
were to be measured.

The chipsets were tested in functional tests, electrical tests, applicative tests, SEU tests
and total dose radiation tests. During functional and electrical evaluation test vectors
developed during phase 2 was used and a device iteration was needed to correct some
detected bugs.

Heavy ion induced single event upset tests (SEU) show an expected high system
detection level of SEU´s in the chipset.
Total dose evaluation shows that the expected most sensitive parameter is leaking
current.

The result of this work package was the ERC32 SEU test report [GD77], Total dose
reports [GD78], [GD79], [GD80], Electrical Characterization reports [GD81], [GD82],
[GD83] and Life test reports [GD84], [GD85], [GD86].

3.1.1.3.2. System Testing and Benchmarking

This work package dealt with the task to benchmark the complete system, DEM32 on
the hardware side and ADA compiler on the software side.

The benchmarking was done at 10 MHz and zero/zero waitstates on the DEM32 board.
The test run were the ESTEC-B Image Compression program, the Hartstone program,
the ESTEC JIAWG selection, a PIWG selection and the ACVC version 1.11.

The result of this work package was presented in the Ada Compilation System
qualification report [GD33] and the IU and FPU User´s manuals [GD87] and [GD87]
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3.2. Design, Verification and Implementation

This chapter describes the design and verification methodology used for the development
of the ERC 32 hardware devices as well as the technology used to manufacture these
devices.

3.2.1. Design

3.2.1.1. Design Methodology

There was no standard design methodology used for the devices. However, this was
primarily due to the different heritage.

The IU and the FPU devices were further developed from existing commercial devices
whereas the MEC development started from the created VHDL model.

3.2.1.2. IU Design and Layout

The IU circuit was based on the Cypress CY7C601 processor.

The design of the IU with fault tolerant extensions has been done entirely in the
GDT/Mentor environment:

• Debug of functional models of CY7C601 (M Model)
• Schematic entry to create MHS CY7C601 database
• Validation of database with Cypress test patterns
• Introduction of fault tolerant mechanism and test logic in CY7C601 database to

create an IU database
• Generation of RT test patterns and validation of the RT database
• Replacement of control PLAs by logic gates
• Fault simulations on the IU database to analyze test pattern coverage
• Validation of netlist concerning the application of space rules
• Transistor size optimization
• Back annotated simulations of critical paths on final layout

At this step, all the dynamic parameters of the IU were compliant with the IU
specification [GD61].
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The main steps for Layout generation are described below:

• Generation of hardened SPARC-RT library for:
- Standard cells
- Data path cells
- I/O blocks (pads)

• Mega cells (Register file)
• Adaptation and generation of the new floor plan
• Generation of all blocks (alu, program counter, special registers...)
• Assembly and routing of the chip
• Layout verification (ERC, DRC, LVS)
• Sizing and MEBES tape generation

3.2.1.3. FPU Design and Layout

Since the original database is based on the MEIKO design written in Verilog, the first
design phases have been done in Verilog and there after transfer the database to a
GDT/Mentor database.

• Adding of interface with the IU
• Validation of this database with MEIKO test patterns and new test benches.
• Introduction of fault tolerant mechanism and test logic in the database to create a

FPU database
• Generation of RT test patterns and validation of the RT database
• Generation of high level VHDL model of the FPU and validation
• Replacement of ROM by logic gates
• transfer from Verilog to GDT/Mentor environment by using synthesis tool
• Validation of this the FPU database by running all test patterns
• Fault simulations on the FPU database to analyze test pattern coverage
• Validation of netlist concerning the application of space rules
• Transistor size optimization
• Back annotated simulations of critical paths on final layout

At this step, all the dynamic parameters of the FPU were compliant with the FPU
specification [GD62].

The main steps for Layout generation are described below:

• Generation of hardened SPARC-RT library for:
- Standard cells (same as for the IU)
- I/O blocks (pads)

• Mega cells (Register file)
• Adaptation and generation of the new floor plan
• Generation of all blocks
• Assembly and routing of the chip
• Layout verification (ERC, DRC, LVS)
• Sizing and MEBES tape generation
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3.2.1.4. MEC Design and Layout

The MEC circuit was based on the MEC behaviour model written in VHDL during
phase 1. The first design phases dealt with the task to convert the behaviour model to a
synthesizable model.

• corrections of bugs in the behaviour model,
• redefinition of the sequencing of the RAM access control signals to achieve a

14MHz ERC32,
• modification of the sequencing of the MEC in order to get only one clock and one

edge active,
• balancing of the internal data bus in order to optimize the critical paths,
• optimization of the address decoder in order to reduce the number of gates of the

decoding structure,
• redefinition of the access protection scheme,
• removing of MEC master/slave capability in order to save gates and pads
• implementation of the modifications of the MEC specification done during the

detailed design,
• implementation of the real MCRT input and output buffers,
• removing timing checkers and output delays.

From the behaviour point of view, the VHDL simulation model and the VHDL
synthesizable model are totally identical. So it was possible to check the behaviour of the
synthesizable model against the simulation model using the regression test suites
developed during phase 1.

The synthesizable VHDL model of the MEC was used as an input for the SYNOPSYS
synthesis tool. The synthesis has been done using MHS MC RT library. Each time a
block was considered as critical on the timing or on the area point of view, a structural
synthesis approach was preferred.

• Transfer of MEC VHDL model to Verilog netlist format by using synthesis tool.
• Elaboration in order to constrain the synthesis tool to be compliant with the MEC

specification.
• Validation of this MEC netlist by running all test patterns at 15 MHz, 0 waitstate
• Fault simulations on Mentor Quick Fault simulator to analyze test pattern

coverage. The chosen fault models were Stuck at 1 Stuck at 0 on the output.
• A floor planning of the MEC.
• Clock tree tuning.
• Back annotated simulations of critical paths on final layout at 14 MHz.

At this step, all the dynamic parameters of the MEC were compliant with the MEC
specification [GD71].
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3.2.1.5. Design Tools

Following design tools are used for each step of the design flow:

• Schematic & manual layout entry............Led (MENTOR)
• Logic simulations................................ ....Lsim (MENTOR) + XP200 (ZYCAD)
• VHDL simulations................................ ..QVSIM (MENTOR)
• Functional simulations............................. Lsim (MENTOR)
• Functional simulations............................. Verilog (CADENCE)
• Synthesis in gates................................ ....Design Compiler (SYNOPSYS)
• Synthesis in gates................................ ....AutoLogic (MENTOR)
• Scan insertion in netlist........................... DFT ADVISOR (MENTOR)
• Generation of standard cells blocks.........AutoCells (MENTOR)
• Generation of data path blocks................ DP compiler (MENTOR)
• JTAG patterns generation....................... FASTSCAN (MENTOR)
• Floor plan of the chip.............................. MicroPlan (MENTOR)
• Routing of the chip................................ .MicroRoute (MENTOR)
• Sizing & MEBES tape generation...........Dracula (CADENCE)

3.2.2. Verification

3.2.2.1. Verification Methodology

The ERC32 chipset has been verified by both VHDL model verification and design
database verification before manufacturing and by characterisation after manufacturing.

The validation plan of the ERC32 chipset has been described in the document, Processor
Validation Plan [GD55].

3.2.2.2. VHDL Model Verification

The high level VHDL models are generated in order to perform simulations at system
level with the three components: IU, FPU and MEC.
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IU VHDL model:

To validate the IU VHDL model, the existing production test patterns of the Cypress
CY7C601 have been used. Those patterns have been developed by Cypress and are
convenient for the architecture of the chip. Those test patterns represent 100K vectors
split into 135 independent test files. Each of those files test a special functionality of the
circuit. After translation of the test patterns into a Lsim format, these patterns are
simulated using QVSIM VHDL simulator. Comparison is performed vector by vector
with respect to original production test patterns.

FPU VHDL model:

No existing test vectors were available to validate the FPU since the FPU (from MEIKO)
has not the same Instruction sequencing as the 90C602 (from WEITEK). So Test
vectors were generated using SPARC source files (assembly code) from different
Databases:

• Source Files from MEIKO to test MEIKO core (87 files)
• Source Files from TSUNAMI database (chip with MEIKO FPU) (14 files)
• Source Files from MMS and MHS to test global functionality of the FPU (6 files)
• Source Files from IEEE to test IEEE conformity (9 files)

To validate the FPU Verilog Model in a real system, the simulations were achieved with
the CY7C601 product connected to the Verilog simulator via a hardware simulator
(LM700). The test patterns represent 450K vectors split into 116 independent test files.
These patterns are simulated using QVSIM VHDL simulator. Comparison is performed
vector by vector with respect to original LSIM patterns.

MEC VHDL model:

The test benches developed during phase 1 have been modified and used for VHDL
model validation. The modification was done mainly for 3 reasons:

• to take into account MHS test oriented simulation rules. For example, it is not
possible to perform a data transition directly from a value D1 to a value D2
because of potential contention problems.

• if a signal generated by the test bench is generated on the same clock edge than it is
sampled by the MEC, there could be one clock delay in the sampling of the signal.
So the test benches have been modified to generate a signal on the rising (resp.
falling) edge of the clock when it is sampled on the falling (resp. rising) edge of the
clock by the MEC.

• to upgrade the fault coverage.

The tabular files generated by these modified test benches have also been used as an
input for the gate level simulations.
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3.2.2.3. Design Database Verification

3.2.2.3.1. IU and FPU Circuits

Design database verification before wafer manufacturing has been described in the IU-
RT and FPU-RT Final Design Documents [GD69], [GD69] and summarized for:

• design rules check DRC
• layout versus schematics LVS
• electrical rules check ERC

DRC verifications:

The 2 chips have been layouted in order to be processed in two different technologies:

• z86H called SCMOS - RT (previously called w86rt)
• z86R called SCMOS - RH (previously called w86rtp)

So, design rules must be checked for these two technologies.

LVS Verifications:

Comparison between Layout and Schematics is performed in both technologies.

ERC Verifications:

Electrical rules are verified with the same software. This check detects:

• All transistors powered or grounded by other layers than MET1 or MET2
• Short or Opens
• Transistor gates connected to VCC or VSS

3.2.2.3.2. MEC Circuit

The MEC is verified in accordance with MHS verification methodology for circuits
implemented on a MC gate array matrix.

Design database verification before wafer manufacturing has been described in the MEC
Design Report [GD70].
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3.2.2.4. Characterisation

Characterisation of the ERC32 propotype chipset consists of:

* functional tests
* electrical tests
* radiation tests

A complete set of manufacturing test vectors were used for functional tests with a fault
coverage of 95% for the IU circuit, 98.3% for the FPU circuit and 94.6% for the MEC
circuit.

The results of the characterisation of the ERC32 chipset can be found in chapter for
"achieved results for the ERC32 hardware".

3.2.2.5. Verification Tools

Following verification tools are used for each step of the verification flow:

• Electrical simulations.............................. Eldo (ANACAD)
• Fault simulations................................ .....XP200 (ZYCAD)
• Fault simulations................................ .....Quick Fault (MENTOR)
• Static Analysis................................ ........PathMill (EPIC)
• Static Analysis................................ ........QuickPath (MENTOR)
• Layout verifications (ERC, DRC, LVS)..Dracula (CADENCE)

3.2.3. Implementation

The IU, the FPU and the MEC have been manufactured in different technologies.

The IU has been manufactured using the Matra MHS W86H process, a space hardened
0.8 µm SCMOS-RT technology. The mask number is 2821.

The FPU has been manufactured using the Matra MHS W86H process, a space hardened
0.8 µm SCMOS-RT technology. The mask number is 2859.

The MEC has been manufactured using the Matra MHS gate array MC 50K, processed
on the space hardened 0.8 µm SCMOS-RT technology.
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3.3. Problems Encountered

Since the device development approach was different for each circuit different problems
where encountered.

The design of the IU and the FPU circuits was based on existing commercial designs
with fault tolerant mechanism extensions. The MEC circuit was a totally new design
developed with a top down design methodology.

The problems are primarily identified in form of detected bugs in the circuits.

3.3.1. IU Circuit

• Revision 0: 3 bugs identified

• Revision A: Not functional
* clock skew problem

• Revision B: All bugs from Revision 0 corrected. 2 new bugs discovered
* power on reset
*  jmpl/restore

• Revision C: All bugs from Revision B have been removed

No bug discovered on Revision C during functional evaluation.

3.3.2. FPU Circuit

• Revision 0: 9 bugs identified

• Revision A: All bugs from Revision 0 corrected. 5 new bugs identified
* failing stdf and stdfq
* failing lddf
* failing mds/mhold/fhold sequence
* failing sequences with waitstates
*  failing parity during fhold
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• Revision B: All bugs from Revision A corrected. 3 new bugs discovered
* failing store double floating-point instruction
* failing store floating-point status register with waitstates
* failing load floating-point instruction with waitstates

Three bugs discovered on Revision B during functional evaluation.
Problem description and work around is available from Matra MHS (TEMIC) [GD89].

3.3.3. MEC Circuit

The work with the transfer of the MEC behaviour model to a synthesizable model took a
lot more time than expected. The timing of the MEC behaviour model was implemented
in a timing shell and the true timing of the synthesized MEC was not acceptable, that
lead to some redesign of MEC functionality.

- Redefinition of the sequencing of the RAM access control signals to achieve a
14MHz ERC32.

- Heavy modification of the architecture of the EDAC block in order to speed up the
error detection.

- Modification of the sequencing of the MEC in order to get only one clock and one
edge active.

• Revision 0: 12 bugs identified

• Revision A: All bugs from Revision 0 corrected. 3 new bugs identified
* CPU Halt indication in MEC Error and Reset Status register not
cleared at soft reset,
* Erroneous UART status after UART clear,
*System Fault Status register not updated during EDAC Non-
Correctable Error)

Three bugs discovered on Revision A during functional evaluation.
Problem description and work around is available from Matra MHS (TEMIC) [GD89].
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3.3.4. DEM32 Board

The first DEM32 board version 1, was based on the ERC32 chipset revision 0A0 and
had problems with the bugs detected in the ERC32 chipset:

• Power on reset might fail in the IU circuit.
• Internal parity error.
• Wrong polarity on bus parity.
• FPU / MEC operation bug.

The second version of the DEM32 board version 2, was based on the ERC32 chipset
revision CBA and all problems from the version 1 board was solved but some new was
detected in the ERC32 chipset:

• CPU halt indication not cleared at soft reset.
=> Error injection during CPU halt not possible.

• Erroneous UART status after UART clear.
=> modification of the DEM32 monitor software.

• Data parity timing not consistent with EDAC check bits timing.
=> bug fix on the board to used the data write strobe for check bits store instead of

 the dedicated check bits write strobe.

This version of the board could, however, be used during the ERC32 compilation system
qualification and validation testing.

A third version of the DEM32 board was manufactured and delivered to be used in the
ERC32 evaluation program.

The DEM32 V3, is identical to  the previous version, DEM32 V2 board, but has an
expanded EEPROM memory.
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4. ACHIEVED RESULTS FOR THE ERC32 HARDWARE

This chapter describes the functionality of the ERC32 chipset, performance where
applicable, electrical characteristics and radiation hardness capabilities as well as the
currently known limitations and bugs.

The ERC32 chipset has successfully completed verification according to plan .

The ERC32 chipset has given satisfactory results concerning the different evaluations:

• The functional evaluation on breadboards with various programs has demonstrated
the full compatibility with the SPARC V7 standard. 3 bugs have been discovered
on the FPU which can be work around by software and 3 bugs have been
discovered on the MEC which have a minor effect on the system.

• The electrical evaluation has demonstrated the full compatibility to the 14Mhz
specifications.

• The radiation results gathered during various test campaigns show that the
hardening of very complex components can be achieved by taking into account all
possible degradation and weakness of the elementary devices. Up to 97.5% of all
single bit errors generated during worst case test are detected by hardware at the
system level. The use of MASTER/CHECKER option would reduce this remaining
error rate.

• Manufactured using the 0.8 µm SCMOS-RT technology, the three devices show
typical degradation (power supply increase) after irradiation but with no functional
limitation. Since the overall consumption is far below the specification and because
of previously demonstrated dose rate effects, total dose is not a concern for
designers who have to deal with 100Krad.

4.1. Description of the ERC32 Chipset

4.1.1. Functionalities

The ERC32 chipset is a SPARC V7 compatible processing core implemented in three
devices; the Integer Unit (IU), the Floating-Point Unit (FPU) and the Memory Controller
(MEC).
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Figure 3 - ERC32 Computer core with buffers

The ERC32 interfaces directly to external memory and IO devices. The MEC includes all
system functions required to form an embedded computer and to host a real-time
operating system. The most important features are:

• Address decoding
• Memory interface
• Interrupt controller
• Block protection unit
• 32-bit SEC/DED Error Detection And Correction unit (EDAC)
• Two 32-bit timers
• Two UARTs
• Boot prom interface
• Direct Memory Access interface (DMA)
• Error manager
• Watchdog

The ERC32 does not use a cache memory, it runs directly from a fast SRAM-based main
memory. There is no memory management unit (MMU), address translation and paging
is typically not used in space-based embedded systems.

4.1.1.1. Integer Unit (IU)

The Integer Unit (IU) is the main computing engine of the ERC32 chipset. The IU is
based on the SPARC 32-bit RISC architecture, which defines a processor capable of
execution at a rate approaching one instruction per clock cycle.

The IU is based on the CY7C601 a SPARC V7 integer unit from Cypress
Semiconductors. To the basic functions of the Cypress Integer Unit a number of
concurrent error detection and handling capabilities has been added.
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4.1.1.1.1. Basic Functions

Registers
A total of 140 32-bit registers are accessible to the programmer, divided into 136 general
and four special purpose register. The SPARC architecture uses register windowing, the
general purpose registers are divided into windows of 24 registers, with an overlap of
eight. Only one window at a time is accessible, selected through the Current Window
Pointer (CWP) in the Processor Status Register (PSR).

Exceptions
Two types of exceptions (traps) are supported, synchronous and asynchronous. The
asynchronous traps are generated by external interrupts and can be masked, while the
synchronous traps originate from internal events and cannot be disabled.

4.1.1.1.2. Concurrent Error Detection Capabilities

The concurrent error detection capabilities consists of parity protection and program
flow control.

Parity Protection
The register file, containing the general purpose registers, is provided with one parity bit
per register. Other registers in the IU, such as general purpose registers, special purpose
registers and temporary registers are also provided with one parity bit per register. More
than 98% of all latches in the IU are covered with parity protection.

To check the integrity of the external address bus an address parity bit is generated. A
parity bit on the external data bus is generated during stores and checked during loads
and instruction fetches.

Three parity bits are used to protect the control buses, on bit on the bus going from the
IU to the FPU (checked by the FPU), on bit on the bus going from the FPU to the IU
(checked by the IU), and one bit for the remaining output control signals (checked by the
MEC).

Program Flow Control
A program flow control functions is included in the IU using the embedded signature-
monitor technique (ESM), in order to complement the register-targeted error-detection
methods. The concept is to calculate a signature from each executed instruction and to
compare this signature at appropriate points with a predefined checksum, to insure that
the correct instructions have been executed.
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4.1.1.1.3. Concurrent Error Handling Capabilities

Adhering to the general exception mechanism, the internal error-detection logic is
evaluated during the execute stage of each instruction. If an error is found, an error trap
is taken. The error traps are divided into six types, grouped after error location and
possible recovery action.

4.1.1.2. Floating-Point Unit (FPU)

The Floating Point Unit (FPU) is a high-performance, single-chip implementation of the
SPARC reference floating-point unit. The FPU is designed to provide execution of single
and double-precision floating-point instructions concurrent with execution of integer
instructions by the IU. The FPU is compiant with the ANSI/IEEE-754 floating-point
standard.

The FPU is based on the MEIKO floating-point core. To the basic functions of the
MEIKO floating-point core a number of concurrent error detection capabilities have
been added.

4.1.1.2.1. Basic Functions

Execution
The floating-point instructions are started by the IU using the INS1/INS2 signals and
then execute independently inside the FPU. Most FP instructions execute in parallel with
IU operation. During the parallel execution, the address and data of the current
instruction is held in the floating-point queue, FPQ.

Exception
If an exception (e.g. overflow) occurs during the execution of an floating-point
instruction, the FPU will assert FEXC and enter pending_exception state. The IU will
recognize the floating-point exception at the start of the following floating-point
instruction and take a floating-point trap.

4.1.1.2.2. Concurrent Error Detection Capabilities

The FPU error-detection scheme is similar to the IU scheme. All registers are provided
with parity bits, and FPU generates and checks parity bits for all buses (address, data and
control). 100% of all latches in the FPU are covered with parity protection.



Page : 42Document No : MCD/MNT/0015/SE Date : 27 May 1997 Issue : 1

4.1.1.2.3. Concurrent Error Handling Capabilities

The error-handling is slightly different from the IU; the FPU cannot handle the detected
errors on its own, but flags them to the IU which have to take corrective measures.
When and error is detected, the FPU enters pending_exception state and indicates the
error type in the ftt in the floating-point status register. Three types of errors are defined;
restartable error, non-restartable error and data bus error.

4.1.1.3. Memory Controller (MEC)

The MEC is designed to interface the IU and the FPU to external memory and I/O units
thus forming a system, with which computers for on-board embedded real-time
applications can be built.

The Memory Controller implements important system support functions such as chip
select decoding, wait state generation, EDAC, timers and UARTs as well as concurrent
error detection and handling capabilities.

4.1.1.3.1. Basic Functions

The MEC constitutes all necessary support and on-chip resources:

• System start up control and reset
• Power down mode control
• System clock
• Watchdog function
• Memory interface to RAM ranging from 256 Kbyte to 32 Mbyte
• Memory interface to PROM ranging from 128 Kbyte to 4 Mbyte
• I/O interface to exchange memory (e.g. DPRAM) ranging from 4 to 512 Kbyte.
• I/O interface to four peripherals
• DMA interface
• Bus arbiter
• Programmable wait-state generator
• Programmable memory access protection
• Memory redundancy control
• EDAC, with byte and halfword write support
• Trap handler including 15-level interrupt controller
• One 32-bit general purpose timer with 16-bit scalar
• One 32-bit timer with 8-bit scalar (Real-Time-Clock)
• UART function with two serial channels
• Built-in concurrent error detection including support for master/slave checking of

IU and FPU
• System error handler
• Parity control on system bus
• Test support including a minimal TAP interface
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The MEC interfaces directly to the address, data, and control buses of the IU and FPU,
requiring no additional components. It also interfaces directly to external memory and
I/O units only requiring additional buffers for the address and data bus.

4.1.1.3.2. Concurrent Error Detection Capabilities

Error-detection is implemented by providing each MEC register with a parity bit which is
continuously checked. The parity of the external address, data and part of the control bus
is checked by the MEC.

4.1.1.3.3. Concurrent Error Handling Capabilities

The MEC also contains an error handling manager, where the error signals from the IU,
FPU and the MEC itself are sensed. For each error type, the error manager can be
programmed to either ignore the error, issue an interrupt, reset the ERC32 or halt.

4.1.2. Performance

The ERC32 chipset is compatible to its specification of 14MHz system clock frequency.
Benchmarking for the ERC32 chip set  has been detailed in the document:
"Benchmarking of 32-bit processors for space applications" [RD5].

During the benchmarking exercise, it has become apparent that computational
requirements can never be expressed in MIPS figure using a particular assembly level
instruction mix. For the ERC32, benchmarks were compiled and run both with and
without optimization. The assembly level instruction mix was equal in both cases, even
though the un-optimized bench marks executed more that twice as slow. Performance
requirement for systems where high level languages are to be used should therefore be
expressed as a maximum execution time of a test program written in the same language.
It is also important that the selected test program uses similar language elements and
calculations as the target application.
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4.1.3. Electrical Characteristics

The ERC32 chip set is specified and has been tested for:

Maximum ratings:

Storage Temperature : -65°C to 150°C
Ambient Temperature with power applied: -55°C to 125°C
Supply Voltage: -0.5V to +7.0V
Input Voltage: -0.5V to +7.0V

Operating range (Military):

Ambient Temperature with power applied: -55°C to 125°C
Supply Voltage: +5.0V ± 10%

DC characteristics over the Operating range: min max Units

VOH Output high voltage 2.4[1] [V]
VOL Output low voltage 0.5 [V]
VIH Input high voltage 2.1 VCC [V]
VIH Input low voltage -0.5 0.8 [V]
IIZ Input leakage current -10 10 [µA]

IU Circuit: min max Units
IOZH Output leakage current (Vout=VCC) -10 10 [µA]
IOZL Output leakage current (Vout=VSS) 50[2] 240[2] [µA]
ISC Output short circuit current -30 -350 [mA]
ICCop Supply current (@ 14MHz) 200 [mA]
ICCsb Supply current ( @ standby) 1 [mA]

FPU Circuit: min max Units

IOZH Output leakage current (Vout=VCC) -15 15 [µA]
ISC Output short circuit current -30 -350 [mA]
ICCop Supply current (@ 14MHz) 180 [mA]
ICCsb Supply current ( @ standby) 3 [mA]
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MEC Circuit: min max Units

VOH Output high voltage 3.7 [V]
IOZH Output leakage current (Vout=VCC) -15 15 [µA]
ISC Output short circuit current -30 -350 [mA]
ICCop Supply current (@ 14MHz) 100 [mA]
ICCsb Supply current ( @ standby) 1 [mA]

Capacitance ratings :[3] max Units

CIN Input capacitance 10 [pF]
COUT Output capacitance 12 [pF]
CIO Input/Output bus capacitance 15 [pF]

AC characteristics over the Operating range: max Units

f System clock frequency 14 [MHz]

Notes:
[1] MEC Output high voltage >3.7V
[2] On chip pull-up resistor = 20kΩ
[3] Test conditions are: Vcc=5.0V, Ta=25°C, f=1MHz

4.1.4. Radiation Harness

The radiation harness has been evaluated for total dose, ESD, latch up and SEU
characteristics.

4.1.4.1. Total Dose

The Total Dose evaluation for the ERC32 chip set has been detailed in the Total Dose
test reports [GD78], [GD79], [GD80].



Page : 46Document No : MCD/MNT/0015/SE Date : 27 May 1997 Issue : 1

Test conditions

The three chips (IU-RT, FPU-RT & MEC) have been irradiated according to the
standard ESA/SCC No 22900:

- Gamma rays from Cobalt 60 at 300rad(Si)/hour
- Biasing at 5.0V during irradiation
- Clock generated at few Hertz during irradiation
- Sensitive parameters monitored during and after irradiation
- High temperature annealing to assess low dose rate behaviour

Irradiation has been stopped at 70 & 80 Krad because of time constraint.

Main results

Since the three components are using the SCMOS1/2 RT technology, the expected most
sensitive parameter is leaking current. Large dose rate effect is also illustrated by the
recovery of the pre-rad value for sensitive parameter which confirms minor degradation
in the outer space environment.

The absolute maximum power consumption for the three chips remains below
specification (2.25W @ 5.5V) after 70Krad. No functional failure is observed all over the
test.

4.1.4.2. Electrostatic Discharge (ESD)

IU ESD test:

- 3 parts stressed at 3500V --> 3 parts good at retest.
- 3 parts stressed at 4000V --> 1 part fail and 2 parts good at retest.

FPU ESD test:

- 3 parts stressed at 3500V --> 3 parts good at retest.
- 3 parts stressed at 4000V --> 3 parts fail at retest.
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MEC ESD test:

The ESD sensitivity of the MC Gate Array series applies to the MEC.
No specific testing has been performed.

Conclusion:

IU and FPU; the level of ESD sensitivity is greater than 3500V;
both chips are classified in class 2 of the MIL STD (> 2000V).

MEC; the device is classified in class 2 of the MIL STD (> 2000V).

4.1.4.3. Latch Up

IU , FPU and MEC:

- Single event latchup (SEL) > 72 MeV/(mg/cm2)
- Electrical latchup: no latchup observed

Conclusion: The devices are latchup free.

4.1.4.4. Single Event Upset (SEU)

The SEU evaluation for the ERC32 chipset  has been detailed in the document
"ERC32 single event upset test results" [RD4].

The ERC32 radiation Tolerant RISC processor is designed to be used in critical space
applications where single event upset (SEU) phenomena can not be avoided. It therefore
incorporates several mechanisms to detect and isolate SEU induced errors. Following are
provided some test system description and results gathered during radiation tests
campaigns.
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SEU test concept

The following parameters were to be determined:

- LET threshold and cross-section
- Coverage of on-chip error-detection mechanisms in IU-RT, FPU-RT and MEC
- Coverage of system level error-detection mechanisms

The test system consists of a host computer and a target system connected together via a
serial RS-232 link. The host computer has a monitoring software that logs events in the
target system. The target system consists of an ERC32 chipset, 2 Mbyte RAM and 512
byte flash-PROM. The IU-RT and FPU-RT are running in master/checker mode, i.e. two
devices in parallel. The target system is configured to use all error-detection functions
available; parity on address, data and control buses is checked and the memory is
provided with EDAC check bits. A dedicated test software has been developed to insure
correct error detection and reporting. Three application programs are also developed to
allow single device test:

• IUreg (IU test)
• FPUreg (FPUtest)
• the well-known Paranoia (application).

Test Results

Error calculation of the three devices have been done using CREME software from
Naval Research Laboratory (NRL). The results are worst case assuming solar minimum
conditions and a shielding of 1g/cm2. The Upset rate has been calculated for two orbits
taking into account a "normal" use of the devices:

- Low Earth Orbit (LEO), altitude 400 km, inclination 53°.
- Geostationary (GEO), altitude 36000 km, also valid for eccentric orbits.

Device LEO
(upset/day)

FITS
(all errors)

Error
detection
coverage

FITS for
undetected
errors

MTBF for all
errors (years)

MTBF for
undetected
errors (years)

IU 4.4E-5 2062 99.3% 11 55.4 7906

FPU 2.5E-6 106 94.2% 6 1074 18520

MEC 9.3E-6 388 99.1% 4 295 32373

ERC32 1.6E-4 2556 21 44.7 5436

Figure 4: The main results for Low Earth Orbit (compensated):
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Device GEO
(upset/day)

FITS
(all errors)

Error
detection
coverage

FITS for
undetected
errors

MTBF for all
errors (years)

MTBF for
undetected
errors (years)

IU 4.1E-4 17292 99.3% 121 6.6 942

FPU 2.2E-5 896 94.2% 156 127 732

MEC 8.1E-5 3375 99.1% 30 33.8 3758

ERC32 1.3E-3 21563 307 5.2 372

Figure 5: The main results for Geostationary Orbit (compensated):

4.1.5. Known Limitations and Bugs

The document "Current Errors in the ERC32 (CBA)" [GD89] lists all known limitations
and bugs.  This should be consulted in the first place to ensure the status of the ERC32
chipset.

The following sections list the limitations and bugs in the ERC32 chipset delivered as
part of the programme.

4.1.5.1. IU Circuit

No bug has been discovered on IU, Revision C during functional evaluation.

4.1.5.2. FPU Circuit

Three bugs have been discovered on FPU, Revision B during functional evaluation as
follows:

* failing store double floating-point instruction
* failing store floating-point status register with waitstate
* failing load floating-point instruction with waitstates
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4.1.5.3. MEC Circuit

Three bugs have been discovered on MEC, Revision A during functional evaluation as
follows:

* CPU Halt indication in MEC Error and Reset Status register not cleared
at soft reset

* Erroneous UART status after UART clear
* System Fault Status register not updated during EDAC Non-Correctable Error

4.1.5.4. ERC32 System

One bug has been discovered on the ERC32 system level, Revision CBA during
functional evaluation as follows:

* Data parity timing not consistent with EDAC check bits timing

Workaround to this bug is to use the data write strobe for check bits instead of
the dedicated check bits write strobe. For further details see [GD74].
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4.2. Use of the ERC32 Chipset

The ERC32 is to be used as a building block only requiring memory and application
specific peripherals to be added to form a complete on-board computer. All other system
support functions are provided by the core.

The ERC32 incorporates the followings functions:

• Processor, which consists of one Integer Unit (IU) and one Floating-Point Unit
(FPU). The processor includes concurrent error detection and handling capabilities.

• Memory Controller (MEC), which is a unit consisting of all necessary support
functions such as memory control and protection, EDAC, wait state generator,
timers, interrupt handler, watch dog, UARTs, and test and debug support. The unit
also includes concurrent error detection and handling capabilities.

• One or two oscillator(s).

• Buffers necessary to interface with memory and peripherals.

The figure below schematically shows a basic ERC32 computer with external functions
added to form a complete system.
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4.3. Availability of the ERC32 Chipset

The ERC32 chipset is now available from Matra MHS (TEMIC):

IU revision C, as the TSC691E.
FPU revision B, as the TSC692E.
MEC revision A, as the TSC693E.

Information and chipsets can be obtained from the following:

TEMIC / MATRA MHS S.A.
La Chantrerie - Route de Gachet
CP 3008
44087 Nantes Cedex 03
France

Tel: (33) 40 18 18 18
Fax: (33) 40 18 19 20

MEC IU FPU

BOOT PROM

RAM

I/O

Exchange Memory

ERC32

Ctrl
Hold
Error

Ctrl

Ctrl

Check bits

Data

Address

BYTE SELECT

Bus Ready

DMA UNIT

DMA REQ

DMA GNT

OSC

Figure 6 - ERC32 Computer with typical peripherals
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The ERC32 VHDL models are now available from ESTEC:

ERC32 VHDL Models Version 1.0

Information and VHDL models can be obtained from the ERC32 Home page:

http://www.estec.esa.nl/wsmwww/erc32/erc32.html

The ERC32 Home page is managed by:

Mr Jiri Gaisler
European Space Agency (ESA/ESTEC)
Box 299
Noordwijk 2200 AG
The Netherlands.

Tel: (31) 71 5654880
Fax: (31) 71 5654295
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4.4. Future improvements for the ERC32 Chipset

Future improvements for the ERC32 chipset can be divided in performance, system and
functional aspects.

The performance could be improved in terms of speed (>20 MHz).

The system improvements could be achieved by implementing the three components on a
single chip.

Concerning the functionality, a redesign of the FPU could be developed in order to
correct all identified limitations to the system.
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5. DEVELOPMENT OF THE ERC32 SOFTWARE

This chapter describes the work performed to develop the ERC32 software. The design,
verification and implementation aspects as well as problems encountered are described
separately.

5.1. Description of the work performed

This section summarises the activities performed for the software tools development.  By
way of introduction the work package breakdown is presented for phase 1, 2 and
Development Finalisation Phase. This is followed by subsections addressing specific
aspects of the development.

5.1.1. Work Breakdown Structure

5.1.1.1. Phase 1

Phase 1 consisted of a single work package for the specification of the tool requirements
and planning for the implementation.

This work package was sub-divided into four sub work packages:

• overall co-ordination of tool specification
• specification of software tools
• design and development plan for tools
• test plan for tools

5.1.1.1.1. Overall Co-ordination of Tool Specification

This work package dealt with the overall management and control of the phase.  This
involved the co-ordination of the various inputs for the tools’ specifications, planning for
phase 2 and the review and approval of the individual specifications at completion of the
phase.

In addition, there was a need to ensure that the tool requirements were consistent with
the hardware development, such as overall system requirements and specific constraints
on the tools due to the hardware implementation, e.g. Ada Compilation System Board
Support Package and ERC32 Target Simulator implementation.



Page : 56Document No : MCD/MNT/0015/SE Date : 27 May 1997 Issue : 1

5.1.1.1.2. Specification of Software Tools

This work package dealt with the analysis and production of the software requirements
documents.  The requirements were a synthesis of general requirements such as the
Platform and specific requirements identified in the SOW.

In addition, this work addressed the interfaces between the tools.  Provision of an
industrial quality set of tools requires that, where appropriate, the tools interact and/or
transfer data consistently.

For this toolset, the ACS shall be able to use the ERC32 Target Simulator for debugging
and in order to provide accurate HRT analysis the Schedulability Analyser and Scheduler
Simulator need information regarding the Ada Run-Time System.

The result of this work package was the individual specifications and interface control
documents.

5.1.1.1.3. Design and Development Plan for Tools

The purpose of this work package was to produce a development plan for the
implementation. This plan was produced in accordance with PSS-05-0 and defined the
managerial, technical and commercial issues of the implementations.

The phase 2 software project management plan, software configuration plan and
software quality assurance plan were output from this work package.

5.1.1.1.4. Test Plan for Tools

This work package addressed the overall verification and validation approach to be taken
for the implementation.

As there were a number of tools, it was necessary to both co-ordinate the verification
process and also to plan that the interfaces between the tools were verified.

A software verification and validation plan was the outcome of this activity.

5.1.1.2. Phase 2 and Development Finalisation Phase

For phase 2 three overall work packages were identified for the software part of the
programme:

• Ada Cross Compilation System Development
• Advanced Supporting Tools (Debugger)



Page : 57Document No : MCD/MNT/0015/SE Date : 27 May 1997 Issue : 1

• Hard Real-Time Supporting Tools (Other Tools)

Finally, the following structure of work packages was agreed as seen in figure below:

Phase 2

Software

Ada Compiler
System &

WP2400    ALS

Debugger

Hard Real-Time
Support Tools

WP2600

SW Supp. Env.
User Guide

WP2900     LOG

Overall Coord.
& Management

WP2700       LOG

Acceptance
of Tools

WP2800     LOG

Test
Acceptance

WP2810     LOG

Target 
Simulator

WP2735    MMS
Consultancy

Software

WP2715    LOG

Management
Scheduler

WP2650      SBI

Simulator
Schedulability

WP2640        SBI

Analyser
DEM32 Target

WP2630       SBI

Simulator

Figure 7: Phase 2 work breakdown structure

Initially, it had been planned to go through to a Phase 3 of the programme, where the
software tools were to undergo formal integration and validation and the ACS would be
subject to the Ada Compiler Validation Certificate (ACVC) process.

However, following the initial release of the ERC32 chipset, there were bugs identified in
the chipset. This meant it was not possible to provisionally accept the ACS using the
DEM32 breadboard.

These events coincided with the advanced release of the Schedulability Analyser and
Scheduler Simulator. These were examined and a number of errors and refinements were
identified.

As a consequence, it was agreed to modify the software programme through removal of
the ACVC process as well as of the formal integration and validation process of the
tools.

The efforts were instead directed to refinement of the HRT tools and  modification of the
ERC32 Target Simulator to the new ERC32 chipset. The ACS was also upgrade with
additional functions and modified to the new chipset.

This work was finalized as a direct follow-up for the phase 2 during redirected
Development Finalisation Phase.
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5.1.1.2.1. Ada Compiler System and Debugger

The work consisted of taking the standard Alsys Baseline Compiler Technology and
performing the necessary modifications to incorporate the ERC32 programme
requirements. This consisted of the following activities:

• to develop a complete Ada program development and execution environment
hosted on Sun SPARC under the Solaris operating system and targeting the 32-bit
Embedded Real-Time Computing Core (ERC32), including the ATAC.

• to provide support for Hard Real Time scheduling analysis by implementing
efficient Ada primitives in such a way as to model the basic entities and operations
assumed by Rate Monotonic Analysis and Deadline Monotonic Analysis scheduling
theories.

• to provide the necessary parameterization to permit use of an ERC32 Target
Simulator (also developed within the project) as the target for the Ada Compilation
System.

The development was completed with provisional acceptance tests using a commercial
SPARC board from Force Computers Ltd (CPU-2CE) and an ERC32 simulator supplied
by ESTEC, SIS version 1.4. This demonstrated  that the main functionality was
implemented correctly.

Following this acceptance, it was agreed that the ACS was to be modified for the revised
ERC32 chipset and to allow acceptance to be carried out on an actual ERC32 board.

In addition, extra functionality was added for indirect procedure calls, interface to C and
to control the ROM data size on Preelaboration.

As a result, the ACS development was completed with acceptance using a DEM32 board
with the revised ERC32 chipset.

5.1.1.2.2. HRT Support Tools

This work package was split into two sub-phases, known as phase 2a and phase 2b, with
each having three sub-packages corresponding to one for each tool development.

Phase 2a consisted of requirements consolidation and preliminary architectural design,
while phase 2b took the preliminary design and worked through to complete the
implementation and acceptance of the tools.

During the development advanced deliveries of the tools were provided.  These allowed
an initial assessment of the functionality and were used to identify refinements before the
actual acceptance.  In addition,  the ERC32 Target Simulator was directed towards the
revised ERC32 chipset.

The development of each of the tools followed the same lifecycle.
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Phase 2a consisted of a mid-term Baseline Consolidation Review (BCR) and was
completed by a Preliminary Architectural Design Review (PADR).

Phase 2b consisted of an Architectural Design Review (ADR), which followed
finalisation of the design and then consisted of a Code and Unit Test Key Point
(CUT/KP), which coincided with completion of development and provision of advanced
release; an Integration Review (IR), which completed testing and reviewed the
acceptance tests; and the Acceptance Review (AR), at which the tools underwent formal
acceptance.

5.1.1.2.2.1. ERC32 Target Simulator

The ERC32 Target Simulator development differs from the other tools in that it was
primarily an integration of a number of existing products, with the addition of some
specific functionality.

The core of the tool is based upon SPARCSim, the SPARC architecture simulation from
Sun Microsystems.  Added to this to provide the ATAC functionality was ATACsim,
produced by R-Tech the developers of the ATAC.  Around this it was decided to use
TCL/TK to integrate these products and to provide the user interface.

The additional functionality focused on providing additional interfaces to the ERC32
Target Simulator to allow a user to set up a complete external environment (e.g. define
DMA transfers and external I/O) and to allow connection of the ACS debugger to the
simulator.

The connection to the debugger used existing technology for communication between
the debugger and a simulator.  This relies on an implementation of a gateway to mimic
the actions of the monitor typically used for embedded debugging.  An object library of
the debugger to gateway communications protocol was provided, which required an
implementation of a procedural interface to translate the monitor commands to ERC32
Target Simulator commands.

An advanced delivery was provided and allowed minor modifications to be made to the
functionality and user interface.  The major change to the user interface during the
development however, was the introduction of the scoreboard window.  This provides a
user-defined snapshot of the processor upon occurrence of a break in simulation.

The acceptance of the ERC32 Target Simulator was performed using a set of scripts,
which verified the complete operation, including detailed instruction timing, of the
ERC32 Target Simulator.
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5.1.1.2.2.2. Schedulability Analyser

The Schedulability Analyser development was focused on correct definition and
implementation of the analysis required.

During phase 2a, the requirements specification was overhauled and subject to an in-
depth review.

While during phase 2b,  precise implementation was continually discussed.

The advanced delivery provided the opportunity to assess the implementation. A number
of comments and error reports were also provided. In particular, the process identified a
number of refinements that could be made to the tool to provide more precise results.

In particular, the analysis model was changed to calculate blocking time based on
protected objects within the worse case paths of threads.  In addition, an alternate
analysis was introduced to provide a report to the user in case blocking time was
increased when all protected objects were considered.

As a result, the tool was modified in order to incorporate these refinements and errors
identified.

The acceptance of the tool was based on a set of test cases ensured that each of the
requirements were correctly implemented and performed correctly for a realistic test
application.

5.1.1.2.2.3. Scheduler Simulator

The Scheduler Simulator development was similarly focused as the Schedulability
Analyser and a similar approach was taken to the development.

Phase 2a consisted of an in-depth examination of the requirements at the BCR.

The advanced delivery of this tools also provided the opportunity to assess the
implementation and  a number of refinements and errors were identified.  This resulted in
an in-depth analysis of the modelling of the Ada Run-Time System operations and their
accounting.  These were summarised in a technical note, which formed the basis of the
modifications performed.

The simulation model underwent a significant change in the accounting mechanism and
also the user interface was modified so that the user was able to clearly see the RTS
operations performed within a thread.
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Again, the acceptance of the tool was based on a set of test cases ensured that each of
the requirements were correctly implemented and performed correctly for a realistic test
application.

5.1.1.2.3. SW Support Environment User Guide

A user manual was produced for each of the individual tools by the respective
development.  In addition, an overall user guide was produced to illustrate the use of the
toolset in developing a HRT application.

The manual was developed from the experience of earlier ESTEC programmes, such as
HRTOSK [RD1 & RD2] and HESSE [RD3] as well as the experience gained on this
programme.

5.1.1.2.4. Overall Co-ordination and Management

This activity controlled the software part of the ERC32 programme.  It is split into two
sub-packages.

5.1.1.2.4.1. Software Management

This activity consisted of overall day-to-day management of the subcontractors and also
the technical direction.  As such, it included the planning and reporting of the
developments.

One critical activity was the co-ordination of the debugger and target simulator interface
between the subcontractors.  Due to the nature of the interface and the unusual
mechanism, it was necessary to ensure that dialogue was maintained during the
integration of the target simulator.

In addition, this activity included the consolidation activities, which took place following
the advanced deliveries of the tools.

Primary amongst this was the production of the HRT Requirements Consolidation note
and ERC32 Simulator Requirements Consolidation note.  The former of these provided
the basis for the latest modification to the Schedulability Analyser and Scheduler
Simulator .  The second summarised the changes to the ERC32 Target Simulator
requirements due to the change in ERC32 chipset functionality.
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5.1.1.2.4.2. Target Simulator Consultancy

This activity provided for the involvement of MMS and in particular their knowledge of
the requirements and operations of a target simulator.  Input was provided during the
requirements consolidation stage to facilitate the understanding of the requirements and
especially the important role a target simulator can provide in overall system
development.

5.1.1.2.5. Acceptance of Tools

Originally, this task was to provide for the integration and validation of the toolset.
However, the re-direction restricted it to the process of accepting the individual tools.

5.1.1.2.5.1. Tool Acceptance

The acceptance of each of the tools was ultimately based on a formal acceptance test and
review.

However, prior to this milestone reviews were carried out and the acceptance tests
themselves were subject to review.

5.2. Design, Implementation and Verification

5.2.1. Design and Implementation

5.2.1.1. Design methodology

There was no standard design methodology used for the tools.  However, this was
primarily due to the different heritage.

The ACS is baselined on existing Alsys/TSP technology and therefore the
implementation consisted of modifying that technology.  Therefore the nominal company
design approach was used.

In the first instant each requirement was designated as being either within the baseline
technology or as a functional enhancement see ACS design document [GD21].  For the
functional enhancements, the implementation within the baseline technology was defined
and these were documented in a six design specifications, each of which covered a
functional entity of the ACS, see [GD22-27].
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For the ERC32 Target Simulator, Schedulability Analyser and Scheduler Simulator the
HOOD method was used.  The use of the method was, however, limited to the
architectural design phase.

Primarily, this was due to the use of the HOOD method for detailed design, i.e. to
produce PDL was considered onerous for a development of this type.  Therefore, the
level of detail in the architectural design was such that it was possible to move straight to
the coding phase.

In addition, there were a number of design decisions taken which meant that the value of
the detailed design would be limited.  For the ERC32 Target Simulator, the
implementation was based around the existing SPARCsim product produced by Sun and
the TCL/TK tool suite.  The impact of this was that the activity for this tool became
primarily one of integration.

TCL/TK was also used for the Schedulability Analyser and Scheduler Simulator.

5.2.1.2. Design Decisions

There were a number of design decisions taken during the programme, some of which
were fundamental to the operation of the tools, the following sections provide a
summary of  these.

5.2.1.2.1. ACS

The following were the main decisions for the ACS:

Interrupt Handling Model

This issue concerned the handling of interrupts in the context of developing HRT
software, in particular to implement the interrupt sporadic trigger in Ada.
Originally, it was intended that an interrupt handler should call an entry in a passive task.
This entry call would then open (i.e. set to true) a guarded entry upon which a sporadic
task would wait.  This mirrors the Ada95 model of interrupt handlers calling into
protected objects.

However the ATAC uses the classic Ada83 model of interrupt entries whereby the
interrupt handler performs an entry call directly to the waiting sporadic task, which was
called the Rendezvous model.  This meant that in order to support both an ATAC and
non-ATAC environment, two interrupt handling mechanisms would be required.
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Consequently, it was decided that it was preferable to have source compatibility between
the two hardware environments and so the Rendezvous model was adopted in the non-
ATAC runtime.

Priority Range

The original intention of the ERC32 software programme was to support a large range
of priorities.  This would ensure that the user could design a HRT application without
being constrained by the a limitation in the number of tasks.  Arbitrarily this number was
fixed at 128.  It had also been determined that for simplicity purposes the selection of
and ATAC or non-ATAC Run Time System should be a bind time decision rather than
have the user specify this in the code or at compilation (through selection of an ATAC or
non-ATAC package system).

However, the ATAC is limited in its support for priorities to 64 priority levels.  During
the detailed design of the compiler, it was realized that this would mean that if a priority
of greater than 64 was assigned for a task when the ATAC was in use a
PROGRAM_ERROR would be raised.  Although this may have been acceptable, it also
meant that some of the ACVC tests would not be able to pass.

Consequently, it was decided to restrict the priority range for both the ATAC and non-
ATAC RTS to 1 .. 63.

Ada Debugger Support for ERC32 Simulator Commands

It was important that the ACS and the ERC32 Target Simulator would run together.  In
addition, it was considered beneficial if ERC32 Target Simulator native commands could
be executed through the debugger, when they did not conflict with the debugger
operation.

Therefore, it was decided to incorporate a facility in the debugger that allowed the user
to input ERC32 Target Simulator commands and for the resultant output to be
displayed.  Consequently, the TRANSPARENT command was added to allow such
commanding.  Also in order to ensure that there was no conflict, functionality was added
to the ERC32 Target Simulator to vet the commands before executing them.

5.2.1.2.2. ERC32 Target Simulator

The design decisions for the ERC32 Target Simulator are detailed in the architectural
design document [GD49], the following summarise these:

Debugger/Target Simulator Interface

There were a number of options for providing this interface.  The simplest form was to
treat the ERC32 Target Simulator as another instance of a board and to run the ACS
monitor with the application running on top of this.  However, this would have



Page : 65Document No : MCD/MNT/0015/SE Date : 27 May 1997 Issue : 1

immediately introduced a time overhead in execution and debugging programs.  Given
that both the tools were being developed within the scope of the ERC32 programme it
was decided to investigate alternatives.

It was decided that a more efficient and effective mechanism for this interface would be
for the ERC32 Target Simulator to perform the function of the monitor and implement
the internal details.

The Alsys/TSP debugger already used a protocol for communication with the target
monitor and therefore it was considered appropriate to utilise the same mechanism.  This
resulted in the identification of a monitor gateway program which took the debugger
protocol units and translated them to simulator operations.  The approach also meant
that the actual communications handling between the debugger and the monitor could be
reused .

Integration

The primary decision for the implementation of the ERC32 Target Simulator was the
mechanism by which the various component parts were to be integrated.  The ERC32
Target Simulator core was to be provided by SPARCsim, while there was an interface to
the ACS debugger, an interface for environment simulation and a user interface.  These
placed constraints on the design as there was a need for integration, while at the same
time some of these need to be separate processes.

The solution was to place SPARCsim into a simulator core, which performed the
simulation and served the user interface, which also provided the input windows for
environment simulation, and the monitor gateway.  The UNIX pipe mechanism was
selected to provide the communications, with the simulator core interpreting strings
input from either the user interface or the monitor gateway.

User Interface

In addition to the interface from the debugger there was a requirement for the ERC32
Target Simulator to provide an interface for use in a stand-alone mode.  A number of
alternatives were available.

SPARCsim itself contains a debugger, however this would have required a significant
amount of modification.  An alternative was the GNU debugger, but this was considered
too rich and too large, especially since it also required modification.  Consequently, it
was decided to use the Tool Command Language (TCL/TK) package.

This provided the necessary user interface command parsing, but also had the advantage
of being easy to integrate to an existing product and could be used to encapsulate
existing or new functions.  So for example, it was possible to incorporate existing GNU
functions to allow loading of different formats.
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5.2.1.3. Schedulability Analyser and Scheduler Simulator

Analysis and Modelling of application

The algorithms for performing the analysis and simulation are critical to the accuracy of
the results.  This programme has paid close attention to ensure that the algorithms do not
present a incorrect result (i.e. schedulable declared for an unschedulable application), but
that the results are not unduly pessimistic.

This requires attention not only to be paid to the actual definition of the algorithms, but
also the definition of application and the understanding of the RTS.  During phase 1 and
the early part of phase 2, the development focused on ensuring that the definition and
information required for the analysis and simulation was complete and well-understood.

The algorithms were based on those identified in the HRTOSK [RD1 & RD2] project,
but were refined based on the exact RTS being implemented for the ERC32 programme.
For the schedulability analysis, the refinement concentrated on accurate incorporation of
blocking.  While for the scheduling simulation, it was necessary to ensure that the time
calculation was correct and that the allocation of processing time to tasks was
appropriate.  During the development, particularly following the advanced delivery of the
tools, both of these were refined.

For the information requirements of the schedulability analysis and simulation, it was
decided to partition the information into two parts, the application definition and the
RTS definition.  The application definition was then further sub-divided to the user
definable part and the automatically generated part.  The result was the three files: the
RTS file, for the Run-Time characteristics; the UCF, for the user defined task
characteristic such as period and criticality; and the ESF, for the execution profile of the
tasks.

Syntax for Formulae in RTS Characteristics file

In order to perform accurate analysis and simulation of the scheduling activities of an
application it is important that the RTS timing information is as precise as possible.
Initially, the RTS timing information was based on a model of the RTS operations and
assigned a fixed time for each of the operations.

However, it became clear during the development that some of the operations were
dependent on the number of tasks and/or the number of protected objects.  For example
the time for performing a DELAY_UNTIL operation is dependent on the number of tasks
in the delay queue.

Therefore the syntax for the use of formulae in expressing runtime overheads which are
proportional to some count was added to the RTS characteristics file.  This allowed for
the maximum value to be used in the Schedulability Analyser, while the Scheduler
Simulator was able to perform RTS operations precisely according to the number of
tasks in a queue.
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5.2.2. Verification

For each tool a verification and validation plan was produced.  The actual technique
differed reflecting the heritage and nature of the tools.

5.2.2.1. Ada Compilation System

The ACS being baselined on an existing product already had a defined qualification
approach.  This is internal to Alsys/TSP and consists of running the ACVC, a number of
specific tests, e.g. to verify the user interface, and the running of some standard
benchmarks.

Therefore, the validation approach adopted was to use this basis and to build specific
tests for the additional functionality being developed for the ERC32 programme.
An SVVP [GD29] was produced detailed the test cases for each of the functional
enhancements.  These were then converted into test cases and added to the company
qualification approach.  In addition to these tests being added a set of benchmarks were
provided. Testing was performed using a Force Computers board first complemented
with testing on DEM32 V2 board.

The complete qualification including the functional enhancements was performed and the
benchmark results were provided as part of this report produced.

5.2.2.2. ERC32 Target Simulator

The ERC32 Target Simulator VTP contained a definition of the test cases to be run and
also provided a trace to the requirements.  This was complemented with a Validation
Test Procedures document which detailed the exact tests were to be performed.

Although the test cases concentrated primarily on showing the requirements were met
(e.g. each instruction was tested) they also included the execution of benchmark
programs, such as JIAWG and ESTEC-B, which had been generated by using the ACS.

Primarily, the verification and validation was performed using the simulator command
interface, through which the procedures were entered.  Typically each test corresponded
to a command procedure, which included the verification of the test also.
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5.2.2.3. Schedulability Analyser and Scheduler Simulator

For the Schedulability Analyser and Scheduler Simulator the VTPs identified each test
case, with a trace to the requirement to be verified.  Again, validation test procedures
were produced for each of the test cases.

In addition, both tools included a realistic example of an application for testing.  This
was based on the Olympus Attitude and Orbit Control System, which had been created
as an example for the HRTOSK programme [RD1 & RD2].

The test procedures were again primarily automated using Perl and Awk scripts to verify
the output in response to each test case.
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5.3. Problems Encountered

There were three problem areas within the ERC32 software development.  These related
to the target simulator/debugger interface, the first version of ERC32 chipset, ATAC and
the HRT analysis and simulation.  A summary of each of these follows.

TS/ACS interface:

The TS/ACS interface design approach was intended to provide a more integrated
solution than available with the normal target/debugger situation.  This took advantage
of the fact that both tools were being developed/enhanced under the same programme
and therefore benefits in terms of performance could be gained by integrating.  The use
of the Alsys/TSP provided library to handle the communications between the debugger
and the target simulator required a strong definition of the interface. However, although
this had been performed within Alsys/TSP on a number of occasions, this was the first
time the interface had been provided to an external company for integration.

The interface was to be provided at a procedural level and although a document defining
the interface was provided, it proved incomplete for a detailed implementation.

Therefore, in order to address the discrepancies, it was necessary to set up a discussion
process between Alsys/TSP and Spacebel. The process was very slow to operate,
primarily because there was no official “deliverable” between the two companies.
Despite these problems, the subsequent completion of development and acceptance
showed that the interface operated correctly in all aspects, except for a very minor
limitation in performing a step operation.

ERC32 chipset, ATAC:

The DEM32 V1 board primarily presented a problem to the ACS development, but also
had a minor impact on the ERC32 Target Simulator development.

The ACS development required the DEM32 board in order to perform testing and
provide the basis for acceptance. However, the ERC32 chipset had some failings.

As a consequence the initial acceptance of the ACS had to take place on a replacement
board , Force SPARC, complemented tests with the ESTEC simulator. The lack of
acceptance on an actual board presented problems.

However, the chipset underwent a re-work and the acceptance testing was completed on
DEM32 V2 board.

During acceptance testing ATAC HW failings where detected. Work arounds for these
problems where presented and ATAC testing where completed on DEM32 V2 board.
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HRT analysis and simulation:

The problems encountered in this area were due to the evolution of the requirements.
Primarily, this was related to the fact that a clear understanding of the detailed
requirements could only become achieved as the implementation progressed. During
requirements definition in phase 1 and phase 2a, it was well understood what the purpose
of the HRT tools was, however the requirements addressed the high level functionality
only. As the development progressed, those issues that had not been addressed became
evident (e.g. allocation of Run-Time execution times to tasks).

Although, some of these were resolved during the development, the advanced deliveries
of the HRT tools showed that there were disparate views in the detailed implementation.
However, the advanced deliveries allowed a more thorough assessment of these detailed
requirements and their refinement was performed during Development Finalisation
Phase.
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6. ACHIEVED RESULTS FOR THE ERC32 SOFTWARE

This chapter describes the functionality of the ERC32 tools, performance where
appropriate and the currently known limitations and bugs.

All tools have completed acceptance testing successfully.

6.1. Description of the ERC32 Toolset

The software toolset has been developed to provide an environment to produce
embedded software for the ERC32 processor. The toolset provides all the necessary
support for the coding and testing of an real-time software which is typical of the on-
board space applications. This allows the development of the more complex and flexible
software, which is to be expected from future space missions, while maintaining a high
degree of confidence in meeting the timing constraints of the application.

The toolset provides both the tools typically associated with an embedded software
development environment, a cross-compiler and a target simulator, and also functionality
to allow the exploitation of the benefits offered by Priority Based Preemptive Scheduling
(PBPS) and the Ada Tasking Coprocessor.

This additional functionality uses the advances made in recent years in the area of Hard
Real Time (HRT) systems. This research has identified techniques which allow the use of
Ada tasking, through PBPS based on Rate Monotonic Scheduling (RMS) and Deadline
Monotonic Scheduling (DMS) [RD1 & RD2]. Within this research algorithms have been
developed to calculate the timing requirements of software developed using these
techniques. For this programme, these algorithms have been extended to implement
Arbitary Deadline Scheduling (ADS) in addition to DMS.

The toolset builds on a number of previous ESA-ESTEC programmes to investigate
these HRT techniques and to promote their use within the space industry.

Two of these programmes, the Hard Real-Time Operating System Kernel (HRTOSK)
programme [RD1 & RD2] and the HRT Embedded Software Support Environment
(HESSE) [RD3], established a framework for the practical application of these HRT
techniques by identifying how the Ada language could be used to support PBPS
schemes. The toolset has implemented the tools to perform HRT analysis and simulation.

The toolset consists of the following:

• an Ada compilation environment for the generation and debugging of programs,
with specific functionality for developing HRT applications;

• a Schedulability Analyser that provides an analytical assessment of the
schedulability of HRT programs;

• a Scheduler Simulator that provides graphical and textual representation of the
scheduling behaviour of an HRT program;
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• a ERC32 Target Simulator and/or target breadboard to provide a realistic
environment on which to run an application.

The following diagram provides a logical representation of the structure of the toolset:
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Figure 8: Logical Model of ERC32 Software Toolset

6.1.1. Functionalities

6.1.1.1. Ada Compilation System

The ACS allows for compilation, binding and linking of the application source code. The
tool is based on the standard Alsys/TSP baseline compiler system technology, which is
well-proven in a range of application areas. This baseline technology provides a complete
Ada development environment, with a command line and GUI interface, and provides a
Board Support Package capability to tailor the code generation and execution to a
specific instance of an embedded processor (e.g. interrupts masking).

The compiler supports Ada 83, with specific modification and extensions introduced to
support HRT analysis. Specifically, these are:

• Pragma PASSIVE for the implementation of protected objects (passive tasks)
which correspond to Ada 95 protected types, including provision of Priority
Ceiling Emulation (PCE) for the implementation of IPCI. Passive tasks provide
mutual exclusion and allow the user to perform synchronisation between tasks and
protected access to data, for example:



Page : 73Document No : MCD/MNT/0015/SE Date : 27 May 1997 Issue : 1

TASK Buffer IS
PRAGMA PRIORITY (30);
PRAGMA PASSIVE;
ENTRY Read (Item : out Data_Item);
ENTRY Write (Item : in Data_Item);

END Buffer;

TASK BODY Buffer IS
Item_Store : Data_Item;

BEGIN
Forever:
LOOP

SELECT
ACCEPT Read (Item : out Data_Item) DO

Item:= Item_Store;
OR

ACCEPT Write (Item : in Data_Item) DO
Item_Store := Item;

OR
TERMINATE;

END SELECT;
END LOOP Forever;

END Buffer;

• Accurate delay timing through absolute delays (i.e. a DELAY_UNTIL construct);

LOOP
DELAY_UNTIL (Writer_Time);
Store.Item := Write_Item;
Controller.Signal;
Write_item := Write_Item + 1;
Writer_Time := Writer_Time + Period;

END LOOP Period_Action;

• Up to 64 distinct priority levels to provide large range of unique task priority
assignment and also a Dynamic Priorities package to allow the user full control
over priority assignment;

• A user option to Pre-elaborate data for inclusion in ROM images. The user is also
able to control the size of this pre-elaboration;

• Provision of package to provide for dynamic code replacement;
• Integration of the RTS with the Ada Tasking Coprocessor (ATAC) chip, though a

user bind time option;
• Tailoring of the RTS to ensure time bounding of RTS operations used in

constructing a HRT application. The timing characteristics of the RTS operations
have been measured and recorded;

• Tracing of RTS scheduling activity to allow comparison with scheduling analysis
provided by the Schedulability Analyser and scheduler simulator;

• A user option to generate worse case timing data for each task in an application;
• Provision of an interface to allow the import of C and assembler code and the

export of Ada code and structures to C programs;
• Watchpoint debugging capability through the ERC32 hardware functionality.
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The tool also provides full debugging capability via an interactive debugger, which may
run on either the ERC32 Target Simulator, developed as part of the tool set, or on the
target ERC32 processor.

The ACS is fully configurable for any ERC32 configuration through a BSP which may be
tailored by the user.

6.1.1.2. Hard Real-Time Tools

The Schedulability Analyser Tool and the Scheduler Simulator Tool provide the means
by which the user may conduct a comprehensive analysis of the HRT system at a very
early stage in the lifecycle. Priority assignment of all the tasks constituting the application
takes place automatically within each tool, and is based upon the scheduling algorithm
(Arbitrary Deadline Scheduling, ADS, or Deadline Monotonic Scheduling, DMS) and
the blocking protocol selected by the user (Immediate Priority Ceiling Inheritance, IPCI,
or Inhibit Interrupts, INHIB), as well as the interaction between tasks.

The user provides both tools with an outline description of the application, the Execution
Skeleton File, and a characterisation of the RTS (the Run Time System File), as well as a
User Configuration File detailing the salient HRT characteristics.

Both tools are suitably equipped to handle the inclusion of the ATAC within the HRT
system.

Execution Skeleton

A file built either by the Ada Compilation system WCETE functionality or by the user.
This identifies the calculated worst case timings and synchronisation points for the
threads in an application. It is supplemented with the thread priorities when these are
calculated by the Schedulability Analyser or scheduler simulator.

For example:

PROGRAM HRT
THREAD Real_Time_Clock

TYPE CYCLIC
PRIORITY 122
WCET 430,0,0

END

THREAD Read_Bus_IP
TYPE CYCLIC
PRIORITY 120
CALL_PO Bus_Ip_Fifo Pop
WCET 2134,0,0
CALL_PO TC_PO Send_TC

END
END
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User Configuration File

This file is the primary source of user input, currently produced by the user through a
UNIX editor. The file contains the scheduling approach (DMS or ADS) and the blocking
protocol (IPCI, immediate priority ceiling inheritance, or, INHIB, interrupt inhibit)
against which the analysis and simulation takes place; the scheduling characteristics of
the threads of an application; override or default worse case execution times for
operations or threads; and the processor clock speed and memory characteristics for a
particular application.

For example:

PREFERENCES
DMS
BLOCKING PROTOCOL IPCI

END

TARGET CHARACTERISTICS
NO ATAC
PRIORITY LOW 1
PRIORITY HIGH 124
CPU CLOCK FREQUENCY 1 MHz
WAIT STATES READ 0 WRITE 0

END

THREAD DEFINITION

THREAD Real_T ime_Clock
  CRITICALITY HARD

   PERIOD   50000
   DEADLINE  9000

  OFFSET    0
END

 THREAD Read_Bus_IP
   CRITICALITY HARD

   PERIOD   10000
   DEADLINE 10000
   OFFSET    0
END
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RTS Characteristics File

The RTS characteristics file is provided by the Ada compilation system vendor and
contains the worst case timing characteristics associated with the RTS provided with the
compilation system. The file contains the timings, in processor and memory clock cycles,
for each non pre-empting RTS operation and the entry and exit times for each pre-
empting operation. The timings may contain a part which is proportional to the number
of threads in an application or undergoing a particular process at the time of the
operation (e.g. those in the delay queue for a delay operation).

For example:

-- RTS Characteristics for DEM32 at 10 MHz (non-ATAC runtime)
-- Characteristics are in Processor Cycles
ENTER PASSIVE TASK 80,0,0
EXIT PASSIVE TASK 110,0,0
ENTER SOFTWARE SPORADIC WAIT (70,0,0)
EXIT SOFTWARE SPORADIC WAIT 30,0,0
ENTRY QUEUE SERVICING (60,0,0)
CONTEXT SWITCH TIME 340,0,0
SCHEDULER SELECT TIME (50,0,0)
ENTER DELAY UNTIL OVERHEAD AT HEAD (390,0,0)
ENTER DELAY UNTIL OVERHEAD NOT AT HEAD (220,0,0) + (30,0,0) * C
EXIT DELAY UNTIL OVERHEAD 80,0,0
TIMER INTERRUPT OVERHEAD 210,0,0
READY AFTER DELAY 120,0,0
INTERRUPT HANDLING OVERHEAD 670,0,0
ENTER INTERRUPT SPORADIC WAIT (30,0,0)
EXIT INTERRUPT SPORADIC WAIT 30,0,0
MAXIMUM NON PREEMPTION 1300,0,0

6.1.1.2.1. Schedulability Analyser

The Schedulability Analyser Tool is used to carry out a complete timing analysis of the
application without having to execute the application: an analysis report, summarising
the results of the timing analysis, is produced and basically informs the user whether or
not an application is schedulable (i.e. is it able to meet all of its deadlines). This report
also provides information pertaining to the processor usage and quantifies how much
headroom, in terms of computation time, is left in the HRT system before any deadline is
violated.

Specifically, the tool is able to report:

• overall thread utilisation and application schedulability;
• individual task worst case computation time (processing time for task) and worst

case response time (time from release of task to task completion);
• blocking time suffered by task;
• detailed individual task schedulability based on deadline and worst case response

time;
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• margin of sensitivity for a task, to identify the increase in computation time the task
may have while still remaining schedulable;

6.1.1.2.2. Scheduler Simulator

The Schedulability Simulator Tool performs detailed simulations of the scheduling
behaviour of the application and provides an indication of when particular threads are
executed and the interaction between one thread and another and between the thread and
the Run Time System.

It highlights main scheduling events including missed deadlines, task initialisation and all
RTS processor usage.

In effect it allows the user to visualise the scheduling and execution of tasks. The user
may also explore the effect of various release patterns of interrupts upon the HRT
system. The user may obtain outputs in both graphical and textual forms.

Specifically the tool:

• automatically generates priorities for tasks based on the scheduling algorithm;
• configuration of external interrupts according to a number of different distribution

functions;
• reports all scheduling events, both on-line and to file to allow later analysis, with

the on-line reporting being user-definable;
• generates either textual or graphical (Gantt charts) reports from file;
• allows searching for specific scheduling events in an application trace;
• generates utilisation data for individual tasks, the RTS and the overall application;

6.1.1.3. ERC32 Target Simulator

The ERC32 Target Simulator Tool provides an accurate and fast simulation of the
execution of the application code on an ERC32 microprocessor. The behaviour of the
ERC32 core and the ATAC (should the user so wish) are all comprehensively modelled.

The operation of the simulator can be controlled via the debugger that comes as part of
the ACS tool, or if the user prefers, the simulator can be operated in stand-alone mode
using its own dedicated interface.

The tool has a powerful interface based on the TCL/TK tool allowing the user to
specifically tailor the interface and also add functionality which simulates the various
ERC32 interfaces e.g. I/O and DMA.
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Specifically, the ERC32 Target Simulator:

• simulates the IU, FPU and MEC of the ERC32 and the ATAC to clock level
accuracy;

• is able to simulate asynchronous events such as timers, interrupts, DMA, UART
and I/O activity;

• is configurable to allow a user to exactly simulate a Board implementation of the
ERC32;

• provides a fast simulation of the hardware, approaching 1% of chipset operation;
• a user definable scoreboard, which is updated on occurrence of simulator events,

e.g. breaks, watchpoints;
• provides a flexible interface through UNIX pipes, that allows integration of the

simulator with a spacecraft level simulator and/or test environment;

In addition, the simulator can be integrated with the Ada Debugger to provide an Ada
source level debugging facility for HRT applications.

6.1.2. Performance

Performance figures are available only for the Ada Compilation System and the ERC32
Target Simulator. These have been generated using standard benchmarks such as, PIWG
and JIAWG and also ESTEC-B.

The following sections provide the results of running the various benchmark tests at the
tool acceptance.

6.1.2.1. ACS benchmarks

The following benchmark programs have been run with DEM32 board at 10 MHz:
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6.1.2.1.1. PIWG

The following PIWG results were obtained without ATAC:

CHECKS=ALL CHECKS=STACK CHECKS=NONE
A000091 (µs) 102.00 (+/- 5.100) 86.60 (+/- 4.330) 82.70 (+/- 4.135)
A000092 (ms) 497.77 (+/- 24.888) 492.97 (+/- 24.648) 492.96 (+/- 24.648)
A000092 (kwips) 2009 2029 2029
A000093 (ms) 276.34 (+/- 13.817) 272.17 (+/- 13.608) 270.90 (+/- 13.545)
A000093 (kwips) 3619 3674 3691
A000094A (s) 0.21 (+/- 0.011) 0.20 (+/- 0.010) 0.18 (+/- 0.009)
A000094B (s) 0.28 (+/- 0.014) 0.25 (+/- 0.013) 0.24 (+/- 0.012)
A000094C (s) 0.26 (+/- 0.013) 0.18 (+/- 0.009) 0.18 (+/- 0.009)
A000094D (s) 1.01 (+/- 0.050) 0.42 (+/- 0.021) 0.42 (+/- 0.021)
A000094E (s) 0.83 (+/- 0.041) 0.19 (+/- 0.009) 0.19 (+/- 0.009)
A000094F (s) 1.53 (+/- 0.077) 1.16 (+/- 0.058) 1.16 (+/- 0.058)
A000094G (s) 0.18 (+/- 0.009) 0.14 (+/- 0.007) 0.14 (+/- 0.007)
A000094H (s) 0.31 (+/- 0.015) 0.31 (+/- 0.015) 0.31 (+/- 0.015)
A000094I (s) 0.29 (+/- 0.014) 0.26 (+/- 0.013) 0.25 (+/- 0.013)
A000094J (s) 0.39 (+/- 0.020) 0.31 (+/- 0.016) 0.31 (+/- 0.016)
A000094K (s) 12.33 (+/- 0.616) 12.40 (+/- 0.620) 11.70 (+/- 0.585)
B000001A (ms) 1.84 (+/- 0.092) 1.60 (+/- 0.080) 1.59 (+/- 0.080)
B000001B (ms) 1.61 (+/- 0.080) 1.60 (+/- 0.080) 1.59 (+/- 0.080)
B000002A (µs) 962.29 (+/- 48.114) 518.59 (+/- 25.930) 517.69 (+/- 25.885)
B000002B (µs) 528.69 (+/- 26.434) 518.59 (+/- 25.930) 517.69 (+/- 25.885)
B000003A (µs) 1.39 (+/- 0.069) 791.69 (+/- 39.584) 790.49 (+/- 39.525)
B000003B (µs) 803.39 (+/- 40.169) 791.69 (+/- 39.585) 790.49 (+/- 39.525)
B000004A (µs) 999.54 (+/- 49.977) 527.69 (+/- 26.385) 526.79 (+/- 26.340)
B000004B (µs) 539.50 (+/- 26.975) 527.69 (+/- 26.385) 526.79 (+/- 26.340)
B000010 (ms) 1037.82 (+/- 51.891) 1011.82 (+/- 50.591) 1001.37 (+/- 50.068)
B000011 (ms) 198.30 (+/- 9.915) 166.36 (+/- 8.318) 166.37 (+/- 8.318)
B000013 (ms) 20.38 (+/- 1.019) 18.50 (+/- 0.925) 18.50 (+/- 0.925)
C000001 (µs) 531.44 (+/- 26.572) 531.41 (+/- 26.570) 530.41 (+/- 26.521)
C000002 (µs) 539.84 (+/- 26.992) 539.13 (+/- 26.957) 538.90 (+/- 26.945)
C000003 (µs) 525.89 (+/- 26.295) 526.35 (+/- 26.318) 525.76 (+/- 26.288)
D000001 (µs) 3.40 (+/- 0.170) 2.90 (+/- 0.145) 2.50 (+/- 0.125)
D000002 (µs) 776.66 (+/- 88.833) 703.89 (+/- 35.194) 703.51 (+/- 35.175)
D000003 (µs) 9.50 (+/- 0.475) 7.10 (+/- 0.355) 5.80 (+/- 0.290)
D000004 (µs) 565.00 (+/- 128.250) 807.23 (+/- 40.361) 806.20 (+/- 40.310)
E000001 (µs) 87.69 (+/- 4.385) 86.89 (+/- 4.345) 87.10 (+/- 4.355)
E000002 (µs) 147.70 (+/- 7.385) 139.99 (+/- 7.000) 140.50 (+/- 7.025)
E000003 (µs) 211.80 (+/- 10.590) 211.99 (+/- 10.600) 212.79 (+/- 10.640)
E000004 (µs) 251.50 (+/- 12.575) 259.00 (+/- 12.950) 258.80 (+/- 12.940)
E000005 (µs) 507.51 (+/- 25.375) 499.31 (+/- 24.965) 498.98 (+/- 24.949)
F000001 (µs) 0.35 (+/- 0.017) 0.35 (+/- 0.017) 0.35 (+/- 0.017)
F000002 (µs) 0.45 (+/- 0.022) 0.45 (+/- 0.022) 0.45 (+/- 0.022)
G000005 (µs) 167.12 (+/- 8.356) 167.12 (+/- 8.356) 167.11 (+/- 8.355)
G000006 (µs) 609.35 (+/- 30.468) 609.35 (+/- 30.468) 609.35 (+/- 30.468)
H000001 (µs) 9.70 (+/- 0.485) 9.70 (+/- 0.485) 9.70 (+/- 0.485)
H000002 (µs) 20.51 (+/- 1.025) 20.51 (+/- 1.025) 20.51 (+/- 1.025)
H000003 (µs) 140.01 (+/- 7.001) 144.82 (+/- 7.241) 144.82 (+/- 7.241)
H000004 (µs) 87.21 (+/- 4.360) 87.21 (+/- 4.360) 87.21 (+/- 4.361)
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H000005 (µs) 87.21 (+/- 4.360) 87.21 (+/- 4.360) 87.21 (+/- 4.361)
H000006 (µs) 6.10 (+/- 0.305) 6.30 (+/- 0.315) 6.30 (+/- 0.315)
H000007 (µs) 18.63 (+/- 0.932) 18.64 (+/- 0.932) 18.63 (+/- 0.932)
H000008 (µs) 4.30 (+/- 0.215) 3.90 (+/- 0.195) 3.90 (+/- 0.195)
H000009 (µs) 26.80 (+/- 1.340) 26.80 (+/- 1.340) 26.20 (+/- 1.310)
L000001 (µs) 0.35 (+/- 0.018) 0.35 (+/- 0.018) 0.35 (+/- 0.018)
L000002 (µs) 0.45 (+/- 0.023) 0.45 (+/- 0.023) 0.45 (+/- 0.023)
L000003 (µs) 0.55 (+/- 0.028) 0.35 (+/- 0.018) 0.35 (+/- 0.018)
L000004 (µs) 0.38 (+/- 0.019) 0.38 (+/- 0.019) 0.38 (+/- 0.019)
L000005 (µs) 0.38 (+/- 0.019) 0.38 (+/- 0.019) 0.38 (+/- 0.019)
P000001 (µs) 1.89 (+/- 0.094) 1.89 (+/- 0.094) 1.89 (+/- 0.094)
P000002 (µs) 1.10 (+/- 0.055) 1.10 (+/- 0.055) 0.80 (+/- 0.040)
P000003 (µs) 1.10 (+/- 0.055) 1.10 (+/- 0.055) 0.80 (+/- 0.040)
P000004 (µs) 0.60 (+/- 0.030) 1.10 (+/- 0.055) 0.80 (+/- 0.040)
P000005 (µs) 1.60 (+/- 0.080) 1.60 (+/- 0.080) 1.30 (+/- 0.065)
P000006 (µs) 1.50 (+/- 0.075) 1.50 (+/- 0.075) 1.20 (+/- 0.060)
P000007 (µs) 1.60 (+/- 0.080) 1.60 (+/- 0.080) 1.30 (+/- 0.065)
P000010 (µs) 3.90 (+/- 0.195) 3.90 (+/- 0.195) 3.60 (+/- 0.180)
P000011 (µs) 8.00 (+/- 0.400) 8.00 (+/- 0.400) 7.70 (+/- 0.385)
P000012 (µs) 4.60 (+/- 0.230) 4.60 (+/- 0.230) 4.30 (+/- 0.215)
P000013 (µs) 7.60 (+/- 0.380) 7.60 (+/- 0.380) 7.30 (+/- 0.365)
T000001 (µs) 107.20 (+/- 5.360) 106.60 (+/- 5.330) 107.10 (+/- 5.355)
T000002 (µs) 107.10 (+/- 5.355) 106.90 (+/- 5.345) 108.00 (+/- 5.400)
T000003 (µs) 108.00 (+/- 5.400) 108.05 (+/- 5.403) 108.00 (+/- 5.400)
T000004 (µs) 133.75 (+/- 6.687) 132.05 (+/- 6.603) 133.00 (+/- 6.650)
T000005 (µs) 105.98 (+/- 5.299) 106.24 (+/- 5.312) 106.80 (+/- 5.340)
T000006 (µs) 216.48 (+/- 10.824) 217.18 (+/- 10.859) 216.88 (+/- 10.844)
T000007 (µs) 63.95 (+/- 3.198) 63.85 (+/- 3.193) 64.45 (+/- 3.223)
T000008 (µs) 291.19 (+/- 14.559) 289.58 (+/- 14.479) 289.09 (+/- 14.454)

The following PIWG results were obtained without ATAC:

T000001 (µs) 92.90  (+/- 4.645) 92.90  (+/- 4.645) 92.60  (+/- 4.630)
T000002 (µs) 92.80  (+/- 4.640) 92.81  (+/- 4.640)  92.50  (+/- 4.625)
T000003 (µs) 93.60  (+/- 4.680)  93.55  (+/- 4.678)  93.10  (+/- 4.655)
T000004 (µs) 109.61 (+/- 5.480) 109.50 (+/- 5.475)  109.05 (+/- 5.452)
T000005 (µs) 92.00  (+/- 4.600) 92.00  (+/- 4.600) 91.70  (+/- 4.585)
T000006 (µs) 154.01 (+/- 7.701) 154.01 (+/- 7.700) 153.71 (+/- 7.685)
T000007 (µs) 51.90  (+/- 2.595) 51.90  (+/- 2.595) 51.90  (+/- 2.595)
T000008 (µs) 202.51 (+/- 10.126) 201.81 (+/- 10.090) 201.50 (+/- 10.075)
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6.1.2.1.2. JIAWG

The following JIAWG results were obtained:
CHECKS=ALL CHECKS=NONE

CAP (ms) 4.10 2.90
DES1 (ms) 30.73 26.05
FLTMULT (ms) 364.88 221.39
INTMULT (ms) 523.57 486.57
KALMAN (ms) 211.31 181.15

6.1.2.1.3. ESTEC-B

The following ESTEC-B results were obtained from the ACS:

 CHECKS=ALL

Q_step =  4 <=> max RMS error =  1.15  (Times are in milliseconds)

block dct r&q bit invbit invr&q invdct Nbytes RMSerr
1 1.75 0.44 1.20 1.48 0.39 2.02 26 0.18
2 2.03 0.56 1.67 2.08 0.68 2.11 44 0.13
3 1.96 0.64 1.90 2.16 0.77 2.07 57 0.13
4 1.98 0.63 1.84 2.16 0.81 2.18 53 0.00

Avrg: 1.93 0.57 1.65 1.97 0.66 2.10 45 0.11

Q_step =  8 <=> max RMS error =  2.31  (Times are in milliseconds)

block dct r&q bit invbit invr&q invdct Nbytes RMSerr
1 1.76 0.42 0.79 1.13 0.32 1.99 17 0.31
2 2.03 0.49 1.51 1.89 0.56 2.10 34 0.50
3 1.96 0.59 1.76 2.02 0.73 2.06 48 0.38
4 1.98 0.58 1.73 2.03 0.75 2.17 45 0.38

Avrg: 1.93 0.52 1.45 1.77 0.59 2.08 36 0.39

CHECKS=NONE

Q_step =  4 <=> max RMS error =  1.15  (Times are in milliseconds)

block dct r&q bit invbit invr&q invdct Nbytes RMSerr
1 1.52 0.32 0.98 1.19 0.27 1.66 26 0.18
2 1.76 0.44 1.37 1.71 0.51 1.74 44 0.13
3 1.68 0.52 1.55 1.75 0.58 1.73 57 0.13
4 1.71 0.51 1.50 1.77 0.62 1.81 53 0.00

Avrg: 1.67 0.45 1.35 1.60 0.49 1.74 45 0.11
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Q_step =  8 <=> max RMS error =  2.31  (Times are in milliseconds)

block dct r&q bit invbit invr&q invdct Nbytes RMSerr
1 1.53 0.30 0.64 0.90 0.22 1.63 17 0.31
2 1.76 0.38 1.24 1.55 0.41 1.73 34 0.50
3 1.68 0.47 1.44 1.64 0.54 1.72 48 0.38
4 1.71 0.46 1.42 1.66 0.56 1.80 45 0.38

Avrg: 1.67 0.40 1.18 1.44 0.43 1.72 36 0.39

6.1.2.1.4. ERC32 Target Simulator

The performance of the ERC32 Target Simulator is dependent on the Host platform and
also the level of environment simulation. The dependency on the level of environment
simulation is because the simulator will access the environment interface for command
information. Maximum performance is gained when no environment simulation is
performed , see ERC32 Target Simulator User Manual [GD52] for information.

The product itself contains information on the performance enhancement and details of
the expected operation. However, as a very generalised summary, on a standard current
Sun SPARC machine performance of the order of 0.5%-1.0% of real-time can be
expected. This of course will improve as the host platform processing improves.

6.1.3. Known Limitations and Bugs

The delivery and release notes for each of the tools list all known limitations and bugs.
These should be consulted in the first place to ensure the status of the current version of
the tools.

The following sections list the limitations and bugs in the tools delivered as part of the
programme.

6.1.3.1. ACS

The ACS limitations, include limitations and bugs in the underlying technology and the
reader is referred to the Release Note [GD34] for complete information. Below are the
limitations relating specifically to the ERC32 programme.
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6.1.3.1.1. AlsyMonitor

When the monitor regains control it does not flush its I/O buffers. Therefore if a
breakpoint is planted following calls to TEXT_IO.PUT the text will not necessarily be
displayed before the breakpoint is hit.

6.1.3.1.2. User Interface

The following errors exist in AdaWorld for Motif:

• Opening a library results in a lock being placed on that library. Adam does not
always remove this lock. This causes libraries not to be compressed and if NFS is
being used for hidden files (with filenames beginning with .nfs) to be left inside
libraries. To force removal of the lock, either close and re-open the family, or else
exit from Adam.

• When importing multiple libraries from an export set, the libraries are created in
reverse correspondence to the export sets.

• Protected units can be erased from a library.

6.1.3.1.3. IEEE 754 Exceptions

There is currently no support for the IEEE 754 exception unfinished_FPop. On the
FORCE CPU2CE this exception is generated by performing the operation
1/LONG_FLOAT'LAST. Performing such operations may produce erroneous results.
This exception will not be generated by the ERC32 FPU.

6.1.3.1.4. AdaProbe

Any control characters contained within output text received by AdaProbe from the
target as part of the Lowlevel.Transparent command (typically from a ERC32 Target
Simulator) will not be interpreted correctly. For example, a new line character will not
cause a new line to occur in the output window.
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6.1.3.2. ERC32 Target Simulator

The following limitations and problems are known within the Scheduler Simulator
version 2.1, see installation manual [GD53]:

• The ERC32 Target Simulator behaves as the ERC32 chipset and therefore has the
same limitations, such as maximum 32Mbyte RAM and no extended memory area.

• In I/O area handling, the only area currently handled is the ATAC, which has an
integrated device simulator. Consequently, it is not possible to add user definable
memory in the I/O area. This can be worked around by using the Exchange
Memory area to add an I/O simulation.

• The ATAC simulator functionality has only been subject to a limited test set.
• Polling for environment activity can decrease performance significantly. Therefore

to overcome this if no environment activity is required, the polling can be avoided
by scheduling a wait event, such as WAIT_TIME 20000000, which will effectively
disable the polling.

• When using the Alsys/TSP debugger and executing a STEP OVER command on a
recursive routine, which invokes to a depth of more than 8 levels, an error message
is generated by the debugger warning “AFTER STEP: . . . “ which means the
debugger has lost synchronisation with the execution. This can be avoided by using
a breakpoint to step around the call or by performing an EXECUTE.CONTINUE
following the warning.

6.1.3.3. Schedulability Analyser

The following limitations and problems are known within the Schedulability Analyser
version 2.1, see installation manual [GD45]:

• Using both the Schedulability Analyser and Scheduler Simulator together
sometimes causes a spurious syntax error to be generated. This can be solved by
quitting both tools and deleting the file “DEFAULT_HRT_FILES” from the home
directory.

• The access to the context sensitive help takes some time to display.

6.1.3.4. Scheduler Simulator

The following limitations and problems are known within the Scheduler Simulator
version 2.1, see installation manual [GD46]:

• Using both the Schedulability Analyser and Scheduler Simulator together
sometimes causes a spurious syntax error to be generated. This can be solved by
quitting both tools and deleting the file “DEFAULT_HRT_FILES” from the home
directory.

• The access to the context sensitive help takes some time to display.
• Using the Scheduler Simulator context restore facility from the “Simulation”

window sometimes fails.
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6.2. Use of the ERC32 Toolset

The ERC32 Toolset has been developed to run on any Sun-4 configuration under Solaris
version 2 or later, with all user interfaces employing the X/11 MOTIF standard.

The tool set is intended to be used throughout the software development lifecycle,
allowing the user to analyse and verify that all timing constraints are met each stage of
the development, and that the software will execute on the hardware prior to its
availability.

It also allows early prototyping of applications, particularly useful during the early
system design phases.

The following steps summarise the intended use of the tool set within the context of the
HRT software lifecycle:

During the architectural design phase the user performs the following activities:

• produces a high level design for the application which is analysable via the use of
the tool set;

• estimates the processing times of tasks (estimates may be made either empirically
or by prototyping) and then uses these in the HRT analysis that he/she undertakes
via the Schedulability Analyser and Scheduler Simulator tools;

• examines the results of the HRT analysis to confirm the feasibility of the design,
which is then refined by adding detail (e.g. subprogram calls, or making
modifications to the tasks);

• estimates (by prototyping if necessary), if required, the timing characteristics of the
subprograms and repeats the HRT analysis;

• continues the process of refining the design until the he/she is sufficiently confident
to proceed to the detailed design;

During the design, coding and test phase the user performs the following activities:

• produces the detailed design and updates the estimates/prototype values of the
processing times, if required;

• repeats the HRT analysis and refines the detailed design and continues with this
iterative procedure until he/she is confident to proceed to coding;

• generates the application code and calculates a worst case path execution time,
based on the object code produced by the compilation process; for each task and
subprogram, and then repeats the HRT analysis

• refines the code and repeats the HRT analysis until the developer is confident to
proceed to formal testing;

• builds a machine code version of the application and commences with testing using
the target processor simulator i.e. the ERC32 Target Simulator Tool;
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• corrects and re-tests the code (and the design also as required) as errors are
detected and this continues until the developer is confident to move to integration
and testing on the actual target;

• continues with testing on the target processor and extracts timing data which can
then be compared with the results of the analysis. If need be, the extracted timing
data can be used in any further HRT analysis. He/she also carries out the
Acceptance Test at which the software is provisionally tested.

At any stage, the HRT analysis may reveal that significant changes to the application are
needed. In this situation the development process can return to the architectural design,
detailed design or coding and test phase as appropriate.

A more detailed description of the use of the toolset and the individual tools can be
found in the respective user manuals [GD18], [GD34], [GD44], and [GD52]
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6.3. Availability of the ERC32 Toolset

The toolset elements and information can be obtained from the following:

ERC32 Ada Compilation System v5.5.4:

Alsys/Thomson Software Products
Partridge House
Newtown Road
Henley-on-Thames
Oxon, RG9 1EN
England

ERC32 Target Simulator, Schedulability Analyser v2.1 and Scheduler Simulator v2.1:

Spacebel Informatique
111 Rue Colonel Bourg
B-1140 Bruxelles
Belgium

Hard Real-Time Software Development with ERC32 toolset:

Logica UK Ltd - Space Division
Wyndham Court
94 Portsmouth Road
Cobham
Surrey KT11 3LG
England
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6.4. Future Improvements for the ERC32 Toolset

This section identifies a number of areas and issues that may be addressed at a future
date or following an evaluation of tools.

ACS

One of the primary issues to address with regard to the ACS is the relationship of the
product to the Ada95 standard. Although all the extensions to the compiler system have
adopted an Ada95 style, the precise syntax is not the same and they do not address all
the Ada95 additions. While some of the Ada95 additions may not be appropriate (e.g.
some of the Annexes) in the context of on-board processing, it may be that other features
(e.g. object oriented) become a necessity for future developers. In this case, a close
examination of the update strategy would be required. Determination of this strategy,
including its need, should be a major consideration.

A second issue to be addressed concerns the ACVC. The present product does not have
certification, although the acceptance process used within Alsys/TSP includes execution
of the test suite. The lack of formal certification may present a problem for certain types
of application (e.g. safety critical, safety related, mission-critical). The approach adopted
on the ERC32 programme was that formal ACVC was appropriate, when a definitive
need was identified. This need should be assessed.

The third issue which should be addressed here is the worse case execution time
generation facility, known as the WCETE. Currently, the ACS provides a prototype with
limited functionality. Taking, this function beyond this prototype stage will enhance the
overall toolset functionality as it will increase the accuracy of HRT analysis and
simulation.

Finally, the ACS requirements specification identified a number of “future” requirements.
While some of these dealt with extremely detailed issues (e.g. levels of optimisation), a
number would represent significant benefits if required (e.g. generation of additional
formats).

ERC32 Target Simulator

The ERC32 Target Simulator provides a degree of flexibility in adding functionality
through its use of the TCL/TK tool. Particularly, this allows the user to add to the
environment and so incorporate either complex models or incorporate the simulator into
a larger spacecraft level simulation.

One area which should be given some consideration however, is the incorporation of
symbolic information in the stand-alone user interface. This interface currently provides a
disassembler function, however with some of the load formats additional symbolic
information is provided and this could be used as the basis for providing a more
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sophisticated debug capability. This would be particularly used in a mixed language
environment, where multiple sources are used.

Scheduler Simulator

For the Scheduler Simulator, a similar addition in post-processing capability would also
be beneficial. Currently a Gantt chart provides a good visualisation of the execution of an
application and provides the best way for investigating scheduling events. However, a
summary display for the textual report, on a task and application basis would provide
additional benefit and would also allow the user a swift comparison of the schedule
simulation with the analysis.

Schedulability Analyser

Currently, the user interface for the Schedulability Analyser is limited. The presentation
of the results is currently provided in textual form only. While, this provides the
necessary information for performing HRT analysis, post-processing of this data using
nominal graphical representations may considerable enhance the tool.

For example, pie chart would provide a quick and concise summary of the analysis
results, which could be used in the overall development documentation. In the case,
where a scheduling problem had been identified, it would also act as a more visible
indicator to the user that further investigation was required.
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7. ERC32 SYSTEM

7.1. ERC32 System Overview

The ERC32 system consists of both hardware components and tools for software
development for on-board embedded real-time computers.

The ERC32 core is characterized by low circuit complexity and power consumption.
Extensive concurrent error detection and support for fault-tolerance and reconfiguration
is emphasized.

A basic computer implementation using the ERC32 chipset would consist of the
following components:

ERC32 core, including:

• Processor, which consists of one Integer Unit (IU) and one Floating Point Unit
(FPU). The processor includes concurrent error detection facilities.

• Memory Controller (MEC), which is a unit consisting of all necessary support
functions such as memory control and protection, EDAC, wait state generator,
timers, interrupt handler, watch dog, UARTs, and test and debug support. The unit
also includes concurrent error detection facilities.

• One or, if a separate watchdog clock source is required, two oscillators.
• Buffers and latches necessary to interface with memory.
• Memory
• Serial communications (UART) interface circuitry

The above configuration is the simplest possible and is probably only usable for
performance measurements etc. A computer in a space application is most likely to have
some additional Input/Output interfaces apart from the serial communication
implemented by the UART function of the MEC.

In addition to the basic bus interface, an exchange memory area, providing simultaneous
access from the ERC32 and the external bus, is supported by ERC32 and could thus be
easily implemented.

For efficient Ada code execution, an Ada Tasking Coprocessor (ATAC) can also be
added to the system. The ATAC is supported by all the software tools, and the user may
easily switch between ATAC and non-ATAC utilization by a single binder option.

All of the above functions typically fits onto one printed circuit board in space
applications, depending on memory size.

For high-reliability applications, the concurrent error checking capability of ERC32 can
be used. This would then double the number of IU/FPU components in the system.
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Figure 9 - ERC32 Computer for high-reliability applications

The ERC32 computer core is accompanied by a dedicated real-time software
development environment, including basic components as an Ada cross-compiler, cross-
debugger, and a very accurate target simulator, as well as specific tools for analysing the
real-time behaviour and assertion of the schedulability of the software system. The tools
cooperate in various ways, e.g. to enable automatic analysis of worst-case execution
times (including the runtime system) in relation to hard real-time requirements defined by
the user.

The software tools run on any Sun-4 configuration under Solaris version 2 or later.

7.2. Foreseen Applications

The developed ERC32 hardware and software products are foreseen to be used
specifically in Fault Tolerance Systems and in demanding Hard Real-Time applications.
However, the ERC32 products can also naturally be used in less complex environment
where performance requirements are emphasized.
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7.2.1. ERC32 Chipset in Fault Tolerant Systems

The ERC32 system can be configured to very high fault tolerant applications. This is
primarily reached by means of implemented concurrent error detection capabilities in the
ERC32 chipset.

The objective of concurrent error detection is to detect every error in the ERC32 when
the ERC32 is running an application.

The concurrent error detection methods have mainly been designed to detect transient
faults because the transient fault rate, caused by SEUs, is at least a magnitude higher
than permanent fault rate.

Furthermore, the concurrent error detection in the ERC32 system is mainly aimed at
detecting the manifested faults (errors) in the system, not the latent faults.

Therefore, the latent faults in the memory should be processed by concurrent on-line test
software, in order to avoid undetectable multiple faults in the memory. The on-line test
software should include "Memory Scrubbing", read with writeback in a repetitive
manner.

The error detection methods are defined on different levels in the ERC32 system:

• Unit concurrent error detection:

Each unit in the ERC32 (IU, FPU, MEC) is responsible for detecting and reporting
faults within itself, e.g. parity error, memory error, permanent faults etc.

• ERC32 system concurrent error detection:

The ERC32 system is responsible for detecting and reporting faulty units and
erroneous behaviour to the next level, e.g. master/slave compare faults, memory
circuit fault, double errors in memory, software execution errors such as watchdog
timeout and program flow errors.

Unit concurrent error detection.

Since internal errors in units are not visible outside the unit in most cases, it is necessary
to detect these errors internally within each unit. Nevertheless, only the IU of the ERC32
core is able to process errors by using trap routines. This leads to a concept where each
unit detects an error, signals it to the IU, either directly or via the MEC. The error status
of each unit will be monitored and sampled in the MEC to allow the trap routine to trace
and process the error.

ERC32 system concurrent error detection.

For system application with very high demands on reliability the basic ERC32 core itself
can not be used without adding redundant units to increase the reliability.
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By duplication of units and comparators one can detect almost 100% of the internal
errors, especially those errors that are not detected by internal unit concurrent error
detection mechanism.

Duplications of units and introduction of comparators normally require external buffers
and extra logic, and thus the area, power and execution time is increased. In ERC32 the
comparation logic is implemented in the pads of each unit, the units can monitor the pin
values without driving the outputs, and the overhead is reduced.

The ERC32 chipset supports the handling of faults both in normal mode and in
master/slave mode.

In master/slave mode the IU and FPU are doubled and the extra devices compare instead
of drives all output pins.

The ERC32 scheme for a master/slave concept only adds two pins to each unit, the
ERC32 area is doubled due to the need for duplication of units, the timing impact is
negligible and power impact minimal.

The master/slave concept not only detects internal errors in circuitry, it also covers pad,
bonding, pin and interconnection faults.

For master/slave solutions there could be a possibility that the system can continue with
only one correct unit, or with two after restoration of state of the faulty unit. This is only
possible if the IU and/or the FPU fails, not if the MEC fails.

The MEC requires error signals from both the masters and from the slaves of both the
IUs and the FPUs. In case of total corruption the system behaviour is defined by the
MEC error-handler.  If hardware support is required it has to be implemented outside the
ERC32 core.

7.2.2. ERC32 Toolset in Hard Real-Time Applications

The ERC32 software toolset is primarily aimed at providing support for the development
of Hard Real-Time software of the type typical of on-board applications within the Space
industry.
For such applications the software performs one of a number of roles, for example:

• Forming part of the overall satellite Attitude and Orbit Control System (AOCS),
where the software performs specific functions such as orbit manoeuvring and fine
station keeping.

• Providing an overall spacecraft management function, the On-Board Data Handling
(OBDH), where the software monitors the on-board environment (e.g. power
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consumption) and responds to ground commanding (e.g. telecommand action and
distribution).

• Providing a subsystem or instrument control role, such as an Instrument Control
Unit (ICU) which controls the instrument as well as performing telecommands,
telemetry collection and instrument data collection/direction.

It is to be expected that the role will increase as satellite applications become more
complex. As the complexity of the overall satellite functionality increases, software will
become an ever larger component and itself more complex.

This envisaged increase in complexity and functionality has been a major driver within
the ERC32 toolset development, with the fundamental aim being to provide a framework
to allow the development of efficient, yet comprehensible and analysable HRT software.

Therefore, it is to be expected that the tools can be used for any future space missions
where the timing constraints of the software are paramount.

The toolset, however is not restricted to on-board HRT applications. In addition to
providing the specific support for this type of software, the Ada Compilation System and
ERC32 Target Simulator are of a sufficiently general nature for them to be used within
other types of applications, though of course the restriction exists that the tools are for
development of applications for the ERC32 processor.

Indeed, the ACS with its heritage can be foreseen to be used on any application, where
the benefits provided by the Ada programming language would be advantageous. These
may not be HRT in nature, but would be applications which either required the power of
the ERC32 or where the advantage or Ada for large scale program development would
offer considerable development savings.

For the ERC32 Target Simulator, the applications are limited only to the application
scope of the ERC32 processor itself. It provides an accurate simulation of the processor
and therefore can provide benefits to a developer right from the start of a programme,
including the feasibility stages, where it could be used for the assessment of the
progressing capabilities. In addition, the ERC32 Target Simulator is not tied to the Ada
language or the ACS debugger, as it also provides its own stand-alone interface and
disassembler function.
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8. CONCLUSIONS

This 32-bit Microprocessor and Computer Development programme has developed an
infrastructure of sophisticated hardware components and software tools to support the
development of 32-bit on-board computers for future space applications.

The hardware development resulted in a computer core (ERC32) which was built of
three chips, i.e an Integer Unit, a Floating Point Unit and a Memory Controller. The core
is based on SPARC V7 architecture, including all functionality required to form an
embedded 32-bit on-board computer. Only adding external memory and required I/O
devices a complete system is configured. I.e it is easy to design systems with the ERC32
core.

The ERC32 chipset development has resulted in a Rad hard latchup free chipset with
performance up to 10 MIPS at 14 MHz clock frequenzy and a power consumption
below 2,25 W at 5,5 V.

The hardware was first simulated extensively in VHDL and then procured in prototypes
and characterized accordingly on-site. Finally, the functionality was verified within frame
of 32-bit Demonstration Breadboard (DEM32) used by both hardware and software co-
ordinators and by software toolset developers.

The ERC32 chipset is now available for procurement for flight application purposes.

The software development has resulted in a suite of tools, the “32-bit toolset”, which
support the user in the development and verification of hard real-time software written in
the Ada programming language.

The toolset supports the complete Hard Real-Time software development lifecycle and
consequently, can be used from the start of a programme, for example in the prototyping
and conceptual design, through to the final verification and validation of the application.

The software development has focused on ensuring that the toolset provides realistic and
pragmatic implementations. For the ERC32 Target Simulator, hardware experts have
been involved in reviewing and evaluating the product to ensure accurate simulation.
While for the HRT tools, there has been significant technical exchange to ensure that
they perform a precise logical analysis and simulation of the Ada Run-Time System, thus
ensuring that the tools could be ported to another system with minimal effort. For the
Ada Compilation System, the Run-Time System implementation has focused on
providing an efficient implementation, as well as ensuring that the execution time for
Run-Time System functionality is measurable, in order to ensure that it can be analysed.

The tools have undergone a verification and validation process, which includes both a
limited evaluation performed as part of the programme and also a formal validation of
each tool.

The ERC32 toolset is now ready to be used for flight application purposes.
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APPENDIX 1 - Generated documents

This section provides a definitive list of the documents generated by software part and
the hardware part of the programme. The software and hardware parts are split into the
three phases.

SOFTWARE DOCUMENTS

Phase 1

[GD1] Analysis of a Worst Case Execution Timing Tool for the 32bit Microprocessor
Project
MCD-LOG-P1-TN-004, Issue Draft, Rev. 1A, 28 Jan 1994

[GD2] Software Quality Assurance Plan
MCD-LOG-P1-PLN-001, Issue 1, 16 May 1994

[GD3] Software Project Management Plan
MCD-LOG-P1-PLN-003, Issue 1, 16 May 1994

[GD4] Software Configuration Management Plan
MCD-LOG-P1-PLN-004, Issue 1, 16 May 1994

[GD5] Software Verification and Validation Plan
MCD-LOG-P1-PLN-002, Issue 1, 16 May 1994

[GD6] Software Tools Overall Definition Document
MCD-P1-LOG-TN-007, Issue 2 11 July 1994

[GD7] SRD for the Ada Development Environment
DTI-32B-ST-001, Issue 1, Rev 4, 24 Jun 1994

[GD8] SRD for the DEM32 Simulator
DTI-32B-ST-100, Issue 4, 25 May 1994

[GD9] SRD for the Scheduler Simulator
DTI-32B-ST-003, Issue 1 Rev 2, 1 Jul 1994

[GD10] SRD for the Schedulability Analyser
DTI-32B-ST-002, Issue 1 Rev 2, 1 Jul 1994

[GD11] SRD for the WCET Estimator
DTI-32B-ST-004, Issue 1, Rev 3, 1 Jul 1994

[GD12] ICD for the Ada Development Environment
DTI-32B-ID-001, Issue 1, Rev 2, 1 Jul 1994

[GD13] ICD for the HRT Tools
DTI-32B-ID-002, Issue 1 Rev 2, 1 Jul 1994
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[GD14] ICD for the DEM32 Simulator
DTI-32B-ID-100, Issue 4, 25 May 1994

Phase 2 and Development Finalisation Phase

[GD15] Software Project Management Plan
MCD-LOG-P1-PLN-003, Issue 2, 6 Jun 1995

[GD16] HRT Tools Requirements Consolidation Document
MCD-P2-LOG-TN-008, Issue 1, 7 Jun 1996

[GD17] ERC32 Target Simulator Requirements Consolidation Document
MCD-P2-LOG-TN-009, Issue 1 revision 1, 20 Dec 1996

[GD18] ERC32 Software Development Toolset User Manual
MCD-P2-LOG-TUM-001, Issue draft, 15 Jan 1997

Ada Compilation System

[GD19] SRD for the Ada Development Environment
MCD-LOG-SRD-001, Issue 1, Rev 1, 22 Nov 1996

[GD20] ICD for the Ada Development Environment
MCD-LOG-ICD-001, Issue 1, Rev 1, 22 Nov 1996

[GD21] Ada Compilation System Design Document
MCD-ALS-P2-DD-001, issue 2.1, 29 Nov 1996

[GD22] ACS Compiler Design Specification
MCD-ALS-P2-DS-001, issue 2.1, 29 Nov 1996

[GD23] ACS Binder Design Specification
MCD-ALS-P2-DS-002, issue 1.1, 14 Jun 1995

[GD24] ACS Run-Time System Design Specification
MCD-ALS-P2-DS-003, issue 2.1, 29 Nov 1996

[GD25] ACS DEM32 Board Support Package Design Specification
MCD-ALS-P2-DS-004, issue 2.1, 29 Nov 1996

[GD26] ACS Debugger Modifications Design Specification
MCD-ALS-P2-DS-005, issue 2.1, 29 Nov 1996

[GD27] ACS ERC32 Monitor Design Specification
MCD-ALS-P2-DS-006, issue 2.1, 29 Nov 1996

[GD28] ACS Software Project Management Plan
MCD-ALS-P2-PLN-001, issue 2.0, 29 Feb 1996

[GD29] ACS Software Verification and Validation Plan
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MCD-ALS-P2-PLN-002, issue 3.2, 16 Dec 1996

[GD30] ACS Software Quality Assurance Plan
MCD-ALS-P2-PLN-003, issue 2.0, 29 Feb 96

[GD31] ACS Software Configuration Management Plan
MCD-ALS-P2-PLN-004, issue 2.0, 29 Feb 96

[GD32] Work Package Report
MCD-ALS-P2-DOC-018 Issue 2 revision 1, 16 Dec 96

[GD33] Qualification Report
MCD-ALS-P2-QA-020 Version 6, 11 Dec 96

[GD34] ACS User Manuals
AdaMake User's Guide, MCD-ALS-P2-DOC-012, Issue 1 revision 0
AdaMath User's Guide, MCD-ALS-P2-DOC-016, Issue 1 revision 0
AdaProbe User's Guide, MCD-ALS-P2-DOC-011, Issue 2 revision 0
AdaReformat User's Guide, MCD-ALS-P2-DOC-014, Issue 1 revision 0
AdaWorld for Motif User's Guide, MCD-ALS-P2-DOC-004, Issue 1 revision 0
AdaXref User's Guide, MCD-ALS-P2-DOC-013, Issue 1 revision 0
Appendix F, MCD-ALS-P2-DOC-008, Issue 2 revision 0
Application Developer's Guide, MCD-ALS-P2-DOC-007, Issue 2 revision 0
Cross-Development Guide, MCD-ALS-P2-DOC-015, Issue 2 revision 1
Flexible License Manager User's Guide, MCD-ALS-P2-DOC-005, Iss. 1 rev. 0
Installation Guide, MCD-ALS-P2-DOC-002, Issue 2 revision 0
Project Development Guide, MCD-ALS-P2-DOC-006, Issue 1 revision 1
Release Notes, MCD-ALS-P2-DOC-001, Issue 2 revision 1
User Interface Guide, MCD-ALS-P2-DOC-009, Issue 1 revision 0
User's Guide, MCD-ALS-P2-DOC-003, Issue 1 revision 0
Viewing Guide, MCD-ALS-P2-DOC-010, Issue 1 revision 0
Welcome to AdaWorld, MCD-ALS-P2-DOC-019, Issue 1 revision 0

[GD35] Consolidated Schedulability Analyser SRD
32B-SBI-SRD-0189-001, Issue 1 rev 4, 31 Jan 96

[GD36] Consolidated Scheduler Simulator SRD
32B-SBI-SRD-0189-001, Issue 1 rev 4, 31 Jan 96

[GD37] ICD for the HRT Tools
32B-SBI-ICD-0189-0001, Issue 1 rev 4, 31 Jan 96

[GD38] Schedulability Analyser ADD
32B-SBI-ADD-0189-0001, Issue 2 rev 1, 31 Jan 96
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[GD39] Scheduler Simulator ADD
32B-SBI-ADD-0189-0001, Issue 2 rev 1, 31 Jan 96

[GD40] Schedulability Analyser Validation Test Plan
32B-SBI-VTP-0189-0001, Issue 1 rev 3, 20 Nov 96

[GD41] Scheduler Simulator Validation Test Plan
32B-SBI-VTP-0189-0001, Issue 1 rev 2, 1 Dec 96

[GD42] Schedulability Analyser Test Procedure Document
32B-SBI-TP-0189-0001, Issue 1 rev 1, 20 Nov 96

[GD43] Scheduler Simulator Procedure Test Document
32B-SBI-TP-0189-0001, Issue 1 rev 2, 16 Dec 96

[GD44] Schedulability Analyser and Scheduler Simulator User Manual
32B-SBI-SUM-0189-001/2, Issue 1 rev 3, 20 Dec 96

[GD45] Schedulability Analyser V2.1 Delivery
32B-SBI-iM-0189-0001, Issue 2 rev 1, 20 Dec 96

[GD46] Scheduler Simulator V2.1 Delivery
32B-SBI-IM-0189-0002, Issue 2 rev 1, 19 Dec 96

[GD47] ERC32 Target Simulator SRD
32B-SBI-SRD-0189-003, Issue 1 rev 3, 13 Sep 95

[GD48] ERC32 Target Simulator ICD
32B-SBI-ICD-0189-003, Issue 1 rev 3, 16 Feb 96

[GD49] ERC32 Target Simulator ADD
32B-SBI-ADD-0189-0003, Issue 2 rev 1, 16 Feb 96

[GD50] ERC32 Target Simulator Validation Test Plan
32B-SBI-VTP-0189-0003, Issue 1 rev 2, 16 Feb 96

[GD51] ERC32 Target Simulator Validation Test Procedures
32B-SBI-VTP-0189-0003, Issue 2 rev 1, 14 Jan 97

[GD52] ERC32 Target Simulator User Manual
32B-SBI-SUM-0189-003, Issue 2 rev 1, 19 Dec 96

[GD53] Scheduler Simulator V2.1 Delivery
32B-SBI-IM-0189-0003, Issue 2 rev 1, 19 Dec 96

[GD54] MEC Device Specification,
MCD/SPC/0005/SE, Issue 8, 1 Dec 1995
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HARDWARE DOCUMENTS

Phase 1

[GD55] Processor Validation Plan,
MCD/PLN/0001/MHS, Issue 1, 21 Dec 1992

[GD56] Preferred Technologies List,
MCD/PLS/0002/SE, Issue 2, 5 May 1995

[GD57] Error Detection and Testability Methods,
MCD/TNT/0003/SE, Issue 1, 26 Oct 1992

[GD58] ERC32 Technical Specification,
MCD/SPC/0001/SE, Issue 7, 20 Apr 1994

[GD59] ERC32 Trade-Off Document,
MCD/TNT/0004/SE, Issue 2, 28 Apr 1993

[GD60] ERC32 System Design Document,
MCD/TNT/0009/SE, Issue 3, 20 Apr 1994

[GD61] IU-RT Preliminary Specification,
MCD/TNT/0016/MHS, Issue 6, 28 Aug 1995

[GD62] FPU-RT Preliminary Specification,
MCD/TNT/0017/MHS, Issue 6, 28 Aug 1995

[GD63] MEC Device Specification,
MCD/SPC/0005/SE, Issue 8, 1 Dec 1995

[GD64] MEC VHDL Model Test Report,
MCD/TRP/0003/SE, Issue 1, 2 May 1994

[GD65] VHDL Release Notes,
MCD/TNT/0028/MMS, Issue 1, 3 May 1994

[GD66] ERC32 VHDL Models User´s Guide,
Version 1.0, Oct 1996

[GD67] Device and Software Development Plan W.P. 1.5 Final Report,
MCD/PLN/0003/MHS, Issue 1, 2 Feb 1994
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Phase 2

[GD68] IU Final Design Document,
MCD/TNT/0021/MHS, Issue 1, 31 Mar 1995

[GD69] FPU Final Design Document,
MCD/TNT/0022/MHS, Issue 1, 25 Apr 1995

[GD70] WP 2.1 Report, MEC Design Report,
MCD/TNT/0033/MMS, Issue 1, 14 Nov 1995

[GD71] MEC Rev. A Device Specification,
MCD/SPC/0009/SE, Issue 4, 10 Apr 1997

[GD72] IU Product Validation Report,
MCD/TNT/0025/MHS, Issue 1, 13 Oct 1995

[GD73] FPU Product Validation Report,
MCD/TNT/0024/MHS, Issue 1, 13 Oct 1995

[GD74] ERC32 System Overview Rev. CBA,
MCD/TNT/0020/SE, Issue 3, 10 Apr 1997

[GD75] DEM32 User´s Manual,
MCD/TNT/0017/SE, Issue 1, 13 Dec 1995

[GD76] Test Report for DEM32,
MCD/TNT/0020/SE, Issue 2, 10 Apr 1996

Development Finalisation Phase

[GD77] ERC32 Single-Event Upset Test Results,
WSD/JG/320/NL, Issue 1, 22 Oct 1996

[GD78] IU Total Dose Test Report,
MCD/TNT/0027/MHS, Issue 1, 19 Sept 1996

[GD79] FPU Total Dose Test Report,
MCD/TNT/0029/MHS, Issue 1, 19 Sept 1996

[GD80] MEC Total Dose Test Report,
MCD/TNT/0028/MHS, Issue 1, 12 Sept 1996

[GD81] IU Electrical Characterization Test Report,
MCD/TNT/0031/MHS, Issue 1, 1 Sept 1996

[GD82] FPU Electrical Characterization Test Report,
MCD/TNT/0032/MHS, Issue 1, 1 Sept 1996
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[GD83] MEC Electrical Characterization Test Report,
MCD/TNT/0030/MHS, Issue 1, 1 Sept 1996

[GD84] IU Endurance Test Report,
MCD/TNT/0037/MHS, Issue 1, 19 Sept 1996

[GD85] FPU Endurance Test Report,
MCD/TNT/0038/MHS, Issue 1, 19 Sept 1996

[GD86] MEC Endurance Test Report,
MCD/TNT/0039/MHS, Issue 1, 12 Sept 1996

[GD87] IU User´s Manual,
Issue 0, 2 Dec 1996

[GD88] FPU User´s Manual,
Issue 0, 10 Sept 1996

[GD89] Current Errors in the ERC32 (CBA),
Issue 1, 2 Apr 1997


