
estec
esa european space research

and technology centre

Prepared by J.Gaisler
Spacecraft Control and Data System Division
Automation and Informatics Department
ESA/ESTEC

Ref: WSD/JG/160/NL
Issue 1, 27-11-1995

Keplerlan 1 - Noordwijk - Netherlands
Mail address: Postbus 299 - 2200 AG - Noordwijk - The Netherlands

Tel: 071-5656565 - Telex: 39098 - Fax: 071-5656040

ERC32 instruction timing



2

WSD/JG/160/NL

1 Introduction

1.1 Scope

This document describes the instruction timing for the 90C601RT and 90C602RT in an
ERC32 system.

1.2 Applicable documents

AD1 IU-RT specification, issue 6, AMS/IURT/0017/CLG, Matra MHS 1995

AD2 FPU-RT specification, issue 6, AMS/FPURT/0018/VS, Matra MHS 1995

AD3 MEC device specification, issue 7, MCD/SPC/0005/SE, Saab Ericsson Space 1995



3

WSD/JG/160/NL

2 Instruction timing

Integer instructions consist of up to four cycle types; fetch, load, store and internal cycles. Ta-
ble 1 indicates the cycle decomposition for 90C601RT instructions.

Data dependencies can add one internal cycle to the instruction timing. This occurs if an in-
struction uses data loaded in the previous cycle, if the delay slot instruction of a CALL uses
r[15], or if the delay slot instruction of a JMPL uses the destination register of JMPL. The
extra cycles occur relatively rarely, most compilers know about the dependencies and try to
schedule around them.

The instruction timing of the floating point instructions executed by 90C602RT is somewhat
more difficult to calculate. The timing depends on both the data used in the calculations, and
resource dependencies between consecutive FP instructions. Since the FPU can execute one
FP instruction in parallel with the IU, the effective timing depends on whether a new FP in-
struction arrives before the previous is completes. If so, the FPU will halt the system until the
first FP instruction completes. Table 2 below gives the FP instruction timing as indicates in
the 90C602RT data sheet. This timing indicates the non-parallel mode, i.e. how many cycles
the FP instruction needs to complete inside the FPU. To launch an FP instruction only takes
one instruction fetch cycle - typically one clock cycle in an ERC32 system. The effective CPI
for FP instruction depends largely on how well the compiler schedules the instructions, avoid-
ing data dependencies and maximizing concurrent operation with the IU. The worst case tim-
ing occurs only when denormalized numbers are used as source for operations.

Floating-point load and store instructions are executed partly by the IU, and are not men-
tioned in table 2. They execute in the same number of clock cycles as the corresponding inte-
ger instruction. The FP load/store instructions can be executed in parallel with any ongoing
FP operation as long as no resource dependency exists. Table 3 indicates when a dependency
would occur and the FP load/store instruction would have to wait until the current FP instruc-
tion finishes.

Instruction Internal cycles Fetch cycles Load cycles Store cycles

LD 0 1 1 0

LDD 0 1 2 0

ST 1 1 0 1

STD 1 1 0 2

JMPL, RETT 1 1 0 0

LDST, SWAP 1 1 1 1

All other instructions 0 1 0 0

Table 1: 90C601RT instruction timing



4

WSD/JG/160/NL

Instruction best case Typical case Worst case

FABS 2 2 2

FADDS 4 4 17

FADDD 4 4 17

FCMPS 4 4 15

FCMPD 4 4 15

FCMPES 4 4 15

FCMPED 4 4 15

FDIVS 6 20 38

FDIVD 6 35 56

FMOVS 2 2 2

FMULS 5 5 25

FMULD 7 9 32

FNEGS 2 2 2

FSQRTS 6 37 51

FSQRTD 6 65 80

FSUBS 2 4 17

FSUBD 4 4 17

FDTOI 7 7 14

FDTOS 3 3 16

FITOS 5 6 13

FITOD 4 6 13

FSTOI 6 6 13

FSTOD 2 2 14

Table 2: 90C602RT instruction timing

Instruction Dependency

LDF, LDDF A load instruction must not overwrite the source or destination of any FPop that has
not completed execution.

STF, STDF A store operation may not access an FP register that is the destination register of a
FPop that has not yet finished execution.

LDFSR, STFSR Any FP instruction must finish before a LDFSR/STFSR may start. No FP instruction
can start before a LDFSR/STFSR is finished.

STDFQ If a STDFQ is issued when the FP queue is empty, any on-going FP instructions are
halted until the STDFQ completes.

Table 3: 90C602RT dependencies



5

WSD/JG/160/NL

3 ERC32 performance calculation

To calculate the instruction timing in an ERC32 system, a mapping between processor cycles
and system clocks must be done. Table 4 indicates the number of system clocks for each type
of cycle. The number of waitstates is denoted as “n”.

In an ERC32 system, the store byte and half-word instructions (STH and STB) are converted
to a read-modify-write cycle in order to update the EDAC check-bits properly. Table 5 shows
the cycle composition for these instructions.

A typical ERC32 system executes applications from zero-waitstate RAM, and has zero or one
waitstate during write operations. In table 6, the instruction timing for three cases are
shown; zero waitstate load and store, one waitstate during store and boot-PROM access with
2 waitstates.

Cycle type System clocks

IU internal cycle 1

RAM fetch, load & store 1 + n

boot-PROM fetch, load & store 1 + 4n

I/O area load and store 2 + n

Exchange memory load & store 2 + n

Table 4: ERC32 load & store cycle timing

Instruction Internal cycles Load cycles Store cycles

STB, STH 3 1 1

Table 5: STB, STH timing in an ERC32 system

Instruction 0 ws 1 ws (write) boot-PROM

LD 2 2 13

LDD 3 3 25

ST 3 4 14

STD 4 6 26

STB, STH 5 6 -

JMPL, RETT 2 2 2

All other instructions 1 1 13

Table 6: Instruction timing in an ERC32 system



6

WSD/JG/160/NL

Simulations have shown that the effective CPI for integer instructions in zero-waitstate sys-
tems is 1.2 - 1.4, while one waitstate during store cycles increases the CPI to 1.3 - 1.5. Pro-
grams compiled with gcc-2.7 and gnat-2.0.7 has shown that the effective CPI for single
precision FP instructions is about 2.5 and for double precision 4.0. The CPI for FP instruction
is mostly unaffected by waitstates since FP operations run in parallel with IU, and do not halt
during waitstate hold.

Although detailed instruction timing calculations can be performed using the tables from the
previous sections, it is usually more convenient to use the CPI figures to derive an approxi-
mate performance figure for a given ERC32 application. As an example, an application with
10% single precision floating-point instructions would have an average CPI of 0.9 * 1.4 + 0.1
* 2.5 = 1.51. At 14 MHz, the performance would be 14.0 / 1.51 = 9.27 MOPS.


