
Abstract

This paper describes the concurrent error-detection methods
employed in the ERC32, a 32-bit processing core for embed-
ded space flight applications. The processor core consists of
three devices; an integer unit, a floating point unit and a
memory controller. All three devices are provided with inter-
nal concurrent error-detection, mainly to detect transient er-
rors. Over 98% of all latched errors are detected. Depending
on the error location, errors can be removed by instruction
retry or by software intervention without loss of context. A
program flow control mechanism is provided to detect execu-
tion anomalies due to undetected errors. To further increase
the error-detection coverage, each device can be operated in
master/checker mode.

1 Introduction

On-board computers in spacecrafts are used in both life-criti-
cal and mission-critical applications, where continuous oper-
ation over the mission lifetime is crucial. To achieve the
required reliability and availability, various fault-tolerance
techniques are used. A common approach in un-manned
spacecraft is to use two self-checking computers in a cold
stand-by configuration. For this configuration to be success-
ful, the self-checking computers must have high error-detec-
tion coverage, combined with low detection latency and
strong error isolation. However, the error-detection mecha-
nisms implemented so far have been limited to periodic self-
tests, checkbits on memory and a watchdog.

In 1990, the European Space Research and Technology Cen-
tre (ESTEC) began a program to develop the ERC32 radia-
tion-tolerant 32-bit processing core. The ERC32, which is
still in development, is to be a high-performance, general-
purpose scalar computer for space-based applications. Rather
than only develop a microprocessor, the ERC32 includes all
the required functionality to form an embedded computer and
to host a real-time operating system. The core is configured
for a particular application by adding external memory and
application specific I/O devices.

Various different processor architectures were considered,

both CISC and RISC. After two independent studies [1,2], the
SPARC architecture was chosen, mainly because it is a wide-
ly supported, open architecture available without license re-
quirements. Although a proprietary architecture could offer a
higher level of customisation, the risk of choosing a unique,
single-source architecture was considered too high.

Considering the increased complexity of a 32-bit computer,
an error-detection scheme with higher coverage than used in
previous on-board computers was desirable. This paper de-
scribes the error-detection scheme implemented in the
ERC32, and an ERC32-based self-checking computer.

2 General concept

In fault-tolerant systems, faults are either detected or masked.
In life-critical space applications, faults are typically masked,
using a pool of computers in NMR configuration. In un-
manned missions, error-detection and recovery/reconfigura-
tion is preferred, since the redundancy overheads are smaller.
If errors are detected, a system can either recover from them
or reconfigure around them.The fault-tolerance in ERC32 is
based on error-detection and recovery/reconfiguration with
the following characteristics:

• Concurrent error-detection. Errors are detected concur-
rently with ERC32 operation, without any special test in-
structions.

• Error isolation. Detected errors do not propagate to the
outside system, thereby corrupting its state and function.

• Error handling. In case of transient errors, a correct state
is restored and operation is resumed with minimum delay.
In the case of permanent errors, the ERC32 halts and re-
ports this to the outside system.

Several investigations have shown that transient errors large-
ly prevail over permanent [3]. In the space environment, tran-
sient errors are mainly caused by heavy ions, and in low-earth
orbit also by protons. The errors are manifested as bit flips in
registers or memory elements. The sensitivity for these er-
rors, or single event upsets (SEUs), depends both on the man-
ufacturing process and design style, and can usually only be

Concurrent error-detection and modular fault-tolerance in an 32-bit processing
core for embedded space flight applications

Jiri Gaisler
On-board Data Division

European Space Research and Technology Centre
2200AG Noordwijk, The Netherlands

email: jgais@wd.estec.esa.nl

derived through testing of the actual device. Tests of devices
manufactured in the same process as the ERC32 chip-set, in-
dicates that the 3-chip processing core could experience up to
one SEU induced error per month in geostationary orbit under
worst-case conditions[4]. In comparison, the failure rate for
permanent errors, calculated from MIL-HDBK-217F, is less
than one error in 100 years.

The ERC32 error-detection scheme is based on the assump-
tion that transient errors, mainly caused by SEUs, occur at
least one order of magnitude more frequent than permanent
errors. They are also more likely to occur in dense sequential
blocks such as register files than in combinatorial logic. The
following error-detection functions are provided in the
ERC32:

• Parity checking on register files

• Parity checking on other critical registers

• Parity checking on external address, data and control bus

• Program flow control

• Master/checker mode for 100% error-detection coverage

An other important consideration is software compatibility.
The error-detection and handling scheme is fully compatible
with the SPARC V7 ISA, no registers or instruction have been
added or modified.

In space applications, special attention has to be given to error
recovery. Spacecrafts can operate autonomously without
ground coverage for several days, and automatic error isola-
tion and removal is thus crucial for mission success. Rather
than reconfiguring at system level after each transient error,
the ERC32 supports local error isolation and recovery. The
detected errors are handled according to the following rules:

• If the error can be isolated without corrupting the system
state then execution shall continue and necessary clean-up
operations be performed.

• If the error cannot be isolated then the ERC32 shall inform
the above layer and then restart itself.

• If a permanent error occurs such that execution cannot con-
tinue, then the ERC32 will halt and signal its condition to
the above layer.

3 ERC32 architecture

The ERC32 consists of three devices; a SPARC integer unit
(IU), a floating point unit (FPU) and a memory controller
(MEC). The ERC32 interfaces directly to external memory
and IO devices. The MEC includes all system functions re-
quired to form an embedded computer and to host a real-time
operating system. The most important features are:

• Address decoding and memory interface

• Interrupt controller

• Block protection unit

• 32-bit SEC/DED EDAC

• Two 32-bit timers

• Two UARTs

• Boot prom interface

• DMA interface

• Error manager

• Watchdog

The ERC32 does not use a cache memory, it runs directly
from a fast, SRAM-based main memory. There is no memory
management unit (MMU), address translation and paging is
usually not used in space-based embedded systems.

3.1 Integer unit

The integer unit (90C601E) is based on the 7C601 from Cy-
press Semiconductors. It has a four stage pipeline consisting
of a fetch, decode, execute and write stage [5]. A total of 140
32-bit registers are accessible to the programmer, divided into
136 general and four special purpose register. The SPARC ar-
chitecture uses register windowing, the general purpose reg-
isters are divided into windows of 24 registers, with an
overlap of eight. Only one window at a time is accessible, se-
lected through the Current Window Pointer (CWP) in the
Processor Status Register (PSR).

Two types of exceptions (traps) are supported, synchronous

IU

Address bus

Figure 1: ERC32 architecture

FPU

MEC

Main memory

IO devices

ERC32 computing core

Data bus

Redundant
 memory banks

banks

Buffers Buffers

IRQ
RST

(90C601E) (90C602E)

and asynchronous. The asynchronous traps are generated by
external interrupts and can be masked, while the synchronous
traps originate from internal events and cannot be disabled.
Once a trap is taken, further traps are disabled. If a new syn-
chronous trap occurs while traps are disabled then the
processor enters error mode and halts. During the trap opera-
tion a new window is allocated, the program counters (PC and
nPC) are copied into two local registers and thett field in the
trap base register (TBR) is updated to reflect the trap type.
The processor then branches to the appropriate exception
handling routine as indicated by the TBR.

For most synchronous traps, the trap criterion is examined
during the execute stage of each instruction and the trap is
taken before the instruction reaches the write stage. A trapped
instruction therefore does not change the processor status.
This feature is used for handling errors; when an error is de-
tected, the failing instruction is trapped before the processor
state is further corrupted.

General purpose registers. The register file, containing the
general purpose registers, is provided with one parity bit per
register. The parity bit is generated and written together with
the data in the write stage of the pipeline. The bits of adjacent
registers are physically interleaved to reduce the probability
of multiple errors in one register caused by a single SEU. The
three-port register file is accessed during each cycle, but the
parity is only checked if the fetched values are used by the
current instruction.

Special purpose registers. The four special purpose registers
(WIM, TBR, Y and PSR) are divided into a number of bit
fields. The bits in each bit field are updated together and each
bit field is provided with one parity bit. The parity bit is gen-
erated and written when the field is updated and checked
when the field is used in an operation. Some fields are used in
every instruction, and are consequently checked continuous-
ly.

Temporary registers. There are several internal registers

Figure 2: SPARC V7 programming model

Trap base register (TBR)

Window Invalid Mask Register (WIM)

Processor State Register (PSR)

31 0

Input Registers (8)

Local Registers (8)

Output Registers (8)

Global Registers (8)

Floating point queue (FPQ) (3)

Floating point Status Register (FSR)

Floating point registers (32)

31 0
IU Registers FPU Registers

Multiply Step (Y)

used for instruction decoding and data pipelining. A majority
of those are provided with parity bits. The parity of these reg-
isters is checked during each instruction.

Table 1 shows the number of latches provided with parity bits
versus the total number of latches. As can be seen, more than
98% of all latches in the IU are covered.

External bus parity. To check the integrity of the external
address bus an address parity bit is generated. The address
bus parity is not checked by the IU since it is an output only.
A parity bit on the external data bus is generated during stores
and checked during loads and instruction fetches.

Three parity bits are used to protect the control buses. One bit
contains the parity of the control signals going from the IU to
the FPU (checked by the FPU), one bit contains the parity of
the control signal going from the FPU to the IU (checked by
the IU), and one bit that contains the parity of the remaining
output control signals (checked by the MEC). The remaining
input control signals are not protected; they can be generated
by different external units, and a unified parity bit would be
difficult to generate

Program flow control. To complement the register-targeted
error-detection methods, a program flow control functions is
included in the IU using the embedded signature-monitor
technique (ESM). The concept is to calculate a signature from

Module # latches # protected ratio

Register file 4352 4352 100%

Main datapath 852 812 95.3%

PSR,Y,WIM,TBR 300 300 100%

Temporary regs. 585 545 93.2%

Total 6,089 6,009 98.7%

Table 1: IU parity protection summary

each executed instruction and to compare this signature at ap-
propriate points with a predefined checksum, to insure that
the correct instructions have been executed.

Flow control is implemented by XOR-ing all instruction
codes into a signature until a check-point instruction is
reached. During the check-point instruction, the calculated
signature is compared with the reference checksum (calculat-
ed by the compiler), contained in the check-point instruction.
If a mismatch is detected, an error trap is immediately taken.
The check-point instruction also resets the signature genera-
tor.

To preserve software compatibility with the SPARC ISA, the
check-point instruction is implemented as a modified NOP.
The modification is minor; the original NOP is a SETHI %g0,
0, the modified is SETHI %g0, CHK_SUM. A program using
flow control is divided into branch-free blocks ended by a
branch and a check-point instruction in the branch delay slot.
To insure compatibility with software compiled without
checksum insertion, the original NOP will disable the subse-
quent checking. Checking is also disabled when taking a trap
or returning from a trap (RETI).

Error handling. Adhering to the general exception mecha-
nism, the internal error-detection logic is evaluated during the
execute stage of each instruction. If an error is found, an error
trap is taken. The error traps are divided into six types,
grouped after error location and possible recovery action (ta-
ble 1).

A restartable, precise error is defined as an error which can be
removed by retrying the failing instruction and for which the
saved PC and nPC in the trap window indicates the correct
address of the failing instruction. Recovery is performed by
simply returning from the trap routine, which will resume ex-
ecution at the location of the failing instruction. Errors of this
type originate from parity errors in the temporary registers.
When the failing instruction is retried, these registers are re-
loaded, and the error is effectively removed.

Non-restartable, precise errors are errors which will not be re-
moved if the failing instruction is re-tried, but where the fail-

Error
group

Error description
Trap
type

1 Restartable, precise error 0x60

2 Non-restartable precise error 0x61

3 Restartable, late error 0x62

4 Non-restartable, imprecise error 0x63

5 Register file error 0x64

6 Program flow control error 0x65

Table 2: Error traps

ing instruction is known (correctly saved PC and nPC).
Removing the error will require software intervention, typi-
cally by restarting the current task. Since the failing instruc-
tion is identified, the error is isolated and will not propagate.
This type of errors originate from parity errors in the user-vis-
ible special purpose registers (PSR,Y,WIM,TBR).

The most serious type of errors are non-restartable, imprecise
errors. These errors are not removable by instruction retry,
and cannot be tied to a particular instruction. Error isolation
is still guaranteed, these errors affect all instructions and the
first instruction in the trap handler will also encounter the er-
ror and will cause the IU to go to error mode and halt. A reset
is the only way to recover from these errors.

Initialisation. At power-up, the register check bits are not set
and have to be initialized by software. Since registers are only
checked when used, no special initialisation mode needs to be
entered and registers (and check bits) can be initialized in the
same way as in a normal SPARC processor. Care has to be
taken not to read a register before it has been written and its
check bits initialised. However, using registers before they
are initialized is normally not recommended even without er-
ror checking.

3.2 Floating-point unit

The floating-point co-processor (90C602E) is based on the
MEIKO floating-point core. It is tightly coupled to the integer
unit which fetches and decodes all floating-point instructions.
The floating-point instructions are started by the IU using the
INS1/INS2 signals and then execute independently inside the
FPU. If an exception (e.g. overflow) occurs during the execu-
tion of an floating-point instruction, the FPU will assert
FEXC and enter pending_exception state. The IU will recog-
nize the floating-point exception at the start of the following
floating-point instruction and take a floating point trap. The
exception type will be indicated in theftt field in the floating-
point status register.

The FPU error-detection scheme is similar to the IU scheme.
All registers are provided with parity bits, and FPU generates
and checks parity bits for all buses (address, data and con-
trol). The error-handling is slightly different; the FPU cannot
handle the detected errors on its own, but flags them to the IU
which have to take corrective measures. When and error is
detected, the FPU enters pending_exception state and indi-
cates the error type in the ftt in the floating point status regis-
ter. Three types of errors are defined; restartable error, non-
restartable error and data bus error.

A restartable FPU error is defined as an error which was de-
tected before the FPU state was changed, and where the fail-
ing instruction can be re-executed. These error originate from
instruction decode and data pipeline registers, or from a con-
trol bus parity error. A non-restartable error is an error which
was detected after the FPU state was changed, and can there-
fore not be removed be re-executing the instruction. A data

bus error indicates a bus parity error during a floating point
load instruction. This error does not affect the FPU state and
the load instruction can be re-executed.

At power-up, the register check bits are not set, and have to
be initialized by software. As for the IU, no special initialisa-
tion mode needs to be entered and the registers (and check
bits) can be initialized in the same way as in a normal SPARC
FPU. Again, care has to be taken not to read a register before
it has been written and its check bits initialised.

3.3 Memory controller (MEC)

The MEC implements important system support functions
such as chip select decoding, waitstate generation, EDAC,
timers and USARTs. Error-detection is implemented by pro-
viding each MEC register with a parity bit which is continu-
ously checked. The parity of the external address, data and
part of the control bus is checked by the MEC.

The MEC also contains an error manager, where the error sig-
nals from the IU, FPU and the MEC itself are sensed. For
each error type, the error manager can be programmed to ei-
ther ignore the error, reset the ERC32 or halt.

3.4 Error-detection overhead

The introduced error-detection scheme has a relatively low
overhead; less than 15% in terms of silicon area. The timing
impact is basically the maximum delay through a 32-bit par-
ity generator, approximately 8 ns on a 1µm CMOS technol-
ogy. The flow control scheme gives a negligible hardware
overhead, but results in a run-time performance degradation.
If a program consists of 10% branches, and the schedulability
of the delay slot is 50%, the total performance degradation is
5% (0.1 * 0.5). Five additional pins are added to the IU and
FPU for bus parity and error flagging.

4 System configurations

4.1 Duplex configuration

All three devices contain comparators and logic to be able to
work in a duplex (master/checker) configuration. The master
and checker have all inputs and outputs connected together,
but only the master drives the outputs. During each cycle, the
slave compares the values of the outputs (driven by the mas-
ter) with its own internal values. A mismatch is indicated on
the CMPERR output.

Module # latches # protected ratio

Register file 1024 1024 100%

Datapath 756 756 100%

Temporary regs. 406 406 100%

Total 2,186 2,186 100%

Table 3: FPU parity protection summary

4.2 Modular fault-tolerance

The ERC32 can be used in three configurations, simplex, du-
plex and duplex with masking. In the simplex configuration,
errors are only detected with the built-in error detection func-
tions, and recovery is based on instruction retry or software
intervention. In the duplex configuration, errors are also de-
tected by the checker devices, giving almost 100% error-de-
tection coverage. Recovery is performed as in the simplex
configuration.

In a duplex configuration with masking, the ERC32 is provid-
ed with an additional reconfiguration unit (RU). The RU
monitors the two error signals from each core device, HW-
ERR and CMPERR. HWERR indicates that an error was de-
tected by the internal error-detection, CPMERR indicates that
the checker found a output mismatch. When an internal error
is detected, it takes in the most cases two clock cycles to prop-
agate to the outputs. If the reconfiguration unit detects HW-
ERR before CMPERR is asserted from any device, it can halt
the system, switch the master and checker, and resume the op-
eration, thereby masking the error. The ERC32 can continue
operation without interrupts, but with reduced error-checking
coverage. The master and checker can be re-synchronised by
performing a soft-reset at a non-critical point in the mission.

5 Conclusion

A SPARC-based computing core with internal error-detection
has been described. The error-detection scheme has several
benefits:

• The processor stays fully compliant with the SPARC ar-
chitecture, even with error-detection enabled.

• Detected errors are isolated, to prevent further error
propagation.

• The up-time is increased by ignoring errors from unused
registers or bit fields.

• Error-handling is transparent to the application software
and mapped on the exception mechanism.

• Fault-tolerance can be achieved with low overhead.

Config
Error-detection

coverage
Fault-tolerance Overhead

Simplex > 98% of all
latched errors

Instruction retry
Software action

15%

Duplex 100% Instruction retry
Software action

100%

Duplex +
Masking

100% Device switching 100% +
RU

Table 4: Configuration characteristics

• The error detection scheme is expandable without requir-
ing additional registers or instructions if further error de-
tection mechanisms are introduced.

• The implementation overhead is within the limits of
space-qualified device technology.

6 Acknowledgments

This work was performed under ESTEC contract 9848/
92/NL by a consortium consisting of Matra MHS (F),
Matra Marconi Space (F) and Saab Ericsson Space (S).

References

[1] “RISC Evaluation study - final report”, SAAB Space
1990, ESTEC report reference CR(P)3188.

[2] “RISC architecture and technology - final report”,
SAGEM 1990, ESTEC report reference CR(P)3190.

[3] “Architecture of fault-tolerant computers”, D.P.
Siewiorek, Proceedings of IEEE, 79(12), 1991.

[4] “Memory design considerations in space grade VLSI”,
T.Bion and A.Dantec, MATRA MHS, 1993.

[5] “SPARC RISC User’s guide”, Matra MHS SA, 1992

Figure 4: ERC32 duplex configuration

CMPERR
HWERR
ERROR

IU

IUHWERR
IUERR

IUCMPERR
SYSAV

SYSERR

FPUHWERR
FPUCMPERR

MEC
CMPERR
HWERR

FPU

CMPERR
HWERR
ERROR

IU

IUHWERR
IUERR

IUCMPERR

SIUHWERR

SYSAV
SYSERR

MECERR
MECCMPERR

FPUHWERR
FPUCMPERR

SFPUHWERR

MECCMPERRIN
MECERRIN

MEC

CMPERR
HWERR

FPU

SIUERR

CMPERR
HWERR
ERROR

IU

CMPERR
HWERR

FPU

IUHWERR
IUERR

IUCMPERR

SIUHWERR

SYSAV
SYSERR

MECERR
MECCMPERR

FPUHWERR
FPUCMPERR

SFPUHWERR

MECCMPERRIN
MECERRIN

MEC
SIUERR

Figure 3: ERC32 simplex configuration

